

1 **Title:** Perturbation increases source-dependent organic matter degradation rates in estuarine
2 sediments.

3

4 **Author information**

5 Guangnan Wu¹, Klaas G.J. Nierop², Bingjie Yang³, Stefan Schouten³, Gert-Jan Reichart^{1, 2}, Peter
6 Kraal¹

7

8 ¹ Royal Netherlands Institute for Sea Research, Department of Ocean Systems, Landsdiep 4, 1797
9 SZ 't Horntje, The Netherlands

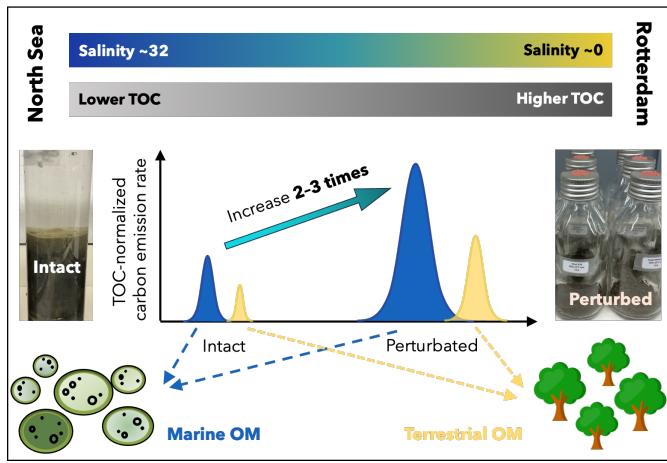
10 ² Utrecht University, Faculty of Geosciences, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands

11 ³ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology &
12 Biogeochemistry, Landsdiep 4, 1797 SZ 't Horntje, The Netherlands

13

14 **Corresponding author**

15 Guangnan Wu (guangnan.wu@nioz.nl)


16

17

18 **Abstract**

19 Despite a relatively small surface area on Earth, estuaries play a disproportionately important role in
20 the global carbon cycle due to their relatively high primary production and rapid organic carbon
21 processing. Estuarine sediments are highly efficient in preserving organic carbon and thus often rich
22 in organic matter (OM), highlighting them as important reservoirs of global blue carbon. Currently,
23 [estuaries](#) are facing intensified human disturbance, one of which is sediment dredging. To understand
24 estuarine carbon dynamics and the impact of perturbations, insights into sediment OM sources,
25 composition, and degradability [are](#) required. We characterized the sediment OM properties and
26 oxidation rates in one of the world's largest ports, the Port of Rotterdam, located in a major European
27 estuary. Using a combination of OM source proxies and end-member modeling analysis, we
28 quantified the contributions of marine (10–65%), riverine (10–60%), and terrestrial (10–65%) OM
29 inputs across the investigated transect, with salinity ranging from 32 (marine) to almost 0 (riverine).
30 Incubating intact sediment cores from two contrasting sites (marine versus riverine) suggested that
31 [OM degradation rates in marine sediments were about four times higher than those in riverine](#)
32 [sediments, which was also observed during a 35-day subaerial bottle incubation experiment with](#)
33 [mixed surface sediment. Moreover, subaerial incubation of mixed sediment showed a two- to three-](#)
34 [fold increase in OM degradation rates compared to intact core incubation, highlighting that](#)
35 [perturbation and subsequent enhanced oxygen availability can substantially boost OM degradation.](#)
36 By combining detailed quantitative characterization of estuarine OM properties with degradation
37 [experiments under varying](#) conditions, [the](#) results further our understanding of the factors that govern
38 OM degradation rates in (perturbed) estuarine systems. Ultimately, this contributes to constraining the
39 impact of human perturbation on OM cycling in estuaries and its role in the carbon cycle.
40

41 **Graphical abstract**

42
43
44

45 **1. Introduction**
46 Estuaries are highly dynamic aquatic systems that are influenced by simultaneous marine, riverine,
47 and terrestrial inputs. In this transition zone, strong and variable gradients exist in hydrodynamic and
48 sediment properties, resulting in dynamic and complex cycles of key elements such as carbon
49 through coupled physical, chemical, and biological processes (Barbier et al., 2011; Dürr et al., 2011;
50 Laruelle et al., 2010). Despite representing only 0.03% of the surface area of marine systems,
51 estuaries are estimated to release approximately 0.25 Pg carbon annually into atmosphere on a
52 global scale, which is equivalent to 17% of the air-water CO₂ gas exchange of the entire open ocean
53 (Bauer et al., 2013; Li et al., 2023). Additionally, estuarine sediments store large amounts of organic
54 carbon (Macreadie et al., 2019; McLeod et al., 2011); due to high productivity and high sedimentation
55 rates, carbon burial rates in estuaries are up to one order of magnitude higher than forest soils and
56 three orders of magnitude higher than in open ocean sediments (Kuwae et al., 2016). Their
57 disproportionately large importance in the global carbon cycle highlights the need to improve our
58 understanding of carbon dynamics in estuarine systems.
59

60 Organic matter (OM), a fundamental component of sediment, plays a key role in sediment carbon
61 fluxes and sequestration. [Degradation](#) of OM contributes to the release of carbon dioxide (CO₂) and
62 methane (CH₄). [This](#) is a dynamic process that proceeds through a series of enzymatic reactions
63 involving different organisms, oxidants, and intermediate compounds. Studies have pointed out the
64 importance of OM characteristics in influencing the rate and extent of OM degradation (Burd et al.,
65 2016; Burdige, 2007; LaRowe and Van Cappellen, 2011). For instance, extensively degraded OM and
66 biopolymers such as cellulose and lignin are less susceptible to degradation than freshly produced
67 nitrogenous compounds (Arndt et al., 2013). Estuarine systems have diverse terrestrial and aquatic
68 OM sources, exhibiting [varying](#) degrees of degradability (Canuel and Hardison, 2016). Moreover,
69 interactions between OM and other components (organic or inorganic) during transportation,
70 deposition, and mineralization can alter OM characteristics. Processes such as condensation,
71 (geo)polymerization and mineral association increase [OM](#) resistance to degradation, thereby
72 promoting OM preservation (Wakeham and Canuel, 2006).
73

74 Sediment OM degradation is also influenced by ambient conditions [at the sediment-water interface](#)
75 [and in the sediment](#) (Arndt et al., 2013; Burd et al., 2016; Burdige, 2007; LaRowe and Van Cappellen,
76 2011). The degradation pathway follows the sequential utilization of the terminal electron acceptors
77 (TEAs), typically in the order of O₂, NO₃⁻/NO₂⁻, Mn (IV), Fe (III) and SO₄²⁻, with a progressive
78 decrease in energy yield down the redox ladder. The availability of these TEAs is greatly influenced by
79 the depositional [environment](#). Estuaries are highly dynamic systems [with](#) strong and shifting salinity
80 (i.e. sulfate) gradients exist. This [results in](#) strong spatial variability in OM degradation pathways and
81 carbon dynamics (Cao et al., 2021). [Specifically, large fluctuations in salinity and thus sulfate \(SO₄²⁻\)](#)
82 [availability between sites will affect CH₄ emissions because sulfate-driven methane oxidation provides](#)
83 [a highly effective CH₄ filter in surface sediments \(e.g. Egger et al., 2018; Lovley and Phillips, 1986\).](#)
84 Moreover, compilation of field data reveals that organic carbon burial efficiency varies substantially in

space because the availability and exposure time of TEAs are influenced by environmental factors such as sedimentation rate (Arndt et al., 2013; Freitas et al., 2021). Estuaries are often characterized by relatively high sedimentation rates, with supply of riverine material that settles under low flow velocities [at the river mouths](#) as well as large inputs of (re)suspended marine matter from the coastal zone [\(Hutchings et al., 2020\)](#). Oxygen transport into [the](#) sediment is sufficiently low relative to the flux of reactive organic carbon to [these](#) sediments to maintain very shallow oxygen [penetration](#) depths, on the scale of micro- to millimeters (Burdige, 2012). By notably reintroducing O₂ to [OM](#) previously buried in oxygen-[limited](#) environments, sediment disturbance [caused by natural processes \(e.g. storm-induced mixing events, bioturbation\) and human activities \(e.g. dredging, bottom trawling\)](#) can change sediment redox chemistry and thereby have a profound effect on OM degradation pathways and burial efficiency (Aller, 1994).

96

97 Although estuaries have been widely studied from an ecological perspective, large variation in OM
98 properties and cycling processes within and across estuarine systems contributes to the uncertainty in
99 quantifying their significance in the global carbon cycle. This uncertainty is partially due to the highly
100 diverse OM sources and properties in estuarine systems. Many studies of estuarine OM sources use
101 bulk proxies such as the weight ratio of total organic carbon to total nitrogen (C/N ratio) and their
102 stable isotope ratios ($\delta^{13}\text{C}_{\text{org}}$ and $\delta^{15}\text{N}$; Canuel and Hardison, 2016; Carneiro et al., 2021; Cloern et
103 al., 2002; Middelburg and Nieuwenhuize, 1998). In other studies, OM sources have been investigated
104 by identifying biomarker compounds associated with specific sources and transformation processes.
105 For example, the branched and isoprenoid tetraether (BIT) index, based on the relative abundance of
106 terrestrially and/or freshwater-derived branched glycerol dialkyl glycerol tetraether (GDGT) versus
107 marine-derived isoprenoid GDGT crenarchaeol, was adopted to quantify the relative contribution of
108 terrestrial OM in sediments (Herfort et al., 2006; Hopmans et al., 2004; Smith et al., 2010; Strong et
109 al., 2012). Some studies focused on macromolecular organic matter (MOM) composition in sediments
110 to identify OM sources (Kaal et al., 2020; Nierop et al., 2017). Lignin, an important constituent of
111 vascular plant MOM, has proved to be a useful tracer of vascular plant inputs to estuarine/coastal
112 margin sediment (Bianchi and Bauer, 2012; Buurman et al., 2006; Fabbri et al., 2005; Hedges and
113 Oades, 1997; Kaal, 2019). Furthermore, the relationship between OM source and degradability can
114 be intricate, which inhibits [the](#) quantitative understanding of estuarine OM degradation.

