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 2 

Abstract. Earth and other terrestrial and icy planetary bodies deform visco-elastically under various forces. 30 

Numerical modeling plays a critical role in understanding the nature of various dynamic deformation 31 

processes. This article introduces a newly developed, open-source package, CitcomSVE-3.0, which 32 

efficiently solves the visco-elastic deformation of planetary bodies. Based on its predecessor, CitcomSVE-33 

2.1, CitcomSVE-3.0 is updated to account for elastic compressibility and depth-dependent density, which 34 

are particularly important in modeling horizontal displacement for visco-elastic deformation. We 35 

benchmark CitcomSVE-3.0 against a semi-analytical code for two types of surface loading problems: 1) 36 

single harmonic loads on the surface and 2) the glacial isostatic adjustment (GIA) problem with a realistic 37 

ice sheet loading history (ICE-6G_D), in which an updated version of sea level equations is incorporated. 38 

The benchmark results presented here demonstrate the accuracy and efficiency of this package. CitcomSVE 39 

shows a second-order accuracy in terms of spatial resolution. For a typical GIA modeling with 122-ky 40 

glaciation-deglaciation history, surface horizontal resolution of ~50 km, and time increment of 125 yr, it 41 

takes ~ 3 hours on 384 CPU cores to complete with less than 5% errors in displacement rates. 42 

  43 
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1. Introduction 44 

Observations and interpretations of solid Earth’s displacement and deformation in response to 45 

surface loadings and tidal forcing are essential in geoscience for at least three important reasons. First, 46 

deglaciation on continents and sea level rise as surface loading processes cause uplifts in glaciated 47 

continental regions and subsidence of sea floor, respectively. The amount of sea level rise during the 48 

deglaciation process critically depends on solid-Earth’s response to such surface loading processes 49 

(Mitrovica et al., 2001; Peltier, 1998). Second, the dynamics and stability of ice sheets depend significantly 50 

on the uplift rate of the underlying bedrock as ice sheets melt (Gomez et al., 2018). This process may play 51 

an important role in assessing the fate of West Antarctica ice sheets that have been losing their mass at an 52 

alarming rate. Third, modeling solid-Earth’s response to surface loading and comparing the model 53 

predictions with relevant observations (e.g., deglaciation-induced sea level change and crustal 54 

displacements) is the primary way to infer mantle viscosity and rheology (Lambeck et al., 2017; Milne et 55 

al., 2001; Peltier et al., 2015) which is essential to studies of mantle dynamics and Earth’s evolution (Zhong 56 

et al., 2007).          57 

The solid Earth’s response to forcing is determined by solving the equations of motion with relevant 58 

rheological properties of the mantle and crust. Under the assumption of spherical symmetry in elasticity 59 

and viscosity structure (i.e., only 1-D or radial dependence), analytical solutions to the equations of motion 60 

are available in spectral or normal mode domains for the displacement, strain and stress (Longman, 1963; 61 

Takeuchi, 1950; Wu and Peltier, 1982). However, the Earth’s mantle structure has significant lateral 62 

variations as demonstrated by seismic imaging studies on both global (Ritsema et al., 2011; French and 63 

Romanowicz, 2015; Tromp, 2020) and regional (e.g., Lloyd et al., 2020) scales. Because of the large 64 

sensitivity of mantle viscosity to temperature, lateral variations in mantle viscosity are expected to exceed 65 

several orders of magnitude (e.g., Paulson et al., 2005; Ivins et al., 2023). For the mantle with fully 3-D 66 

elastic and viscosity structures, numerical solution methods are required to solve the equations of motion. 67 

The necessity for numerical solution methods has become increasingly more evident as more observations 68 
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of higher quality (e.g., Bevis et al., 2012) become available to place constraints on the models. In recent 69 

years, numerous numerical methods have been developed, including a spectral-finite element (Martinec, 70 

2000; Klemann et al., 2008; Bagge et al., 2021), finite element (Zhong et al., 2003, 2022; A et al., 2013; 71 

Paulson et al., 2005), finite volume (Latychev et al., 2005), and coupled spectral-finite element (Wu, 2004; 72 

Van Der Wal et al., 2013; Huang et al., 2023) methods.  73 

The CitcomSVE package is a finite element modeling package for solving load-induced 74 

viscoelastic deformation problems in a 3-D spherical shell, a spherical wedge or a Cartesian domain. 75 

CitcomSVE solves the sea level equation and incorporates the effects of polar wander and apparent motion 76 

of the center of the mass (Zhong et al., 2003, 2022; A et al., 2013; Paulson et al., 2005). CitcomSVE works 77 

for 3-D viscoelastic mantle structures with either linear or non-linear viscosity. It works efficiently on 78 

massively parallel computers (>6,000 CPU cores), making it feasible for routine high-resolution GIA 79 

modeling calculations (~30 km horizontal resolution on the Earth’s surface and ~10 km vertical resolution 80 

in the upper mantle). CitcomSVE, developed over the last two decades, has been used in GIA studies for 81 

both the incompressible (Zhong et al., 2003, 2022) and compressible (A et al., 2013) mantle with 82 

temperature- (Paulson et al., 2005) and stress-dependent viscosity (Kang et al., 2022), and in tidal 83 

deformation studies for the Moon (Zhong et al., 2012; Qin et al., 2014; Fienga et al., 2024). CitcomSVE 84 

was built from the mantle convection modeling package CitcomS (Zhong et al., 2000, 2008) by replacing 85 

viscous rheology and Eulerian formulation in CitcomS with viscoelastic rheology and Lagrangian 86 

formulation, respectively (Zhong et al., 2003, 2022). 87 

Recently, Zhong et al. (2022) presented an expansive set of benchmark calculations for single 88 

harmonic surface loading, tidal loading, and glaciation and deglaciation loading history (i.e., ICE-6G) for 89 

a significantly improved version of CitcomSVE 2.1. Compared with previous versions of CitcomSVE that 90 

only used 12 CPU cores (e.g., Zhong et al., 2003; A et al., 2013), the most important improvement with 91 

CitcomSVE 2.1 is its capability of efficiently using any large number of CPU cores (e.g., > 6000 CPU cores 92 

as in Zhong et al., (2022)). CitcomSVE 2.1 has also become the first GIA modeling software package that 93 
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is open source and publicly available via GitHub (Zhong et al., 2022). However, CitcomSVE 2.1 is for an 94 

incompressible mantle, which limits its applications, especially for studies on GIA-induced horizontal 95 

crustal motions and where realistic elastic structure (e.g., PREM) is necessary (Mitrovica et al., 1994).  96 

This paper presents CitcomSVE 3.0, an extension of CitcomSVE 2.1, by incorporating mantle 97 

compressibility as in A et al. (2013). While the numerical techniques for implementing mantle 98 

compressibility are the same as in A et al. (2013), this paper includes significantly more detailed benchmark 99 

calculations and an improved sea level equation solver. With its public availability via GitHub and efficient 100 

parallel computing, CitcomSVE 3.0 offers the scientific community a powerful computational tool for 101 

solving an important class of geodynamic questions, including the GIA and tidal deformation for Earth’s 102 

mantle with realistic viscosity and rheology. The paper is organized as follows. The next section describes 103 

the governing equations for dynamic loading problems and numerical methods. Section 3 defines 104 

benchmark problems and presents benchmark results, including error analyses. Discussions and 105 

conclusions are given in the final section.  106 

2. Governing Equations and Numerical Methods 107 

2.1. Governing Equations and Viscoelastic Properties of the Mantle 108 

The governing equations for load-induced deformation are derived from the conservation laws of 109 

mass and momentum and Newton’s law of gravitation, together with viscoelastic constitutive equation (Wu 110 

and Peltier, 1982; A et al., 2013):     111 

𝜌ଵ
ா = −(𝜌଴𝑢௜),௜,                                                                    (1) 112 

𝜎௜௝,௝ + 𝜌଴𝜙,௜ − (𝜌଴𝑔𝑢௥),௜ − 𝜌ଵ
ா𝑔௜ + 𝜌଴𝑉௔,௜ = 0,                                        (2) 113 

𝜙,௜௜ = −4𝜋𝐺𝜌ଵ
ா ,                                                                    (3) 114 

where 𝜌ଵ
ா  is the Eulerian density perturbation, 𝜌଴  is the unperturbed mantle density, 𝑢௜  represents the 115 

displacement vector with 𝑢௥ being in the radial direction, 𝜎௜௝ is the stress tensor, 𝜙 is the perturbation of 116 
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gravitational potential due to deformation, Va is the applied potential (e.g., rotational and tidal potentials) 117 

when applicable, 𝑔௜ is the gravitational acceleration with 𝑔 = ඥ𝑔௜𝑔௜ , and G is the gravitational constant. 118 

The equations are written in an indicial notation such that A,i represents the derivative of variable A with 119 

respect to coordinate xi, and repeated indices indicate summation.  120 

Both the surface (at radius 𝑟 = 𝑟௦) and core-mantle boundary (CMB) (𝑟 = 𝑟௕) experience zero 121 

shear force but are subjected to normal forces  122 

𝜎௜௝𝑛௝ = −𝜎௢𝑛௜,            for 𝑟 = 𝑟௦,                                           (4) 123 

