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Abstract. Accurate rainfall observations with a high spatial and temporal resolution are key for hydrological applications, in

particular for reliable flood forecasts. However, rain gauge networks operated by regional or national environmental agencies

are often sparse and weather radars tend to underestimate rainfall. As a complementary source of information, rain gauges

from personal weather stations (PWSs), which have a network density 100 times higher than dedicated rain gauge networks

in the Netherlands, can be used. However, PWSs are prone to additional sources of error compared to dedicated gauges,5

because they are generally not installed and maintained according to international guidelines.
:
A
:::::::::
systematic

:::::::::
long-term

:::::::
analysis

::::::::
involving

::::
PWS

:::::::
rainfall

::::::::::
observations

::::::
across

:::::::
different

::::::::
seasons,

:::::::::::
accumulation

:::::::
intervals

::::
and

::::::
rainfall

::::::::
intensity

::::::
classes

::
is

:::::::
missing

::
so

:::
far. Here, we quantitatively compare rainfall estimates obtained from PWSs against rainfall recorded by automatic weather

stations (AWSs) from the Royal Netherlands Meteorological Institute (KNMI), over the 2018-2023 period, including a sample

of 1760 individual rainfall events in the Netherlands. This sample consists of the 10 highest rainfall accumulations per season10

and accumulation interval (1, 3, 6 and 24 h) over a 6-year period. It was found that the average of a cluster of PWSs severely

underestimate rainfall (around 36% and 19% for 1 h and 24 h intervals, respectively). Adjusting
::
By

::::::::
adjusting the data with the

mean field
::::
areal

::::::::
reduction

::::::
factors

::
to

::::::
account

:::
for

:::
the

::::::
spatial

::::::::
variability

::
of

:::::::
rainfall

:::::::
extremes

::::
and

:::::::
applying

:
a
:
bias correction factor

of 1.24, as proposed by the PWSQC algorithm, reduces this underestimation to 21%
:::
1.22

::
to

::::::::::
compensate

:::
for

:::::::::::
instrumental

::::
bias,

::
the

:::::::
average

::::::
relative

::::
bias

:::::::
reduces

::
to

::::
−5%

:
for 1 h intervals or almost reduces it to 0

:
to

::::
zero

:
for intervals of 3 h and longer. Largest15

correlation (0.83 and 0.83
:::
0.85

::::
and

::::
0.86) and lowest coefficient of variation (0.15

::::
0.14 and 0.18) were found

::
for

:::
24

:
h
::::::::
intervals

during winter and autumn, respectively. We show that most PWSs are able to capture high rainfall intensities up to around

30 mm h−1, indicating that these can be utilized for applications that require rainfall data with with a spatial resolution on

the order of kilometers
:::::::::
kilometres, such as for flood forecasting in small, fast responding catchments. However, PWSs severely

underestimate (on average more than 50%) rainfall events
:::::
PWSs

:::
did

:::
not

:::::::
observe

:::
the

:::::
most

::::::
intense

::::::
rainfall

::::::
events

:::::
which

:::::
were20

::::::::
associated

:
with return periods exceeding 10 or 50 years (above approximately 30 mm h−1) , which

:::
and

:
occurred in spring and

summer. These underestimations are associated with large areal reduction factors, which can result in a reduction up to 17%

for 1 h events with a return period of 50 years. Additionally, this
::::::::
However,

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::::::
rainfall

:::::
likely

::::::
played

:
a
:::::
large

:::
role

:::
in

:::
the

::::::::
observed

::::::::::
differences,

:::::
rather

:::::
than

::::::::::
instrumental

::::::::::
limitations.

::::
This

:::::::
stresses

::::
out

:::
the

::::::::::
importance

::
of

::::::
having

::
a

:::::
dense

:::
rain

::::::
gauge

:::::::
network.

:::
In

:::::::
addition,

:::
the

::::::::
variation

::
in

:
undercatch is likely

:::::
partly due to the disproportional underestimation25

of tipping bucket rain gauges with increasing intensities. We recommend additional research on dynamic calibration of the

tipping volumes to further improve this. Outliers during winter were likely caused by solid precipitation and can potentially be
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removed using a temperature module from the PWS.
:::
We

::::::::::
recommend

::::::::
additional

::::::::
research

::
on

:::::::
dynamic

::::::::::
calibration

::
of

:::
the

::::::
tipping

:::::::
volumes

::
to

::::::
further

:::::::
improve

::::
this.

1 Introduction30

Accurate rainfall observations are essential for hydrological applications, such as flood forecasting. However, rainfall is highly

variable in time and space, making it challenging to capture its dynamics accurately. Consequently, the stochastic nature of

rainfall is one of the main sources of uncertainty in hydrological modeling
::::::::
modelling

:
(Niemczynowicz, 1999; Moulin et al.,

2009; Arnaud et al., 2011; Lobligeois et al., 2014; Beven, 2016; McMillan et al., 2018). Especially small, fast-responding

catchments require accurate rainfall observations with a high spatial and temporal resolution for reliable predictions(e.g.
:
,
::::
such35

::
as in the order of kilometers

:::::::::
kilometres and minutes for catchments areas of around 560 ha)

::::::::
catchment

:::::
areas

::
of

:
a
::::
few

::::::
square

::::::::
kilometres

:
(Berne et al., 2004; Ochoa-Rodriguez et al., 2015; Cristiano et al., 2017; Thorndahl et al., 2017). To reduce the

uncertainty of catchment-scale rainfall estimates, accurate instruments with a high spatio-temporal resolution are required.

Rain gauges and weather radars are widely used instruments to provide rainfall information for hydrological forecasting.

Each instrument has its own advantages and limitations. Rain gauges can record rainfall relatively accurately at the point-scale.40

These rain gauges can be automatic or manual, observing at short regular intervals (e.g. recorded every 12 sec, archived at

10 min time steps in the Netherlands) or daily, respectively. A limitation is that these measurements are strictly only represen-

tative for the orifice area of the individual recording gauge and the network density of dedicated rain gauges is not sufficient to

capture small-scale rainfall dynamics (Villarini et al., 2008; Hrachowitz and Weiler, 2011; Van Leth et al., 2021). In addition,

rainfall observations from manual gauges, which are emptied in a measuring cylinder and read once a day, are not available45

in (near) real time. Weather radars, on the other hand, provide high spatial and temporal resolution data (i.e. typically 1 km2

and 5 min), that is available in near real-time. However, radar rainfall estimates are prone to substantial uncertainty and bias

due to several sources of error. These are related to both the instrument itself (e.g. calibration)
::
for

:::::::
example

:::
the

:::::::::
calibration

:::
of

::
the

:::::::::
instrument

:::::
itself,

::::::
signal

:::::::::
attenuation

:
and to the conversion from measured reflectivities aloft into rainfall rates at the ground

(Uijlenhoet and Berne, 2008; Krajewski et al., 2010; Villarini and Krajewski, 2010).50

Alternatively, crowdsourced rain measurements, in the form of low-cost weather observation devices, may potentially pro-

vide accurate local rainfall observations. These devices are referred to as personal weather stations (PWSs) and can contain

a rain gauge module, which records rainfall at a high temporal resolution (5 min). The popularity of these low-cost rainfall

sensors
::::::
sensors

::::::::
equipped

::::
with

:
a
::::
rain

:::::
gauge has been increasing in the last decade, up to around 1 PWS per 9, 11, 13 and 15 km2

in May 2024, in the Netherlands, Denmark, Switzerland and Germany, respectively. Figure 1 shows several tens of thousands55

PWSs with varying densities across Europe, with more than 60% having 5 or more neighbouring stations within 10 km. In

the Netherlands, these sensors currently have a network density which is about 100 times higher than that of the AWSs, with

even higher densities in urban areas, where AWS densities are typically low (Overeem et al., 2024b; Brousse et al., 2024).

The data from these observations is automatically uploaded to different online platforms
::::
Once

:::
the

:::::
PWS

::
is
:::::::::
connected

::
to

:::
an

:::::
online

:::::::
platform

:
such as the Weather Observations Website (WOW; https://wow.metoffice.gov.uk/), the Weather Underground60
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website (https://www.wunderground.com/wundermap) and
:
or
:

Netatmo (https://weathermap.netatmo.com/). ,
:::::::::::
observations

:::
are

:::::::::::
automatically

::::::::
uploaded

::
to

:::
the

::::::::
respective

::::::::
platform.

:
The PWS data is open access and in case of Netatmo

:
, it can be extracted in

near real-time using an application programming interface (API) every 5 min. However, since they are installed, operated and

maintained largely by non-specialist citizens, the data quality of these PWSs is expected to be lower than that of professionally

operated gauges of national meteorological or hydrological services.65

Rain gauges , both PWS and AWS,
::::
from

::::::
PWSs are prone to several sources of error. These errors can be grouped into

three categories: (1) instrumental.
::::
The

:::
first

::::::::
category

:::::::
consists

::
of

::::::::::
PWS-related

::::::
errors, such as calibration errors or

::::
those

::::::
related

::
to

:::::::::::
inappropriate

:::::
setup

:::
and

::::
lack

:::
of

:::::::::::
maintenance

::
of

::::
rain

:::::::
gauges,

:::::::::
calibration

::::::
errors,

::::::::
rounding

:::
due

::
to
::::

data
::::::::::

processing,
:::
as

::::
well

::
as

::::::::::
connectivity

::::::
issues

::::::
during

::::
data

:::::::
transfer

:::::::::::::::::::::::::::::
(De Vos et al., 2017; De Vos, 2019)

:
.
::::
The

::::::
second

::::::::
category

:::::::
includes

:::::::
general

::::
rain

:::::::::::
gauge-related

::::::
errors,

::::
such

::
as

::::::::::
undercatch

:::
due

:::
to

:::::
wind,

::::
solid

:::::::::::
precipitation

::
or

:::::::::::
evaporation,

:::
and

:
the intrinsic tipping bucket er-70

ror, meaning that a
:::::::
resulting

:::::
from

:::
the given volume of water

:::
that

:
needs to be collected before it tips (Habib et al., 2001) or;

(2) data processing, such as rounding or connectivity issues during data transfer and (3) setup and maintenance. In addition,

uncertainties
::
the

::::::
bucket

:::
tips

::::::::::::::::::::::::::::::::::::::
(Habib et al., 2001; Lanza and Vuerich, 2009).

::
A

::::
third

::::::::
category

::
of

:::::
errors arise due to spatial sam-

pling errors resulting from estimating areal rainfall using point measurements (Villarini et al., 2008).
::::::::::
uncertainties

::::::::
resulting

::::
from

::::::
gauges

:::
that

:::
are

:::
not

:::::::::
co-located

::::
and

:::
thus

::::::::::
differences

:::::::
between

:::::
point

::::::
rainfall

::::::::
estimates

::::::::::::::::::
(Villarini et al., 2008).

:
75

Rain gauges of PWSs typically uses a
:::
use

:::
an

:::::::
unheated

:
tipping bucket mechanism to record the rainfall volumes. The quality

of rainfall intensity estimates from these mechanisms has been shown to be intensity-dependent. Tipping buckets are known

to overestimate rainfall at low intensities and underestimate for high intensities (Marsalek, 1981; Shedekar et al., 2009; Colli

et al., 2014), which are part of the first category of errors. In addition, these errors can be amplified if the PWSs are not installed

correctly and maintained adequately.80

With respect to the first two
::::
PWS

:::::::
specific sources of error, De Vos et al. (2017) used an experimental setup to investigate part

of the instrument and data processing-related errors from PWSs. They showed that, under ideal circumstances (i.e. installed and

maintained according to World Meteorological Organization standards), three rain gauges, from the Netatmo brand, recorded

rainfall with high accuracy. Collocating the PWSs very close to one of KNMI’s automatic weather stations (AWSs), spatial

sampling errors were also limited. Despite the potential of accurate rainfall measurements from PWSs, their observations85

are often not optimal, as the stations are not necessarily installed according to guidelines from the World Meteorological

Organization. To account for those, errors related to the third category are introduced. For that reason, De Vos et al. (2019)

developed a quality control (QC) algorithm, to filter outliers from the PWS network without using data from an official rain

gauge network or weather radar. Similarly, Bárdossy et al. (2021) developed a QC algorithm, using a reference observation

network to filter outliers and to correct the bias.
:::::::::::::::
Chen et al. (2018)

:::::::
assigned

::::
trust

:::::
scores

:::::
based

:::
on

::::::
spatial

::::::::::
consistency

:::::::
between90

:::::::
stations.

While
:::::::
previous

:::::
work

:::
has

::::::
shown

:::
that

:
implementing these QC algorithms has been shown to yield

:::::
yields an overall improve-

ment in the quality of the PWS data (De Vos et al., 2019; Bárdossy et al., 2021; Overeem et al., 2024a; Nielsen et al., 2024; El Hachem et al., 2024)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(De Vos et al., 2019; Bárdossy et al., 2021; Graf et al., 2021; Overeem et al., 2024a; Nielsen et al., 2024; El Hachem et al., 2024)

, a systematic long-term analysis
:
of

:::
the

::::
QC

::::::::
algorithm

::
of

:::::::::::::::::
De Vos et al. (2019) for different seasons, accumulation intervals and95
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Figure 1. Indication of the Netatmo density of PWSs with rain gauges within Europe, showing number of PWS neighbours within a radius

of 10 km. Data extracted from netatmo
:::::::
Netatmo API on April 2024.

intensity classes is missing so far. In particular, a focus on high rainfall intensities is important, as the undercatch of rain gauges

is likely disproportional with increasing intensities. Here, we aim to quantitatively compare rain data from PWSs with AWSs,

extending on the results of De Vos et al. (2017, 2019). While weather radar data has a larger spatial resolution compared to

AWSs, it is not used in this research as a reference because it is prone to several sources of error and therefore significantly

underestimates rainfall. Note that in previous research from Overeem et al. (2024a)
:::
and

:::::::::::::::::
Nielsen et al. (2024) rainfall estimates100

from PWSs were actually used to correct a rainfall radar product.