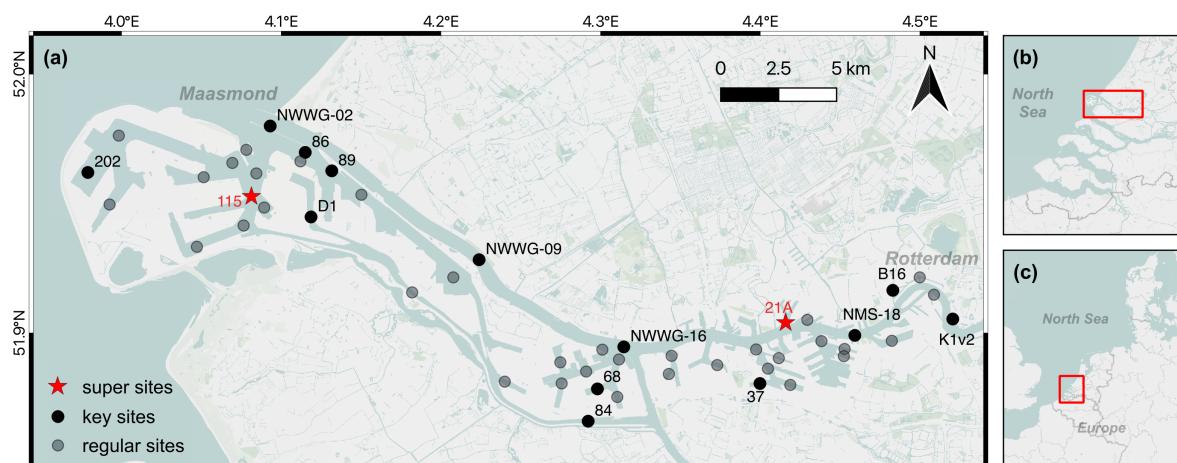
115

116 Understanding the processing of OM within estuaries takes on further importance because many
117 estuarine systems are intensively altered by human activities (Arndt et al., 2013; Heckbert et al.,
118 2012; Holligan and Reiners, 1992). [To increase or maintain waterway navigability, dredging is](#)
119 [commonly practiced](#) in many coastal regions and rivers worldwide. More than 600 million m³ of
120 dredged material is generated annually just in Western Europe, China, and the USA (Amar et al.,
121 2021). [While the dredged sediments are often treated as waste and disposed of at sea, there is a](#)
122 [growing trend of reusing dredged sediments on land, for instance in beach nourishment, habitat](#)
123 [restoration, and land reclamation \(Brils et al., 2014\)](#). However, this impacts organic matter
124 [degradation and subsequent CO₂ release from dredged materials in currently poorly understood](#)

125 ways, with oxygen exposure potentially leading to enhanced carbon remineralization (LaRowe et al.,
126 2020). Given the need for sediment dredging and sustainable management of these materials (van de
127 Velde et al., 2018), it is of great importance to understand to what extent anthropogenic sediment
128 perturbations affect OM processing in and carbon emissions from estuarine sediments.

129
130 In this study, we investigate the spatial variability in OM content and properties and relationships
131 between OM source, composition, and degradability along a salinity gradient in the profoundly
132 disturbed Port of Rotterdam estuarine environment of the Rhine-Meuse delta system. Given the
133 frequent dredging activities in the study area, which hosts a globally major port, we aim to understand
134 the impact of sediment dredging and its potential land applications on carbon dynamics. We used a
135 combination of bulk OM proxies, BIT index, macromolecular organic matter (MOM) composition
136 analysis, as well as end-member modelling to understand OM sources and composition. Furthermore,
137 organic matter degradation rates were estimated both in 8-h sediment core incubation (mimicking in
138 situ condition) and 37-day bottle incubations with mixed surface sediments under atmospheric
139 conditions (representing subaerial application of dredged sediment). This study show that variability in
140 OM sources and subsequently molecular properties, as well as perturbation (i.e. introduction of
141 oxygen), have important effects on OM degradation rates, providing important implications for
142 estuarine sediment management strategies.

143
144 **2. Materials and methods**


145 **2.1. Study area and sample collection**

146 The study area is located in the northern part of the Rhine-Meuse estuary (Fig. 1), spanning from
147 Rotterdam city to the Maasmond. This area representing a transitional environment from riverine to
148 marine is heavily urbanized and hosts one of the world's largest ports, the Port of Rotterdam (PoR).
149 Every year, large amounts of sediment are deposited in the harbor from both rivers as well as the
150 North Sea (Kirichek et al., 2018). The water channel maintenance and harbor expansion lead to an
151 increasing need for sediment dredging throughout the PoR. Due to higher sedimentation rates and
152 the demand for deeper navigation channels at the river mouth, dredging is more frequently performed
153 in the western (marine) part (e.g. site 115) than in the eastern (riverine) part (e.g. 21A; Kirichek et al.,
154 2018). Currently, over 10 million m³ of dredged materials are generated from the PoR annually, most
155 sediments (classified as clean) being relocated to the shallow North Sea, while approximately 10%
156 (classified as contaminated) being subaerally in a holding basin in the PoR area (Kirichek et al.,
157 2018).

158
159 Bulk sediments were collected from 49 selected locations throughout the study area in the summer of
160 2021. These sites were selected from over 300 monitoring sites in the Port of Rotterdam to represent
161 the full spectrum of depositional conditions in the main waterway and adjacent harbor areas from
162 marine to riverine (Fig. 1). One sediment core from each site was collected using a gravity corer (ø9
163 cm). Once on deck, materials in the corer (down to ~50 cm depth) were emptied into 5-L
164 polypropylene buckets that were closed and stored in the fridge at 4 °C. These samples, later referred

165 as bulk sediments, were further processed within a week after collection at the Royal Netherlands
166 Institute for Sea Research (NIOZ) on Texel, the Netherlands. In addition to bulk sediments, intact
167 sediment cores were collected in summer 2022 upon revisiting two strongly contrasting sites (referred
168 as 'super sites' in Fig. 1) representing marine (site 115, salinity 29) and riverine (site 21A, salinity 5)
169 end-members in the PoR area. The intact sediment cores were immediately cooled, transported back
170 to the NIOZ and used in whole-core incubation experiments (see section 2.5) within 5 hours after
171 collection.

172

173
174 **Fig. 1.** (a) The investigated study area and sampling sites. Sediments from all 49 sites were subjected
175 to bulk analyses (e.g. grain size, TOC, TN) as detailed in section 2.2. Sediments from 13 key sites
176 were used for lipid and MOM analysis as detailed in section 2.3 and 2.4, respectively. Sediment cores
177 from two super sites were used in a whole-core incubation experiment as detailed in section 2.5. (b)
178 The location of investigated study area in the Rhine–Meuse estuary. (c) The location of Rhine-Meuse
179 estuary in Western Europe. Map created using QGIS software. Basemap courtesy of Mapbox.
180

181 **2.2. Sample processing and analysis**

182 Bulk sediments from each of the 49 sites were thoroughly mixed using a spatula in the buckets.
183 Approximately 40 mL of wet sediment were transferred into 50-mL polypropylene centrifuge tubes
184 (Falcon) and centrifuged at 3000 rpm for 20 min (Hermle Z 446). In a N₂-purged glove bag, the
185 porewater was immediately filtered through a 0.45-μm nylon syringe filter (MDI). Salinity was
186 estimated by comparing the porewater sodium (Na) concentration to the average seawater sodium
187 concentration and salinity in the North Sea (IJsseldijk et al., 2015; Steele et al., 2010). For Na
188 analysis, the porewater was diluted around 900 times in 1 M double-distilled HNO₃ and analyzed by
189 inductively coupled plasma mass spectrometry (ICP-MS, Thermo Scientific, Element 2).

190

191 The centrifuge tubes with wet sediment residues after centrifugation were purged with N₂ and stored
192 at -20 °C in N₂-purged, gas-tight Al-laminate bags to prevent oxidation. To prepare for subsampling,
193 the sediment residues were thawed overnight in a N₂-purged glove bag (Coy Laboratories) and
194 subsequently homogenized. One portion of wet sediment residue (~1 g) was mixed with 50 mL of 3 g

195 L^{-1} sodium pyrophosphate solution and gently shaken to disaggregate particles. Particle size
196 distribution was determined using a Coulter laser particle sizer (Beckman Coulter), from which
197 percentages of clay (0–2 μm), silt (2–63 μm), sand (63–2000 μm) and the median particle size (D50)
198 were calculated.

199

200 Approximately 10 g of wet sediment residue was freeze-dried (Hetrosicc freeze dryer) for 72 h and
201 manually ground with an agate pestle and mortar, and further subsampled for carbon and nitrogen
202 (CN) analysis. One subsample of the freeze-dried sediment (~10 mg) was directly used for measuring
203 total nitrogen (TN) and stable nitrogen isotope composition (expressed as $\delta^{15}\text{N}$, relative to
204 atmospheric nitrogen) by a CN elementary analyzer (Thermo Scientific, FLASH 2000) coupled to a
205 Delta V Advantage isotope ratio mass spectrometer (Thermo Scientific). Another freeze-dried
206 subsample (~0.5 g), firstly treated with 1 M HCl to remove carbonates, was used for measuring total
207 organic carbon (TOC) and stable carbon isotope composition (expressed as $\delta^{13}\text{C}_{\text{org}}$, relative to Vienna
208 Pee Dee Belemnite). Certified laboratory standards (acetanilide, urea, and casein) were used for
209 calibration with each sample. Precision and accuracy for standards and triplicate samples were
210 $\pm 0.3\%$ for $\delta^{13}\text{C}_{\text{org}}$ and $\delta^{15}\text{N}$, and the relative standard deviation (RSD; standard deviation/mean) was
211 <10% for TOC and TN.

212

213 **2.3. Lipid extraction and analysis**

214 Sediments from 13 key locations (Fig. 1), selected to cover the full river-marine salinity transect, were
215 used for lipid and MOM analyses. Freeze-dried and homogenized sediments (2–10 g) were
216 ultrasonically extracted with dichloromethane (DCM):methanol (2:1, v:v) five times. For each sample,
217 extracts obtained from the five steps were combined. The total extract was separated over an Al_2O_3
218 column into an apolar, neutral and polar fraction using hexane:DCM (9:1, v:v), hexane:DCM (1:1, v:v)
219 and DCM:methanol (1:1, v:v), respectively. The polar fractions containing glycerol dialkyl glycerol
220 tetraethers (GDGTs) were dried under N_2 , dissolved in hexane:propanol (99:1, v:v), and filtered using
221 a 0.45 μm PTFE filter. This fraction was subsequently analyzed with ultra-high performance liquid
222 chromatography mass spectrometry (UHPLC-MS) on an Agilent 1260 Infinity HPLC coupled to an
223 Agilent 613MSD according to (Hopmans et al., 2016). The isoprenoid and branched GDGTs were
224 detected by scanning for their $[\text{M}+\text{H}]^+$ ions. The BIT index was calculated according to (Hopmans et
225 al., 2004).