𝜎௜௝𝑛௝ = (−𝜌௖𝜙 + 𝜌௖𝑔𝑢௥)𝑛௜,          for 𝑟 = 𝑟௕,                                         (5) 124 

where 𝜎௢ represents the pressure loads at the surface (e.g., glacial loads) as a function of time and space, 125 

𝜌௖ is the density of the core, and ni represents the normal vector of the surface or CMB. The boundary 126 

conditions at the CMB consider the self-gravitational effect for a fluid core (e.g., Zhong et al., 2003). Except 127 

for this CMB boundary condition, the core is not considered explicitly in our numerical formulation. With 128 

such boundary conditions of forces, both the surface and CMB can deform dynamically in both horizontal 129 

and radial directions.  130 

CitcomSVE has implemented formulations for both incompressible (e.g., Zhong et al., 2003; 2022) 131 

and compressible (A et al., 2013) medium. In this study for compressible medium, we follow the 132 

formulation by A et al., (2013). Here, we will only provide a general description for the formulation and 133 

numerical analyses. The details for the compressibility-related topics and numerical analyses of CitcomSVE 134 

can be found in A et al., (2013) and Zhong et al., (2022), respectively. Note that CitcomSVE also 135 

incorporates the effects of polar wander and apparent motion of the center of mass (i.e., degree-1 136 

deformation), and uses a reference frame centered at the center of mass including the mass of loads with no 137 

net rotation of the mantle and crust (Zhong et al., 2022; Paulson et al., 2005; A et al., 2013).  138 
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The Earth’s mantle is considered as a compressible Maxwell solid, and the constitutive equation 139 

can be written as (e.g., Wu and Peltier, 1982) 140 

𝜎̇௜௝ +
ఓ

ఎ
(𝜎௜௝ −

ଵ

ଷ
𝜎௞௞𝛿௜௝) = 𝜆𝜀௞̇௞𝛿௜௝ + 2𝜇𝜀௜̇௝ ,                                            (6) 141 

where  is the viscosity,  and  are the Lamé parameters, and  𝛿௜௝ is the Kronecker delta function. The 142 

strain 𝜀௜௝  is related to the displacement by 𝜀௜௝ =
ଵ

ଶ
(𝑢௜,௝ + 𝑢௝,௜).  Both Lamé parameters (𝜆  and 𝜇 ) and 143 

viscosity  can be fully 3-dimensional in CitcomSVE models to represent the effects of temperature, 144 

composition and stress on mantle mechanical properties (e.g., Zhong et al., 2003; A et al., 2013; Kang et 145 

al., 2022). However, for this benchmark study, we will only consider radially layered 𝜆, 𝜇, and  146 

2.2. Numerical Analysis 147 

A finite element method is employed in CitcomSVE to solve the governing equations (1)-(3) for 148 

load-induced displacement under boundary conditions (4)-(5) with a Maxwell rheological equation (6) 149 

(Zhong et al., 2003; 2022; A et al., 2013). However, before presenting a weak form of the governing 150 

equations for the finite element analysis, it is necessary to introduce an incremental displacement 151 

formulation, re-formulate the time-dependent rheological equation (i.e., equation 6), and discuss solution 152 

strategies for the gravitational potential that results from mass anomalies associated with mantle 153 

deformation via the Eulerian density perturbation 𝜌ଵ
ா as controlled by the Poisson’s equation (i.e., equation 154 

3).  155 

Define 𝑢௜
௡ and 𝑢௜

௡ିଵ as displacements at times t and t-t, respectively, where superscripts n and n-156 

1 represent time steps. Incremental displacement at time t, 𝑣௜
௡, is defined as 𝑣௜

௡ = 𝑢௜
௡ − 𝑢௜

௡ିଵ and it is 157 

related to incremental strain ∆𝜀௜௝
௡  as 158 

∆𝜀௜௝
௡ =

ଵ

ଶ
(𝑣௜,௝

௡ + 𝑣௝,௜
௡ ).                                                       (7) 159 
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Rheological equation (6) is discretized in time by integrating it from time t-t to t, and stress tensor at time 160 

t, 𝜎௜௝
௡, is given in terms of incremental strain ∆𝜀௜௝

௡ , stresses at time step n-1 (i.e., pre-stress), and material 161 

properties as (A et al., 2013; Zhong et al., 2003), 162 

𝜎௜௝
௡ = 𝜆ሚ∆𝜀௞௞

௡ 𝛿௜௝ + 2𝜇෤∆𝜀௜௝
௡ + 𝜏௜௝

௣௥௘
,                                         (8) 163 

where 𝜏௜௝
௣௥௘

= (1 −
∆௧

ଶఈ
) (1 +

∆௧

ଶఈ
)𝜎௜௝

௡ିଵൗ +
∆௧

ଷఈ
(1 +

∆௧

ଶఈ
)𝜎௞௞

௡ିଵൗ 𝛿௜௝ , 𝜆ሚ = [𝜆 + (𝜆 +
ଶఓ

ଷ
)

∆௧

ଶఈ
] (1 +

∆௧

ଶఈ
)ൗ  , 164 

𝜇෤ = 𝜇 (1 +
∆௧

ଶఈ
)ൗ , 𝛼 = 𝜂 𝜇⁄  is the Maxwell time, and 𝜏௜௝

௣௥௘ represents the pre-stress at timestep n-1 (A et al., 165 

2013).   166 

The Poisson’s equation for gravitational potential anomaly 𝜙  (i.e., equation 3) is solved in a 167 

spherical harmonic domain for mass anomalies associated with the Eulerian density perturbation 𝜌ଵ
ா and 168 

the loads (e.g., ice and water loads). For a compressible mantle, 𝜌ଵ
ா exists throughout the mantle and crust 169 

(see equation 1), and it is necessary to express 𝜌ଵ
ா at each depth in terms of spherical harmonic degree l and 170 

order m. The gravitational potential anomaly at radius r and time t and at degree l and order m,  𝜙௟௠(𝑟, 𝑡), 171 

can be related to mass anomalies via Green’s function formulation (e.g., A et al., 2013; Zhong et al., 2008). 172 

The solution of  𝜙௟௠(𝑟, 𝑡) needs to recast to finite element grid points in solving the equation of motion 173 

(i.e., equation 2). It should be pointed out that the transformation for gravitational potential anomalies 𝜙 174 

between the spherical harmonic domain and the spatial domain is computationally rather expensive.  175 

We now present the weak form of the equation of motion (i.e., equation 2) for the compressible 176 

mantle as (A et al., 2013) 177 

∫ 𝑤௜,௝ൣ𝜆ሚ𝑣௞,௞𝛿௜௝ + 𝜇෤൫𝑣௜,௝ + 𝑣௝,௜൯൧𝑑𝑉
ஐ

− ∫ 𝜌଴𝑔(𝑤௜,௜𝑣௥ + 𝑤௥𝑣௜,௜)𝑑𝑉
ஐ

+ ∑ ∫ 𝑤௥∆𝜌௟𝑔𝑣௥𝑑𝑆௟ௌ௟   178 

                  = − ∫ 𝑤௜,௝𝜏௜௝
௣௥௘

𝑑𝑉
ஐ

+ ∫ 𝜌଴𝑔(𝑤௜,௜𝑈௥ + 𝑤௥𝑈௜,௜)𝑑𝑉 − ∫ 𝑤௜,௜𝜌଴𝜙𝑑𝑉
ஐஐ

  179 

+ ∑ ∫ 𝑤௥(∆𝜌௟𝜙 − ∆𝜌௟𝑔𝑈௥ + 𝜌଴V௔)𝑑𝑆௟ௌ೗
௟ − ∫ 𝑤௥𝜎଴𝑑𝑆

ௌ
,                                       (9) 180 
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where integration domain Ω, Sl, and S are for the volume, the horizontal surface at some depth with the l-th 181 

density boundary, and the Earth’s surface, respectively, wi is the displacement weighting function, 𝑈௜ is the 182 

cumulative displacements at the previous time step, V௔, the applied potential, is only relevant for tidal 183 

loading problems, and 𝜎଴ is the surface load. Note that the gravitational potential anomalies 𝜙 in equation 184 

(9) depend on unknown incremental displacement vi. We decompose 𝜙 into 𝜙 = Φ + Δ𝜙(𝑣௜), where Φ is 185 

the total potential at the previous time step and Δ𝜙(𝑣௜) is the incremental potential determined by vi and 186 

other incremental mass anomalies at the current time step.  187 

Equation (9) is discretized onto a set of finite element grids to form a system of matrix equations 188 

with unknown vectors of incremental displacement {V}.  189 

[𝐾]{𝑉} = {𝐹଴} + {𝐹(Δ𝜙)},                                                   (10) 190 

where [K] is the stiffness matrix, {𝐹଴} is the force vector representing contributions from the previous time 191 

step, and {𝐹(Δ𝜙)}  represents contributions from the incremental potential Δ𝜙  which depends on the 192 

unknown displacement {V} and other incremental mass anomalies. An iteration scheme is applied to 193 

equation (10) to obtain a convergent solution for {V} (Zhong et al., 2003). 194 

CitcomSVE was derived from the 3-D finite element code CitcomS for mantle convection in a 195 

spherical shell, and they share many common features including the grid. The spherical shell of the mantle 196 

is divided into 12 caps of similar size, and each cap is further divided into a grid of cells (i.e., elements) of 197 

similar size with eight displacement nodes per element (Zhong et al., 2000; 2008; 2022). This design of 198 

finite element grid is suited for parallel computing, as discussed in Zhong et al., (2008). An important 199 

feature of this grid is its approximately uniform resolution from the polar to equatorial regions (Zhong et 200 

al., 2000; 2003), different from the spectral finite element GIA codes (e.g., Martinec, 2000; Klemann et al., 201 