The objective of this study is to systematically quantify and describe the uncertainties arising from PWS rainfall estimates.

By analyzing
::::::::
analysing

:
the 10 largest rainfall accumulations, with return periods up to 50 years, during the period between

2018 and 2023, for 11 AWSs, 4 seasons and 4 time intervals, we can draw statistically meaningful conclusions on this. To the

best of the authors’ knowledge, such long-term study using PWS data that focuses on the most intense rainfall events, has not105

been performed before. Quantifying the limitations the
::
of PWS rainfall observations and eventually correcting it, maximizes
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:::::::::
addressing

::::
them

::::::::
enhances

:
the potential of PWSs for a

:::::
wide

:::::
range

::
of

:::::::::::
applications,

::::::::
including

:::::::::::
hydrological

::::::::::
modelling,

:::::
urban

::::::::
hydrology

::::
and (hydrological) forecasts.

::::::::::
forecasting.

2 Study area and data

This study was carried out over the period 2018-2023 in the Netherlands, which has a land surface area of approximately110

35,000 km2 (Fig. 3a). This period was chosen due to
:::
the PWS data availability, which

::::
was

:::
too

:::
low

::::
(less

::::
than

:
5
::::::
PWSs

:::::
within

:::
10

:::
km

:::::::
distance

::
of

:::
the

:::::
AWS)

::::::
before

::::
2018

::::
and increased over the years. The Netherlands has a maritime climate (Cfb according to

the Köppen classification), where winters are mild, with an average temperature of 3.8 ◦C and relatively cool summers (17.2 ◦C)

(KNMI, 2024). The average yearly rainfall between 1990-2020 is 851 mm yr−1 over the area (KNMI, 2024). In addition,

regional variability in rainfall extremes is observed, with higher values in the western part of the country (Overeem et al., 2009a;115

Beersma et al., 2019). The Dutch climate has a quite uniform distribution of precipitation over the meteorological seasons,

except during spring, which is the driest season and contains the driest month (i.e. April, average 41 mm) (see Fig
:
. 2). August

is on average the wettest month (average 87.4 mm) (KNMI, 2024). However, rainfall characteristics differ over the seasons.

Rainfall during the summer months and beginning of autumn is characterized by shorter duration and higher precipitation

intensities, as a consequence of convection during these months. In contrast, during the winter months lower intensities and120

more frequent and longer precipitation events occur (De Vries and Selten, 2023).
:::::
These

:::::::
different

:::::::
rainfall

::::::::::::
characteristics

::::
lead

::
to

:
a
:::::::
distinct

:::::::
seasonal

:::::
cycle

::
in
::::::

spatial
:::::::

rainfall
:::::::::
correlation

::
in
::::

the
::::::::::
Netherlands

::::::::::::::::::::::::::::
(Van de Beek et al., 2012, Fig. 4b)

:
,
::::
with

::::::
longer

:::::::::
correlation

:::::::
distances

:::
for

::::::
winter

::::
than

:::::::
summer.

:

2.1 Personal weather stations

For the analysis here rain gauges from the Netatmo brand of PWSs were used. These PWSs have a large coverage over the125

Netherlands which slightly increased since 2018 (around one PWS per 9 km2 in 2024; Fig. 3a). This rain gauge type uses a

tipping bucket mechanism with a nominal volume of 0.101 mm according to the manufacturer (Netatmo, 2024a). These gauges

can also be calibrated manually by the owner
::
by

::::::::
changing

:::
via

:::::::
software

:::
the

:::::::
volume

:::
per

::
tip, resulting in deviating tipping bucket

volumes (approximately 13.5% is manually calibrated according to De Vos et al. (2019)). The default rain gauge processing

software records the number of tips over 5 min intervals, which is communicated wirelessly to an indoor module. Next, the130

data is transferred, using wifi, to the Netatmo platform. The diameter of the collecting funnel is 13 cm (leading to an orifice

area of 133 cm2). According to the manufacturer, the accuracy is 1 mm h−1 for a measurement range of 0.2 to 150 mm h−1

and the PWS operates best for temperatures between 0 and 50◦C (Netatmo, 2024a). However, it is unclear what this accuracy

exactly entails, therefore pointing out the need for this study.

:::
The

::::::
default

::::
rain

:::::
gauge

:::::::::
processing

:::::::
software

::::::
records

:::
the

::::::
number

::
of
::::
tips

::::
over

::::::::::::
approximately

:
5
:::
min

::::::::
intervals,

:::::
which

::
is

::::::::::::
communicated135

::::::::
wirelessly

::
to

::
an

::::::
indoor

:::::::
module.

:::::
Next,

:::
the

:::
data

::
is
::::::::::
transmitted

:::
via

:::
wifi

::
to

:::
the

:::::::
Netatmo

::::::::
platform.

::::
The

:::::::
Netatmo

:::::::
software

:::::::::
resamples

:::
this

::
to

::::::
regular

::::::
5-min

::::::::
intervals,

::
by

:::::::::
assigning

:
it
:::

to
:::
the

::::
next

:::
full

::::::::::
five-minute

:::::::
interval

::
by

:::
the

::::::::
Netatmo

::::::::
software.

:::::
When

::::::
within

::
a

:::::
5-min

::::::
interval

:::
no

::::
data

::
is

::::::::::
transferred,

:::
this

::::
time

:::::::
interval

::
is

:::
not

::::::::
included

::
by

::::::::
Netatmo

::::
(see

:::::::::
supporting

::::::::::
information

:::::
Table

:::
A1

:::
for
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Figure 2. Average rainfall per month and season in the Netherlands over the period 1991-2020, based on data from 13
:::::::

automatic
::::::
weather sta-

tions spread over the country, obtained from KNMI (2024). Coloured bars indicate the average rainfall per month (left y-axis, mm month−1
:
,

::
left

:::::
y-axis), horizontal black lines

::::::
coloured

::::::
hatched

::::
bars

::::::
indicate

:
the average rainfall over

::
for

:
each season

::::
(mm

::::::::
season−1,

::::
right

:::::
y-axis).

::::::
Vertical

:::
grey

::::
lines

::::::
indicate

:::
the

::::
inter

::::::
quartile

::::
range.

::
an

::::::::
example).

::::::
When

:::::
there

::
is

:
a
::::::::::
connection

:::::
failure

::::::::
between

:::
the

::::
rain

:::::
gauge

:::::::
module

:::
and

::::::
indoor

:::::::
module,

:::
the

:::::::
rainfall

::::
will

:::::
likely

::
be

::::::::
attributed

:::
to

:
a
:::::::::

timestamp
:::::

when
:::::

there
::

is
::

a
::::::::::
connection

:::::
again,

:::::::::
potentially

:::::::::::
aggregating

::
it

::::
over

:
a
::::::

longer
:::::

time
:::::::
interval

::::
than140

::::::::::::
approximately

:
5
::::

min
::::
(see

:::::::::
supporting

:::::::::::
information

:::::
Table

:::
A2

:::
for

::
an

:::::::::
example).

::::::::
However,

::::::
when

:::
the

:::::::::
connection

:::
of

:::
the

::::::
indoor

::::::
module

:::
is

::::
also

:::::::::
temporarily

::::::::::
interrupted,

::::
data

::
is

::::
lost.

2.2 Reference dataset

The PWSs were evaluated against data from automatic weather stations (AWSs) from the Royal Netherlands Meteorological

Institute (KNMI). The KNMI operates a network of 33 AWSs across the Netherlands, which are relatively homogeneously145

distributed, with approximately one AWS per 1000 km2 (Fig. 3a). These AWSs estimate cumulative rainfall every 12 s by

measuring the displacement of a float placed in a reservoir. The
::::
data

:
is
::::::::
archived

::
at

:
a
:::::
lower

:::::::::
resolution,

:::
i.e.

:::::
every

:
1
:::::
min,

::
10

::::
min

:::
and

::::::
hourly.

:::::
Here,

:::::
AWS

:::
data

:::::
with

:
a
::::::::
resolution

:::
of

::
10

::::
min

:::
and

::
1

:
h
::
is

:::::
used.

:::
The

:::
10

:::
min

::::::
dataset

:::::::
contains

::::::::::
unvalidated

::::::
rainfall

:::::
data,

::::
while

:::
the

::::::
hourly

::::
data

:::
has

::::
been

::::::::
validated

:::::::::::::::::::
(Brandsma et al., 2020)

:
.
:::
The collecting funnel has a diameter of 16 cm (corresponding

to an orifice area of 201 cm2) and the device is heated for temperatures below 4◦C. In addition, these stations are placed in150

open locations using an English setup or Ott windscreen to reduce errors from wind induced undercatch (Brandsma et al.,

2020). The data is archived at a lower resolution, i.e. every 1 min, 10 min and hourly. Here, AWS data with a resolution
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Figure 3. Map of the Netherlands showing a) the locations of the 33 AWSs employed by KNMI and the locations of available PWSs in 2024

obtained using the Netatmo API (approximately 4000 PWSs) (Netatmo (2024b) last access: 08/05/2024). The photo in the right corner shows

an example of the PWS used in this research. Note that working PWSs in 2024 are not part of the dataset in this study. b) The selected AWSs

and PWSs from 2018 to 2023 in this study. Built-up areas, indicated in grey, were obtained from European Environment Agency (2020).

of 10 min and 1 h is used. The 10 min dataset contains unvalidated rainfall data, while the hourly data has been validated

(Brandsma et al., 2020).
:::::::::::
Nevertheless,

:::
this

::::
data

::
is
::::

not
::
an

::::::::
absolute

:::::
truth.

:::::::::::::::
Brandsma (2014)

::::::::
compared

:::
the

:::::
AWS

:::::::
network

::::
and

::::::
manual

::::
rain

:::::
gauge

::::::::
network

::::
over

:::
the

::::::::::
Netherlands

::::
and

:::::::::
concluded

::::
that

:::
the

:::::
AWS

:::::::
network

:::::::::::::
underestimates

::::::
rainfall

:::::
with

:::::
5-8%155

:::::::
annually,

::::
with

::::::
higher

:::::::::::::
underestimation

:::
in

:::::
winter

::::::
(7.7%)

::::
than

:::::::
summer

:::::::
(5.0%).

:::
The

::::::::::
undercatch

::
is

::::::::
nonlinear

::::
with

::::::::
intensity,

::::
with

:::::
larger

::::::::
intensities

::::::::
resulting

::
in

:::
less

::::::::::::::
underestimation.

:::::
These

:::::::::::
uncertainties

:::
are

:::
not

:::::
taken

::::
into

::::::
account

::
in
::::
this

:::::::
research.

:

3 Methods

3.1 Station selection

Rainfall data at 5-min intervals from multiple PWSs were extracted using the Netatmo API (Netatmo, 2024b). Netatmo limits160

the API requests per hour. Note that the API only provides PWSs that are operational at
:::::
access

::
to

::::
data

::::
from

::::::
PWSs

:::
that

:::::
were

:::::::::
operational

::
at

:::
the time of access, which was in February 2024, meaning we

::::
2024.

:::
We

:
do not have the exact recording stations

, which varied over time
:::::
access

::
to

::::
data

:::::
from

::::::
stations

::::
that

::::
were

::::::::::
previously

::
in

::::::::
operation

:::
but

:::
are

:::
no

::::::
longer

:::::
online

::
at
::::

the
::::
time

::
of

:::::
access. Two search radii were employed to find all operational PWSs within that range. One radius of 10 km around an

AWS was used for quantifying the quality of PWSs and a radius of 20 km for filtering the PWS data using a quality control165

algorithm. Van de Beek et al. (2012) and Van Leth et al. (2021) showed that the decorrelation distance for precipitation over

7



Figure 4. Example of the selection procedure for the AWS at Schiphol. The green star indicates the AWS operated by KNMI, the purple

crosses indicate the 10 closest PWSs within a distance of 10 km around the AWS. The orange dots are the other PWSs within 20 km from the

AWS, which are utilized for quality control. Built-up areas, indicated in grey, were obtained from European Environment Agency (2020).

the Netherlands is around 50 km for 1 h accumulation intervals. Comparing PWSs within 10 km from an AWSs can therefore

be assumed to limit spatial sampling errors with respect to a larger search radius.

First, all PWSs within 20 km around each AWS were identified. Secondly, AWSs that had at least 5 PWSs within 10 km

since 2018-01-01 were kept in the dataset. Next, the 10 closest available PWSs located within 10 km from the AWS were170

selected (Fig. 4, purple crosses) for the comparison with the AWS nearby. Note that the selection of PWSs varies per selected

rainfall event, due to temporary station outages and changing data and station availability over time. This procedure resulted in

11 AWSs with a cluster of 5 to 10 PWSs around it (Fig. 3b for selected AWSs and used PWSs). All PWSs within 20 km were

used for filtering the data (Fig. 4, orange dots and purple crosses) using the quality control algorithm developed by De Vos

et al. (2019) and described below (Sect. 3.4).175
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3.2 Event selection

A similar event selection procedure was used as described by Imhoff et al. (2020), which defines an event as a certain time

period, rather than by the beginning and end of rainfall. Rainfall observations from the
::::::
10-min

::::::
dataset

::
of

:::
the

:
AWSs were

employed to make a selection of events between 2018 and 2023. Only the
::::
2023

:::::
using

:
a
:::::::
moving

:::::::
window

::::::::
approach.