226

227 **2.4. Macromolecular organic matter (MOM) isolation and analysis**

228 The sediment residues, remaining after lipid extraction, from the 13 samples from key locations were
229 dried under N_2 . To isolate MOM, dried sediment residue (2–3 g) was transferred into 50-mL centrifuge
230 tubes and decalcified with 30 mL 1 M HCl for 4 h, later rinsed twice with 25 mL milli-Q water (18 $\text{M}\Omega$).
231 After centrifugation and decanting the supernatant, 15-mL 40% HF (analytical grade, Merck) was
232 added and shaken for 2 h at 100 rpm. The solution was diluted with milli-Q water to 50 mL and left
233 standing overnight, after which the solution was decanted to a high-density polyethylene plastic
234 container designated for HF waste. A volume of 15 mL 30% HCl was added and subsequently diluted

235 with milli-Q water to 50 mL. After shaking for 1 h and centrifugation, the solution was decanted, and
236 the residues were washed with milli-Q water three times to neutralize pH and subsequently freeze-
237 dried. [The supernatant of all steps was collected in the HF waste container.](#) Samples were
238 desulfurized using activated copper pellets in DCM. Suspensions were stirred overnight after which
239 the copper pellets and DCM were removed. [The sample residue, containing the macromolecular](#)
240 [organic matter \(MOM\),](#) was air-dried prior to the analysis.

241
242 The analysis of MOM was conducted at Utrecht University using the pyrolysis-gas chromatograph-
243 mass spectrometry method previously described in (Nierop et al., 2017). In short, the isolated MOM
244 was pyrolyzed on a Horizon Instruments Curie-Point pyrolysis unit. The pyrolysis unit was connected
245 to a Carlo Erba GC8060 gas chromatograph and the products were separated by a fused silica
246 column (CP-Sil5, 25 m, 0.32 mm i.d.) coated with CP-Sil5 (film thickness 0.40 μm). The column was
247 coupled to a Fisons MD800 mass spectrometer. Pyrolysis products were identified using a NIST
248 library or by interpretation of the spectra, by their retention times and/or by comparison with literature
249 data. Quantification was performed according to (Nierop et al., 2017).

250
251 **2.5. Whole-core sediment incubation**
252 Triplicate intact sediment cores collected from [two strongly contrasting sites \(marine site 115 vs.](#)
253 [riverine site 21A\)](#) were used for whole-core incubation. [These sites represent relatively intensively](#)
254 [dredged marine and riverine areas, respectively, that contribute significantly to the total annual](#)
255 [dredged sediment volume in the PoR.](#) Prior to incubation, cores were carefully manipulated to have
256 \sim 15 cm of undisturbed top sediment [\(primary zone of diagenesis\)](#) with \sim 20 cm of overlying water
257 [\(achieving a \$\sim\$ 1:1 water:sediment volume ratio which represents a balance between sensitivity in](#)
258 [measuring fluxes while avoiding excess accumulation of \(inhibiting\) reactants in the overlying water](#)
259 [and ensuring a small fraction of the overlying water is replaced by discrete sampling\).](#) After confirming
260 that the sediment surface was not disturbed, an oxygen sensor spot (Presens) was attached to the
261 inner wall of the core tube (5 cm from the top) to monitor O_2 in the overlying water. The cores, capped
262 at the bottom and open at the top, were submerged in bottom water from the corresponding site in an
263 incubation tank. Stirrers were placed in each core to mix the overlying water (at \sim 1 rpm) and the cores
264 were left open overnight to equilibrate. The water in the tank was kept fully oxygenated by sparging
265 with air using an aquarium pump. Temperature in the room was maintained at the measured [in situ](#)
266 bottom water temperature (19 $^{\circ}\text{C}$). At the start of the incubation, the cores were capped with gas-tight
267 lids with an outlet to sample bottom water [from the](#) core and an inlet to replace sampled volume with
268 site water from a 20-L reservoir. Over the course of an eight-hour incubation period, 30 mL of bottom
269 water [\(equivalent to 2.3% of total overlaying water volume\)](#) were extracted at pre-determined time
270 intervals of 0, 1.5, 3.5, 5, 6.5, and 8 h. The dissolved O_2 concentration in the overlying water in each
271 core was measured every five minutes using the sensor spots and a Presens OXY-4 SMA meter with
272 fiber optic cables, operated using Presens Measurement Studio 2. Immediately after sampling, the
273 water samples were filtered using 0.45- μm nylon syringe filters for dissolved inorganic carbon (DIC).

274 [total alkalinity \(TA\)](#) and dissolved inorganic nitrogen (DIN: NH_4^+ , NO_3^- , NO_2^-) analysis, while an
275 unfiltered subsample was retained for methane (CH_4) analysis.

276
277 The DIC samples were diluted 10 times in N_2 -purged 25 g L^{-1} sodium chloride solution without
278 headspace and analyzed within 24 hours [on](#) a continuous flow analyzer (QuAAstro, Seal Analytical).
279 [The TA samples were kept at 5 °C without treatment and measured within a week using the same](#)
280 [analyzer.](#) The DIN samples were stored at -20 °C and later analyzed [on](#) a [TRAACS 800+](#) continuous
281 flow analyzer. For CH_4 , 12 mL of bottom water was directly transferred into a 12 mL Exetainer vial
282 (Labco), immediately poisoned with ~ 0.25 mL of saturated zinc chloride solution and capped with a
283 butyl rubber stopper ensuring no headspace was present. Dissolved CH_4 concentration was
284 determined using a headspace technique (Magen et al., 2014). Prior to the measurement, 1 mL of N_2
285 headspace was injected through the stopper in each Exetainer vial while a needle allowed the
286 equivalent volume of sample to escape, after which the samples were equilibrated for a week.
287 Headspace CH_4 concentrations were then measured [on](#) a gas chromatograph (Thermo Scientific
288 FOCUS GC) equipped with a HayeSep Q Packed GC Column and a flame ionization detector. A
289 [calibration](#) curve was made using a certified 1000 ppm CH_4 standard (Scott Specialty Gases
290 Netherlands B.V.). From the measured CH_4 concentration in the headspace, the total dissolved CH_4 in
291 the bottom water was calculated using the equations in (Magen et al., 2014) with the Bunsen
292 coefficient (Yamamoto et al., 1976). Benthic fluxes of DIC and CH_4 were calculated using the
293 concentration changes of solutes in the bottom water of closed cores during the incubation period, as
294 determined by linear regression analysis of the individual time series.

295 296 **2.6. Subaerial incubation of dredged sediment**

297 [To investigate OM degradability under oxygen exposure during dredged sediment processing while](#)
298 [avoiding oxygen supply as a limitation, open-air bottle incubations were conducted in triplicate for six](#)
299 [sediments from sites that covered contrasting depositional and sedimentary conditions within the](#)
300 [research area: three marine \(115, 86, NWWG-02; Fig. 1a\) and three riverine \(21A, B16, K1v2; Fig.](#)
301 [1a\), with differing sediment texture \(silt-rich and sand-rich\) in both groups. To obtain minimally altered](#)
302 [sediment in which the water content could be accurately and rapidly adjusted, and to ensure](#)
303 [reproducibility, we used freeze-dried and homogenized sediments from the six sites, in triplicate. The](#)
304 [freeze-dried sediment was](#) transferred into 330-mL borosilicate glass bottle^s, [resulting in](#) a thin
305 [sediment layer \(\$\leq 5\$ mm\). Artificial rainwater \(composition in Table S1\) \[was added to achieve a water\]\(#\)](#)

306 [content of 60% water-filled pore space \(assuming the same porosity after rewetting; calculation](#)
307 [provided in the SI\), which is a water content optimal for soil respiration \(Fairbairn et al., 2023\). The](#)
308 [rewetted sediments were](#) incubated in the dark at room temperature (20 °C). The CO_2 emission rates^s
309 [were](#) measured on day 2, 6, 9, 16, 23, 30 and 37: [in the later stages in incubations, the rates declined](#)
310 [significantly and became relatively stable after around one-month incubation, and the experiment was](#)
311 [terminated.](#) On the day of measurement, bottles were sealed with rubber stoppers tightened with
312 aluminum crimp caps for approximately 3 hours. We measured the CO_2 concentrations in the
313 headspace immediately after the bottles were capped and approximately 3 hours later. The CO_2

314 accumulation in the headspace of each bottle during these 3 hours was used to calculate a CO₂
315 emission rate. For the rest of the time, bottles were kept open to the atmosphere. The moisture level
316 was maintained once a week and varied by less than 10% from the target value.

317

318 The CO₂ measurement for the subaerial incubation was conducted by withdrawing a volume of 150
319 µL headspace gas using a 250-µL glass, gas-tight syringe (Hamilton). The headspace sample was
320 immediately injected into a gas chromatograph (GC, Agilent, 8890 GC system) equipped with a
321 Jetanizer and a flame ionization detector. Gases were carried by helium and separated by a
322 Carboxen-1010 PLOT analytical column (Sigma-Aldrich). Calibration was conducted by using certified
323 reference CO₂ gas (Scott specialty gases, Air Liquide, Eindhoven, The Netherlands).

324

325 To determine the percentage of degraded TOC over time, we firstly calculated the cumulative amount
326 of CO₂ emission and then normalized it to the total amount of organic carbon in the incubated
327 sediments, calculated from the dry sediment mass and its TOC content. The cumulative CO₂ emission
328 was obtained by integrating the CO₂ emission rate over time. For days when CO₂ emission rates were
329 not measured, the rates were estimated using spline interpolation. The integration and normalization
330 were performed using the 'AUC' (area under curve) function in RStudio.

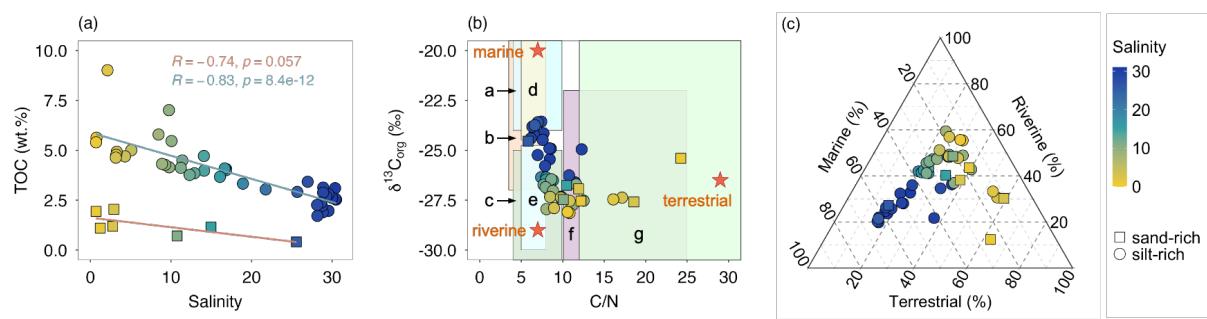
331

332 **2.7. End-member modelling of OM sources**

333 Contributions of three major OM end-members (marine, riverine, and terrestrial) to the 49 sediments
334 were quantified based on $\delta^{13}\text{C}_{\text{org}}$ and C/N ratio using a Bayesian mixing model, MixSIAR (Stock et al.,
335 2018). Anthropogenic OM such as petroleum and coal products were not considered as they typically
336 have a much higher C/N ratio (Tumuluru et al., 2012) compared to the investigated samples [here](#)
337 (mostly <20), thus suggesting a limited contribution. Input from industrial and chemical waste is
338 considered being minimal because >90% of sediment is regarded as clean/safe with organic
339 contaminants below their national intervention values (Kirichek et al., 2018). We did not include
340 sewage OM and agricultural wastes as separate end-members due to their high variability in $\delta^{13}\text{C}_{\text{org}}$
341 (−28‰–−23‰; Shao et al., 2019) and C/N ratio (Chow et al., 2020; Puyuelo et al., 2011; Szulc et al.,
342 2021), and values largely overlaps with those of the considered three end-members. The model
343 incorporates the common ranges of three OM end-members in coastal environments (Table 1) and
344 employs Markov Chain Monte Carlo (MCMC) simulation to sample from the posterior distribution. The
345 distribution provides estimates of the mean contribution with standard deviation. The model was run in
346 RStudio with package "MixSIAR" integrated into the JAGS program.