2008; Wu, 2004; van der Wal et al., 2013; Huang et al., 2023).  202 
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Matrix equation (10) is solved with a parallelized full multigrid method (Zhong et al., 2000; 2008). 203 

The general solution strategy in CitcomSVE follows an iterative scheme that can be summarized as (Zhong 204 

et al., 2003; A et al., 2013):  205 

1) At a given time t, {𝐹଴}  is first evaluated using pre-stress 𝜏௜௝
௣௥௘ , gravitational potential Φ  and 206 

displacements 𝑈௜ at the previous time step, t-t, and set {F} ={0}.  207 

2) Solve equation (10) using the full multigrid method for incremental displacements {V}, using {𝐹଴}  208 

and {𝐹}.  209 

3) Compute incremental potential  ∆𝜙௟௠(𝑟, 𝑡)  by solving equation (3) with the incremental 210 

displacements from step 2, and then re-evaluate {F}. Go back to step 2 to solve for {V} again.  211 

4) Repeat steps 2 and 3, until {V} converges to a given threshold error tolerance. Then go back to step 212 

1 to march forward in time.  213 

In the implementation of equation (10) in CitcomSVE, all the variables and parameters are 214 

normalized to be dimensionless, and the outputs are also dimensionless. CitcomSVE uses the following 215 

normalization scheme. The coordinates 𝑥௜ and displacements 𝑢௜ and 𝑣௜ are all normalized by the radius of 216 

a planet, 𝑟௦. The time is normalized by a reference mantle Maxwell time 𝛼 = 𝜂௥ 𝜇௥⁄ , where 𝜂௥ and 𝜇௥ are 217 

the reference mantle viscosity and shear modulus, respectively. 𝜂௥ is also used to normalize mantle 218 

viscosity and 𝜇௥  is used to normalize elastic moduli, stress tensor and pressure, while the density is 219 

normalized by reference density 𝜌଴. Gravitational potential and centrifugal potential are normalized by 220 

4πG𝜌଴𝑟௦
ଶ, and the geoid anomalies are normalized by 4πG𝜌଴𝑟௦

ଶ 𝑔⁄ . Any other variables can be normalized 221 

by combining the abovementioned scales. However, model input parameters are defined by users as 222 

dimensional values. For example, 3-D mantle viscosity and elasticity models are given by users in separated 223 

files on a regular grid (e.g., 1ox1o grid) at different depths. CitcomSVE reads these parameters from the 224 

files, normalizes them, and interpolates them onto the finite element grids. Along with public releases of 225 

CitcomSVE 2.1 and 3.0 on GitHub, a user manual is available to describe the usage of the code and the 226 

input and output files. 227 
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We now finish this section by highlighting the two main differences between incompressible and 228 

compressible models in CitcomSVE (i.e., versions 2.1 versus 3.0). First, the compressible model presented 229 

here does not include the pressure term which is a key component of incompressible models. The absence 230 

of the pressure term simplifies the matrix equation (i.e., equation 10) and its solution procedure, but for the 231 

incompressible model, a two-level Uzawa algorithm is needed to solve for both the pressure and 232 

displacement. Second, mantle compressibility causes mass anomalies or Eulerian density perturbation 𝜌ଵ
ா 233 

throughout the mantle, while for an incompressible mantle, mass anomalies only exist at the surface and 234 

CMB. Consequently, the compressible model is computationally more expensive, particularly for 235 

calculating the gravitational potential anomalies.  236 

2.3. Sea Level Change and Sea Level Equation 237 

Understanding and modeling sea level change is important for GIA studies. Sea level change is 238 

controlled by ice volume change and GIA-induced vertical crustal motion and gravitational potential 239 

change. Therefore, the records of sea level change provide essential constraints on GIA processes, including 240 

ice volume change and mantle viscosity. Moreover, sea level change acts as a change of load on the surface, 241 

affecting solid-Earth deformation and gravitational potential. Modeling the GIA processes, one of the major 242 

applications of the CitcomSVE package, requires an accurate sea level equation that describes the sea level 243 

change in this process. A major improvement of CitcomSVE 3.0 over its previous versions is on modeling 244 

sea level changes, and a detailed description is given in this section. 245 

The original sea level equation formulated by Farrell and Clark (1976) provides an elegant way to 246 

incorporate the sea level change into GIA models and can explain the diverging pattern of sea level change 247 

in different regions (e.g., near or far away from former ice sheets). However, the simplified formulation by 248 

Farrell and Clark ignored several factors affecting the accuracy of sea level change modeling. One key 249 

simplification is on the time-dependent ocean-continent function that describes the ocean and continent 250 

distribution, which was assumed to be constant through time in their formulation. The ocean area has varied 251 

by several percent since the last glacial maximum because of the shoreline evolution induced by sea level 252 
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rise or fall (Fig. S1). Accounting for the time-dependent ocean-continent function requires modifications 253 

of the sea level equation and affects the predicted sea level change by tens of meters for some regions 254 

compared to that based on Farrell and Clark’s  formulation (Kendall et al., 2005). Kendall et al. (2005) 255 

provides a modified sea level equation that accounts for the time-dependent ocean function, in which the 256 

variation of ocean area is mainly attributed to two factors: 1) formation or melting of marine ice sheets (i.e., 257 

ice sheets that lie below sea level), 2) the evolution of shorelines related to the sloping bathymetry and local 258 

sea level change. In previous versions of CitcomSVE, we only considered the variation of ocean function 259 

related to marine ice sheets (A et al., 2013; Zhong et al., 2022). In our new formulation, the sea level 260 

equation is modified to follow the formulation of Kendall et al. (2005). The new sea level equation can be 261 

summarized as follows: 262 

𝐿଴(𝜃, 𝜙, 𝑡) = [𝑁(𝜃, 𝜙, 𝑡) − 𝑈(𝜃, 𝜙, 𝑡) + 𝑐(𝑡)]𝑂(𝜃, 𝜙, 𝑡) 263 

−𝑇଴(𝜃, 𝜙)[𝑂(𝜃, 𝜙, 𝑡) −  𝑂(𝜃, 𝜙, 𝑡଴)] ,                                          (11) 264 

Where t is the time with 𝑡଴  as the initial time (i.e., the onset of loading), 𝜃 and 𝜙  are co-latitude and 265 

longitude, respectively, 𝐿଴ is the change in sea level relative to the initial stage, N and U are GIA-induced 266 

geoid anomalies and surface radial displacement, 𝑂 is ocean function (1 for ocean and 0 elsewhere), 𝑇଴ is 267 

initial topography at 𝑡଴, and 𝑐 is introduced for the conservation of water mass and is defined as: 268 

𝑐(𝑡) =
1

𝐴଴(𝑡)
{−

𝑀௜௖௘(𝑡)

𝜌௪
− ∫ [𝑁(𝜃, 𝜙, 𝑡) − 𝑈(𝜃, 𝜙, 𝑡)]𝑂(𝜃, 𝜙, 𝑡)𝑑𝑆 269 

+∫ 𝑇଴(𝜃, 𝜙)[𝑂(𝜃, 𝜙, 𝑡) − 𝑂(𝜃, 𝜙, 𝑡଴)]𝑑𝑆},                                      (12) 270 

where 𝑀௜௖௘ is the ice mass change relative to the initial stage (i.e., 𝑡଴), 𝐴଴ is the ocean area at time t, 𝜌௪ is 271 

water density, N and U are relative to 𝑡଴, and the integral is for the surface of Earth. Following Kendall et 272 

al. (2005), a check for grounded ice is incorporated using the criterion that at any location with 273 

topography T and ice of thickness I and of density 𝜌௜, the ice is considered as ground ice if  𝐼𝜌௜ > −𝑇𝜌௪. 274 

Only grounded ice is treated as ice load, whereas regions with non-grounded ice (i.e., floating ice) are 275 
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treated as oceans. Note that regions with topography T<0 and without grounded ice are considered as 276 

ocean where the ocean surface follows the geoid.   277 

The sea level equation can only be solved iteratively because the ocean load associated with sea 278 

level change and ocean function 𝑂(𝑡) affect each other, and the unknown initial topography 𝑇଴ needs to be 279 

determined iteratively to keep the modeled present-day topography consistent with the observed present-280 

day topography. The algorithm for solving the sea level equation in Kendall et al., (2005) adds an outer 281 

layer of iterations to an otherwise normal GIA modeling that uses pre-determined initial topography 𝑇଴  and 282 

time-dependent ocean function O(t) to determine 𝑁(𝑡), 𝑈(𝑡), and 𝐿଴(𝑡) for each time t from 𝑡଴  to the 283 

present day. In the outer layer iteration calculations, at the end of each single complete GIA model run, 284 

time-dependent ocean function 𝑂(𝑡) and paleo-topography including initial topography 𝑇଴  are updated 285 

using newly calculated 𝑈(𝑡) and 𝑁(𝑡) and the present-day topography, and the updated 𝑇଴ and 𝑂(𝑡) are 286 

then used for next GIA model run. The iteration procedure continues until the initial topography converges. 287 

