
Response to Reviewer Comment 3 for Convection-
permitting climate model representation of severe 
convective wind gusts and future changes in 
southeastern Australia 
 

Reviewer comment 3 
The authors investigated the severe convective wind (SCW) events based on the climate 
simulations over eastern Australia using the regional climate model at convective 
permitting resolution (BARPAC-M) to resolve the deep convections and coarse 
resolution (BARPA-R) to represent the environmental conditions. The work 
demonstrated the improved simulation of SCW events with convection-permitting 
resolution and investigated the SCW in different categories and their possible changes 
by the middle of the 21st century under the SSP585 scenario. The manuscript is very 
well written. The design of the experiments and methodology is sound at the bulk part, 
and the clustering-based analysis is very interesting! I would recommend minor 
changes before it is accepted for publication. 
 
Thank you very much for your review and comments, we have responded to each 
comment below on a point-by-point basis. 
 

General comments 
First, there is a concern about the direct comparison of a given cluster between 
observation and simulation. The clusters from the k-mean method represent the 
relative differences in the same dataset. Although the partitioning of the events (e.g. 
percentage of each category) is comparable between the observation and simulation, 
the direct comparison of each cluster between observation and simulation may not be 
reasonable since a given cluster may not be physically similar enough between 
observation and simulation. 
We thank the reviewer for this comment and acknowledge a range of uncertainties 
relating to the application of methods trained on observations then applied to model 
data. Although many studies use similar approaches of training methods to 
observations before applying them to model data, we believe it is important to 
understand details as much as possible for a given study approach. As such, the 
following analysis is provided to help demonstrate the suitability of applying these 
methods to model data.  
 
Firstly, we have investigated this point further by visualising the k-means clustering 
following Brown et al. (2023), for both the observed and modelled (BARPAC-M) severe 
convective wind datasets, using the four clustering variables (see Supplementary 
Material Section S2 for further details): 

• Mean water vapour mixing ratio in the lowest 1 km (Qmean01) 



• Vertical wind shear between the surface and 6 km (S06) 
• The temperature lapse rate between 1 and 3 km (LR13) 
• The mass-weighted mean wind speed from the surface to 6 km 

(Umean06) 
 
This visualisation is shown below, for both the observed SCW event dataset (using 
clustering variables from ERA5), and the simulated BARPAC-M event dataset (using 
clustering variables from BARPA-R). The below figure demonstrates that the distribution 
of those variables in each SCW cluster is similar between ERA5 and BARPA-R, that we 
believe gives some confidence in the application of the clustering method to the BARPA 
dataset (although there are some differences such as less spread in the BARPA-R 
distribution across SCW events for Umean06 and LR13, and many more steep lapse 
rate SCW events simulated by BARPAC-M as noted in the main manuscript text). This 
comparison will be discussed in the revised version of the manuscript (Section 3.3), 
while the figure and additional discussion is shown in the Supplementary Material 
(along with more general evaluation of BARPA-R diagnostics compared with ERA5, in 
Section S2). 

 
Joint distributions of (left column) the mean water vapour mixing ratio in the lowest 1 km (Qmean01) 
and vertical wind shear between the surface and 6 km (S06), as well as (right column) the 



temperature lapse rate between 1 and 3 km (LR13) and the mass-weighted mean wind speed from 
the surface to 6 km (Umean06), for severe convective wind (SCW) events from (top row) 
observations and (bottom row) BARPAC-M. For observed SCW events, the environmental 
diagnostics shown here are calculated from ERA5, while for BARPAC-M events, the diagnostics are 
calculated from BARPA-R. The joint distributions are separated based on the clustering method of 
Brown et al. (2023), including (red) strong background wind, (yellow) steep lapse rate, and (blue) 
high moisture SCW events. 
 