347

348 **Table 1.** Mean values and standard deviations of $\delta^{13}\text{C}_{\text{org}}$ and C/N ratio of three OM end-members
349 used in the MixSIAR analysis. Values from literature (Bianchi and Bauer, 2012; Finlay and Kendall,
350 2007; Lamb et al., 2006).


End-member	Typical OM	$\delta^{13}\text{C}_{\text{org}}$ (‰)	C/N
Marine OM end-member	Marine POC, algae, bacteria	−20±4	7±3
Riverine OM end-member	Freshwater POC, algae, bacteria	−29±4	7±3
Terrestrial OM end-member	Vegetation, soil OM, bacteria	−26.5±5.5	30±18

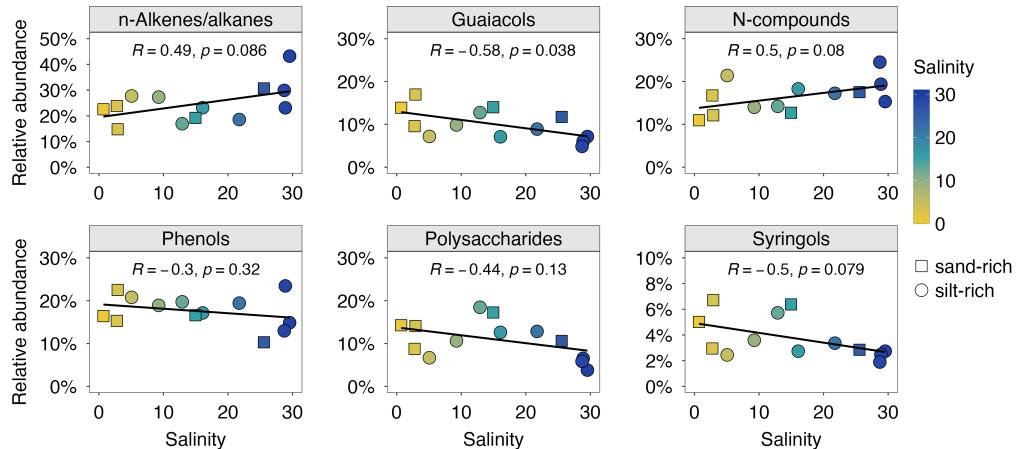
351

352 **3. Results**353 **3.1 Bulk geochemical feature of sediments**

354 The PoR sediments were mostly (42 out of 49 samples) silt-rich with D_{50} smaller than 20 μm . A
 355 salinity gradient was observed in the study area increasing from approximately 0 at the most eastern
 356 part (Rotterdam city) to approximately 32 at the river mouth in the west. We observed a decrease in
 357 TOC content with increasing salinity (Fig. 2a). The silt-rich sediments generally contained more than
 358 2.5 wt.% TOC, with significantly lower TOC contents in the sand-rich sediments ($p < 0.01$, Student's t -
 359 test). The weight ratio of C/N was between 5 and 13 for most samples (45 out of 49), and the
 360 corresponding $\delta^{13}\text{C}_{\text{org}}$ was in the range of $-29\text{\textperthousand}$ to $-23\text{\textperthousand}$ (Fig. 2b). Despite a weak correlation
 361 between C/N ratio and $\delta^{13}\text{C}_{\text{org}}$ ($R = -0.38$, Pearson), both properties showed (moderately) strong
 362 trends against salinity (C/N ratio: $R = -0.66$; $\delta^{13}\text{C}_{\text{org}}$: $R = 0.68$, Pearson; Fig. 2b).

363

364 **Fig. 2.** Bulk geochemical properties of 49 sediment samples from the PoR. (a) TOC vs. salinity for
 365 both silt-rich ($D_{50} < 20 \mu\text{m}$) and sand-rich ($D_{50} > 50 \mu\text{m}$) sediments. (b) $\delta^{13}\text{C}_{\text{org}}$ and the weight ratio of
 366 C/N in sediments along salinity gradient in contrast to the typical $\delta^{13}\text{C}_{\text{org}}$ and C/N ranges for OM from
 367 coastal sediments in literature (Bianchi and Bauer, 2012; Finlay and Kendall, 2007; Lamb et al.,
 368 2006): **a** marine POC, **b** bacteria, **c** freshwater POC, **d** marine algae, **e** freshwater algae, **f** soil OM, **g**
 369 C_3 terrestrial plants. [Orange star symbols](#) represent the mean values of three OM sources used in
 370 end-member analysis. (c) The contributions (%) of marine, riverine and terrestrial OM using a mixing
 371 model. The standard deviation (10–25%) is provided in the Supplementary Information (SI, Table S2).
 372


373

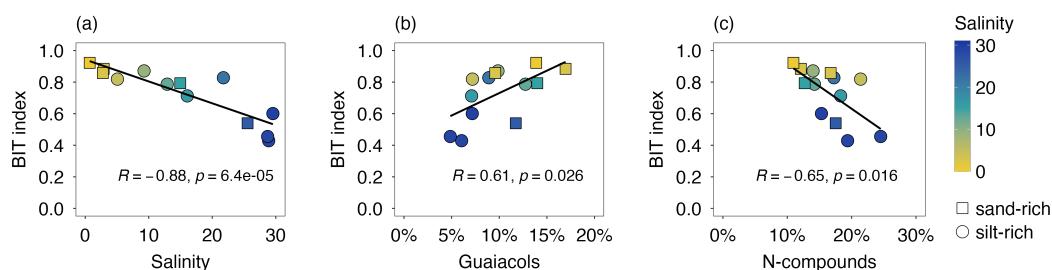
374 **3.2. Flash pyrolysis products of MOM**

375 Pyrolysis of isolated MOM produced hundreds of pyrolysis compounds. The identified pyrolysis
 376 products are listed in Supplementary Information (Table S3). They were divided into nine groups
 377 based on the chemical characteristics, following the approach detailed in Nierop et al. (2017). Here in
 378 Fig. 3, we present the relative abundance of six MOM pyrolysate groups along the salinity gradient,
 379 including *n*-alkenes/alkanes, guaiacols, N-compounds, phenols, polysaccharide-derived products, and
 380 syringols. The other three groups: phytadienes and pris-1-ene were only minor constituents (relative
 381 abundance < 5%), and aromatics showed a negligible correlation with salinity ($-0.1 < R < 0.1$,
 382 Pearson; Fig. S1). With increasing salinity, we observed an increase in the relative abundance of *n*-
 383 alkenes/alkanes and N-compounds, while guaiacols, phenols, polysaccharides, and syringols
 384 decreased. The correlations were generally moderate or weak, as suggested by the magnitude of the

correlation coefficient ($-0.6 < R < 0.6$, Pearson). Additionally, the correlation coefficients between the identified MOM pyrolysate groups and other bulk sediment properties (i.e. D50, C/N, $\delta^{13}\text{C}_{\text{org}}$) were also weak (see SI, Fig. S2).

388

389


Figure 3. The relative abundance of six groups of MOM pyrolysis products. Pearson correlation coefficient (R) measures the strength of the linear relationship between grouped pyrolysates and salinity.

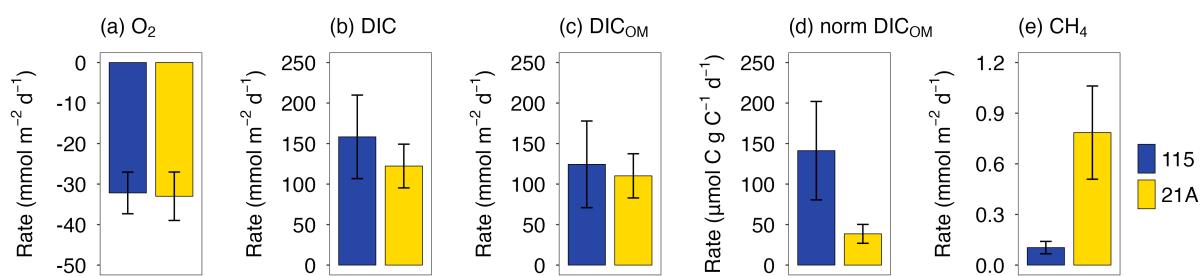
393

394 3.3. BIT index

395 Crenarchaeol and branched GDGTs were detected in sediments from all 13 investigated sites. The
 396 calculated BIT index ranged between 0.43 and 0.92 (Fig. 4a). A strong negative correlation was
 397 observed between BIT index and salinity ($R = -0.88$, Pearson) and between BIT index and $\delta^{13}\text{C}_{\text{org}}$ (R
 398 = -0.83 , Pearson). In contrast, the correlations with MOM pyrolysate products were in general weak or
 399 moderate ($-0.6 < R < 0.6$, Pearson; Fig. S2), except for guaiacols and N-compounds (Fig. 4b & 4c).
 400 Additionally, we did not observe a significant difference between sand-rich and silt-rich sediments in
 401 BIT index values ($p > 0.5$, Student's t -test).

402

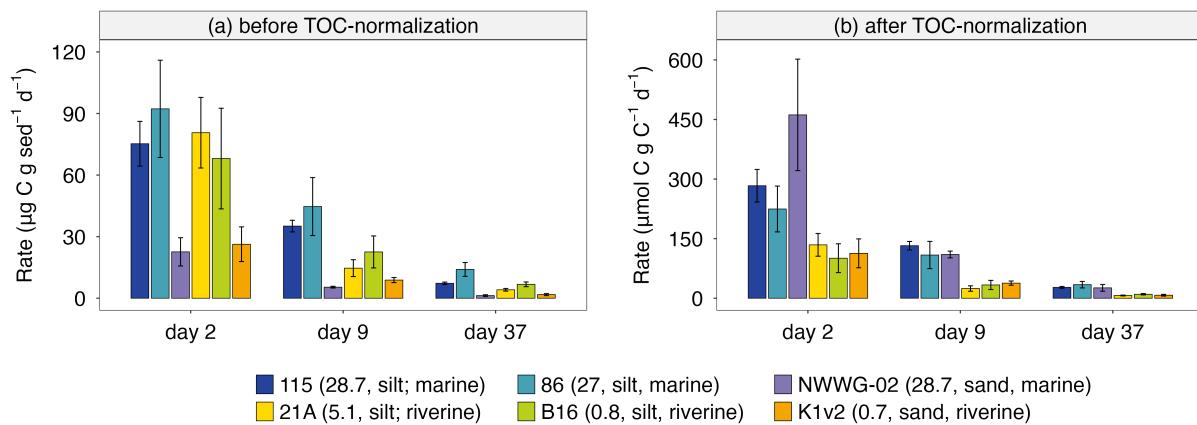
403


Fig. 4. The BIT index of 13 sediments against (a) salinity, (b) relative abundance of guaiacols, (c)
 404 relative abundance of N-compounds.