In practice, the model results would not be altered significantly beyond the second outer iteration. However, 288 

there are noticeable differences in results (e.g., modeled RSL histories) between the first and second outer 289 

iterations for some sites following the algorithm developed by Kendall et al. (2005).  290 

We implemented the algorithm developed by Kendall et al. (2005) in our semi-analytic code (e.g., 291 

A et al., 2013) and produced consistent results with Kendall et al. (2005). However, running two or three 292 

outer iterations where each iteration is a complete GIA model run of a glacial cycle is computationally 293 

expensive, especially for numerical modeling such as in CitcomSVE, and it would be more efficient if the 294 

results from the first outer iteration (i.e., a single complete GIA model run) can be sufficiently accurate. In 295 

Kendall’s algorithm, the time-dependent ocean function 𝑂(𝑡) for the first outer iteration is constructed 296 

using fixed shorelines same as that of the present day, except that the extent of oceans may be limited by 297 

the existence of grounded marine ice sheets. However, we found that the first iteration may produce much 298 

improved solutions if 𝑂(𝑡) for the first outer iteration is constructed by calculating the change of ocean area 299 

(i.e., ocean-continent transitions) based on ice volume change (i.e., 𝑀௜௖௘) and the present-day topography 300 
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(bathymetry), assuming barystatic sea level change on a rigid Earth (i.e., no radial surface displacement). 301 

The ocean function generated in this way generally captures the shoreline evolution for regions experienced 302 

ocean-land transition, and this approximation makes it easy to derive the time-dependent ocean function 303 

for any given ice model. In the next section, we will show the effectiveness of this single outer iteration 304 

method using the improved ocean function in both our semi-analytic solution method and CitcomSVE 3.0.  305 

3. Example Calculations and Benchmark Results 306 

Two example problems solved using CitcomSVE 3.0 are presented here. They are: 1) surface 307 

loading problems with a single spherical harmonic in space and step-function (i.e., Heaviside function) in 308 

time; 2) GIA problems with ICE-6G_D ice history model. For each example problem, the elastic and 309 

viscosity structures are chosen to be dependent only on the radius (i.e., 1-D) so that CitcomSVE solutions 310 

can be benchmarked against semi-analytical solutions. The following benchmarks largely follow the 311 

approaches of Zhong et al. (2022). 312 

3.1. Surface loading in a single spherical harmonic in space and step-function in time.   313 

3.1.1. Definition of the surface loading problem. 314 

For the first example problem, we consider a surface load 𝜎଴ (see equation 4) corresponding to 315 

amplitude of topographic variation d with density 𝜌଴ at a single harmonic function in space and step-316 

function in time: 317 

𝜎଴(𝑡, 𝜃, 𝜑) = 𝜌଴𝑔𝑑 cos(𝑚𝜑) 𝑝௟௠(𝜃)𝐻(𝑡) = 𝜌଴𝑔𝑑𝑃ത௟௠(𝜃, 𝜑)𝐻(𝑡),                          (13) 318 

where H(t) is the Heaviside function (i.e., H(t)=1 for 𝑡 ≥ 0 ; H(t)=0 otherwise) and 𝑃ത௟௠(𝜃, 𝜑) =319 

cos(𝑚𝜑) 𝑝௟௠(𝜃) is the cosine part of spherical harmonic functions in the real form. Note that only cosine 320 

terms of longitudinal dependence are considered for simplicity. A small amplitude of the load height is used 321 

to avoid large grid deformations. We assume an ocean-free Earth for this example and ignore any sea-level-322 

related calculations. The density and Lame parameters for lithosphere and mantle are from PREM, except 323 

that for the crust layer those properties are replaced to be same as the underlying mantle, and the viscosity 324 
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structure is from VM5a (Peltier et al, 2015). See Table 1 for model parameters. Time-dependent surface 3-325 

D displacements and gravitational potential anomalies are computed using the newly updated CitcomSVE 326 

and compared with those from semi-analytical solutions (Han and Wahr, 1995; Paulson et al., 2005; A et 327 

al., 2013). The results are presented in terms of load Love numbers hl, kl, and ll at harmonic degree l for 328 

radial displacement, gravitational potential, and horizontal displacement, respectively. The definitions of 329 

load Love numbers in the context of CitcomSVE calculations are given in equations 37-41 of Zhong et al., 330 

(2022).  331 

Table 1. Model parameters for benchmarks 

Model parameters value 

Earth radius rs 6371 km  

CMB radius rb 3485.5 km 

Reference density 0 4400 kg/m3 

Core density 10895.62 kg/m3 

Water density w 1000 kg/m3 

Ice density i 917.4 kg/m3 

Reference shear modulus  1.4305x1011 Pa 

Modified Fluid Love number k2f (1+ δ) 0.9521091 

Mantle reference viscosity  2x1021 Pa.s 

Gravitational acceleration g 9.82 m.s-2 

VM5A viscosity model:  

The surface to 60 km depth 1026 Pas 

60 to 100 km depth 1022 Pas 

100 to 670 km depth 4.853x1021 Pas 

670 to 1170 km 1.5048x1021 Pas 

1170 km to CMB 3.095x1021 Pas 

 332 

 333 
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3.1.2. Benchmark results. 334 

We have computed a set of model cases using CitcomSVE for four numerical resolutions and six 335 

loading harmonics. Four different numerical resolutions of R1-R4 are for 12x(32x32x32), 12x(64x64x64), 336 

12x(64x96x96) and 12x(64x128x128), respectively, where the first number, 12, indicates the number of 337 

spherical caps that the spherical surface is divided into, and the subsequent numbers indicate the number of 338 

elements in the radial and two horizontal directions in each cap (Zhong et al., 2022). Six different loading 339 

harmonics are included for (1,0), (2, 0), (2,1), (4, 0), (8, 4), and (16, 8) where the first and second numbers 340 

in parenthesis (l, m) indicate spherical harmonic degree l and order m, respectively. Each case is named by 341 

its loading harmonic and numerical resolution; for example, case l2m0_R1 corresponds to the case where 342 

the loading harmonic is (2, 0) and the resolution is R1. For l16m8, an additional case with resolution 343 

12x(80x128x128) is included (i.e., l16m8_R5). Each case is computed for 40 Maxwell times (i.e., 40 or 344 

non-dimensional time of 40), using a non-dimensional time increment of 0.2. Figure 1 shows ℎ௟(𝑡), 𝑘௟(𝑡), 345 

and |𝑙௟(𝑡)|  for cases with different loading harmonics and numerical resolutions, together with semi-346 

analytical solutions. Table 2 shows both numerical and analytical results of these Love numbers at t=0 and 347 

40 for a selected set of cases (supplementary Table S1 for all the cases). Solutions at t=0 represent the 348 

elastic responses of Earth, and the magnitudes of those Love numbers generally increase with time due to 349 

viscous relaxation and finally reach nearly stable states after certain time periods (Fig. 1). 350 

 351 

Table 2: Comparison of Load Love Numbers 𝒉𝒍,  𝒌𝒍, and 𝒍𝒍 Between CitcomSVE and Semi-Analytical 352 
Solutions 353 

 354 

Casea 𝒉𝒍(𝟎)b 𝒌𝒍(𝟎) |𝒍𝒍(𝟎)| 𝒉𝒍(𝟒𝟎) 𝒌𝒍(𝟒𝟎) |𝒍𝒍(𝟒𝟎)| 

l1m0 -1.2546(-1.2543) -1.0000(-1.0000) 0.8864(0.8866) -1.4968(-1.4964) -1.0000(-1.0000) 1.9101(1.9090) 

l2m0 -0.9574(-0.9577) -0.3038(-0.3041) 0.0203(0.0200) -2.4066(-2.4066) -0.9392(-0.9396) 0.8229(0.8216) 

l2m1 -0.3056(-0.3058) 1.0948(1.0944) 0.1118(0.1118) 0.6178(0.6151) 2.2003(2.1973) 0.1891(0.1884) 

l4m0 -1.0247(-1.0251) -0.1341(-0.1342) 0.0569(0.0568) -4.4395(-4.4402) -0.9410(-0.9416) 0.3423(0.3411) 

l8m4 -1.2372(-1.2376) -0.0772(-0.0772) 0.0303(0.0302) -8.8084(-8.8405) -0.9563(-0.9605) 0.0977(0.0958) 

l16m8 -1.6825(-1.6868) -0.0573(-0.0574) 0.0228(0.0229) -17.535(-17.847) -0.9530(-0.9726) 0.0435(0.0479) 

l16m8_R5 -1.6805(-1.6868) -0.0572(-0.0574) 0.0228(0.0229) -17.623(-17.847) -0.9579(-0.9726) 0.0464(0.0479) 
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aCase names follow this notation: l1m0 stands for loading harmonic for l=1 and m=0. All CitcomSVE 355 
solutions in this table are for resolution R4 (12x64x128x128), except for l16m8_R5, which has a resolution 356 
R5 (12x80x128x128).  357 

bLoad Love numbers are provided at 0 and 40 Maxwell time. Each entry includes semi-analytical solutions 358 
inside the parentheses and CitcomSVE solutions outside the parentheses. 359 