:::::
Only

:::
the

::
10

:
largest rainfall accumulations were selected, as these are the most important ones for pluvial flood forecasting. Analysis180

shows that, on average, the 10 highest 1-h rainfall accumulations for the selected AWSs account or
:::
for 12.5% of the annual

rainfall. The 10-min dataset of the AWSs was used to select these events, the hourly dataset
:::::
hourly

::::::
dataset

:::::::::::
(clock-hour)

:
was

employed to perform a consistency check on this selection. For selected events with rainfall differences of more than 10% with

the validated hourly dataset, the values of the validated hourly dataset were used instead. These deviations occurred in less than

0.4% of the total selected events. Note that the selected events can contain time steps without any rain observed.185

For every selected AWS based on the methodology in Section 3.1, the 10 largest rainfall events per meteorological season

(winter, spring, summer and autumn) and per accumulation interval (1, 3, 6 and 24 hours) were selected to draw statistically

meaningful conclusions. This results in a total of 11 stations x 4 seasons x 4 accumulation intervals x 10 events = 1760

individual events for the analysis. The events were selected in such way that for the same station and accumulation interval no

overlapping time series were selected
:::::::
included.190

The statistics of the selected events are shown in Fig. 5. A clear seasonality is observed here, especially for 1 h intervals

(Fig. 5a), with highest rates during summer (JJA) and lowest during winter (DJF), with a median of 14.65 and 6.17 mm h−1,

respectively. This is aligned with the Dutch climate, where highest rainfall intensities occur during summer and are typically

characterized by convective rainfall (Beersma et al., 2019).

Based on the return periods provided by Beersma et al. (2019), over 75% of the selected observed rainfall accumulations in195

winter, spring and autumn have a return period of less than 0.5 year, while in summer this is around 25% (Fig. 5a). Most extreme

events occur during the summer months, with multiple events having a return period of over 5 years, and one event exceeding

a return period of 100 years. Rainfall rates during the autumn months (SON) are slightly higher compared to spring (MAM),

for example with a median of 9.40 and 8.33 mm h−1, respectively (Fig. 5a). However, spring appears to have two extreme

outliers, with return periods that exceed 10 years. Note that these return periods are calculated based on annual statistics, which200

is dominated by rainfall events during March until October. Because winter has the lowest intensities, return periods in winter

based on annual statistics are low.

3.3 Quality control algorithm
:::::
Areal

:::::::::
reduction

:::::
factor

:::
The

:::::::
rainfall

:::::::
observed

:::
by

::
a

::::::
cluster

::
of

::::::
PWSs

::
is

::::::::
averaged,

:::::::::
effectively

:::::::::::
representing

:::
the

::::::
rainfall

::::
over

:::
an

::::
area,

:::::
while

::::::::::
comparing

:
it
::::
with

::
a
::::
point

::::::::::::
measurement

::::::
(AWS)

:::::
which

::::
has

:
a
::::::
limited

::::::
spatial

::::::::
footprint.

:::::
With

::::::::
increasing

:::::::
domain

::::
area,

:::
the

::::::::
variation

::
of

:::::
areal205

::::::::::
precipitation

::::::::
becomes

::::::
smaller

::::
than

:::
that

::
of

:::::
point

:::::::::::
precipitation.

::
To

:::::::
account

::
for

:::
the

::::::::
reduction

::
in

:::
the

:::::::::
magnitude

::
of

::::::
rainfall

::::::::
extremes

:::
over

:::
an

::::
area

::
as

::::::::
compared

::
to

:
a
:::::
point,

:::::
areal

::::::::
reduction

::::::
factors

::::::
(ARFs)

:::
can

:::
be

::::::
applied.

::::
The

::::
ARF

::::::::
estimates

::::
areal

:::::::
rainfall

:::::::::
percentiles

::::
from

:::::
point

::::::
rainfall

::::::::::
percentiles.

:::::::::::::::::::
Overeem et al. (2010)

::
and

:::::
more

:::::::
recently

:::::::::::::::::::
Beersma et al. (2019)

:::::::::::
parameterized

:::
the

:::::
ARF

:::::
based

9



Figure 5. Mean rainfall intensity [mm/interval] for the different selected events per season (11 AWSs x 10 rainfall events) for the four accu-

mulation intervals (1, 3, 6 and 24 h). Left y-axis shows the rainfall over the specific interval, right y-axis indicate the different corresponding

return periods for the intensities reported by Beersma et al. (2019). The lower and upper whiskers indicate the minimum and maximum in-

tensities and the boxes the inter-percentile range (25th–75th). During summer outliers were present, with return periods larger than 50 years.

::
on

:::::::
weather

:::::
radar

::
for

:::
the

:::::::::::
Netherlands.

::::
This

::::::::
reduction

:::::
factor

::
is
::
a
:::::::
function

::
of

::::::::
duration,

::::
area

:::
and

::::::
return

::::::
period,

::::
with

::::
rarer

::::::
events

:::::
having

::
a
:::::::
stronger

::::
areal

:::::::::
reduction.

:::::::::
Equations

:::
1a,

::
2,

:::
3b,

:
4
::::
and

:
5
:::::
from

::::::::::::::::::
Beersma et al. (2019)

:::
are

::::
used

::
to

:::::::
estimate

:::
the

:::::
ARF.

::::
The210

::::::
inverse

::
of

:::
the

:::::
ARFs

::::
will

::
be

::::
used

::
to

:::::
adjust

:::
the

::::::
values

::
of

:::
the

:::::
PWSs

:::
to

:
a
:::::
point

::::::::::
observation.

3.4
::::::

Quality
:::::::
control

::::::::
algorithm

Part of the quality control algorithm PWSQC from De Vos et al. (2019) was applied to filter the PWS dataset, using the

same parameters. First, a list of PWS neighbours was constructed. Secondly,
::
As

:::::
stated

:::
by

::::::::::::::::::::
El Hachem et al. (2024),

:::
the

::::
key

::::::::
advantage

::
of

::::
the

:::
QC

:::::::::
algorithm

::::
from

:::::::::::::::::
De Vos et al. (2019)

::::
over

:::
QC

::::::::::
algorithms

::::
such

::
as

:::::::::
developed

:::
by

:::::::::::::::::::
Bárdossy et al. (2021)215

:::
and

::::::::::::::::
Lewis et al. (2021),

::
is
::::

that
:::
no

::::::::
auxiliary

::::
data

::
is

::::::::
required.

::::
This

::::::
makes

::
it

::::::::::
particularly

:::::::
suitable

:::
for

::::::
regions

:::::::
lacking

::::::
access

::
to

:::::::::
(real-time)

::::::::
reference

::::
data.

::::
For

:::
that

:::::::
reason,

:::
we

::::::
decided

:::
to

:::
use

:::
the

:::
QC

:::::
from

::::::::::::::::
De Vos et al. (2019)

:
.
::::
The high influx (HI) and

faulty zeroes (FZ) filters were computed for every timestep (i.e. 5 min)
::::
from

:::
the

::::::
quality

:::::::
control

::::::::
algorithm

::::::::
PWSQC

:::::
from

:::::::::::::::::
De Vos et al. (2019)

:::
were

:::::::
applied

::
to

::::
filter

:::
the

:::::
PWS

::::::
dataset. High influx data can be caused by sprinklers, adding liquids into

the gauge, or tilting of the gauge.
:
In

::::::::
addition,

:
a
:::::

high
:::::
influx

:::
can

:::::
result

:::::
from

:
a
:::::::::
temporary

:::::::::
connection

::::::::::
interruption

::::::::
between

:::
the220

:::
rain

:::::
gauge

:::::::
module

:::
and

:::
the

::::::
indoor

:::::::
module,

::::::::
assigning

:::
the

::::
rain

::
to

:::
the

:::::::::
timestamp

:::::
when

:::
the

:::::::::
connection

::
is
::::::::::::
re-established.

::::
The

:::
HI

::::
filter

::::
uses

::::
four

:::::::::
parameters:

:

1.
::
d,

::
the

:::::::::
maximum

:::::::
distance

::::
over

::::::
which

:::::::::::
neighbouring

:::::
PWSs

:::
are

:::::::
selected,

::::::
which

:::::
likely

::::::
capture

::::::
similar

:::::::
rainfall

::::::::
dynamics.

:

2.
::::
nstat,::::::::

minimum
:::::::
required

:::::::
number

::
of

:::::::::::
neighbouring

::::::
PWSs.

:
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3.
:::
ϕA,

::::::::
threshold

:::::
value.

:
225

4.
:::
ϕB,

::::::::
threshold

:::::
value.

:
A
:::::

time
::::::
interval

:::
of

:
a
::::::
station

::
is
:::::::
flagged

::
as

::::::
having

::
a

:::::
“high

::::::
influx”

::
if

:::
the

:::::::
median

::
of

:::
the

:::::::::::
neighbouring

:::::::
stations

::::
does

::::
not

::::::
exceed

:::
ϕA,

:::::
while

:::
the

::::::
station

::::
itself

:::::::
records

:
a
:::::
value

:::::
above

::::
ϕB.

:::::
When

:::
the

:::::::::::
neighbouring

:::::::
stations

:::::::
observe

::::::::
moderate

::
to

:::::
heavy

:::::::
rainfall,

:::
the

:::::
station

::
is
:::::::
flagged

:::::
when

:::
the

:::::::::::
measurement

:::::::
exceeds

:::::::
median

:
*
::::::::
(ϕB/ϕA).

:::::::::
According

::
to

:::::::::::::
De Vos (2019)

::::
most

::::::
rainfall

:::::::::::
observations

:::
that

::::::
should

::
be

:::::::
flagged

::
by

:::
the

:::
HI

::::
filter,

:::::
were

::::
very

::::
high.

:::::
They

:::::
tested

::::::::
different

::::::
subsets

::
of

:::::::::
parameters

::::
and

:::::
found

:::
that

:::::::::
variations

::
in230

::
ϕA::::

and
::
ϕB::::::

hardly
:::::
affect

:::
the

::::::
results.

:

Faulty zeroes can result from failure of the tipping bucket mechanism . At least five neighbouring
:::
due

::
to

:::
for

:::::::
example

:
a
:::::
tilted

:::
rain

::::::
gauge

::
or

::::::::::
obstructions

:::::
such

::
as

:::::
leaves

:::
or

::::::
insects.

::::
The

:::
FZ

::::
filter

:::::
uses

::::
three

::::::::::
parameters,

:::
the

:::::
range

::
d,
::::
nstat::::

and
::::
nint.::

At
:::::

least

::
for

::::
nint ::::

time
::::::::
intervals,

:::
the

::::::
median

::
of
::::

the
:::::::::::
neighbouring

:::::
PWSs

:::::
needs

:::
to

::
be

::::::
higher

::::
than

::::
zero,

:::::
while

:::
the

:::::
PWS

:::::
itself

::::::
reports

::::
zero

::::::
rainfall.

:
235

:::
The

::::::::
calibrated

:::::
value

::
of

:::::::::
parameter

:
d
::
by

:::::::::::::
De Vos (2019)

:::::
(Table

::
1)

::
is

::
10

:::
km

:::
for

::::
both

::
HI

:::
and

::::
FZ.

::::
This

:
is
:::
the

:::::::
average

:::::::::::
decorrelation

:::::::
distance

::
of

::::::
rainfall

::
at
:::
the

::::::
5-min

::::
time

:::::::
interval

::
in

:::
the

::::::::::
Netherlands

:::::::::::::::::::::::::
(Van Leth et al., 2021, Fig. 4a)

:
.
::::
This

:::::
same

:::::
work

:::::
shows

::::
that

:::
this

:::::
value

:::::
ranges

:::::
from

::::
about

:::
10

:::
km

::
in

:::::::
summer

::
to

:::::
about

::
50

:::
km

::
in

::::::
winter.

::
In

:::
our

::::::::
research,

::
we

:::::
limit

::
the

:::::
effect

::
of
::::::
spatial

:::::::::
variability

::
of

:::::::
rainfall,

::
by

::::::::
selecting

::::
only

:::
the

::::
five

::::::
closest

:::::::::::
neighbouring

:::::::
stations

::::
(this

::
is

:::
on

::::::
average

::
a
:::::::
distance

::
of

:::
5.4

:::::
km),

::::
well

::::::
within

:::
the

:::::::::::
decorrelation

:::::::
distance

::
of

::::::
rainfall

::
at

:::
the

:::::
5-min

::::
time

:::::
scale

:::
for

:::
any

::::::
season

::
in

:::
the

::::::::::
Netherlands

::::::::::::::::::
(Van Leth et al., 2021)

:
.240

:::
For

:::
the

::::::
reasons

:::::::::
mentioned

::::::
above,

:::
the

::::
same

::::::::
calibrated

::::::::::
parameters

::
as

::
in

:::::
Table

:
2
:::::
from

::::::::::::
De Vos (2019)

::::
were

:::::::
applied.

::::
First,

::
a
:::
list

::
of

::::
PWS

::::::::::
neighbours

:::::
within

:::
10

:::
km

:::
was

::::::::::
constructed.