406

407 3.4. Benthic fluxes on intact sediment cores

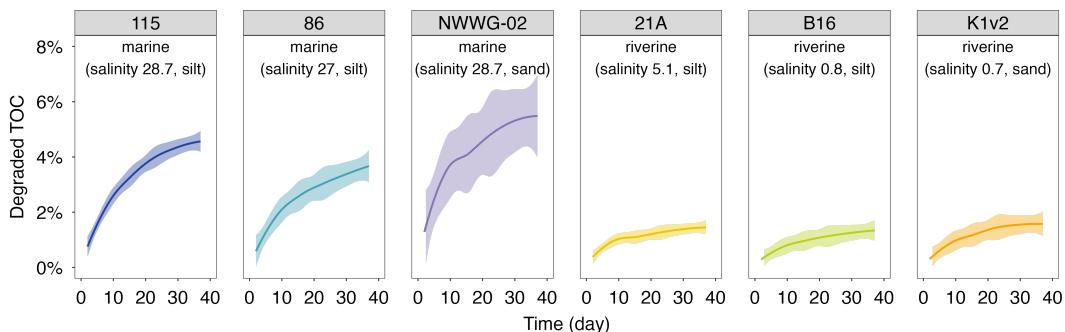
408 During the whole-core incubation, the O_2 concentration in the overlying water decreased linearly from
 409 around 90% to 60% air-saturation for both the high salinity location (115, salinity 29, later referred as


410 'marine' location) and the low salinity location (21A, salinity 5, later referred as 'riverine' location; SI
 411 Fig. S2). At the same time, concentrations of DIC and CH₄ in the overlying water increased linearly
 412 with time (Fig. S3). Benthic O₂ consumption and DIC release rates showed no significant differences
 413 between two contrasting locations ($p > 0.05$, Student's *t*-test), on average around 30 and 122–158
 414 mmol m⁻² d⁻¹, respectively (Fig. 5a, b). However, DIC was released into the overlying water at a much
 415 higher rate, 4–5 times larger than O₂ consumption rate. Correcting the DIC flux for contributions not
 416 associated with OM degradation (i.e. CaCO₃ dissolution) as described in the supplementary
 417 information provided us with an estimate of the DIC flux from OM degradation (DIC_{OM}) which
 418 accounted for 88–97% of the total DIC flux (Fig. 5c). When normalized to TOC to correct DIC_{OM} for
 419 differences in bulk TOC content, the DIC flux at 115 was about four times higher than at site 21A (Fig.
 420 5d). Additionally, the CH₄ efflux was one to two orders of magnitude smaller than the O₂ and DIC
 421 fluxes and showed significant differences between two contrasting locations: the CH₄ efflux at the river
 422 location was more than five times higher compared to the marine location (Fig. 5e).
 423

424
 425 **Fig. 5.** Benthic fluxes of dissolved O₂ (a) and DIC (b) determined from whole-core incubation. Positive
 426 and negative rates represent efflux (from sediment into overlying water) and influx (from overlying
 427 water into sediment), respectively. The contribution of OM degradation to benthic DIC fluxes is shown
 428 in panel (c) and further normalized by sediment TOC in panel (d). Panel (e) shows benthic CH₄ fluxes.
 429 Error bars represent standard deviations from triplicate core incubations. Other measured fluxes (e.g.
 430 DIN, total alkalinity) are available in Fig. S4.

431 432 3.5. Subaerial carbon emissions from bulk sediments

433 During the aerobic incubation experiment, CO₂ accumulation was detected during the 3-hour rate
 434 measurements for all timesteps. The CO₂ emission rate, expressed as $\mu\text{g C g}^{-1} \text{ day}^{-1}$, was the
 435 highest at the start of the incubation. Rates dropped drastically in the first two weeks and then
 436 stabilized after day 25. Here we present carbon emission rates at three timesteps representing the
 437 initial stage, declining stage, and stable stage (Fig. 6). The silt-rich sediments showed both higher
 438 emission rates throughout the incubation period (up to 120 $\mu\text{g C g}^{-1} \text{ day}^{-1}$) and stronger decreases in
 439 rate over time (more than 60 $\mu\text{g C g}^{-1} \text{ day}^{-1}$), compared to sand-rich sediments (maximum rate
 440 around 35 $\mu\text{g C g}^{-1} \text{ day}^{-1}$; Fig. 6a). The TOC-normalized carbon emission rates were higher (up to
 441 three times) in the three marine sediments (salinity 27–28) compared to the three riverine sediments
 442 (salinity 0–5) throughout the experiment (Fig. 6b).


443

444 **Fig. 6.** Carbon emission rates in aerobic incubation at day 2, day 9 and day 37 from six sediments.
445 Note the different scales and units for the y-axis for [carbon emission rates before TOC-normalization](#)
446 [\(a\) and after TOC-normalization \(b\).](#) Site information (i.e. salinity, sediment texture, and
447 marine/riverine location within the PoR) is given in brackets in the legend.

448

449 The decreasing trend of CO_2 emission rate was also reflected in the cumulative percentage of
450 degraded TOC over time (Fig. 7), which increased fast initially and stabilized towards the end of the
451 incubation experiment. After the 37-day incubation period, the amount of degraded TOC ranged [from](#)
452 1 to 7% for the investigated sites. Additionally, the percentage of degraded TOC was 2–4 times higher
453 in sediments from marine locations than those in river locations, consistent with the differences in
454 carbon emission rates (Fig. 6b).

455

456

457 **Fig. 7.** The percentage of degraded TOC over time in aerobic incubation experiments. The shading
458 areas represent the 95% confidential interval for the fitted locally estimated scatterplot smoothing
459 (LOESS) curves.

460

461 **4. Discussion**

462 **4.1 Organic matter content, source and composition in estuarine sediments**

463 The PoR sediments are characterized by relatively high TOC contents compared to [the](#) North Sea
464 surface sediments (0.03–2.79 wt.%; Wiesner et al., 1990), but in the range of Dutch coastal
465 sediments (0–9.8 wt.%; Stronkhorst and Van Hattum, 2003) or other harbor systems such as the Port

466 of Hamburg (2–7.6 wt.%; Zander et al., 2020). The high carbon content arose from high productivity
467 and rapid burial of OM under high sedimentation rates; oxygen penetration is limited in rapidly
468 accumulating, organic-rich sediment, and thus most OM breakdown occurs via relatively slow,
469 anaerobic processes (Schulz and Zabel, 2006). Moreover, the fine sediment texture observed at most
470 investigated sites limits oxygen diffusion and provides more sorption surface for OM (Keil et al., 1994),
471 both contributing to the preservation of sedimentary OM and thus high TOC content compared to
472 sandy sediment. This is expressed in the relatively low TOC content (0–2.5 wt.%) of the coarser-
473 grained sediments shown in Fig. 2a. Besides the clear impact of grain size on OM content, a general
474 decreasing trend in sediment TOC contents from river to marine area of the PoR sediments was
475 observed, in line with previous work on estuarine sediment OM (Strong et al., 2012). The relatively
476 low OM content in sediment from the marine-dominated sites in part arises from the large input (up to
477 5.7 million tons per year) in this area of repeatedly resuspended, OM-poor coastal sediment
478 transported by strong tide and waves (Cox et al., 2021). More frequent dredging activities at the
479 marine sites may also contribute to the lower OM content (Fig. 2a), as also witnessed in other coastal
480 sediments (Aller et al., 1996). Furthermore, moving downstream from the riverine to the marine part of
481 estuarine systems, the contribution of OM-rich riverine sediment not only decreases but continuing
482 OM degradation in this transported sediment further diminishes the amount of riverine OM (Bianchi et
483 al., 2018; Freitas et al., 2021).

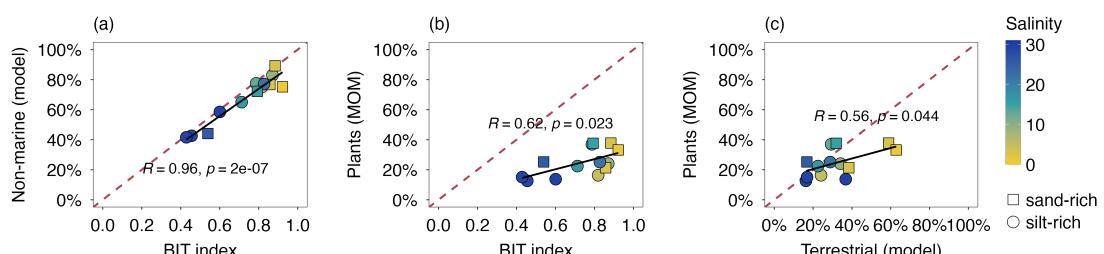
484

485 The OM burial and degradation are not only affected by the sediment dynamics as described above,
486 but also by the source and inherent properties of the OM. The $\delta^{13}\text{C}_{\text{org}}$ and C/N ratio have been widely
487 used to assess OM sources in coastal environments (Canuel and Hardison, 2016; Lamb et al., 2006;
488 Li et al., 2021; Middelburg and Nieuwenhuize, 1998). The OM in the estuarine ecosystems can
489 originate from multiple sources, and the typical ranges of $\delta^{13}\text{C}_{\text{org}}$ and C/N ratio for the common OM
490 sources are indicated in Fig. 2b. The trends in $\delta^{13}\text{C}_{\text{org}}$ and C/N ratio suggest that OM in the PoR
491 sediments is derived from a mixture of marine, riverine and terrestrial OM that are sourced from algae,
492 bacteria, soil OM, and terrestrial plants, the relative contribution of these sources being a function of
493 depositional conditions (riverine versus marine) also reflected by salinity (Fig. 2b). The observed
494 $\delta^{13}\text{C}_{\text{org}}$ values (−29–−23‰) and their trend against salinity are similar to those in the broader Rhine
495 estuary reported in earlier work by (Middelburg and Herman, 2007), suggesting that intense sediment
496 reworking in connection with harbor expansion over the last 15 years has had little impact on
497 sediment OM sources. Furthermore, the range in observed $\delta^{13}\text{C}_{\text{org}}$ values is lower than that reported
498 for temperate marine OM (−18 and −22‰; Thornton and McManus, 1994), reflecting a significant non-
499 marine OM source even under nearly marine conditions at the river mouth. Quantification of the
500 different sources using end-member modelling similarly indicates that the dominant OM source shifts
501 with depositional environment: terrestrial OM in the most river-dominated locations (up to 65%,
502 salinity < 5), freshwater OM in the river-sea transitional area (~ 45%, 5 < salinity < 25), and marine
503 OM in the river-mouth area (up to 65%, salinity > 25).