 360 

 361 

Figure 1. Love numbers ℎ , 𝑘  and 𝑙  for cases with different loading harmonics from CitcomSVE and 362 
analytical solutions. The first, second, and third columns are for Love number ℎ, 𝑘 and |𝑙| (i.e., the absolute 363 
values of Love number 𝑙), respectively. The first row is for loading harmonics (1,0), (2,0) and (4,0). The 364 
following rows are for loading harmonics (2,1), (8,4) and (16,8), respectively. Each loading case has 365 
solutions from four different spatial resolutions (R1-R4), except that loading case (16,8) has an additional 366 
calculation with resolution R5. 367 
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The comparison shows a good agreement between numerical solutions and semi-analytical 368 

solutions. For long-wavelength loadings (e.g., l1m0, l2m0, and l4m0), numerical solutions at different 369 

resolutions (R1-R4) are nearly identical to semi-analytical solutions, as shown in Figure 1. However, for 370 

l2m1 cases with the polar wander effect, resolution R1 shows significant numerical errors, whereas 371 

calculations with higher resolutions (R2-R4) deliver a remarkable fit to the semi-analytical solution, 372 

suggesting that polar wander is more challenging to compute in numerical models (e.g., Paulson et al., 2005; 373 

A et al., 2013; Zhong et al., 2022). For shorter wavelengths (such as l8m4 and l16m8), low-resolution 374 

numerical results differ noticeably from semi-analytical solutions. As the numerical resolution increases, 375 

the results match the semi-analytical solutions much more closely (Figure 1). For l16m8, case R5 376 

significantly reduces errors in 𝑙௟ compared to R4. Note that R5 has a higher vertical resolution in the upper 377 

mantle but the same horizontal resolution as R4 (Fig.1 and Table 2). Grid size in the vertical direction is 378 

not uniform since grids get refined vertically in the upper mantle and lithosphere for each model. For cases 379 

with 64 elements in the vertical direction (R2, R3 and R4), the vertical resolutions are about 20 km, 40 km, 380 

and more than 50 km  in the lithosphere, upper mantle and lower mantle, respectively, whereas R5, with a 381 

total of 80 elements in the vertical direction, has a vertical resolution ~ 20 km in the upper mantle. Note 382 

that the load Love number for horizontal displacement is presented as |𝑙௟(𝑡)|, because CitcomSVE only 383 

conveniently determines 𝑙௟
ଶ(𝑡) (Zhong et al., 2022), although it is possible to determine the 𝑙௟  based on 384 

vector spherical harmonic decomposition of horizontal surface motion (Wu and Peltier 1982).  385 

We determine numerical errors by computing amplitude and dispersion errors (e.g., Zhong et al., 386 

2003; A et al., 2013; Zhong et al., 2022). Amplitude error 𝜀௔ and dispersion error 𝜀ௗ are computed using 387 

the following equations (Zhong et al., 2022): 388 

      𝜀௔ =
∫ |ௌ೙(௟బ,௠బ,௧)ିௌೞೌ(௟బ,௠బ,௧)|ௗ௧

೅

బ

∫ |ௌೞೌ(௟బ,௠బ,௧)|ௗ௧
೅

బ

,               (14) 389 

      𝜀ௗ =
∫ ୫ୟ୶ [|ௌ೙(௟,௠,௧)|]ௗ௧

೅

బ

∫ |ௌೞೌ(௟బ,௠బ,௧)|ௗ௧
೅

బ

,                (15) 390 
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where l0 and m0 represent the loading harmonic degree and order, Sn and Ssa are solutions of load Love 391 

numbers from CitcomSVE and semi-analytical methods, respectively, T is the total model time (i.e., 40), 392 

and in equation (15) for the dispersion error, max represents the maximum value for all the non-loading 393 

harmonic degrees l and orders m. The response should only occur at the loading harmonic for the spherically 394 

symmetric mantle structure considered here. Therefore, amplitude error 𝜀௔  measures the accuracy at the 395 

loading harmonic and dispersion error 𝜀ௗ measures the accuracy at other harmonics. Note that the errors 396 

defined in equations (14) and (15) are similar to norm-1 errors.  397 

Figure 2 shows the amplitude errors of load Love numbers as a function of horizontal numerical 398 

resolution (i.e., the horizontal grid size ranging from ~200 km to ~50 km at the surface for resolutions R1-399 

R4) for all cases. For most of the calculations with different loading harmonics, the amplitude errors 400 

decrease with decreasing horizontal grid size with a slope of close to 2 in the log-log plot of Figure 2, 401 

especially for Love numbers ℎ௟ and 𝑘௟. This suggests that the error is roughly proportional to the square of 402 

the grid size, aligning with the expected second-order accuracy for trilinear elements in CitcomS (e.g., 403 

Zhong et al., 2008). It is worth noting that from R1 to R4, the increase in vertical resolution is not 404 

proportional to the increase in horizontal resolution, which may cause the slope in Figure 2 to deviate from 405 

2. Figure 2 shows that with a horizontal resolution of ~ 50 km, the accuracy of CitcomSVE is better than 406 

0.1% up to spherical harmonics of degree 4 and better than 2% up to spherical harmonics of degree 16 in 407 

terms of Love numbers ℎ௟ and 𝑘௟. For Love number 𝑙௟, the errors are slightly larger than that for ℎ௟ and 𝑘௟. 408 

Compared to the benchmark results of CitcomSVE 2.1 (Zhong et al., 2022), the errors presented here are 409 

generally larger for cases with the same resolutions, which is understandable considering that CitcomSVE 410 

3.0 solves for models with higher complexity (i.e., the internal density variations caused by compressibility 411 

and density discontinuities).   412 
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 413 

Fig 2. Amplitude errors of Love numbers ℎ (a), 𝑘 (b) and 𝑙 (c) as a function of numerical resolutions (i.e., 414 
R1-R4, corresponding to horizontal resolutions of approximately 200 to 50 km). For Love number 𝑘 of 415 
loads (1,0), all calculations with different resolutions have a relative error of less than 10-5 and are not 416 
shown in this figure. Note that R4 and R5 have the same horizontal but different vertical resolutions. 417 

 418 

3.2. Glacial isostatic adjustment using ICE-6G and VM5a 419 

This section presents the benchmark for an example GIA model with ICE-6G and VM5a (Peltier 420 

et al., 2015). A GIA model calculation requires solving governing equations (1)-(3) together with boundary 421 

conditions (4)-(5) and the sea-level equation (11) to determine time-dependent gravitational anomalies and 422 

displacements at the Earth’s surface and sea level changes. As discussed in section 2.3, to deal with the 423 

non-linear nature of the sea level equation, multiple iterations of complete GIA model runs may be needed 424 

(Kendall et al., 2005). Before presenting benchmark results for CitcomSVE 3.0 against the semi-analytical 425 

method, we will first demonstrate how the one-iteration solution method discussed in section 2.3 may be 426 

used to achieve adequate accuracy of GIA solutions using the semi-analytical method.        427 

3.2.1. A one-iteration solution method for the sea level equation. 428 

We have implemented the multiple outer iteration algorithm by Kendall et al., (2005) for the sea 429 

level equation in our semi-analytical code (A et al., 2013). For ICE-6G and VM5a, calculation K3 represents 430 

the reference case with convergent solutions after three outer iterations, based on Kendall’s original 431 

approach. The normalized ocean area which is a measure of the ocean function O(t) for K3 varies between 432 

~0.66 at the last glacial maximum (LGM) and ~0.71 at 122 kybp and the present-day (Fig. S1). Figure S1 433 

also shows the ocean area after the first outer iteration for calculation K3, which, denoted as K1, differs 434 
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significantly from that of K3. Calculation AS1 represents a single outer iteration model run using our pre-435 

calculated ocean function O(t) as discussed in section 2.3, and AS2 represents the results from the second 436 

outer iteration after AS1 using the updated ocean functions O(t) and initial topography T0, Figure S1 clearly 437 

demonstrates that AS1, different from K1, is very similar to K3 and AS2, while the latter two are identical, 438 

indicating that the ocean function O(t) for our first outer iteration (AS1) is a fairly accurate  representation 439 

of the convergent solutions of the Kendall’s original approach (K3). Note that the present-day topography 440 

is used as initial topography T0 for calculations AS1 and K1.   441 

Using RSL from K3 as standard results, Fig. S2 shows that the maps of RSL difference (i.e., the 442 

accuracy) to K3 from calculations AS1, K1 and AS2 at 5 kybp, 10 kybp and 15 kybp. The absolute error in 443 