:::::::::
Secondly,

::
HI

::::
and

:::::
faulty

:::::
zeroes

:::
FZ

:::::
filters

::::
were

:::::::::
computed

:::
for

::::
every

::::::::
timestep

:::
(i.e.

::
5

:::::
min).

::
At

:::::
least

:::
five

::::::::::::
neighbouring PWSs must be present to attribute the HI and FZ flags, otherwise the value will be

eliminated from the dataset. Time steps that were flagged according to the HI or FZ flags were removed.

:::
The

::::::
station

::::::
outlier

:::::
(SO)

::::
filter

:::::
from

:::
the

::::::::
PWSQC

:::::::::
algorithm

:::::::
requires

::
at

:::::
least

:::
two

::::::
weeks

:::
of

::::
data

:::
(or

::::::
longer,

::
if
:::::
there

::::
was245

:::::::::
insufficient

:::::::::::
precipitation

::
in

:::
this

:::::::
period),

:::
and

::
is
::::::::::::::
computationally

:::::::::
expensive,

:::::
which

::
is
:::
not

:::::::::
favourable

:::
for

::::::::
real-time

:::::::::::
applications.

::
In

:::::::
addition,

:::
by

:::::
taking

:::
the

:::::::
average

::
of

:
a
::::::
cluster

:::::::::
(minimum

::
5,

:::::::::
maximum

:::
10)

::
of

:::::::
stations

::::::
around

::
an

:::::::::
automatic

::::::
weather

:::::::
station,

:::
the

:::::
effect

::
of

::::::::
individual

::::::
station

:::::::
outliers

:
is
:::::::
limited.

::::
This

:::
last

::::
step

::
is

:::::::
different

:::::
from

:::
the

::::::
method

::::::::
suggested

:::
by

:::::::::::::::::
De Vos et al. (2019).

:
As

a last step of the PWSQC algorithm, a default bias correction factor of 1.24
:::::
(DBC)

:
was applied to the dataset. This factor is

based on correcting the bias over an entire area, rather than addressing individual biases in PWSs. For this reason, we refer to250

it in this research as mean field bias correction (MFBC)
:::::::::::::::::
De Vos et al. (2017)

:::
used

:::
an

:::::::::::
experimental

::::
setup

::::
and

::::::
showed

::::
that

:::::
under

::::
ideal

::::::::::::
circumstances

:::::
there

::
is

::
on

:::::::
average

:::
an

::::::::::
instrumental

::::
bias

::
of

:::::
18%

::
in

:::
the

::::::::
Netatmo

::::::
PWSs,

:::::::::
suggesting

:::
the

::::
need

:::
for

::
a
:::::
DBC

:::::
factor

::
of

::::
1.22

::
to

::::::
correct

:::::
these

::::::::::
instrumental

:::::
biases.

3.5 Network stability

Over time the availability of PWSs changes due to factors such as connection failure. To analyze
::::::
analyse

:
the availability255

of PWSs, a dataset comprising operational PWSs at 2018-01-01 within 10 km from an AWS were employed. This dataset

contained 178 PWSs. Time series from the PWSs were extracted for each selected event according to the method described
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Table 1. Percentage of the PWSs available (28,480 different PWS time series) over all selected events after flagging data and setting a

minimum availability criteria.

Availability criteria Remaining PWSs

100% 40.9%

92% 79.9%

83% 83.7%

75% 85.8%

in Section 3.2. In total, 95.8% of the PWSs were available over all selected events during the 6 consecutive years. From these

available PWSs, 3.5% of the total time steps did not contain any data
:
,
:::
due

::
to

:::::
either

:::::::
missing

::::
data

::
or

:::::::
irregular

::::
data

:::::::
transfers

::::
that

::::
were

::::::
longer

:::
than

::::::
5-min. In addition, 0.7% of the PWSs did not have 5 neighbours within 10 km. Applying the quality control260

algorithm leads to discarding more data. For the remaining PWSs with enough neighbours, 8.9% of the total data is either

discarded (i.e. flagged as FZ or HI) or
::
has

::
a
:::::::
temporal

:::::::::
resolution

::::::
beyond

::
5

:::
min

:::
or

:
is
:
missing.

::::
Since

:::
we

::::
can

::::
only

:::::::
suspect

:::
that

::::
data

::
is
:::::
likely

::::
not

:::::::
missing

:::::
when

:
a
:::::
5-min

::::::::
timestep

::
is

:::
not

::::::::
included,

::
a
::::::::
minimum

::::::::::
availability

::::::
criteria

:::
was

:::
set

::
to

::::
limit

::
a

:::::
biased

::::::::::
comparison.

:
A minimum percentage of time steps should be valid before aggregating the data.

The criteria set has a large impact on the availability (Table 1). By requiring a data availability of 100% before aggregation,265

40.9% of the dataset is retained, while a lower required availability (92%) almost doubles (79.7%) the remaining stations of

the original dataset. Lower criteria potentially result in underestimation of rainfall due to missing data. Based on these results,

a data availability requirement of 83% was chosen
::::
(e.g.

::
at

::::
least

:::
10

:::
out

::
of

:::
12

:::::
5-min

:::::::
intervals

::::::
within

:::
one

:::::
hour)

:
to keep a large

part of the original dataset (83.7%), which is also in line with Overeem et al. (2024a).

3.6 Validation270

The data quality of the PWSs was evaluated by comparing the PWS data to those of the selected AWSs, using the relative

bias, coefficient of variation (CV) of the residuals, the Pearson correlation coefficient (r), and the slope of linear regression

relationship. Note that the evaluation metrics were calculated over the total rainfall within a time interval and over the average

of the cluster of PWSs.

The
::::::
relative bias was defined as follows:275

Bias =

n∑
i=1

RPWS,i

n∑
i=1

RAWS,i

− 1, (1)

with n the total number of events for each season and time interval, and RAWS and RPWS the rain recorded by the AWS and

PWS respectively.
::::::
Values

:::::
above

::::
zero

:::::::
indicate

:::
an

::::::::::::
overestimation

::::
and

:::::
below

:::
an

:::::::::::::
underestimation

::
of

:::
the

:::::
PWS

:::::
data. The CV is

used to describe the dispersion of rainfall, and
:::
with

::::::
values

:::::
closer

::
to
::::
zero

::::::::::
suggesting

::::::
greater

::::::::::
consistency

::::
with

:::
the

:::::
mean

::
of

:::
the
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:::::::
reference

::::
and

:::::
higher

::::::
values

::::::::
indicating

:::::
more

:::::::::
dispersion

:::
and

:
is defined as follows:280

CV =

√
1
n

n∑
i=1

(Rres,i −Rres)2

RAWS

, (2)

with

Rres =RPWS −RAWS. (3)

The Pearson correlation coefficient describes the strength of the linear relation between the PWSs and the AWS
:::
with

::::::
values

::::::
ranging

:::::::
between

::
-1

::::
and

:
1
:
and was calculated between all events within a season and aggregation interval (including zeroes):285

r =
cov(RPWS,RAWS)

sd(RPWS)sd(RAWS)
. (4)

The linear regression line, fitted through the origin, is defined as follows:

RPWS = a ∗RAWS, (5)

with a the slope calculated over all events:

a=

n∑
i=1

RAWS,iRPWS,i

n∑
i=1

(RAWS,i)2
. (6)290

3.7 Areal reduction factor

While the AWS represents a point measurement, which has a limited spatial footprint, it is compared to average rainfall over

a domain (i.e. a cluster of PWSs around an AWS). With increasing domain area, the variation of areal precipitation becomes

smaller than that of point precipitation. To account for the reduction in the magnitude of rainfall extremes over an area as

compared to a point, areal reduction factors (ARF) can be applied. The ARF estimates areal rainfall percentiles from point295

rainfall percentiles. Overeem et al. (2010) and more recently Beersma et al. (2019) parameterized the ARF based on weather

radar for the Netherlands. This reduction factor is a function of duration, area and return period, with rarer events having a

stronger areal reduction. Equations 1a, 2, 3b, 4 and 5 from Beersma et al. (2019) are used to estimate the ARF
:::::
Values

:::::
close

::
to

:::
one

:::::::
indicate

:
a
::::::
strong

::::::::
agreement

::::
with

:::
the

::::::::
reference

::::::
dataset.

4 Results300

After applying the HI and FZ filters and requiring a minimum data availability before aggregation, around 88% of the original

dataset was kept.
:::
For

:::
87

::::::
(0.5%)

::
of

:::
the

::::
total

:::::::::
timeseries

:::::
used,

::
at

::::
least

::::
one

:::
HI

:::
flag

::::
was

::::::::
attributed

::
to
::
a
::::::::
timestep.

::
In

::::
93%

:::
of

:::
the

:::::
cases,

::
no

::::
data

::::
was

:::::::::
transferred

:::
for

::
at

::::
least

:::
15

:::
min

:::::
prior

::
to

:::
the

::::::
flagged

:::
HI

::::::::
timestep,

:::::::::
suggesting

:::
that

:::::
these

::::
flags

::::
may

:::::
result

:::::
from

:::::::::
comparing

:::
data

::::::::::
aggregated

::::
over

::::::
longer

::::
time

:::::::
intervals

:::
(≥

::
15

:::::
min)

::
to

:
a
::::::
5-min

::::::::
timestep,

:::::::::
potentially

::::::
leading

::
to

::::::::::
mismatches

::::
and

:::::::
flagging

::::
data.

:::
For

:::::
5.8%

::
of

:::
the

:::::::::
timeseries,

::
at
::::
least

::::
one

:::
FZ

::::::::
occurred.

::::::
Around

:::::
15%

::
of

:::
the

:::::
PWSs

:::::
were

::::::::
manually

:::::::::
calibrated,

::::
with305

:
a
::::::
median

::::::
tipping

:::::::
volume

::
of

::::::
0.117,

::::
with

::::
95%

::
of

:::
the

::::::::
calibrated

::::::
tipping

::::::
bucket

:::::::
volumes

:::::::
ranging

:::::::
between

::::
0.09

::::
and

:::::
0.203.

:
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Figure 6. Histogram of a) distances between the PWS clusters and the AWSs per event and b) the inter-station distances between all selected

PWS pairs within a cluster per event, both based on 1760 pairs. Vertical red dashed line indicates the mean distance, vertical black line the

median, the left and right whiskers indicate the minimum and maximum distance and boxes the inter-percentile range (25th–75th).

4.1 Spatial sampling

The PWSs in this study were selected based on the closest distance from an AWS, without considering the uniformity of

distribution around the AWS. Figure 6 shows that the average cluster distance towards an AWS is around 4.5
:::
4.4 km and that

the average intergauge PWSs distance of all pairs within a cluster is around 5 km. This indicates that overall, the selected310

stations are not clustered at one location and represent a larger area. Variation in the distance towards the AWSs in Fig. 6a can

be explained due to the location of the selected AWSs. Higher PWS network densities and associated shorter distances to the

closest PWSs can be found in urban regions. However, most of the AWSs are located in rural regions. In addition, variability

in Fig. 6 also partially results from fluctuating data availability and number of available PWSs, which increases over the years.

The average number of PWSs within a cluster is 8.75.315

4.2 Bias
:::::
Areal

:::::::::
reduction

:::::
effect

To highlight the severity of the bias in the PWSs, no MFBC factor was applied initially. The
::::::
Figure

:
7
::::::
shows

:
a
::::::::::

substantial

::::::
decline

::
in

::::
ARF

:::::
with

:::::
larger

::::
area

::::
sizes

::::
and

::::::
shorter

::::::::
durations,

::::
with

::::::
largest

:::::::::
reductions

:::
for

:::::
short

::::::::
durations.

::::
The

::::::
decline

::::::::
becomes

::::
more

:::::::::
prominent

:::
for

:::::
longer

:::::
return

:::::::
periods.

:::
For

:::
an

::::
area

::
of

::
79

::::
km2

::::::
(based

::
on

:
a
::::::
radius

::
of

:
5
:::
km

:::::::
towards

::
an

::::::
AWS)

:::
and

:
a
::::::::
duration

::
of

:
1
::
h,

:::
the

::::
ARF

::::::::
according

::
to
:::::::::::::::::::
Beersma et al. (2019)

::::
varies

:::::::
between

::::
0.88

::::
and

::::
0.82

::
for

::::::
return

::::::
periods

::
of

:
2
::::
and

::
50

:::::
years,

:::::::::::
respectively,320

::::
while

:::
for

:::
24

:
h
:::
the

::::
ARF

::::::
varies

:::::::
between

::::
0.96

:::
and

::::
0.92

:::
for

:::::
return

:::::::
periods

::
of

:
2
::::
and

::
50

:::::
years,

:::::::::::
respectively.

:::
The

::::::::
reduction

::::::::
becomes

:::::
larger

:::
for

:
a
::::::
radius

::
of

:::
10

::::
km,

:::
for

::::::::
example,

:::
the

::::
ARF

::
is
:::::

0.78
:::
and

::::
0.70

:::
for

::
a
:::::::
duration

:::
of

:
1
::
h
::::
and

:
a
::::::
return

:::::
period

:::
of

:
2
::::

and
:::
50

:::::
years,

::::::::::
respectively.