504

505 Regarding the range of and trend in C/N values, it is important to note that the value is subject to OM-
506 specific alterations during sediment diagenesis: for higher plant litter, the C/N ratio decreases during
507 decomposition, while for aquatic detritus the C/N ratio increases during degradation (Hedges and
508 Oades, 1997; Wakeham and Canuel, 2006). These opposing diagenetic trajectories can result in a
509 convergence of C/N ratios of terrestrial and aquatic detritus (Middelburg and Herman, 2007). This
510 may explain [the observation that](#) bulk sediments at many of the investigated sites in the PoR research
511 area have C/N ratios near the upper limit of the typical range for freshwater algae (~8) or POC (~10),
512 or around the lower limit of the typical range for C₃ plants (~12, Fig. 2b). Compared to the C/N ratio,
513 the BIT index is thought to be less sensitive to diagenetic effects (Hopmans et al., 2004). This proxy
514 indicates a predominant riverine and/or terrestrial source of the sedimentary OM (Schouten et al.,
515 2013). The BIT values from this study are in line with the values previously determined by Herfort et
516 al. (2006) in sediment at Maassluis (0.74–0.82; close to NWWG-09, Fig 1), while they are much
517 higher than those determined in coastal sediments of the southern North Sea (0.02–0.25; Herfort et
518 al., 2006), highlighting the sharp transition in OM composition between estuarine and coastal systems
519 and the importance of non-marine OM throughout the harbor system.

520
521 The source proxies presented above ($\delta^{13}\text{C}_{\text{org}}$, C/N, BIT) indicate a strong terrestrial and riverine OM
522 signature across the salinity gradient in the PoR study area, with a considerable marine contribution
523 at the river mouth. The pyrolysis products from MOM offer additional insights into sediment OM
524 sources and composition. Guaiacols and syringols are pyrolytic markers of terrestrial OM, as they are
525 characteristic structural moieties of lignin, a typical biopolymer of higher plants. Their relative
526 abundance together (7–28%) falls within the reported lignin fractions (3–57%) for various coastal
527 aquatic environments (Brandini et al., 2022; Burdige, 2007; Kaal et al., 2020). Although having
528 multiple potential sources, the markers of polysaccharides in [the investigated](#) samples showed strong
529 positive correlations with both guaiacols ($R = 0.77$, Pearson) and syringols ($R = 0.83$, Pearson),
530 suggesting they were mainly derived from terrestrial higher plants. The decreasing trends of these
531 markers (relative abundance 10–40%) with increasing salinity, well aligned with $\delta^{13}\text{C}_{\text{org}}$ and BIT index,
532 further support the decreasing importance of terrestrial OM input towards the river [mouth](#). In contrast,
533 N-compounds showed strong negative correlations with both guaiacols ($R = -0.84$, Pearson) and
534 syringols ($R = -0.81$, Pearson), suggesting a non-terrestrial OM origin such as protein from algal
535 detritus and chitin from various crustaceans (Nierop et al., 2017). *n*-Alkenes/alkanes, negatively
536 correlated with (terrestrial) polysaccharide-derived products ($R = -0.78$, Pearson; Fig. S2), [were](#)
537 probably from non-terrestrial sources like algaenan (de Leeuw et al., 2006). The other detected
538 pyrolysis products constituted a major fraction (> 50%) but most correlated with all mentioned source
539 proxies moderately or poorly ($-0.5 < R < 0.5$, Pearson; Fig. S2), thus are less effective [provenance](#)
540 [proxies because they originate from multiple sources](#).


541
542 All proxies and analytical techniques have their strengths and weaknesses in determining OM
543 sources. Here, we obtain further insight into MOM characteristics by exploring the relationships
544 between different independent OM proxies and the end-member modelling results. There is [a strong](#)

545 agreement between the BIT index and the modelled non-marine OM contribution ($R = 0.96$, Pearson;
 546 Fig. 8a), indicating that both approaches agree with respect to the relative contribution of terrestrial
 547 sources (plants, rivers, soils) to the sedimentary OM pool. The contribution to the MOM pool by lignin-
 548 derived products, likely representing remains of higher plants, was up to 40% (Fig. 8b) and correlated
 549 strongly with BIT index ($R = 0.62$, Pearson). However, the weak slope in the scatter plot of BIT and
 550 plant-MOM suggests that plant-derived OM was a lesser indicator of changes in OM composition and
 551 reactivity in the harbor area. There was overall good agreement between the plant-derived
 552 contribution from chemical MOM analysis and end-member modelling (Fig. 8c), indicating that mixing
 553 models based on bulk OM parameters can provide valuable information about OM composition in
 554 dynamic coastal settings.

555

556 The terrestrial OM fraction modelled from C/N and $\delta^{13}\text{C}_{\text{org}}$ showed a positive correlation with plant-
 557 derived MOM pyrolysis products (Fig. 8c). Most data points seem to lie around the 1:1 curve except for
 558 two sand-rich outliers. However, interpreting their relationship in Fig. 8c is challenging because of the
 559 complexity in assigning MOM pyrolysis products to terrestrial-derived OM in estuarine environments.
 560 Phenols and N-compounds, partially derived from terrestrial OM, are not included in the presented
 561 MOM-determined contribution here. On the other hand, pyrolysis of algal material also produces
 562 polysaccharide-derived products (Stevenson and Abbott, 2019), which can lead to overestimation of
 563 MOM-determined terrestrial contribution. Nevertheless, this study suggests using bulk proxies (C/N,
 564 $\delta^{13}\text{C}_{\text{org}}$) in combination with biomarker proxies (BIT index, MOM pyrolysis products) can provide a
 565 more complete picture of OM composition in highly dynamic systems like estuaries.

566

567

568 Fig. 8. Scatter plots of proxies for OM source: (a) BIT index vs. non-marine OM contribution (i.e.
 569 terrestrial and riverine input from the three end-member modelling), (b) modelled terrestrial OM
 570 contribution vs. plant-derived MOM pyrolysis products (i.e. sum of guaiacols, syringols,
 571 polysaccharide-derived products), (c) BIT index vs. plant-derived MOM pyrolysis products (i.e. sum of
 572 guaiacols, syringols, polysaccharide-derived products). The red dashed lines are 1:1 curves and the
 573 black lines are the linear regression fitting curves.

574

575 4.2 Organic matter degradation: rates and pathways

576 In the 8-h whole-core incubation experiment, oxygen consumption was mostly due to OM
 577 mineralization; the upward diffusive fluxes of reduced species (e.g. Fe^{2+} , HS^-) that can react with
 578 oxygen represented a negligible oxygen sink at the sediment-water interface (< 1% of total oxygen
 579 uptake; calculation detailed in the SI). The measured benthic O_2 consumption rates in the PoR

580 sediments ($33 \pm 6 \text{ mmol m}^{-2} \text{ d}^{-1}$) were similar to the reported rates in coastal sediments in the North
581 Sea ($22.1 \pm 0.6 \text{ mmol m}^{-2} \text{ d}^{-1}$; Neumann et al., 2021) and other human-influenced estuarine sediments
582 ($27 \text{--} 82 \text{ mmol m}^{-2} \text{ d}^{-1}$; Kraal et al., 2013). In estuarine systems, high primary production and shallow
583 water depth (here 13–25 m) lead to deposition of a substantial amount of freshly produced OM,
584 contributing to the high aerobic OM degradation rates. Furthermore, the whole-core incubation
585 showed similar O_2 consumption rates while TOC-normalized carbon emission rates from OM
586 degradation—measured as DIC in the whole-core incubation and CO_2 in the subaerial bottle
587 incubation experiment—were higher in marine sediments compared to riverine sediments (Fig. 5, 6).
588 Here, the DIC_{OM} flux, which more broadly represents OM degradation in the surface sediment as it
589 includes anaerobic OM degradation pathways, was normalized to TOC in order to compare between
590 sites with strongly differing surface-sediment TOC contents (2.2 wt.% for site 115 vs. 5 wt.% for site
591 21A). The results indicate that short-term oxic respiration rates (Fig. 5a), driven by rapid degradation
592 of freshly deposited (algal) OM at the sediment-water interface, were similar between sites.
593 Furthermore, OM degradation rates may have been affected by (similar) limitation of O_2 supply rather
594 than carbon availability. By contrast, overall (Fig. 5d) and long-term (Fig. 6b) OM degradation in the
595 riverine sediment was 3–4 times slower than in the marine sediment, the former being characterized
596 by a higher proportion of more recalcitrant OM sources. This suggests a link between OM composition
597 and 'quality' (rather than quantity) and the CO_2 release potential from (dredged) estuarine sediment.
598 Sediment from site 115 likely received a greater supply and burial of freshly produced (N-rich) algal
599 OM, due to a faster burial rate ($10 \text{--} 15 \text{ cm yr}^{-1}$) than at riverine site 21A ($<10 \text{ cm yr}^{-1}$; Cox et al.,
600 2021). Riverine sediments (e.g. 21A), however, were richer in eroded soil OM (Fig. 8), which is
601 typically more recalcitrant and N-depleted than freshly produced algal OM.