RSL from AS1 is negligibly small for most regions (Fig.  S2a, S2d and S2g), whereas the absolute error 444 

from K1 is much worse, especially at 20 kybp (Fig. S2h). AS2 is identical to K3, the standard results (Fig. 445 

S2c, S2f  and S2i). Admittedly, there are relatively large errors in some localized regions for AS1, such as 446 

Hudson Bay and the Arctic Ocean near Fennoscandia for some periods (Fig. S2a and S2d), because we 447 

ignore the change in surface radial displacement when deriving the pre-calculated ocean function used in 448 

AS1. However, the largest errors in those areas mostly occur in the ocean, while along the coastlines where 449 

paleo-relative sea level records are available, the absolute errors are all less than 10 meters (Fig. S2a and 450 

S2d). Figure S3 shows the modeled RSL curves at four representative sites including Hudson Bay and 451 

Fennoscandia from K3, K1, AS1 and AS2 calculations. The results are consistent with that from Figure S2 452 

in that the errors in modeled RSL from AS1 (i.e., the single outer iteration model run using our revised 453 

method for ocean functions) are negligible, whereas the errors from K1 are evident, especially for far-field 454 

sites. Note that even at Churchill, which is on the coastline of Hudson Bay, AS1 has negligible errors in 455 

RSL calculations.  456 

To further assess the errors in RSL from our AS1 model, we tested two additional GIA calculations 457 

with extremely strong or weak mantle viscosity models. For both cases, the lithospheric thickness is 100 458 

km. For the strong mantle case, the entire mantle below the lithosphere has a viscosity of 5x1022 Pas. For 459 
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the weak mantle case, the 200 km thick asthenosphere below the lithosphere and the rest of the mantle have 460 

viscosities of 5x1018 Pas and 1020 Pas, respectively. Figure S4 shows similarly small errors for both cases 461 

to that of VM5a (Fig. S2), indicating the reliability of our AS1 model. 462 

Other pre-calculated ocean functions O(t) for any given ice model may be constructed to obtain 463 

more accurate RSL results in our AS1 method by replacing the “rigid Earth” approximation with others, 464 

for example, the isostasy approximation in which surface elevation changes to compensate the surface 465 

loads. Another possible way is to perform a full GIA modeling with three outer iterations (i.e., for outer 466 

iterations to converge) for a reference viscosity model and use the ocean functions from the last outer 467 

iteration as the pre-calculated ocean functions for any other GIA calculations with reasonable viscosity 468 

models in our AS1 method. We test such a strategy by using a reference viscosity model which has a 100-469 

km thick elastic lithosphere and its underlying mantle with a uniform viscosity of 1021 Pas and then applying 470 

the resulting pre-calculated ocean functions for those same two GIA cases with extremely strong or weak 471 

viscosity models as in Figure S4. The resulting errors in RSL for those two cases (Fig.  S5) are similar to 472 

that in Figure S4 for which the “rigid Earth” approximation was used in building the pre-calculated ocean 473 

functions. 474 

To quantify the upper bound of errors in RSL by using one outer iteration (e.g., our AS1 method), 475 

we compute 806 GIA models covering a wide range of mantle viscosities and determine RSL histories for 476 

a large number of sites in three regions including North America, Fennoscandia, and far fields using both 477 

AS1 and K3 methods. The numbers of sites are 18, 12, and 36 for North America, Fennoscandia, and far 478 

fields, respectively. The North American and Fennoscandian sites are from Peltier et al., (2015), and the 479 

far-field sites are from Lambeck et al., (2014). These models, same as those in Kang et al., (2024), have 480 

three viscosity layers: a lithosphere of 100 km thick, the upper and lower mantles, and use ICE-6G_D as 481 

the ice history (Peltier et al., 2015, 2018). The viscosity varies from 1019 Pas to 1021.5 Pas in the upper 482 

mantle and from 1020.5 Pas to 1023.5 Pas in the lower mantle. The relative error (i.e., the relative difference 483 
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from the reference case K3) in modeled RSL for each site is defined as 𝜖௜ =
∫ |ோௌ௅ೣ,೔(௧)ିோௌ௅಼య,೔(௧)|ௗ௧

೅

బ

∫ |ோௌ௅಼య,೔(௧)|ௗ௧
೅

బ

, where 484 

𝑅𝑆𝐿௫,௜ is the modeled RSL at site 𝑖 for case K1, AS1, or AS2, 𝑅𝑆𝐿௄ଷ,௜ is for the reference case K3, and the 485 

integral is for the total model time duration. The regionally averaged relative error 𝜖 is defined as the 486 

average error among all sites within each region, i.e., 𝜖 = Σ𝜖௜/𝑁, where 𝑁 is the total number of sites within 487 

each region. The maximum regionally averaged relative error among those 806 GIA models is less than 5% 488 

(Supplement Table 2) for our AS1 method.  489 

We also quantify the maximum absolute error in RSL, defined as the maximum of |𝑅𝑆𝐿௫(𝑡) −490 

𝑅𝑆𝐿௄ଷ(𝑡)| among all time periods 𝑡 and all sites in each region from those 806 calculations (Supplement 491 

Table 2). For far-field sites where RSL is mainly controlled by ocean functions and ice volume changes, 492 

the maximum absolute error in RSL is less than 3 meters for the AS1 method but more than 10 meters for 493 

the K1 method, consistent with Fig. S1 in that AS1 provides more accurate ocean functions than K1. 494 

However, the maximum absolute error in near-field RSL is more significant and up to ~23 meters for both 495 

AS1 and K1 methods, reflecting the fact that near-field ocean functions and paleo-topography are more 496 

affected by visco-elastic deformation. Fig. S6 shows the RSL curves for the site and viscosity model 497 

corresponding to the maximum absolute error of ~23 meters in RSL for AS1. Note that at the site for this 498 

case with the maximum absolute error, the total RSL change exceeds 600 meters and the RSL from AS1 is 499 

not significantly different from that from K3 (Fig. S6). Depending on factors including the user’s goal, RSL 500 

data quality, and requirements for accuracy and efficiency of GIA calculations, AS1 could be a viable 501 

method to obtain reliable RSL in both far fields and near fields with minimal computational cost. 502 

We summarize our attempts to get accurate RSL results from a single complete GIA model run as 503 

follows. Since the purpose of multiple outer iterations is to update ocean function history and initial 504 

topography successively to be consistent with the present-day topography and a given ice model (Kendall 505 

et al., 2005), our strategy is to construct pre-calculated ocean functions and initial topography that would 506 

lead to RSL solutions with an adequate level of accuracy with a single complete GIA model run (i.e., the 507 
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AS1 method). The present-day topography would be a good approximation for initial topography if a model 508 

starts with an ice-sheet distribution similar to that of the present day (i.e., the interglacial period), as in the 509 

benchmark study here. We found that three outer iterations of complete model runs with successively 510 

updated ocean functions and initial topography could be replaced with our AS1 method, depending on 511 

users’ goals and requirements for the error levels. For example, studies on global properties of RSL could 512 

achieve adequately accurate results from one single complete run (i.e., AS1) with properly constructed pre-513 

calculated ocean functions, as we discussed. If the goal is to model the RSL for one particular near-field 514 

site as accurately as possible, it would be more prudent to run two or three outer iterations of complete GIA 515 

runs with successively updated ocean functions and initial topography following Kendall et al. (2005). It is 516 

worthwhile to mention that, when modeling RSL changes, one should also consider other factors including 517 

the errors in RSL records (often exceeding 10 m in near field during the rapid deglaciation (Peltier et al., 518 

2015; Lambeck et al., 2017)), the relatively low resolution of global ice models, inherent numerical errors, 519 

and unaccounted processes in the current sea level equation (e.g., erosion and sedimentation). 520 

Our above-mentioned results are particularly relevant for numerical modeling given its 521 

computational cost. CitcomSVE 3.0 fully supports the multiple outer iteration approach using pre- and post-522 

processes to update ocean functions and initial topography. In the following GIA benchmark, we compare 523 

the results from a single complete CitcomSVE  model run with our semi-analytic solutions of the first outer 524 

iteration (i.e., AS1), using the pre-calculated ocean functions constructed by assuming the “rigid Earth” and 525 

the present-day topography as the initial topography. This comparison ensures that CitcomSVE and semi-526 

analytic calculations have the same ocean functions and initial topography, such that the differences in 527 

solutions between CitcomSVE and semi-analytical methods are solely related to numerical errors rather 528 

than differences in the models. 529 

3.2.2. Definition of the GIA problem. 530 

Since one of the most important applications for CitcomSVE is to model the GIA processes, it is 531 

essential to perform a benchmark with glaciation-deglaciation history as surface loads, considering the 532 
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effects of polar wander, apparent center of mass motion and ocean loads determined by the sea-level 533 

equation. Note that the same type of benchmark has been published for the incompressible version 534 

CitcomSVE 2.1 (Zhong et al., 2022), and we largely follow the setups of that previous work except that the 535 

current calculations consider mantle compressibility (i.e., the PREM model), and that the updated sea level 536 

equation is used as discussed in the last sub-section (i.e., the AS1 method). The Earth model used in this 537 

case is the same as the one used for single harmonic loading examples in the previous section. 538 