:::
To

::::::
convert

:::
the

::::
areal

:::::::
estimate

:::::
from

:::
the

:::::
PWSs

:::
into

::
a
::::
point

::::::::::
observation

:::::::::
(reflecting

:::
the

:::::
AWS),

:::
the

:::::
PWS

::::::
cluster

::::::
average

::
is

:::::::
adjusted

:::::
using

:::
the

::::::
inverse

::
of

:::
the

::::
ARF,

::::
with

:::
the

::::
area

:::::
based

:::
on

:
a
::
10

:::
km

::::::
radius

:::
(the

:::::::::
maximum

:::::::
distance

:::::::
between

:
a
:::::
PWS

:::
and

::
an

:::::
AWS

::::
used

::
in

:::
the

:::::
PWS

:::::::
selection

::::::::::
procedure).

:
325
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Figure 7.
::::
Areal

::::::::
reduction

:::::
factor

:::
(left

::::::
y-axis)

::
as

::::::
function

::
of

:::::::
duration

::
for

::::
area

::::
sizes

::::
with

:
a
:::::
radius

::
of

::
5,

::
10

:::
and

::
20

:::
km

::::::::
(converted

::
to
:::

an
::::
area)

:::
and

::::
return

::::::
periods

::
of

::
T

:
=
::
2,

::
25

:::
and

::
50

:::::
years.

4.3
:::

Bias

:::
The

:::::::
relative bias of the PWSs

:::::::::::
non-adjusted

::::
PWS

::::::
cluster

:::::::
average over multiple accumulation intervals was quantified by com-

paring it with AWSs nearby for the selected rainfall events (Table 2, each row indicating different accumulation intervals).

Results indicate that
::::::
without

::::::::
applying

:::
any

:::::
ARF

::
or

:::::
DBC

:::::
factor, on average, significant biases are present in rainfall observa-

tions from the PWSs. The underestimation is largest for accumulation intervals of 1 h (around 36%). The magnitude of the330

bias reduces over longer intervals, towards an
::::::
average underestimation of around 19% for accumulation intervals of 24 h.

::
In

:::::::
addition,

:
a
::::::::
seasonal

::::::::::
dependency

::
is

:::::
visible

:::
for

:::
the

::::
bias.

:

These results indicate the need for a MFBC factor, with more significant adjustment required for shorter accumulation

intervals.
:
It
::
is

::::::::
important

:::
to

::::
make

::
a
:::::::::
distinction

::
in

:::
the

:::::::
sources

::
of

::::
bias,

::
to

:::::
avoid

:::::::::
correcting

::::::::::::::
non-instrumental

::::::
related

::::::
errors.

::::
Due

::
to

::
the

:::::
setup

::
of

::::
this

:::::
study,

:::::
which

::::::
makes

:::
use

::
of

::::::
PWSs

:::::
within

::
a

::::::::
maximum

:::
10

:::
km

:::::::
distance

::::
from

:::
an

:::::
AWS,

:::
the

::::
bias

:::
can

::
be

:::::::
divided335

:::
into

::::
two

:::::::::
categories:

::
1)

::::
bias

:::::::
resulting

:::::
from

::
the

::::::
spatial

::::::::
variation

::
in

::::::
rainfall

::::::::
extremes

:::
and

::
2)

:::
an

::::::::::
instrumental

::::
bias.

:

:::
The

::::
ARF

::::::::
accounts

:::
for

:::
the

:::::
spatial

:::::::::
variability

::
of

::::::
rainfall

::::::::
extremes

:::
and

::::::::
illustrate

:::
that

:::
the

::::
bias

::
is

:::::::
partially

::::::
caused

::
by

::::::::
category

::
1.

:::
The

::::
ARF

::::
was

::::::
applied

::
to

::::::::::
compensate

:::
for

:::
the

:::::
spatial

::::::::
variation

::
of

::::::
rainfall

::::::::
extremes

:::
and

::
to

:::::
fairly

:::::::
compare

:::
the

::::::
rainfall

::::::::
measured

:::
by

:
a
::::::
cluster

::
of

:::::
PWSs

:::::
with

:::
one

:::::
AWS.

::::
The

::::::
largest

::::
areal

:::::::::
reductions

:::
are

::::::
visible

:::
for

:
1
::
h
:::::::::::
accumulation

:::::
(Fig.

:
7
::::
and

::::
Table

:::
2),

::::::::
reducing

::
the

:::::::
relative

::::
bias

:::
on

:::::::
average

::::
over

::
all

:::::::
seasons

:::::
from

:::::
-36%

::
to

::::::
-22%.

::::::
During

:::
the

::::::
winter

:::::::
months

::
on

:::::::
average

:::
the

::::::
lowest

:::::::
rainfall340

::::::::
intensities

::::
and

::
the

:::::
least

:::::
spatial

:::::::::
variability

::
of

:::::::
rainfall

:::::
occurs

:::::::
(Fig.9),

:::::::
resulting

::
in

:::
the

:::::::
smallest

:::::
areal

::::::::
reduction.

::::
The

:::::
ARFs

::::
have

::
a
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::::::
limited

:::::
effect

::
on

:::
the

:::
24

:
h
::::::
events,

::::
with

::
an

:::::::
average

::::::::
reduction

::
of

::
2
::::::
percent

::::::
points

::
in

:::
the

:::
bias

::::
over

:::
all

:::::::
seasons.

:::
The

:::::::::
remaining

::::
bias

::
for

::::
time

::::::::
intervals

::
of

:
3
::
h
::::
over

::
all

:::::::
seasons

:::
and

::::::
longer

::
is

::
on

:::::::
average

::::::
around

:::::
16%.

:::
The

:::::::::
remaining

::::::
biases

:::
are

::::
part

::
of

:::
the

::::::
second

::::::::
category

::::
and

:::::::
indicate

:::
the

::::
need

:::
for

::
a
:::::
DBC

:::::
factor

::
to

::::::
adjust

:::
the

:::::::::::
instrumental

:::::
biases.

:
To compensate for this

::::::::::
instrumental

:
bias, the MFBC of 1.24, proposed by De Vos et al. (2019) as part of their quality345

control algorithm,
::::
DBC

:::::
factor

::
of

::::
1.22

:
was applied. After application of the MFBC

:::
this

::::
DBC

:::::
factor, the underestimation for 1 h

intervals
::::
over

::
all

:::::::
seasons

:
reduces to an average of 21%

:::
5%, while for 24 h

:
3
:
h
::::
and

:::::
longer

::::::::
intervals it converges towards zero .

::
or

::
in

:
a
:::::
slight

::::::::::::
overestimation

:::
of

:::
the

::::
rain.

:::
The

:::::::::
remaining

::::
bias

::
is

:::::
within

:::
the

::::::::
expected

:::::::::
uncertainty

::
of

:::::::
rainfall

:::::::::::
observations. This is

supporting evidence that the MFBC works effectivelyfor longer accumulation intervals, however, a significant underestimation

remains for 1-h intervals, requiring a higher MFBC factor to correct for the substantial underestimation
::::
DBC

::
of

::::
1.22

::::::
works350

::::::::
effectively.

A small part of the raw dataset obtained from Netatmo (5.38% of the selected events’ total time steps) was not available.

Part of the underestimation with respect to the AWSs can be attributed to these missing time steps in the PWS dataset. Missing

observations in the PWS dataset result in lower rainfall estimates compared to a complete dataset. However, the extent of

the underestimation cannot be determined, as these time steps are missing
::::
were

:::
not

::::::::
included,

:::::
either

:::::::::
suggesting

::::
that

::::
data

::::
was355

::::::
missing

::
or

::::
that

:::
the

::::::
system

:::::::
suffered

:::::::::
connection

::::::
issues,

::::::::
resulting

::
in

:::::::
irregular

::::
data

::::::
transfer

:::::::
(longer

::::
than

::::::::::::
approximately

:
5
:::::
min).

::
It

:
is
::::::::
expected

:::
that

:::
the

:::::
effect

::
of

::::
this

::
on

:::
the

::::
bias

::
is

::::::
limited,

:::
as

::::
most

::
of

:::
the

::::
data

::
is

:::::
likely

:::
not

:::::::
missing,

:::::
rather

::::::
caused

:::
by

:::::::
irregular

::::
data

::::::
transfer

::::
and

::
or

:::::::::
connection

::::::::::
interruption

:::::::
between

:::
the

::::
rain

:::::
gauge

::::
and

:::::
indoor

:::::::
module

::::
(see

:::::::::
supporting

::::::::::
information

:::::
Tables

:::
A1

::::
and

:::
A2).

4.4 Seasonal dependence360

For the selected events, a seasonal dependency is visible for the performance of the PWSs (Figs. 8 and 9). The seasonal effect is

most pronounced for shorter accumulation intervals (1 h and 3 h), with the best performance of the PWSs in winter and autumn

and worst in summer and spring (Fig. 9). Events in winter show the lowest variability of the PWS observations compared

with the AWS observations (e.g. CV of 0.27 and 0.20
::::::
average

:::
CV

::
of

::::
0.30

::::
and

::::
0.21 for accumulation intervals of 1 h and 3 h,

respectively). While the CV is slightly larger for autumn (0.34 and 0.24
::::
0.41

:::
and

::::
0.26), the correlation between the PWSs and365

AWS is higher during autumn compared to winter (Fig. 9b). Winter in the Netherlands is mainly characterized by larger, more

persistent rainfall systems, which have a longer decorrelation distance (80 km for 1-h aggregations) (Van de Beek et al., 2012).

In addition, the error bars for winter are smaller compared to the other seasons, showing that there is more consistency between

the individual PWSs (see
:::
Fig.

::
9

:::
and

:
supporting information Fig.B1 for a complete overview of all seasons and accumulation

intervals). For that reason, it is expected that the spatial sampling errors were minimized during winter, indicating that other370

factors, such as solid rain, caused the lower correlation.

Figure 9a shows that for all seasons, the CV reduces over longer accumulation intervals. For 1-h intervals the CV varies

over the different seasons between 0.27 and 0.55
::::
0.30

:::
and

::::
0.54, while for 24 h the CV shows lower variability, with values

varying between 0.15
::::
0.14

:
and 0.27. Similarly, the correlation coefficient increases from values ranging from 0.36 to 0.71

::::
0.43

::
to

::::
0.74

:
for 1-h intervals to a range from 0.70 to 0.83

:::
0.75

::
to
:::::

0.86 for 24-h intervals. This indicates that, for longer375
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Table 2.
::::::
Relative

:::
bias

::::::::
calculated

:::::
before

:::
and

::::
after

:::::::
applying

::
an

::::
areal

::::::::
reduction

::::
factor

:::::
based

::
on

:::::::::::::::::
Beersma et al. (2019)

::
and

::::::::
correcting

:::
for

:::
the

:::::::::
instrumental

:::
bias

::::
over

:::
the

:::
110

:::
(i.e.

::
10

::::::
rainfall

:::::
events

:
x
::
11

::::::
AWSs)

::::::
selected

::::::
rainfall

:::::
events

:::
per

:::::
season

:::
and

::::::
interval.

Relative bias [-]

::::::
Interval DJF MAM JJA SON

No ARFs or DBC applied

:
1
:
h
: :::::

−0.33
:::::
−0.39

:::::
−0.38

:::::
−0.34

:
3
:
h
: :::::

−0.22
:::::
−0.26

:::::
−0.27

:::::
−0.21

:
6
:
h
: :::::

−0.20
:::::
−0.23

:::::
−0.21

:::::
−0.20

::
24

:
h
: :::::

−0.18
:::::
−0.21

:::::
−0.19

:::::
−0.18

ARFs applied

:
1
:
h
: :::::

−0.20
:::::
−0.26

:::::
−0.22

:::::
−0.19

:
3
:
h
: :::::

−0.15
:::::
−0.19

:::::
−0.16

:::::
−0.13

:
6
:
h
: :::::

−0.16
:::::
−0.19

:::::
−0.12

:::::
−0.14

::
24

:
h
: :::::

−0.17
:::::
−0.20

:::::
−0.16

:::::
−0.16

ARFs and DBC applied

:
1
:
h
: :::::

−0.02
:::::
−0.10

:::::
−0.05

:::::
−0.01

:
3
:
h
:

0.04
:::::
−0.01 0.03 0.07

:
6
:
h
:

0.03
:::::
−0.01 0.07 0.05

::
24

:
h
:

0.01
:::::
−0.02 0.03 0.03

accumulation intervals, rainfall observations from PWSs exhibit less variability and more agreement with those from AWSs.

Data transferring and processing errors reduces
:::::
reduce

:
for longer accumulation intervals, as the effect of incorrectly attributing

rainfall to a certain
::
an

::::::::
erroneous

:
time stamp decreases.

:::
This

:::::
takes

:::::
place

::
for

::::::::
example

:::::
when

:::
the

:::::::::
connection

:::::::
between

:::
the

::::::
indoor

:::
and

:::::::
outdoor

::::::
module

::
is

::::::::::
temporarily

:::::::::
interrupted,

:::::::::
potentially

:::::::::
attributing

::::::
rainfall

:::
to

:
a
:::::::::
timestamp

:::::
when

::::
there

::
is

:
a
:::::::::
connection

::::::
again,

::
as

:
a
:::::::::::
consequence

::::::::::
aggregating

::
it

::::
over

:
a
::::::
longer

::::
time

::::::
interval

::::
than

:::::::::::::
approximately

:
5
::::
min

:::
(see

::::::::::
supporting

::::::::::
information

:::::
Table

::::
A2).380

:::::
Within

::
a
::::::
cluster

::
of

::::::
PWSs,

::::::::
variation

::
in

::::::
rainfall

::
is
:::::::::
observed,

:::::::
however,

:::::
using

:::
the

:::::::
average

::::::
rainfall

:::
of

::::
each

:::::
PWS

::::::
cluster

:::::
shows

::
a

::::
large

:::::::::
agreement

::::
with

:::
the

:::::
AWS. Overall, the average of the cluster of PWSs largely follows the 1:1 line, with slopes of the fitted

lines indicating slight underestimation or overestimation by varying between 0.95 and 1.02
::::
0.97

:::
and

::::
1.03

:
for 24 h.