602
603 Regarding the role of estuaries in carbon cycling, a crucial transition in anaerobic OM degradation
604 pathways is the onset of methanogenesis, which occurs when other TEAs have become depleted.
605 Due to a lower salinity and thus a shallowing of the sulfate-methane transition zone (Kuliński et al.,
606 2022), sediment from a river location (21A; salinity 5) exhibited an eight-time larger CH_4 efflux (Fig.
607 5c) compared to the marine location (115; salinity 29) despite of less degradable OM with a stronger
608 terrestrial signature (Fig. 2) as evidenced by the above-described lower OM mineralization rates
609 relative to TOC content. Similar spatial variability of benthic CH_4 fluxes as a function of salinity was
610 documented in other estuaries but with rather different values ($0.2 \text{--} 19 \text{ mmol m}^{-2} \text{ d}^{-1}$; Gelesh et al.,
611 2016; Li et al., 2021; Middelburg et al., 2002). Note that the benthic fluxes measured here do not
612 directly translate into atmospheric CO_2 and CH_4 emissions, as various processes (e.g. carbonate
613 system equilibria, CH_4 oxidation) act on the speciation and concentration of these greenhouse gases
614 released from the sediment. Nevertheless, estuaries are considered as hotspots for both CO_2 and
615 CH_4 emissions into atmosphere (Li et al., 2023; Middelburg et al., 2002). Therefore, elucidating how in
616 addition to OM content the source and composition as well environmental conditions during OM
617 degradation control the magnitude and speciation of carbon release from estuarine sediment is
618 important to better constrain the role of estuaries in global carbon cycling.
619

620 **4.3 The impact of perturbation on organic matter degradation**

621 Sediment dredging and its further management, such as relocation on land, often alter OM
622 degradation conditions substantially by reintroducing O₂. In principle, aerobic degradation is more
623 effective than anaerobic degradation as aerobic oxidation has a relatively high energy yield, especially
624 compared to sulfate reduction (Hansen and Blackburn, 1991). This is reflected in the whole-core
625 incubation results, where aerobic mineralization confined in the uppermost few-millimeter-thick
626 sediment layer (Revsbech et al., 1980) accounted for 25–30% of the total OM-derived DIC production
627 across the entire 15-cm sediment core. By manually perturbing sediments and exposing them to
628 atmospheric oxygen in subaerial incubations, we found that the initial (day 2) TOC-normalized carbon
629 emission rate (283±42 and 134±29 $\mu\text{mol C g C}^{-1} \text{d}^{-1}$ for 115 and 21A, respectively; Fig. 6b) increased
630 to 2–3 times of that in undisturbed whole-core incubation (158±61 and 41±12 $\mu\text{mol C g C}^{-1} \text{d}^{-1}$ for 115
631 and 21A, respectively; Fig. 5d). These findings agree with a slurry incubation experiment under
632 contrasting redox conditions using Dutch coastal sediments conducted by (Dauwe et al., 2001), which
633 showed that the mineralization rate under aerobic conditions was faster than anaerobic conditions by
634 up to one order of magnitude. Furthermore, the increase in carbon emission rate was more
635 pronounced in the riverine sediment (21A) with a three-fold increase after perturbation, compared to
636 the marine sediment (115) with a two-fold increase. We attribute this to the stronger terrestrial,
637 recalcitrant signature of OM in the riverine part of the investigated harbor area. (Hulthe et al., 1998)
638 suggested that the impact of redox conditions and specifically oxygen availability is greatest for
639 relatively recalcitrant OM; fresh, labile OM is degraded relatively rapidly under aerobic and anaerobic
640 conditions. Therefore, the difference in the observed rate increase following sediment perturbation
641 may be attributed to the more active enzymatic catalysis involved in the degradation of terrestrial OM,
642 such as lignin, cellulose, and tannins (Hedges and Oades, 1997), compared to freshly produced
643 marine OM was more predominant.

644

645 These OM source-dependent differences in OM degradation rates were expressed across the six
646 investigated sites: the TOC-normalized carbon emission rates were over 100% higher in marine
647 sediments (115, 86, NWWG-02) than riverine sediments (21A, B16, K1v2) at almost all timesteps (Fig.
648 6b). This observed difference was supported by the OM end-member analysis: sediments near the
649 river mouth (115, 86, NWWG-02) were composed of more than 50% marine OM and less than 20%
650 terrestrial OM, whereas sediments from the river side (21A, B16, K1v2) were dominated (>70%) by
651 non-marine OM (Fig. 2c, Table S2). The faster degradation rate of marine OM, such as algae, which
652 was reported to be up to 10 times faster than terrestrial OM (Guillemette et al., 2013), likely explains
653 the higher TOC-normalized carbon emission rates in marine sediments. We note that sample
654 treatment for the subaerial bottle incubation experiment, i.e. freeze-drying and rewetting, may have
655 reduced overall microbial activities and thus OM degradability, but previous studies indicate that such
656 an effect is likely limited (He et al., 2022; Wu et al., 2020) and does not affect the overall conclusions
657 regarding the role of OM source and reactivity in shaping CO₂ emission kinetics.

659 In addition to the degradation rate, the extent of OM degradation is also affected by the OM source
660 and composition. By the end of the subaerial incubation experiment, marine sediments (115, 86,
661 NWWG-02) exhibited 2–4 times larger fractions of degraded TOC than riverine sediments (21A, B16,
662 K1v2; Fig. 7). Despite a lower TOC content, marine sediments contained a higher percentage of
663 fresher and more labile OM, thus resulting in a larger biodegradation fraction after 37 days of
664 subaerial incubation. [A majority of the annual dredged sediment volume is marine \(~77%; Kirichek et](#)
665 [al., 2018\) and, consequently, dredging mostly perturbs sediments with relatively labile OM and high](#)
666 [potential CO₂ emission rates.](#) Interestingly, sand-rich sediment NWWG-02 exhibited a notably larger
667 biodegradable OM fraction (up to 7%; Fig. 7), highlighting sediment texture may play an important role
668 besides OM sources. Silt-rich sediment can contain 20 times more mineral-associated OM than sand-
669 rich wetland soils (Mirabito and Chambers, 2023). This mineral-associated OM, physically protected
670 by inorganic matrices from mineralization, was suggested to play a key role in lasting carbon
671 sequestration globally ([Georgiou et al., 2022; Keil et al., 1994](#)).

672

673 Despite variations in the fractions of degraded TOC, more than 90% of the organic carbon remained
674 in the sediments by the end of the 37-day aerobic incubation experiments (Fig. 7). This aligns with
675 other studies where a majority fraction (> 80%) of organic carbon remained preserved in sediments or
676 soils after prolonged incubation periods ranging from weeks to years (Gebert et al., 2019; Haynes,
677 2005; Plante et al., 2011). The predominant fraction of sediment OM being less degradable on such
678 timescales fits well with the relatively large amounts (~50%) of pyrolysis products derived from
679 (terrestrial) polysaccharide, *n*-alkenes/alkanes from algaenan, guaiacols and syringols from lignin.
680 However, (Zander et al., 2022) indicated that the slow degradation of the majority of OM could also be
681 attributed to its association with sedimentary minerals. Importantly, the remaining OM, while resistant
682 to degradation over weeks to years, is still potentially degradable on longer timescales and relevant
683 for the carbon footprint of perturbing estuarine sediment over decades. While [the results in this study](#)
684 indicate that reintroduction of O₂ leads to a short-lived increase in estuarine OM degradation rates,
685 the degradation can still be stimulated under certain conditions. For instance, the addition of fresh,
686 readily degradable OM, known as priming, was reported to increase the degradability of old,
687 recalcitrant OM by 59% (Huo et al., 2017). This highlights [that](#) the organic carbon turnover rate is
688 rather complex and can vary markedly under different sediment management practices.

689

690 **4.4 Implications and future perspectives**

691 Estuaries are sites of high OM production and understanding [OM](#) processes within these regions is
692 key to quantify organic carbon budgets along the river-estuary-coastal ocean continuum (Canuel and
693 Hardison, 2016). [In the PoR, sediment OM degradation \(i.e. degradation rate and biodegradable pool\)](#)
694 [exhibited a large spatial variation \(marine vs. riverine\), demonstrated in both whole-core and subaerial](#)
695 [incubation experiments. This spatial variability likely reflected a shift of OM composition, where marine](#)
696 [sediment was richer in freshly produced, easily degradable OM of algal origin. Similar source-](#)
697 [dependent OM degradation patterns were also observed in other coastal systems \(e.g. the Elbe](#)
698 [estuary; Zander et al., 2022\). However, the spatial distribution of OM may vary between different](#)

699 estuaries, driven by many environmental factors (e.g. hydrological conditions, nutrient availability, land
700 use). Combining multiple independent proxies (e.g. C/N, $\delta^{13}\text{C}_{\text{org}}$, biomarkers) can improve our ability
701 to understand the source, transport and fate of OM in (perturbed) estuarine environments.

702 Degradation of OM is responsible for nutrient [cycling](#), oxygen balance [between](#) the aquatic system
703 and sediment, and most early diagenetic processes (Middelburg et al., 1993). [Therefore](#), recognizing
704 and differentiating OM reactivity of varying sources can help to refine the biogeochemical processes
705 and minimize the uncertainty in estimating OM mineralization and preservation efficiency in both field
706 and theoretical frameworks.

707
708 Anthropogenic perturbation like dredging within the coastal zone have greatly intensified in recent
709 decades. [It is therefore important to explore the impact of such activities, specifically dredging and](#)
710 [potential sediment reuse, on the fate of carbon stored in estuarine sediments. The growing trend of](#)
711 [sediment reuse on land \(e.g. beach nourishment, dike construction\) introduces subaerial conditions](#)
712 [that can boost carbon mineralization rates \(2–3 times\), as shown in the open-air incubations. Current](#)
713 [practice with unpolluted PoR dredged sediment is relocation in the shallow North Sea, which is likely](#)
714 [to lead to less CO₂ emission than open-air incubation because \(1\) burial of dredged sediment at sea](#)
715 [limits exposure to O₂ and thus degradation rates and \(2\) buffering of released CO₂ in the water](#)
716 [column by conversion to HCO₃[−]. However, extensive resuspension in the coastal zone will increase](#)
717 [O₂ exposure and CO₂ release into seawater results in a pH decrease, and as such the reactivity of](#)
718 [dredged material as determined in this study is also relevant to inform about the environmental impact](#)
719 [of disposal at sea. Overall, balancing sediment valorization with its associated carbon footprint is of](#)
720 [importance in determining the suitable sediment management strategies.](#)

721
722 Methane, a strong greenhouse gas, is often oversaturated in the OM-rich coastal sediments, [favoring](#)
723 [CH₄ bubble formation. Most CH₄ is trapped below the sulfate-methane transition zone, within which](#)
724 [anaerobic oxidation of methane \(AOM\) coupled to SO₄^{2−} removes approximately 71% of the CH₄ in](#)
725 [marine sediments \(Gao et al., 2022\). Dredging, similar to the natural forms of sediment erosion \(Hulot](#)
726 [et al., 2023\), can disrupt the functioning of this AOM filter and destabilize riverbed/seabed, leading to](#)
727 [a temporary CH₄ escape via enhanced diffusion and ebullition \(Maeck et al., 2013; Nijman et al.,](#)
728 [2022\). However, in the long term, exposing sediments to oxygen is expected to inhibit methane](#)
729 [production and emissions \(Nijman et al., 2022\). Whether dredging \[and the following sediment\]\(#\)](#)
730 [processing will shift the estuarine sediment from a carbon sink into a carbon source \[is dependent on\]\(#\)](#)
731 [the pristine sediment carbon dynamics \[and the specifications of\]\(#\) human disturbance. Indubitably,](#)
732 [estuaries will remain vulnerable to human pressure and climate change. These alternations will in](#)
733 [return influence the important drivers of the estuarine, further affecting the balance between OM](#)
734 [degradation and preservation \(Heckbert et al., 2012\).](#)

735

736 **Conclusions**

737 The PoR sediments, like many other coastal sediments, exhibited relatively high OM content and
738 reactivity due to the high primary production and rapid sedimentation in these shallow aquatic
739 systems. Organic carbon in marine sediments degraded up to 5 times faster than that in riverine
740 sediments under both intact and perturbed conditions. This variability was suggested to reflect
741 differences in OM composition: marine sediments were richer in recently produced, labile algal OM.
742 By contrast, riverine sediments contained larger amounts of eroded, more recalcitrant soil and plant-
743 derived OM. Additionally, OM degradation rates were 2–3 times higher in the open-air, disturbed
744 sediment incubations than the intact whole-core incubations. This suggested that perturbation
745 triggered by sediment dredging and processing can mobilize the sequestered sediment organic
746 carbon. Despite only 1–7% of organic carbon was released after 37-day open-air incubation, certain
747 favorable conditions may still promote degradation of the remaining organic carbon. With the growing
748 need for dredging and other coastal sediment reworking, it is therefore of great importance to
749 consider the sensitivity of carbon in sediment management practices on relevant timescales and in
750 the context of the fast-changing environmental conditions.