In this case, the surface load consists of a full glaciation-deglaciation cycle, based on the ICE-6G_D 539 

ice model (Peltier et al., 2015, 2018) that includes the last 122 thousand years from the last interglacial 540 

period to the present day. We assume that Earth was in an equilibrium state at the onset of loading (i.e., 122 541 

kybp), and that the surface displacements and gravitational potential anomalies since 122 kybp are induced 542 

by ice height variations relative to the initial stage and the corresponding change in ocean loads. We 543 

computed six cases using CitcomSVE 3.0 with different spatial-temporal resolutions and cut-off values for 544 

the maximum spherical harmonic degrees used in calculating gravitational potential (Table 3). Cases 545 

GIA_R1, GIA_R2, and GIA_R3 have spatial resolutions of 135 km, 81 km, and 50 km (i.e., a total number 546 

of elements of  12x48x48x48, 12x48x80x80, and 12x64x128x128), respectively, and a temporal resolution 547 

of 125 years per step. Case GIA_R3_LT is the same as GIA_R3 except with a longer time increment of 548 

250 years per step before LGM (i.e., 26 kybp). Cases GIA_R3_LT_SH20 and GIA_R3_LT_SH64 have a 549 

cut-off value of 20 and 64 for the maximum spherical harmonic degrees, respectively, compared to 32 for 550 

other cases. Note that same as CitcomSVE 2.1 (Zhong et al., 2022), computing gravitational potential in 551 

the spherical harmonic domain can be computationally expensive. On the other hand, the semi-analytical 552 

solution is obtained using spherical harmonic degrees and orders up to 256.  553 

It should be noted that in the current implementation, CitcomSVE reads in ice loads defined on 554 

regular grids (e.g., 1⁰x1⁰ grid) and then interpolates the loads to the irregular finite element grids, whereas 555 

semi-analytical calculations use spherical harmonic expansions of ice loads to a maximum spherical 556 

harmonic degree and order (i.e., 256 in this study) as inputs. The interpolation may cause inconsistent 557 

https://doi.org/10.5194/egusphere-2024-3200
Preprint. Discussion started: 29 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 26

representations of ice loads between CitcomSVE and the semi-analytical calculations. To understand the 558 

potential error resulting from the interpolation, we test another case GIA_R3B, which is the same as 559 

GIA_R3 except that, for this case, we let CitcomSVE read in ice loads that are computed on CitcomSVE 560 

finite element grid points from summing up all the spherical harmonics as used for the analytical solutions, 561 

thus avoiding the interpolation from the regular grids to the finite element grids and assuring that 562 

CitcomSVE calculations use the exactly same ice loads as that for analytical solutions. 563 

 564 

Table 3: Relative Errors for Surface 3-Component Displacement Rates for GIA Benchmark 565 
 GIA_R1 GIA_R2 GIA_R3 GIA_R3Ba GIA_R3_LTb GIA_R3_LT_SH20c GIA_R3_LT_SH64 

Resolution 48x48x48 48x80x80 64x128x128 64x128x128 64x128x128 64x128x128 64x128x128 
Total steps 976 976 976 976 592 592 592 

# Cores 96 96 384 384 192 192 384 
CPU hours 5.57d 4.89 3.01 3.13 3.88 3.34 3.77 

𝜖௥(0)e 17.1% (15.8%)f 8.7% (8.1%) 4.7% (4.4%) 4.4% (3.8%) 4.6% (4.4%) 5.0% (4.8%) 4.7% (4.4%)  
𝜖୦(0) 14.8% (15.0%) 6.9% (6.9%) 3.9% (3.9%) 3.5% (3.4%) 3.9% (3.9%) 3.9% (3.9%) 3.9% (3.9%) 

𝜖௥(15) 7.9% (6.7%) 4.5%(4.1%) 3.1% (3.0%) 2.8% (2.3%) 3.1% (3.0%) 3.1% (3.0%) 3.2% (3.0%) 
𝜖௛(15) 4.4% (3.9%) 2.6% (2.4%) 1.7% (1.7%) 1.6% (1.5%) 1.7% (1.7%) 1.7% (1.7%) 1.7% (1.7%) 
𝜖௥(26) 7.9% (6.6%) 3.8% (3.3%) 2.5% (2.3%) 2.3% (1.8%) 3.1% (3.0%) 3.0% (2.9%) 3.2% (3.1%) 
𝜖௛(26) 4.4% (3.9%) 2.3% (2.0%) 1.3% (1.3%) 1.4% (1.1%) 1.9% (1.8%) 1.9% (1.8%) 1.9% (1.9%) 

 566 
a  The differences between cases GIA_R3B and GIA_R3 are discussed in section 3.2.2. 567 

b The “LT” in GIA_R3_LT represents larger time increments between time steps, where the increments are 568 
250 years and 125 years before and after 26 kybp, respectively. Cases GIA_R1, GIA_R2, and GIA_R3 569 
have uniform time increment of 125 years. 570 

c The “SH20” in GIA_R3_LT_SH20 represents that the cut-off of degrees and orders of spherical harmonics 571 
in this calculation is 20. Similarly, case GIA_R3_LT_SH64 has cut off at degrees and orders of 64. Other 572 
cases are cut off at degrees and orders of 32. 573 

d For this case, the solution converges slowly, causing larger CPU time. All the cases are computed on the 574 
NCAR supercomputer Derecho. 575 

e 𝜖௥ and 𝜖௛ are errors of displacement rates in radial and horizontal directions, respectively. The errors are 576 
given at present-day (0), 15 kybp, and 26 kybp (indicated by numbers inside parentheses). 577 

f Numbers out of parentheses are errors calculated based on regular grids, whereas numbers inside of 578 
parentheses are calculated based on CitcomSVE grids. 579 

 580 
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3.2.3. Benchmark results. 581 

We compare the 3-component displacement rates at the surface for three different times (i.e., the 582 

present-day, 15 kybp, and 26 kybp) obtained from CitcomSVE and the semi-analytical code. Figure 3 shows 583 

the present-day displacement rate in vertical, eastern, and northern directions for case GIA_R3 from 584 

CitcomSVE. Large uplift rates at the present day occur in North America, Fennoscandia, and West 585 

Antarctica (Fig. 3a), suggesting ongoing rebound induced by ice melting since the last glacial maximum in 586 

these regions. Horizontal displacement rates usually have much smaller amplitudes than that in radial 587 

direction in those regions. 588 

 589 

 590 
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Figure 3. Displacement rates at the present day from case GIA_R3 in radial (a), eastern (c), and northern 591 
(e) directions and the differences to analytical solutions for radial (b), eastern (d), and northern (f) 592 
directions. 593 

 594 

 Figure 3 also shows the differences in present-day displacement rates between CitcomSVE and 595 

semi-analytical solutions. The differences are small compared with the magnitudes of displacement rates. 596 

Relatively large magnitudes of errors are mainly on short wavelengths (e.g. localized regions), which may 597 

partially reflect the fact that CitcomSVE tends to have poorer accuracy at shorter wavelengths (Fig. 1 and 598 

2). Following Zhong et al. (2022), we define relative RMS differences (i.e., errors) in displacement rates 599 

between CitcomSVE and semi-analytical solutions as: 600 

𝜀(𝑡) = ට
∑[௙ಷಶ(ఏ,ఝ,௧)ି௙ೄ(ఏ,ఝ,௧)]మ

∑[௙ೄ(ఏ,ఝ,௧)]మ  ,                                                (16) 601 

where 𝑓ிா(𝜃, 𝜑, 𝑡) and 𝑓ௌ(𝜃, 𝜑, 𝑡) are the fields of interest at a given time 𝑡 from CitcomSVE and semi-602 

analytical solutions, respectively, and the summation is based on a regular 1⁰-by-1⁰ grid. To interpolate the 603 

CitcomSVE solutions onto the regular grid, we use the near neighbor method provided by GMT (Wessel et 604 

al., 2019). We also report errors calculated by unweighted summation on the CitcomSVE grid, given the 605 

relatively uniform grid size on the spherical surface in CitcomSVE, and the differences in errors from these 606 

two ways of calculation are insignificant. We compute errors for radial and horizontal components at three 607 

times: the present-day, 15 kybp and 26 kybp. Note that for horizontal error, we square the difference for 608 

each horizontal component (i.e., north and east) and add them together for each location. 609 

Table 3 lists the errors for displacement rates at these three times for all cases, together with the 610 

total CPU time and number of CPUs used for each case. The errors decrease significantly from GIA_R1 to 611 

GIA_R3. For Cases GIA_R3, the errors of displacement rates are less than 5%. Case GIA_R3B, which 612 

avoids the interpolation of the input ice loads from the regular input grid into CitcomSVE finite element 613 

grid to eliminate the potential inconsistency in ice loads between CitcomSVE and semi-analytical 614 

calculations, has slightly smaller errors than GIA_R3, indicating a relatively small error induced by the 615 
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interpolation. Case GIA_R3_LT with larger time resolution before 26 kybp has larger errors in 616 

displacement rates at 26 kybp but similar error levels at 15 kybp and present day. Those errors are close to 617 

those from CitcomSVE 2.1 (Zhong et al., 2022). CitcomSVE 3.0 is about three times slower than 618 