 
Secondly, we believe that the separation of physical SCW characteristics between 
event types is replicated reasonably well by BARPAC-M when compared with 
observations (see Figure 5 of the submitted manuscript), thereby helping to provide 
confidence in the applicability of the observations-based clustering method to the 
BARPA model data. We have provided some additional discussion on this in the revised 
manuscript (Section 3.3), as follows, with relevant points for this reviewer comment 
shown below in bold text: 
 
“Consistent with Brown et al. (2023), Figures 5c, e, and g demonstrate that the observed 
wind gust ratio, daily lightning flashes, and deep-layer wind ratio all increase with 
clusters that are supportive of relatively deep convection. That is, these 
quantities are highest for SCW events in the high moisture cluster, followed by the steep 
lapse rate and strong background wind clusters. BARPAC-M is able to replicate this 
behaviour for the distribution of daily lightning flashes (Figures 5f) and 
the deep-layer wind ratio (Figures 5h). This broad separation of SCW 
characteristics between different types of events gives some confidence in the 
suitability of applying the clustering method to BARPAC-M. In addition, the 
distribution of large-scale environmental diagnostics is broadly consistent 
between observations and BARPAC-M across event types, as shown in the 
Supplementary Material (Section S2). However, there are also some key differences 
in SCW characteristics between BARPAC-M and the observed dataset, for different 
event types. For example, while, BARPAC-M produces higher wind gust ratios for SCWs 
associated with the steep lapse rate cluster compared with the strong background wind 
cluster, as observed (Figure 5d), the model produces significantly lower values for the 
high moisture cluster compared with observations. This suggests that key processes 
related to SCWs within the high moisture cluster are not represented in BARPAC-M. This 
could relate to, for example, supercell downdrafts that occur on small spatial scales, 
and mostly occur within this cluster (Brown et al., 2023). There appears to be little 
difference in the severe wind gust intensity distribution between clusters, based on the 
results here (Figures 5a–b)”. 
 
Brown, A., Dowdy, A., Lane, T. P., and Hitchcock, S.: Types of Severe Convective Wind Events in Eastern 
Australia, Monthly Weather Review, 151, 419–448, https://doi.org/10.1175/MWR-D-22-0096.1, 2023 
 
Another concern is that the 20-year simulation may not cover long enough climate 
variability, thus the future changes are sensitive to the resampling. It might be 
beneficial to show the phases of the major climate variability are similar between the 
historical and future runs. 



We agree that this is a source of uncertainty and have added a new paragraph to the 
revised manuscript in the Discussion section. The new paragraph provides details in 
response to this review comment as well as to a similar comment from Reviewer 1 (as 
detailed in the responses to Reviewer 1).  
 
This issue on the impact of natural climate variability for future projections is commonly 
discussed within climate model studies. This is especially the case for studies that use 
convection-permitting models, since the large amounts of computational resources 
needed for these types of simulations generally results in relatively short analysis 
periods. The 20-year window used here for these simulations provided by the Bureau of 
Meteorology is consistent with the current capability of large modelling centres, and is 
a similar length to previous studies for thunderstorm projections (Gensini and Mote 
2014, Ashley et al. 2023).  
 
As noted in the new paragraph added, we agree that the 20-year window does lead to 
the potential for natural climate variability to not be fully sampled in a balanced way, 
such as due to the potential for some influence from large-scale atmospheric and 
oceanic modes of variability such as ENSO and many others. We have chosen to not 
calculate the phase of individual climate modes in the historical and future runs 
because robust relationships between severe convection and individual climate modes 
have not been found to date for this region, noting conflicting results on this from 
previous studies. This is now discussed in the new paragraph to be inserted in the 
revised Discussion, as follows: 
 