:
A
::::::::
seasonal

:::::
effect

:
is
::::::
limited

:::
on

:::
the

:::::
slope

::
for

::::::::
durations

:::
of

:
3
::
h

:::
and

::::::
longer. Furthermore, high correlations, low CV-values and low biases are

found for both winter and autumn, indicating that there is a good agreement with the AWSs (Fig. 9).385

Relative bias calculated before and after applying the MFBC of 1.24 from De Vos et al. (2019) over the 110 (i.e. 10 rainfall

events x 11 AWSs) selected rainfall events per season and interval. Interval 1 h −0.33 −0.39 −0.38 −0.34 3 h −0.22 −0.26

−0.27−0.21 6 h −0.20−0.23−0.21−0.20 24 h −0.18−0.21−0.19−0.18 1 h −0.17−0.24−0.23−0.18 3 h −0.03−0.08

−0.09 −0.03 6 h −0.01 −0.05 −0.02 −0.01 24 h −0.02
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Figure 8. Scatter plots of filtered PWS rainfall accumulations against AWS records for the winter (a, c) and summer (b, d) seasons and

accumulation intervals of 1 h (a, b) and 24 h (c, d). The large blue
::::::
coloured

:
dots indicate the average of a cluster of PWS against one AWS,

the vertical bars indicate the minimum and maximum of that cluster of PWSs. The blue gradient indicates
::::::
colours

::::::
indicate the number of

PWSs used to calculate the mean, minimum and maximum rainfall. The small grey dots indicate one individual PWS against an AWS.

Orange circles indicate examples of outliers. The RAWS and RPWS represent the average rainfall over the selected events recorded by the

AWS and PWS, respectively. RPWS = a * RAWS represents the linear regression line, fitted through zero, with a indicating the slope.

4.5 Outlier identification390

Figure 8 shows that, for certain individual events, the PWSs report rainfall amounts which deviate strongly from those observed

by the AWSs. We further investigated the cause of some of these outliers, which are indicated with orange circles.

It can be seen in Fig. 8c that one of the selected events showed (almost) zero precipitation measurements according to the

cluster of PWSs, while the AWS nearby recorded precipitation. These outliers occurred during winter and were also observed

for the 6 h accumulation interval. In the Netherlands, winter has on average around 34 days with a minimum temperature395

below 0◦C (KNMI, 2024), which is outside the optimal temperature range of the PWSs. For the event with the outliers in
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Figure 9. Coefficient of variation (a), correlation coefficient (b), bias (c) and slope (d) of filtered PWS rainfall accumulations against AWS

for different seasons and accumulation intervals. Hollow circles
:::
The

:::::
lower

:::
and

::::
upper

:::::::
whiskers indicate the

:::::::
minimum

:::
and

::::::::
maximum

::
of

::::
each

:::::
metrics

:::
and

:::
the

::::
boxes

:::
the

:::::::::::
inter-percentile

:::::
range

:::::::::
(25th-75th).

:::
The

:::
red

:::::::
diamonds

::::::
indicate

:::
the values in winter after applying a

::::::::
discarding

:::::
events

::::
based

::
on

::::::::
attributed temperature filter

:::
flags.

:::
The

:::::::
estimated

:::::::::
uncertainty

:
is
:::::::
obtained

::::
using

:::::::::::
bootstrapping

::::
(1000

::::::::
iterations,

:::
with

:::::::::::
replacement).

Fig. 8c, the maximum temperature was below −1.4 ◦C.
:
It
::
is

:::
not

:::::::
possible

::
to
:::::::::::::

unambiguously
:::::::::
determine

:::::::
whether

:::::::::::
precipitation

:
is
:::::

solid
:::::
based

::::::
solely

::
on

:::::::::::
temperature.

:::::::::
However,

:
a
::::::::::::::::
temperature-based

:::
flag

::::
can

:::::::
provide

:::
end

:::::
users

::::
with

:::
an

:::::::::
indication

::::
that

:::
the

::::::
rainfall

::::::::::
observations

::::
may

:::
be

::::::
subject

::
to

::::::::::
uncertainty.

:::::
Flags

::::
were

:::::::
assigned

:::
to

::::::::
timeseries

::::::
where

::
the

::::::::::::
corresponding

:::::
AWS

::::::::
recorded

::::::::::
temperatures

::::::
below

:::::::
freezing.

:
If these events were discarded by a temperature filter that filters stations when temperatures are400

below a certain threshold for a certain duration, the values of r and CV for 6 h for winter would have improved to 0.81 and

0.17
:::
0.83

:::
and

:::::
0.18, respectively. For 24 h this would have been r = 0.86

::::
0.88 and CV = 0.12. However, as these are only two

points and the two intervals have some overlap in time at the same location, no statistically valid conclusion can be drawn from

this.

The
:::::
During

:::::::
summer

:::
and

::::::
spring

:::
the highest rainfall accumulations were observed during summer and spring, with an average405

intensity of more than
::
by

:::
the

::::::
AWSs,

::::
with

:::::::::
intensities

:::::::::
exceeding 35 mm h−1. An example of the low performance of PWSs for

two high rainfall events in summer can be seen from Fig. 8b. These events influence
::::
likely

:::::
skew the overall performance during
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these months. This suggests PWSs have difficulties recording higher rainfall intensities, which is known for
::
A

::::
large

::::::
spread

::
is

:::::::
observed

::::::
within

:::
the

::::::
cluster,

:::::::::
especially

:::
for

:::
the

:::::::
highest

:::::
event

::
in

:::::::
summer

::
in

::::
Fig.

:::
8b,

:::::::::
indicating

:
a
:::::
large

::::::::
variation

::
in

:::
the

::::::
spatial

::::::
rainfall

::::::::::
distribution.

::::
This

:::::::
suggests

::::
that

:::
the

:::::::::
differences

:::::::
between

:::
the

::::::
cluster

:::
of

:::::
PWSs

:::
and

:::::
AWS

:::
are

:::
not

::::::::::
necessarily

::::
only

::::::
related410

::
to

::::::::::
instrumental

::::::::::
limitations,

:::::
rather

:::
due

::
to
:::
the

::::::
spatial

::::::
rainfall

:::::::::::
distribution.

::
In

:::::::
addition,

:
tipping bucket mechanisms . In addition,

::
are

::::::
known

:::
for

::::::
having

:::::::::
difficulties

::
in

::::::::
recording

::::::
higher

::::::
rainfall

:::::::::
intensities.

:
PWSs only sends rainfall data to the netatmo

:::::::
Netatmo

platform twice per 10 min, which is considerable lower than the recording interval of AWSs (12 sec). More than one third

of the rainfall during these events fell within 10 min, exceeding intensities of 75 mm h−1 during that interval. However, it

is unknown if the rain was evenly spread within these 10 min, or mostly occurred during a shorter period of time and if this415

measurement range of the PWSs was indeed exceeded.

5
:::::::::
Discussion

5.1 Areal reduction effect
::::
Bias

Figure 7 shows a substantial decline in ARF with larger area sizes and shorter durations, with largest reductions for short

durations. The decline becomes more prominent for longer return periods. For an area of 64 km2 (based on the420

::::::::
Adjusting

:::
the

:::::
PWS

::::::
dataset

::::
with

:::::
ARFs

::::
and

:::::::::
correcting

::
for

::::
the

::::::::::
instrumental

::::
bias

:::::
using

:
a
:::::

DBC
::::::
factor,

:::::::
reduces

:::
the

::::
bias.

::::
The

::::::::
remaining

::::
bias

:::
can

:::::
either

:::::::
indicate

:::
that

:::
for

:::::::
example

:
a
::::::
higher

::::
DBC

:::::
factor

::
is

:::::::
required

::
to

::::::
correct

:::
for

::
the

:::::::::
substantial

::::::::::::::
underestimation

::
or

:::
that

:::
the

:::::
ARFs

:::
are

:::
not

::::
able

::
to

::::
fully

:::::::
account

:::
for

:::
the

::::::
spatial

::::::::
variability

::
of
:::
the

:::::::
rainfall.

:

5.1.1
::::::
Spatial

::::::::
sampling

::::::
errors

::::::
Rainfall

:::::::
exhibits

::::::
spatial

:::::::::
variability,

:::::
which

::
is

:::::
related

::
to
:::
the

::::::::
temporal

::::
scale

:::
and

:::::::
rainfall

:::::::
intensity,

::::
with

::::::
shorter

::::::::
temporal

:::::::::
resolutions425

:::
and

:::::
higher

:::::::::
intensities

::::
often

:::::::::
associated

::::
with

::::::
greater

::::::::::::
heterogeneity.

:::
The

:::::::::::
decorrelation

:::::::
distance

::
of

::::::
rainfall

::
is

:::::::
typically

:::::
much

::::::
higher

::
in

:::::
winter

::::::::
compared

::
to

:::::::
summer

::
in

:::
the

::::::::::
Netherlands.

:::::::::::
Specifically,

::
for

::::::
shorter

::::::::::
aggregation

:::::
times

:::
this

:::::
holds

:::::::::::::::::::::::::::::::::::::::
(Van de Beek et al., 2012; Van Leth et al., 2021)

:
.
:::
The

:
average distance of

::::::
around

:::
4.4

:::
km

::::
from

:
a PWS cluster to the corresponding AWS ) and a duration of

::::::
towards

:::
the

::::::
closest

::::
AWS

::::
was

::::::
below

:::
the

:::::::::::
decorrelation

:::::::
distance

::::::::::::
corresponding

::
to
::

a
:::
1-h

::::::::::
aggregation

:::::::
interval

:::::
found

:::
by

:::::::::::::::::::
Van Leth et al. (2021)

:::
and

::::::::::::::::::::
Van de Beek et al. (2012)

:
.
:::::
While

::::
this

:::::
limits

:::
the

:::::
errors

::::::
related

::
to
::::::

spatial
:::::::::
sampling,

:
it
::

is
::::::::

expected
::::
that

:::
this

:::::
effect

:::::::
remains

:::::
most430

:::::::::
pronounced

:::
for

::::::
events

::
in
:::

for
::::::::

example
:::::::
summer

::::
and

:::::
spring

::::
and

::
at

::::::
shorter

::::::::::
aggregation

::::::::
intervals

::::
(i.e. 1 h, the ARF according

to Beersma et al. (2019) varies between 0.89 and 0.83 for return periods of 2 and 50 years, respectively, while for 24 h the

ARF varies between 0.96 and 0.93 for return periods of 2 and 50 years, respectively. The larger areal reductions for shorter

intervals are also visible in the average bias in Fig. 7.
:
).

::::::::
Lowering

::::
the

:::::
radius

:::::::
reduces

:::
the

:::::::
number

:::
of

:::::::
available

::::::
PWSs

::::
and

:::::::::::
consequently

::::::::
increases

:::
the

::::::::::
uncertainty.

:::::
From

:::
the

::::
error

::::
bars

::
in

::::
Fig.

::
8

:::::::
variation

::::::
within

::
a
::::::
cluster

::
of

:::::
PWSs

::::
was

:::::::::
observed,

::::
with435

::
the

::::::
largest

::::::::
variation

:::::
found

:::
in

:::::
spring

::::
and

:::::::
summer.

::::
For

:::::::::
small-scale

:::::::::
convective

:::::::
rainfall

:::::
events

:::
the

::::::::
distance

:::::::
towards

:::
the

::::::
closest

::::
AWS

:::::
might

::::
still

::::
have

::::
been

:::
too

:::::
large,

::::::::
resulting

::
in

::::::::
variations

::
of

:::
the

::::::::
observed

::::::
rainfall

::
by

:::
the

::::::
PWSs

::::::
nearby.

:::::
Radar

::::::
images

:::::::
support
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:::
that

:::
for

::::::
several

:::::
events

:::
the

:::::::::
difference

:::::::
between

:::::
AWS

:::
and

::::::
PWSs

:::
are

::::::
caused

::
by

::::::
spatial

::::::::::
distribution

::
of

:::
the

::::::
rainfall

::::
(see

:::::::::
supporting

:::::::::
information

::::::::
Figs.D1,

:::
D2

:::
and

::::
D3).

:

Areal reduction factor (left y-axis) as function of duration for area sizes with a radius of 5, 10 and 20 km (converted to an440

area) and return periods of T = 2, 25 and 50 years. The right y-axis shows the averaged relative bias per duration.
::
To

:::::::
account

::
for

::::::
spatial

:::::::::
variability,

:::
an

:::::
ARF

:::
was

:::::::::
estimated

:::
for

::::
each

:::::
event.

:::::::::
However,

::::
such

::::::
factors

:::
are

:::::
based

:::
on

:::::
areal

::::::
rainfall

:::::::::::
climatology,

::::::::::
representing

::
an

:::::::
average

::::::::
behaviour

::::
and

:::
not

::::
tied

::
to

:::
one

:::::::
specific

:::::
event.