CitcomSVE 2.1 for the same resolutions since internal density variations make the computation more 619 

expensive, as discussed in section 2.2. We found that for cases GIA_R1, GIA_R2, and GIA_R3, calculating 620 

gravitational potential anomalies takes about one-fourth to half of the total calculation times, depending on 621 

the time spent solving the displacement field. It is possible to speed up the calculations of the gravitational 622 

potential anomalies by using a grid-based method (e.g., Latychev et al., 2005) or direct integration (e.g., 623 

Wang and Li, 2021)  for the Poisson equation instead of the currently used spherical harmonic transform. 624 

However, the maximum degree of spherical harmonics, varying from 20 to 64, has insignificant effects on 625 

surface displacement (Tables 3 and 4), although it would affect the modeled change rates of geoid and 626 

gravity. 627 

We also compare the cumulative radial displacements at different spherical harmonic degrees from 628 

CitcomSVE and semi-analytical solutions, following previous works (Paulson et al., 2005; A et al., 2013; 629 

Kang et al., 2022; Zhong et al., 2022). The spherical harmonic coefficients of the surface displacement field 630 

are provided as an output of CitcomSVE (see Zhong et al., 2022, for the spherical harmonic expansion used 631 

in CitcomSVE). The degree amplitude for each 𝑙 is calculated by  632 

𝑎௟(𝑡) = ට
ଵ

௟ାଵ
∑ [𝐶௟௠(𝑡)ଶ + 𝑆௟௠(𝑡)ଶ]௟

௠ୀ଴   ,                                             (17) 633 

where 𝐶௟௠ and 𝑆௟௠ denote the cosine and sine parts of the spherical harmonic coefficients expanded from 634 

the radial displacement fields at time 𝑡. Figures 4a-4c show the amplitude 𝑎௟ of surface radial displacement 635 

at selected spherical harmonics degrees (l=1, 2, 5, 9, 16 and 23) for the three CitcomSVE cases, together 636 

with the corresponding semi-analytical solutions. Same as CitcomSVE 2.1 (Zhong et al., 2022), the lowest-637 

resolution case is adequate for relatively long wavelengths (l=1, 2, 5, and 9), whereas higher resolution 638 

models are required for accuracy in shorter wavelengths (l=16 and 23) (Fig. 4c). Figure 4d shows the results 639 
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for the harmonic of l=2 and m=1 that corresponds to the polar wander. Similar to findings from single 640 

harmonic benchmarks in the previous section and Zhong et al., (2022), high spatial resolution is required 641 

to obtain an accurate solution for the polar wander term. Note that the amplitudes of polar wander mode 642 

are much smaller than other long wavelength modes like l=2, 5, and 9. 643 

 644 

Figure 4. Amplitudes of cumulative radial surface displacement at different spherical harmonic degrees as 645 
a function of time for the semi-analytical solutions (Analytical) and three CitcomSVE calculations 646 
(GIA_R1, GIA_R2, and GIA_R3) for l=1,2 (a), l=5,9 (b), l=16, 23 (c), and polar wander mode with l=2, 647 
m=1 (d). 648 

 649 

Following Zhong et al., (2022), we use the time-integrated relative error of degree amplitude 𝜀௟  to 650 

quantify the time-averaged error for a given degree l. 𝜀௟  is defined as 651 

𝜀௟ = ඨ
∫ [௔೗ಷಶ

(௧)ି௔೗ೄ
(௧)]మௗ௧

೅

బ

∫ ௔೗ೄ
(௧)మௗ௧

೅

బ

 ,                                                   (18) 652 
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where  𝑎௟ಷಶ
(𝑡)  and 𝑎௟ೄ

(𝑡)  represent the degree amplitudes at time 𝑡  from the CitcomSVE and semi-653 

analytical solutions, respectively, and 𝑇 is the entire calculation period. The errors for each case are shown 654 

in Table 4. As expected, the errors decrease with increasing spatial resolution for each degree, and errors 655 

for shorter wavelengths are larger than those for longer wavelengths, except for the polar wander term with 656 

relatively large errors. 657 

Table 4 Relative Errors for Surface Radial Displacements at Different Harmonics 658 

 GIA_R1 GIA_R2 GIA_R3 GIA_R3_LT GIA_R3_LT_SH20 GIA_R3_LT_SH64 

𝜖ଵ 0.97% 0.74% 0.62% 0.64% 0.64% 0.64% 

𝜖ଶ 0.98% 0.76% 0.73% 0.74% 0.74% 0.72% 

𝜖ହ 0.33% 0.12% 0.13% 0.14% 0.14% 0.14% 

𝜖ଽ 2.30% 1.37% 0.77% 0.77% 0.77% 0.77% 

𝜖ଵ଺ 7.56% 3.30% 1.45% 1.45% 1.45% 1.45% 

𝜖ଶଷ 13.66% 6.69% 3.10% 3.10% N/Ab 3.10% 

𝜖ଶ,ଵ
a 17.53% 6.58% 1.48% 1.39% 1.39% 1.80% 

a 𝜖2,1 represents the errors for the polar wander term (l=2, m=1). 659 

b N/A, the cut-off of degrees and orders of spherical harmonics is 20 for this case and we only output the 660 
spherical harmonics up to the cut-off value in CitcomSVE.  661 

 662 

 Figure 5 shows the comparisons of modeled relative sea levels at different periods (5 kybp, 10 663 

kybp, and 15 kybp) for GIA_R3 and the semi-analytical solutions on map views. The globally averaged 664 

relative misfits at 5 kybp, 10 kybp, and 15 kybp are 4.14%, 2.82%, and 1.70%, respectively, similar to 665 

errors in displacement rates. The regions with localized, relatively large errors (Fig. 5b, 5d, and 5f) are 666 

mostly around the edges of ice sheets in North America, Fennoscandia, and Antarctica, similar to that for 667 

displacement rates, as shown in Figure 3b. Figure 6 compares modeled RSL curves for several sites from 668 

semi-analytical solutions and three CitcomSVE calculations with different spatial resolutions. Increasing 669 

spatial resolution reduces the misfits to semi-analytical solutions for near-field sites (i.e., sites close to ice 670 

sheets) (Fig. 6a and 6b), but does not appear to affect the far-field solutions as much (Fig. 6c and 6d). 671 
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 672 

Figure 5. Map of modeled relative sea level at 5 kybp (a), 10 kybp (c), and 15 kybp (e) from GIA_R3 and 673 
their differences to semi-analytic solutions at 5 kybp (b), 10 kybp (d), and 15 kybp (f), respectively. 674 
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 675 

Figure 6. Relative sea-level curves for the last 26 ky at four sites from semi-analytic solutions (Analytic) 676 
and three CitcomSVE calculations of different resolutions: cases GIA_R1, GIA_R2, and GIA_R3. The four 677 
sites are Churchill (a), Vasterbotten (b), Barbados (c), and Geylang (d) with longitudes and latitudes of 678 
(265.60, 58.70), (19.90, 64.00), (300.45, 13.04), and (103.87, 1.31), respectively.  The symbols represent the 679 
observed RSL changes. The observed RLS are from Peltier et al., (2015) and Lambeck et al., (2014). 680 

 681 

4. Conclusion and Discussion 682 

This study introduces CitcomSVE-3.0, an enhanced finite element package that builds upon its 683 

predecessor, CitcomSVE-2.1 (Zhong et al., 2022), an efficient package that utilizes massively parallelized 684 

computers with up to thousands of CPUs. The new version incorporates elastic compressibility (e.g., the 685 

PREM) based on the work of A et al. (2013) and improves the algorithm for solving sea level equations 686 

following the work of Kendall et al. (2005), which considers the changes in ocean loads and ocean functions 687 

related to ocean-continent transitions and the existence of floating ice. Two benchmark problems are 688 
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computed with different numerical resolutions: 1) surface loads of different single harmonics and 2) GIA 689 

problem with ICE6G ice model.  690 

 Extensive comparisons between CitcomSVE-3.0 calculations and semi-analytic solutions are 691 

presented to validate the accuracy of the CitcomSVE package. The accuracy of CitcomSVE with a 692 

horizontal resolution of ~ 50 km is better than 0.1% up to spherical harmonics of degree 4 and better than 693 

2% up to degree 16 in vertical motion and gravitational potential for single harmonic loading problems. We 694 

show that CitcomSVE has a second order of accuracy, i.e., the errors would be reduced to 1/4 if element 695 

sizes were reduced by a factor of two. For GIA problems with realistic ice models and dynamically 696 

determined ocean loads, the average errors for CitcomSVE models with ~50 km horizontal resolution are 697 

less than 5% in displacement rates and relative sea levels. 698 

 As shown in the benchmark work for CitcomSVE-2.1 (Zhong et al., 2022), CitcomSVE has a 699 

parallel computation efficiency of > 75% for up to 6144 CPU cores. With its accuracy and efficiency in 700 

modeling viscoelastic response to surface loads and tidal forces, the open-source package CitcomSVE has 701 

the ability to advance research in planetary and climatic sciences, including GIA-related problems. 702 

 703 

 704 
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