“The uncertainties related to extreme wind events mentioned above could also be 
associated with internal climate variability, including natural modes of variability such 
as the El Nino-Southern Oscillation (ENSO) and others, that could potentially affect the 
future projections presented here more generally. Internal variability can be a source of 
uncertainties in future climate projections (Deser et al., 2012) as well as in historical 
trends of severe thunderstorm environments for this region (Allen and Karoly 2014). 
Uncertainties from internal variability could be exacerbated by the relatively short 20-
year period used for the analysis here, noting that this was the maximum period of data 
available for use and that these data were used in previous research such as described 
in Dowdy et al. (2019). Simulating long periods with convection-permitting models is 
very computationally demanding, as noted by previous studies that have used temporal 
windows of about 10-15 years length for future projections of severe convection 
(Gensini and Mote, 2014; Ashley et al., 2023). Future work to provide convection-
permitting climate model simulations over longer periods will be beneficial, including 
with a larger sample helping to reduce the influence of internal climate variability (e.g., 
associated with ENSO) on estimates of longer-term climate changes. In addition, the 
relationships between SCW events and individual modes of climate variability in this 
region are relatively uncertain, with conflicting results for severe convection based on 
lightning and hail observations, and severe thunderstorm environments (Allen and 
Karoly, 2014; Dowdy, 2016; Soderholm et al., 2017; Dowdy 2020). Future work towards 
revealing these relationships could likely provide additional insights on the potential 
impact of internal climate variability on historical and future trends in convective 
hazards, including severe wind gusts”. 
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Specific comments 
 

1. Line 30-31: The changes in large-scale environment affecting deep convections 
may not be limited to temperature and moisture. Other factors may be worth 
noticing/mentioning, such as changes in tropospheric lapse rate, low-level wind 
shear, and relative humidity. 
Thank you for pointing this out, we now mention these other factors in the 
revised manuscript that may be relevant for future changes in deep convection 
in the Introduction, as follows: 
 
“Future human-induced climate change could also potentially impact other 
factors relevant for deep moist convection, such as temperature lapse rates, 
vertical wind shear, and relative humidity (Seeley and Romps, 2015; Chen et al., 
2020)”. 
 
Chen, J., Dai, A., Zhang, Y., and Rasmussen, K. L.: Changes in Convective Available Potential 
Energy and Convective Inhibition under Global Warming, Journal of Climate, 33, 2025–2050, 
https://doi.org/10.1175/JCLI-D-19-0461.1, 2020 
 
Seeley, J. T. and Romps, D. M.: The effect of global warming on severe thunderstorms in the 
United States, Journal of Climate, 28, 2443–2458, https://doi.org/10.1175/JCLI-D-14-00382.1, 
2015 

 
2. Line 54-64: The discussion on model uncertainties touches only on the influence 

of model resolution on dynamics. It might be worth mentioning other sources of 



uncertainty although resolution is the focus here. For example, the uncertainties 
in parameterizations, especially the microphysical (MP) parametrization may be 
worth mentioning since the deep convective systems and growth of hydrometers 
are strongly affected by MP processes, which further affect the evaporative 
cooling and downdraft. 
We provide some additional discussion of uncertainties related to various 
unresolved dynamics in convection-permitting models, including MP processes. 
The following is included in the Introduction of the revised manuscript: 
 
“…These errors are likely related to several dynamical processes that are not 
sufficiently resolved by these model configurations, such as microphysical 
processes, convective cold pools, and entrainment of environmental air (Bryan 
and Morrison, 2012; Jucker et al., 2020; Bergemann et al., 2022). Errors in 
convective storm timing and location have also been shown to be caused by 
deficiencies in boundary conditions in some cases, relating to representations of 
the large-scale thermodynamic environment (Hanley and Lean, 2021). Also, the 
turbulent nature of (severe convective wind) events means that the relevant 
surface winds are often parameterised in these models (Hawbecker, 2020), 
which can lead to biases in surface wind speed” 
 
Bergemann, M., Lane, T. P., Wales, S., Narsey, S., and Louf, V.: High-resolution simulations of 
tropical island thunderstorms: Does an increase in resolution improve the representation of 
extreme rainfall?, Quarterly Journal of the Royal Meteorological Society, 148, 3303–3318, 
https://doi.org/10.1002/qj.4360, 2022 
 
Bryan, G. H. and Morrison, H.: Sensitivity of a simulated squall line to horizontal resolution and 
parameterization of microphysics, Monthly Weather Review, 140, 202–225, 
https://doi.org/10.1175/MWR-D-11-00046.1, 2012 
 