::::
The

:::::
radius

::
of

:::
10

:::
km,

::::::
which

:::
was

::::::
based

::
on

:::
the

:::::::::
maximum

:::::::
possible

:::::::
distance

::
of

::
a

::::
PWS

:::::::
towards

:::
an

:::::
AWS,

::::
was

::::
used

:::
for

:::
the

::::
area

:::
to

:::::::
estimate

:::
the

::::::
ARFs.

:::
For

:::::
each

:::::
event,

:
a
::::::::

different
:::::
PWS

:::::
cluster

::::
was

:::::
used,

:::::::::
potentially

::::::::::
representing

:
a
::::::
larger

::
or

::::::
smaller

::::
area

:::
and

::::::::
therefore

::::::::
requiring

:
a
::::::::
different

:::::::::::
corresponding

::::::::::
adjustment445

::
of

:::
the

::::
ARF.

::
A
:::::::
smaller

::
or

:::::
larger

:::::
radius

::::
has

:
a
::::
large

:::::
effect

:::
on

:::
the

::::
ARF

:::::::
(Fig.7).

6 Discussion

5.1 Bias correction factor

A significant bias is present in the PWS dataset.

5.0.1
:::::::::::
Instrumental

::::
bias450

::
An

:::::::::::
instrumental

::::
bias

::
of

:::::
-18%

::::
was

::::::::
identified

:::
by

:::::::::::::::::
De Vos et al. (2017)

::::
using

:::
an

:::::::::::
experimental

:::::
setup

::::
that

:::::::::
minimized

:::
the

::::::
spatial

:::::::
sampling

::::::
errors.

::::
This

::::::::
suggests

:
a
:::::

DBC
::::::
factor

::
of

::::
1.22

::
to
:::::::::::

compensate
:::
the

::::::::::
instrumental

:::::
bias.

::::::::
However,

:::::
other

::::::
studies

:::::
came

:::
up

::::
with

:::::::
different

:::::
DBC

::::::
factors.

:
From De Vos (2019) a bias correction factor of 1.13 came out for a 1-month dataset covering the

Netherlands, which is different from the 1-year calibration set from the same study for Amsterdam only (MFBC
::::
DBC

:
of 1.24),

which is part of the PWSQC algorithm and was used in this study. Alternatively, Overeem et al. (2024a) used a MFBC
:::::
DBC of455

1.063 for a pan-European dataset. Neither of the MFBC
::::
DBC factors (1.063 or 1.13) would have been able to fully compensate

for the bias present in the dataset used in this research. This difference might be caused by two main reasons. First, both MFBC

factors were based
::::
DBC

::::::
factors

::::
were

::
a
::::
bulk

::::::::
correction

:::::
factor

:::::
tuned

:
on different reference datasets. De Vos et al. (2019) utilized

gauge-adjusted radar values. Radars indirectly measure rainfall, which might not be representative for rainfall at the ground.

In addition, radars do not measure on a grid, rather the values are interpolated, adding extra uncertainty. Spatially adjusting460

radars with rain gauges improves the overall quality, however, substantial errors remain. Secondly, this research focused on

the highest rainfall events over a longer period of time, while both De Vos et al. (2019) and Overeem et al. (2024a) did not

distinguish between certain types of rain events, rather looking at a full month or year of rainfall. The performance of tipping

buckets is a non-linear function of rainfall intensity (Niemczynowicz, 1986; Humphrey et al., 1997). It requires time for the

tipping bucket mechanism to reposition itself after a tip. Higher intensities enhance this problem, resulting in an increased465

undercatch. Therefore, the type of dataset and the included rainfall events play a role in the performance. Applying a MFBC

factor of 1.24
::::
DBC

::::::
factor

::
of

::::
1.22 over the dataset almost eliminates the biasfor accumulation intervals of 24 h. The remaining

bias in 1 h intervals may be attributed to predominating high-intensities.
::::

The
:::::
study

:::
of

:::::::::::::::::
De Vos et al. (2017)

::::::::
considered

:::::
only
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:
a
:::
few

:::::::
months

::::::
around

:::
the

::::::
spring

::::::
period,

::::::::::
specifically

::::
from

:::
12

::::::::
February

::
to

:::
25

::::
May

:::::
2016,

:::::
which

:::::
may

::::
have

:::::::::
influenced

:::
the

::::
bias

:::::::
reported

::
in

:::
that

:::::
study.

:
470

5.0.2
:::::::
Manual

::::::::::
calibration

::::::
Around

:::
1/7

::
of

:::
the

::::::
PWSs

::::
used

::
in

::::
this

:::::
study

:::::
(15%)

:::::
were

::::::::
manually

::::::::
calibrated

:::
by

::::
their

::::::
owner.

::::::::
However,

:
it
::

is
::::::::
unknown

:::::
what

:::
the

:::::::
accuracy

::
of

::::
such

::
a
::::::
manual

:::::::::
calibration

::
is.

::::
The

:::::::
number

::
of

:::
tips

::::
was

:::::::::
determined

:::
for

::::
each

::::::::
manually

::::::::
calibrated

:::::
PWS

:::
and

:::::::::
converted

::
to

:::
the

:::::::
original

::::::
default

:::::
value

::
of

:::::
0.101

:::::
mm.

:::
On

:::::::
average,

:::::
there

::
is

:
a
::::
4%

:::::::
decrease

::
in

:::
the

::::::::
observed

:::::::
rainfall

::
by

::::
the

::::
PWS

:::::::
cluster,

:::::::
resulting

::
in

::
a
::::::
slightly

:::::::::
increased

:::::::::::::
underestimation

:::
or

::::::
slightly

:::::::::
decreased

::::::::::::
overestimation

:::
by

:::
the

::::::
PWSs.

::::
The

:::
CV

::::::
values

:::::::
slightly475

:::::::
improve

::::
with

::
an

:::::::
average

::
of

::::
0.01,

:::::
while

:::
the

::::::
change

::
in
::
r
::
is

:::::::::
negligible,

:::
see

:::::::::
supporting

::::::::::
information,

:::::
Table

:::
C1.

5.1 Quality control

The quality control algorithm from De Vos (2019) utilized in this research improves the overall performance of the PWSs (see

supporting information, Fig.E1). However, there are some limitations to this algorithm. The algorithm works only if there are

enough neighbouring stations within 10 km, limiting the usefulness for less densely populated regions. That said, for this study480

only a small percentage (0.66%) was discarded from this dataset due to an insufficient number of neighbouring PWSs. While

the number of currently active PWSs is quite high in Europe, they are not evenly distributed (see Fig.1 for the network density

of PWSs across Europe). For that reason, regions with a less dense network of PWSs are expected to have a higher percentage

of discarded stations due to insufficient neighbours (around 35% within Europe). Alternatively, other data sources (such as

gauges or weather radars operated by national meteorological or hydrological services) can be employed for quality control,485

such as employed in the QC algorithm by Bárdossy et al. (2021). In addition, insufficiently calibrated PWSs which record

higher rainfall at each time stamp, are not discarded by the HI filter if a certain threshold is not reached. These differences

become more apparent when accumulated over longer periods. With a dynamic bias correction factor this could have been

adjusted.

Another limitation of a quality control algorithm that does not use auxiliary data is that if all PWSs provide faulty observa-490

tions, these timestamps are not flagged, consequently giving a wrong signal. This was observed for two events during winter

for 6 and 24 h accumulation intervals, when none of the stations recorded any precipitation during an event, while the AWSs

did observe precipitation (e.g. Fig. 8c). During winter, solid precipitation can occur, which can result in an undercatch by the

PWSs, as these are not heated and consequently work best for temperatures above freezing point. Results from Overeem et al.

(2024a) also suggested that PWSs are not able to capture solid precipitation. Quality control algorithms based on a reference495

dataset, such as from Bárdossy et al. (2021), would have filtered these PWSs. Alternatively, a temperature filter could be

developed, without using auxiliary weather stations. The temperature module present at the PWS can be utilized for this.

5.2 Spatial sampling errors
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The decorrelation distance of rainfall is typically much higher in winter compared to summer in the Netherlands. Specifically,

for shorter aggregation times this holds (Van de Beek et al., 2012; Van Leth et al., 2021). The average distance of around 4.5 km500

from a PWS cluster towards the closest AWS was below the decorrelation distance corresponding to a 1-h aggregation interval

found by Van Leth et al. (2021) and Van de Beek et al. (2012). While this limits the errors related to spatial sampling, it is

expected that this effect remains most pronounced for events in summer and at shorter aggregation intervals (i.e. 1 h). Lowering

the radius reduces the number of available PWSs and consequently increases the uncertainty. From the error bars in Fig. 8

variation within a cluster of PWSs was observed, with the largest variation found in spring and summer. For very small-scale505

convective rainfall events the distance towards the closest AWS might still have been too large, resulting in variations of the

observed rainfall by the PWSs nearby. This is also visible from the ARF in Fig. 7, which declines more for rarer events.

5.2 Uncertainty of AWSs

The 10-min AWS dataset is used as a reference, however, it is not an absolute truth. Brandsma (2014) compared the AWS

network and manual rain gauge network over the Netherlands and concluded that the AWS network underestimates rainfall with510

5-8% annually, with higher underestimation in winter (7.7%) than summer (5.0%). The undercatch is nonlinear with intensity,

with larger intensities resulting in less underestimation. These uncertainties are not taken into account in this research.

6 Conclusions

This study provides insight into the uncertainty arising from personal weather stations (PWSs) rainfall estimates
:::::::::
systematic

:::::
errors

:::::
across

:::
the

::::::::
personal

:::::::
weather

::::::
station

::::::
(PWS)

:::::::
network

:
during high-intensity rainfall events , by performing a systematic515

long-term analysis
::::::::::::
comprehensive

:::::::
analysis

::::
over

:::
six

::::
years. The analysis focuses on the most intense rainfall observations for

a large number of events (1760) over six years (2018-2023) in the Netherlands. PWS data were evaluated against rainfall

measurements from automatic weather stations (AWSs). These events were selected over different meteorological seasons

(winter, spring, summer, autumn), durations (1, 3, 6 and 24 h) and AWSs (11 locations spread over the country). While PWSs

are subject to connection failure which reduces data availability, around 96% of the stations were available over all events.520

PWS data were filtered with a quality control (QC) algorithm, utilizing neighbouring PWSs. After QC, around 88% of the

original dataset was kept. Metrics
::
To

:::::
reduce

::::::::::
uncertainty

::::
from

::::::
single

:::::::
stations,

::::::
metrics

:
were calculated over a cluster of PWSs,

rather than individual stations, reducing the impact of uncertainties arising from single stations.

Results showed that PWSs severely underestimate rainfall. However, applying a mean field
:
A

:::::::
seasonal

:::::
effect

::
is

::::::
visible

::
in

:::
the

::::
bias,

:::::::::
specifically

:::
for

::::::
shorter

:::::::::::
accumulation

::::::::
intervals,

::::
with

::::::
largest

:::::
biases

:::
for

:::::::
summer

:::
and

::::::
spring.

::
A

:::
part

::
of
::::
this

:::
bias

::::
can

::::::::
attributed525

::
to

::
the

::::::
spatial

::::::::::
distribution

::
of

::::::
rainfall.

:::
To

:::::::
account

::
for

::::
this,

::::
areal

::::::::
reduction

::::::
factors

:::::::
(ARFs)

::::
were

:::::::
applied.

::::
This

:::::::
seasonal

::::::::::
dependence

::::::::
minimizes

:::::
after

:::::::
applying

::::::
ARFs.

:::
In

::::::::
addition,

:
a
:::::::

default bias correction (MFBC
::::
DBC) factor of 1.24 as part of the PWSQC

algorithm
::::
1.22

:::
was

:::::
used

::
to

::::::::::
compensate

:::
for

:::
the

::::::::::
instrumental

::::
bias.

::::
The

:::::
DBC

:::::
factor substantially reduces this bias for intervals

of 3 h and longer, indicating that the MFBC
::::
DBC

:
of 1.063 by Overeem et al. (2024a) (European dataset) and 1.13 proposed

by De Vos et al. (2019) (Netherlands dataset) are not able to account for high-intensity rainfall events. A seasonal effect is530
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visible in the bias, specifically for shorter accumulation intervals, with largest biases for summer and spring. This seasonal and

:::
and

:
temporal dependence is also seen from the correlation coefficient (r) ,

:::
and

:
coefficient of variation (CV)and the slope of

the fitted linear regression line. Outliers in winter seemed to have been caused by freezing temperatures (solid precipitation).

For that reason, it is recommended to further analyse the impact of temperature or solid precipitation on the performance of

the PWS. The temperature module available in PWSs can be used for this. In addition, PWSs were not able to capture
:::
did

:::
not535

::::::
observe

:
the most intense rainfall events, with high intensities over a relative short amount of time (e.g. > 75 mm h−1 within

10 min). These highest intensities occurred during summer and spring, with events that typically occur once in 10 years or even

longer return periods. Rain gauges from PWSs used in this research utilize a tipping bucket mechanism, which are known to

suffer from non-linear underestimation errors with increasing intensities, potentially causing these outliers. In addition, the
:::
The

spatial footprint of these high-intensity rainfall events is unknown, potentially
::::
often

:::::
small,

:
influencing errors related to spatial540

sampling due to the average distance of 4.5
:::
4.4 km towards the nearest AWS. The areal reduction factor shows a strong decline

for longer return periods, which partially explains the larger bias for rarer events, such as events with a return period of 50 years,

for which the reduction can be up to 17% for 1 h durations. This reduction decreases to 7.0% for a duration of 24 h
::::
This

:::::::
suggests

::
the

:::::
need

:::
for

:
a
:::::::::::
high-density

::::::::::
observation

:::::::
network

::
to

::::::
reliably

:::::::
capture

::::::::
localized

::::::
rainfall

::::::::
extremes.