Hanley, K. E. and Lean, H. W.: Elucidating the causes of errors in 2.2 km Met Office Unified Model 
simulations of a convective case over the US Great Plains, Quarterly Journal of the Royal 
Meteorological Society, pp. 1–19, https://doi.org/10.1002/qj.4049, 2021 
 
Jucker, M., Lane, T. P., Vincent, C. L., Webster, S., Wales, S. A., and Louf, V.: Locally forced 
convection in subkilometre-scale simulations with the Unified Model and WRF, Quarterly Journal 
of the Royal Meteorological Society, 146, 3450–3465, 
https://doi.org/10.1002/qj.3855, 2020 

 
3. Line 90: Climatology based on the “20-year” simulation may be sensitive to 

climate variability depending on when the period starts. It may be beneficial to 
show the historical and future periods cover similar phases of the major climate 
modes that affect deep convection over eastern Australia. 
See response to general comment, where we also note that there are 
considerable uncertainties in the relationships between deep convection over 
eastern Australia and major climate modes. 

 
4. Line 132-136: It might be easier for the readers to follow if the introduction of the 

terms is in the same sequence as their occurrence in Eq. 2. 
We have made this change in the revised manuscript, thank you. 

 



5. Line 243-246: Since k-mean clustering captures the relative difference within the 
same data, is it possible that the “severe high moisture events” from the 
observation and simulation are not physically similar enough to make a direct 
comparison? It would be better to show some evidence of how similar the two 
clusters are in terms of moisture and related properties before we conclude 
here. Same suggestion for other clusters if compared directly between 
observation and simulation. 
See response to general comments about clustering. 

 
6. Figure 7: Since both BARPAC-M and BARPA-R are presented in each panel, It is 

better to use a common y-axis title to describe both simulations. 
Thanks for this suggestion, we have replaced the y-axis title with a common 
“Model” label. 

 
7. Line 258-259: I don’t see a causality relation between the bias in intensity 

distribution and an overestimation of event numbers here 
Because of the high-bias in intensity, a greater proportion of the BARPAC-M wind 
gust distribution lies above 25 m/s, which is the threshold used for severe 
convective wind events in our study. Therefore, this result can be related to the 
bias in event frequency discussed earlier in the manuscript. We have clarified 
this in the revised manuscript with the following text: 
 
“Results indicate that BARPAC-M tends to overestimate the intensity distribution 
of convective daily maximum wind gusts (Figure 7d–f), especially when 
considering severe gusts over 25 m/s in the steep lapse rate cluster (Figure 7e). 
This bias results in a greater portion of the BARPAC-M convective wind gust 
distribution exceeding the 25 m/s severe threshold in steep lapse rate 
environments, compared with observations, and therefore relates to the 
overestimation of simulated steep lapse rate SCW events presented earlier 
(Figure 6c and g) and in the overall number of SCW events (Figure 6a and e)”. 
 

8. Line 261-262: Based on Figure S7, the overestimated amount of steep lapse rate 
SCW events does show consistent bias to the large-scale environment from 
BARPA-R that the model produces more frequent “steep lapse rate” conditions 
than observed. 
Thanks for pointing this out, we amended the text here based on the reviewer’s 
comment. We conclude that the overestimated amount of steep lapse rate SCW 
events might somewhat be due to bias in the large-scale environment, but that 
this bias is relatively small compared with the bias in SCW frequency. We 
included the updated paragraph in the revised manuscript: 
 
“This overestimation in the amount of steep lapse rate SCW events could be due 
to several factors. This includes biases in the large-scale environment inherited 
from BARPA-R, with a slightly higher occurrence frequency of favourable steep 
lapse rate environments compared with ERA5 (see Supplementary Material 
Figure S7b). However, the relative bias in favourable steep lapse rate 
environments is much smaller than the relative bias in simulated SCW event 



frequency from BARPAC-M within steep lapse rate environments (compare 
Supplementary Material Figures S7b and c). This suggests that the bias in 
simulated SCW event frequency is not primarily driven by biases from BARPA-R, 
and is instead due to errors in dynamical processes related to SCWs in BARPAC-
M, such as convective downdrafts that are too intense or numerous, or errors in 
gust parameterisations (explored further in Discussion section). This is further 
supported by a relatively consistent frequency in daily lightning occurrence 
between BARPAC-M and WWLLN for steep lapse rate environments, compared 
with the frequency of SCW occurrence (see Supplementary Material Figure 
S7d)”. 