:::::
Rain

::::::
gauges

::::
from

:::::
PWSs

:::::
used

::
in

:::
this

:::::::
research

::::::
utilize

::
a

::::::
tipping

::::::
bucket

::::::::::
mechanism,

::::::
which

:::
are

::::::
known

::
to

:::::
suffer

:::::
from

:::::::::
non-linear

:::::::::::::
underestimation

::::::
errors

::::
with545

::::::::
increasing

:::::::::
intensities,

::::::::::
potentially

::::::::::
contributing

::
in

:::::
these

:::::::
outliers.

:::
To

:::::::
quantify

::::
this,

:::::::::::
experimental

:::::::
studies

:::
are

::::::::
necessary

::
to

:::::
limit

::::
other

:::::::
sources

::
of

:::::
errors. Performance of the PWSs improved over longer accumulation intervals, resulting in a r of 0.83 and

0.83
::::
0.85

:::
and

::::
0.86 and a CV of 0.15

:::
0.14

:
and 0.18 for 24 h for winter and autumn, respectively.

With the high density of PWSs in the Netherlands (around 1 PWS per 9 km2), there is a clear potential of using PWSs. This

will also be the case for other regions in Europe that have a relative high coverage of PWSs. The accuracy however depends550

on the desired temporal resolution, season and intensity. Although applying a MFBC
::::
DBC

:
factor reduces or even completely

compensates for the underestimation, we recommend to further investigate the dynamic response of these stations at different

intensities to enable dynamic calibration and consequently minimize non-linear errors related to this.

Code and data availability. The automatic weather stations from the Royal Netherlands Meteorological Institute (KNMI) is freely available

on the KNMI data platform for 10 min intervals: https://dataplatform.knmi.nl/dataset/neerslaggegevens-1-0. The hourly validated dataset is555

available at: https://www.daggegevens.knmi.nl/klimatologie/uurgegevens. Part of the quality control of the Netatmo gauge data, i.e. the faulty

zeroes and high-influx filters, are based on the PWSQC algorithm written in R language and can be found at: https://github.com/LottedeVos/PWSQC.

Dataset with Netatmo PWS rainfall data can be found at: https://doi.org/10.4121/caa0a93a-effd-4574-95ec-cd874ca97c05.v1 (Rombeek

et al., 2024).
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Table A1.
::::::
Example

::
of

::
the

:::::::
Netatmo

:::::::
software

:::
that

:::::::
resamples

::::
data

:
to
::::::
regular

::::
5-min

:::::::
intervals,

:::
by

:::::::
assigning

:
it
::
to

:::
the

:::
next

:::
full

::::::::
five-minute

:::::::
interval.

Raw Aggregated

Time
::::
Rain

::::
(mm) Time

::::
Rain

::::
(mm)

:::::::::
29-10-2024

::::::
05:54:48

: ::
0.0

: :::::::::
29-10-2024

::::::
05:55:00

: ::
0.0

:

:::::::::
29-10-2024

::::::
05:59:56

: ::::
0.303

: :::::::::
29-10-2024

::::::
06:00:00

: ::::
0.303

:

:::::::::
29-10-2024

::::::
06:05:03

: ::::
1.313

: :::::::::
29-10-2024

::::::
06:05:00

: :::
Not

:::::::
included

::
by

::::::
Netatmo

:

:::::::::
29-10-2024

::::::
06:09:58

: ::::
2.626

: :::::::::
29-10-2024

::::::
06:10:00

: ::::
3.393

:

:::::::::
29-10-2024

::::::
06:15:07

: ::::
2.626

: :::::::::
29-10-2024

::::::
06:15:00

: :::
Not

:::::::
included

::
by

::::::
Netatmo

:

:::::::::
29-10-2024

::::::
06:20:01

: ::::
1.111

: :::::::::
29-10-2024

::::::
06:20:00

: ::::
2.626

:

:::::::::
29-10-2024

::::::
06:25:09

: ::::
0.505

: :::::::::
29-10-2024

::::::
06:25:00

: ::::
1.111

:

:::::::::
29-10-2024

::::::
06:30:17

: ::::
1.616

: :::::::::
29-10-2024

::::::
06:30:00

: ::::
0.505

:

:::::::::
2024-19-29

::::::
06:35:00

: ::::
1.616

:

Appendix A:
:::::::
Netatmo

:::::
data

:::::::::
processing560
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Table A2.
::::::
Example

::
of

:::::
when

::::
there

:::
was

:::::
likely

:
a
::::::::
temporary

::::::::
connection

:::::::::
interruption

:::::::
between

::
the

::::::
indoor

::::::
module

:::
and

:::
rain

:::::
gauge.

::::::
Rainfall

::::
will

::::
likely

::
be

::::::::
attributed

:
to
::
a
::::::::
timestamp

::::
when

::::
there

::
is

:
a
::::::::
connection

:::::
again,

:::::::
resulting

::
in

:
a
:::::
longer

:::::::
temporal

::::::::
resolution,

:::
e.g.

::
at

:::::::
20:26:21

::
the

::::::
rainfall

::
is

::::
likely

::::::::
aggregated

::::
over

::
22

::::
min.

Raw Aggregated

Time Rain (mm) Time Rain (mm)

:::::::::
2024-29-10

::::::
19:50:59

: ::::
0.303

: :::::::::
2024-29-10

::::::
19:55:00

: ::::
0.303

:

:::::::::
2024-29-10

::::::
19:56:07

: ::::
0.101

: :::::::::
2024-29-10

::::::
20:00:00

: ::::
0.101

:

:::::::::
2024-29-10

::::::
20:01:02

: ::::
0.404

: :::::::::
2024-29-10

::::::
20:05:00

: ::::
1.111

:

:::::::::
2024-29-10

::::::
20:04:08

: ::::
0.707

: :::::::::
2024-29-10

::::::
20:10:00

: :::
Not

:::::::
included

::
by

::::::
Netatmo

:

:::::::::
2024-29-10

::::::
20:26:21

: ::::
7.777

: :::::::::
2024-29-10

::::::
20:15:00

: :::
Not

:::::::
included

::
by

::::::
Netatmo

:

:::::::::
2024-29-10

::::::
20:20:00

: :::
Not

:::::::
included

::
by

::::::
Netatmo

:

:::::::::
2024-29-10

::::::
20:25:00

: :::
Not

:::::::
included

::
by

::::::
Netatmo

:

:::::::::
2024-29-10

::::::
20:30:00

: ::::
7.777

:
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Figure B1. Scatter plots of filtered PWS rainfall accumulations against AWS for the winter (a, e, i and m), spring (b, f, j and n), summer

(c, g, k and o) and autumn (d, h, l and p) seasons and accumulation intervals of 1 h (a-d), 3 h (e-h), 6 h (i-l) and 24 h (m-p). The large blue

::::::
coloured

:
dots indicate the average of a cluster of PWS against one AWS, the vertical bars indicate the minimum and maximum of that cluster

of PWSs. The blue gradient indicates
:::::
colours

::::::
indicate

:
the number of PWSs used to calculate the mean, minimum and maximum rainfall. The

small grey dots resemble one individual PWS against an AWS. The RAWS and RPWS represent the average rainfall over the selected events

recorded by the AWS and PWS, respectively. RPWS = a * RAWS represents the linear regression line, fitted through zero, with a indicating

the slope.

Appendix B: Overview of all seasons and accumulation intervals
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Table C1.
::::::
Relative

::::
bias,

::::::::
coefficient

::
of

:::::::
variation

::::
(CV)

:::
and

::::::::
correlation

:::
(r)

::
of

::::::
filtered

::::
PWS

::::::
rainfall

::::::::::
accumulations

::::::
against

::::
AWS

:::
for

:::::::
different

:::::
seasons

::::
and

::::::::::
accumulation

:::::::
intervals.

::::
PWSs

::::
with

::::::
manual

:::::::
calibrated

::::::
tipping

::::::
volumes

::::
were

::::::::
converted

:
to
:::
the

::::::
original

:::::
default

:::::
value

::
of

::::
0.101

::::
mm.

::::::
Interval

:::
DJF

:::::
MAM

:::
JJA

::::
SON

Bias

::
1h

:::::
−0.06

:::::
−0.13

:::::
−0.08

::::
-0.05

::
3h 0.0

:::::
−0.04 0.0 0.03

::
6h

:::::
−0.01

:::::
−0.05 0.04 0.01

:::
24h

:::::
−0.02

:::::
−0.05

:::::
−0.01 0.0

CV

::
1h 0.29 0.54 0.44 0.39

::
3h 0.20 0.36 0.35 0.26

::
6h 0.18 0.30 0.34 0.22

:::
24h 0.14 0.24 0.26 0.18

r

::
1h 0.62 0.43 0.61 0.75

::
3h 0.77 0.57 0.67 0.81

::
6h 0.82 0.65 0.67 0.86

:::
24h 0.86 0.76 0.75 0.86

Appendix C:
::::::::::
Calibration

:::::
effect
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Figure D1.
:::::
Rainfall

:::::::::
distribution

::
on

::::
May

::::
31st,

::::
2018

::
at

::::
10:30

:::::
UTC,

::::
based

:::
on

::
1-h

::::::::::
accumulated

::::::
rainfall

::::
from

::
the

::::::::::::
gauge-adjusted

::::
radar

::::::
product

:::::::::::::::::
(Overeem et al., 2009b)

:
.
:::
The

::::::
asterisk

::::::
indicates

:::
the

::::::
location

::
of

:::
the

::::
AWS

:::::
which

:::::::
measured

::
39

:::
mm

::
in
:::
one

::::
hour,

:::::::
whereas

:::::
circles

:::
with

:::
red

::::::
borders

:::::::
represent

::
the

:::::::
locations

::
of

:::
the

:::::
PWSs.

:::
The

:::
fill

:::::
colour

::
of

:::
both

:::
the

::::::
asterisk

:::
and

:::::
circles

::::::::
represents

:::
the

::::::
recorded

::::::
rainfall

::
at

::
the

::::::
specific

::::
rain

:::::
gauge.

Appendix D:
::::::
Spatial

::::::::::
distribution

:::::::
rainfall
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Figure D2.
:::::

Rainfall
:::::::::
distribution

::
on

::::::
August

:::
4th,

::::
2021

:
at
:::::
16:50

::::
UTC,

:::::
based

::
on

:::
1-h

:::::::::
accumulated

::::::
rainfall

::::
from

::
the

::::::::::::
gauge-adjusted

::::
radar

::::::
product

:::::::::::::::::
(Overeem et al., 2009b)

:
.
:::
The

::::::
asterisk

::::::
indicates

:::
the

::::::
location

::
of

:::
the

::::
AWS

:::::
which

:::::::
measured

::
30

:::
mm

::
in
:::
one

::::
hour,

:::::::
whereas

:::::
circles

:::
with

:::
red

::::::
borders

:::::::
represent

::
the

:::::::
locations

::
of

:::
the

:::::
PWSs.

:::
The

:::
fill

:::::
colour

::
of

:::
both

:::
the

::::::
asterisk

:::
and

:::::
circles

::::::::
represents

:::
the

::::::
recorded

::::::
rainfall

::
at

::
the

::::::
specific

::::
rain

:::::
gauge.
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Figure D3.
:::::
Rainfall

:::::::::
distribution

::
on

::::
June

::::
29th,

::::
2021

::
at

::::
18:00

:::::
UTC,

::::
based

:::
on

::
1-h

::::::::::
accumulated

::::::
rainfall

::::
from

::
the

::::::::::::
gauge-adjusted

::::
radar

::::::
product

:::::::::::::::::
(Overeem et al., 2009b)

:
.
:::
The

::::::
asterisk

::::::
indicates

:::
the

::::::
location

::
of

:::
the

::::
AWS

:::::
which

:::::::
measured

::
67

:::
mm

::
in
:::
one

::::
hour,

:::::::
whereas

:::::
circles

:::
with

:::
red

::::::
borders

:::::::
represent

::
the

:::::::
locations

::
of

:::
the

:::::
PWSs.

:::
The

:::
fill

:::::
colour

::
of

:::
both

:::
the

::::::
asterisk

:::
and

:::::
circles

::::::::
represents

:::
the

::::::
recorded

::::::
rainfall

::
at

::
the

::::::
specific

::::
rain

:::::
gauge.
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Figure E1. Scatter plots of raw PWS rainfall accumulation data against AWSs for the winter (a, e, i and m), spring (b, f, j and n), summer

(c, g, k and o) and autumn (d, h, l and p) seasons and accumulation intervals of 1 h (a-d), 3 h (e-h), 6 h (i-l) and 24 h (m-p). The large blue

::::::
coloured

:
dots indicate the average of a cluster of PWS against one AWS, the vertical bars indicate the minimum and maximum of that cluster

of PWSs. The blue gradient indicates
:::::
colours

:::::::
indicate the number of PWSs used to calculate the mean, minimum and maximum rainfall.

The small grey dots resemble one individual PWS against an AWS. The RAWS and RPWS represent the average rainfall over the selected

events recorded by the AWS and PWS, respectively. r and CV indicate the correlation coefficient and the coefficient of variation. RPWS = a

* RAWS represents the linear regression line, fitted through zero, with a
:
a indicating the slope.

Appendix E: Raw PWS data
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