 
9. Line 271-272: This uncertainty may be due to uncertainty in climate variability. 

See response to general comment about internal climate variability. 
 

10. Line 300: My guess is the BDSD and criteria used to identify the F_ENV were 
developed based on a different dataset other than the model simulations. It is 
worth considering 1) the uncertainty in this parameterized metric when applied 
to a different dataset, and 2) whether the model can well capture the physical 
relations between the parameters considered in BDSD and SCW. It would be 
beneficial if some physical explanations could be provided for the opposite 
changes in SCW and F-ENV. 
This is a good point, and it is correct that the BDSD and F_ENV criteria were 
trained on a different dataset to the model simulations (it was trained on an 
observational SCW dataset and the ERA5 reanalysis, see Brown and Dowdy 
(2021)). We have already indirectly addressed the uncertainties related to the 
application of the BDSD to future climate projections, on line 372 of the 
submitted manuscript: 
 
“The lack of correlation between future simulated SCWs and favourable SCW 
environments found here highlights potential uncertainties in the application of 
methods that have been developed in the historical climate, as also mentioned 
by previous studies (Hoogewind et al., 2017; Raupach et al., 2021). … the future 
changes reported here therefore have low confidence…”. 
 
In response to the reviewer comment, we expand on this existing point in the 
revised manuscript, with the following text included: 
 
“The lack of correlation between future simulated SCWs and favourable SCW 
environments found here highlights potential uncertainties in the application of 
methods that have been developed in the historical climate, as also mentioned 
by previous studies (Hoogewind et al., 2017; Raupach et al., 2021). This 
includes the application of the Brown and Dowdy (2021b) Statistical 
Diagnostic (BDSD) that is used here to diagnose favourable SCW 
environments (see Section 2.3). Additional uncertainty is also potentially 
introduced here by the fact that the BDSD was initially trained on an 
observational dataset (Brown and Dowdy, 2021b), and is being applied here 
to a regional climate model with a potentially different relationship between 



SCW events and the large-scale environment. Future work could be aimed 
at further investigating the physical mechanisms relating favourable SCW 
environments to simulated events in current and future climates. Although 
the future changes reported here have low confidence based on this discussion, 
our results suggest a potential increase in the frequency of SCWs in high 
moisture environments, that may be compensated by a reduction in SCWs in 
steep lapse rate environments”. 
 
In terms of the reviewer’s suggestion that “It would be beneficial if some 
physical explanations could be provided for the opposite changes in SCW and F-
ENV”, we believe that this has already been somewhat investigated by the 
clustering method used throughout, including the analysis of future changes in 
steep lapse rate and high moisture SCW events. For example, on line 355 of the 
submitted manuscript, it is stated that: 
 
“Because the majority of BARPAC-M events occur in steep lapse rate 
environments, the overall future change suggested by that model is a decrease 
in simulated SCW frequency, while the opposite is true for the BARPA-R 
environmental method where high moisture environments are relatively 
important”. 
 
However, we agree that this is an important point suggested by the reviewer and 
should be further investigated by future work, as noted in the above revised text. 
This is noted in the revised text as follows: 
 
“Future work could be aimed at further investigating the physical 
mechanisms relating favourable SCW environments to simulated events in 
current and future climates” 
 
Brown, A. and Dowdy, A.: Severe Convective Wind Environments and Future Projected Changes 
in Australia, Journal of Geophysical Research: Atmospheres, 126, 1–17, 
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