751
752
753
754

755 **Author contribution**
756 GW conceptualized the study, developed the methodology, conducted the investigation and formal
757 analysis, created visualizations, and wrote the original draft of the manuscript. KN and BY contributed
758 to the investigation and formal analysis, and reviewed and edited the manuscript. SS and GJR
759 reviewed and edited the manuscript. PK supervised the project, contributed to the conceptualization
760 and methodology, acquired funding, and reviewed and edited the manuscript. All authors reviewed
761 and agreed on the final version of the manuscript.

762

763 **Data availability**
764 The datasets used in this study are available from the corresponding author upon reasonable request.

765

766 **Declaration of competing interest**
767 The authors declare no competing interests.

768

769 **Acknowledgements**
770 This study is part of the project 'Transforming harbor sediment from waste into resource' funded by
771 the Exact and Natural Sciences domain of the Dutch Research Council, NWO (grant number
772 TWM.BL.019.005). We extend our gratitude to the Port of Rotterdam Authority, particularly Marco
773 Wensveen and Ronald Rutgers, and Heijdra Milieu Service B.V. for their assistance with sediment
774 collection. We thank Julia Gebert from Delft University of Technology for her stimulating discussion.
775 We appreciate the scientific and technical staff from NIOZ Royal Netherlands Institute for Sea
776 Research for their analytical support.

777

778 **Appendix A. Supplementary data**
779 The online version contains supplementary material available at XXX.

780

781

782

783 **References**

784 Aller, R. C.: Bioturbation and remineralization of sedimentary organic matter: effects of redox
785 oscillation, *Chem Geol*, 114, 331–345, [https://doi.org/10.1016/0009-2541\(94\)90062-0](https://doi.org/10.1016/0009-2541(94)90062-0), 1994.

786 Amar, M., Benzerzour, M., Kleib, J., and Abriak, N. E.: From dredged sediment to supplementary
787 cementitious material: characterization, treatment, and reuse, *International Journal of Sediment
788 Research*, 36, 92–109, <https://doi.org/10.1016/j.ijsrc.2020.06.002>, 2021.

789 Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.:
790 Quantifying the degradation of organic matter in marine sediments: A review and synthesis, *Earth Sci
791 Rev*, 123, 53–86, <https://doi.org/10.1016/j.earscirev.2013.02.008>, 2013.

792 Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R.: The value of
793 estuarine and coastal ecosystem services, *Ecol Monogr*, 81, 169–193, <https://doi.org/10.1890/10-1510.1>, 2011.

795 Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., and Regnier, P. A. G.: The
796 changing carbon cycle of the coastal ocean, *Nature*, 504, 61–70, <https://doi.org/10.1038/nature12857>,
797 2013.

798 Bianchi, T. S. and Bauer, J. E.: *Particulate Organic Carbon Cycling and Transformation*, Elsevier Inc.,
799 69–117 pp., <https://doi.org/10.1016/B978-0-12-374711-2.00503-9>, 2012.

800 Bianchi, T. S., Cui, X., Blair, N. E., Burdige, D. J., Eglinton, T. I., and Galy, V.: Centers of organic
801 carbon burial and oxidation at the land-ocean interface, *Org Geochem*, 115, 138–155,
802 <https://doi.org/10.1016/j.orggeochem.2017.09.008>, 2018.

803 Brandini, N., da Costa Machado, E., Sanders, C. J., Cotovicz, L. C., Bernardes, M. C., and Knoppers,
804 B. A.: Organic matter processing through an estuarine system: Evidence from stable isotopes ($\delta^{13}\text{C}$
805 and $\delta^{15}\text{N}$) and molecular (lignin phenols) signatures, *Estuar Coast Shelf Sci*, 265,
806 <https://doi.org/10.1016/j.ecss.2021.107707>, 2022.

807 Burd, A. B., Frey, S., Cabre, A., Ito, T., Levine, N. M., Lønborg, C., Long, M., Mauritz, M., Thomas, R.
808 Q., Stephens, B. M., Vanwalleghem, T., and Zeng, N.: Terrestrial and marine perspectives on
809 modeling organic matter degradation pathways, *Glob Chang Biol*, 22, 121–136,
810 <https://doi.org/10.1111/gcb.12987>, 2016.

811 Burdige, D. J.: Preservation of organic matter in marine sediments: Controls, mechanisms, and an
812 imbalance in sediment organic carbon budgets?, *Chem Rev*, 107, 467–485,
813 <https://doi.org/10.1021/cr050347q>, 2007.

814 Burdige, D. J.: *Estuarine and Coastal Sediments - Coupled Biogeochemical Cycling*, Elsevier Inc.,
815 279–316 pp., <https://doi.org/10.1016/B978-0-12-374711-2.00511-8>, 2012.

816 Buurman, P., Nierop, K. G. J., Pontevedra-Pombal, X., and Martínez Cortizas, A.: Chapter 10
817 Molecular chemistry by pyrolysis-GC/MS of selected samples of the Penido Vello peat deposit,
818 Galicia, NW Spain, *Developments in Earth Surface Processes*, 9, 217–240,
819 [https://doi.org/10.1016/S0928-2025\(06\)09010-9](https://doi.org/10.1016/S0928-2025(06)09010-9), 2006.

820 Canuel, E. A. and Hardison, A. K.: Sources, Ages, and Alteration of Organic Matter in Estuaries, *Ann
821 Rev Mar Sci*, 8, 409–434, <https://doi.org/10.1146/annurev-marine-122414-034058>, 2016.

822 Cao, C., Cai, F., Qi, H., Zhao, S., and Wu, C.: Differences in the sulfate–methane transitional zone in
823 coastal pockmarks in various sedimentary environments, *Water (Switzerland)*, 13, 1–18,
824 <https://doi.org/10.3390/w13010068>, 2021.

825 Carneiro, L. M., do Rosário Zucchi, M., de Jesus, T. B., da Silva Júnior, J. B., and Hadlich, G. M.:
826 $\delta^{13}\text{C}$, $\delta^{15}\text{N}$ and TOC/TN as indicators of the origin of organic matter in sediment samples from the
827 estuary of a tropical river, *Mar Pollut Bull*, 172, <https://doi.org/10.1016/j.marpolbul.2021.112857>, 2021.

828 Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., Pan, G. T.,
829 Puyuelo, B., Ponsá, S., Gea, T., Sánchez, A., Szulc, W., Rutkowska, B., Gawroński, S., and
830 Wszelaczyńska, E.: Determining C/N ratios for typical organic wastes using biodegradable fractions,
831 *Processes*, 85, 653–659, <https://doi.org/10.3390/pr9091501>, 2020.

832 Cloern, J. E., Canuel, E. A., and Harris, D.: Stable carbon and nitrogen isotope composition of aquatic
833 and terrestrial plants of the San Francisco Bay estuarine system, *Limnol Oceanogr*, 47, 713–729,
834 <https://doi.org/10.4319/lo.2002.47.3.0713>, 2002.

835 Cox, J. R., Dunn, F. E., Nienhuis, J. H., van der Perk, M., and Kleinhans, M. G.: Climate change and
836 human influences on sediment fluxes and the sediment budget of an urban delta: The example of the

837 lower rhine-meuse delta distributary network, *Anthropocene Coasts*, 4, 251–280,
838 <https://doi.org/10.1139/anc-2021-0003>, 2021.

839 Dauwe, B., Middelburg, J. J., and Herman, P. M. J.: Effect of oxygen on the degradability of organic
840 matter in subtidal and intertidal sediments of the North Sea area, 215, 13–22, 2001.

841 Dür, H. H., Laruelle, G. G., van Kempen, C. M., Slomp, C. P., Meybeck, M., and Middelkoop, H.:
842 Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to
843 the Oceans, *Estuaries and Coasts*, 34, 441–458, <https://doi.org/10.1007/s12237-011-9381-y>, 2011.

844 Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.: Global diffusive fluxes of methane in
845 marine sediments, *Nat Geosci*, 11, 421–425, <https://doi.org/10.1038/s41561-018-0122-8>, 2018.

846 Fabbri, D., Sangiorgi, F., and Vassura, I.: Pyrolysis-GC-MS to trace terrigenous organic matter in
847 marine sediments: A comparison between pyrolytic and lipid markers in the Adriatic Sea, *Anal Chim
848 Acta*, 530, 253–261, <https://doi.org/10.1016/j.aca.2004.09.020>, 2005.

849 Fairbairn, L., Rezanezhad, F., Gharasoo, M., Parsons, C. T., Macrae, M. L., Slowinski, S., and Van
850 Cappellen, P.: Relationship between soil CO₂ fluxes and soil moisture: Anaerobic sources explain
851 fluxes at high water content, *Geoderma*, 434, 116493,
852 <https://doi.org/10.1016/j.geoderma.2023.116493>, 2023.

853 Finlay, J. C. and Kendall, C.: Stable Isotope Tracing of Temporal and Spatial Variability in Organic
854 Matter Sources to Freshwater Ecosystems, in: *Stable Isotopes in Ecology and Environmental
855 Science*, edited by: Michener, R. and Lajtha, Wiley, 283–333,
856 <https://doi.org/10.1002/9780470691854.ch10>, 2007.

857 Freitas, F. S., Pika, P. A., Kasten, S., Jorgensen, B. B., Rassmann, J., Rabouille, C., Thomas, S.,
858 Sass, H., Pancost, R. D., and Arndt, S.: New insights into large-scale trends of apparent organic
859 matter reactivity in marine sediments and patterns of benthic carbon transformation, *Biogeosciences*,
860 18, 4651–4679, <https://doi.org/10.5194/bg-18-4651-2021>, 2021.

861 Gao, Y., Wang, Y., Lee, H. S., and Jin, P.: Significance of anaerobic oxidation of methane (AOM) in
862 mitigating methane emission from major natural and anthropogenic sources: a review of AOM rates in
863 recent publications, *Environmental Science: Advances*, 1, 401–425,
864 <https://doi.org/10.1039/d2va00091a>, 2022.

865 Gebert, J., Knoblauch, C., and Gröngröft, A.: Gas production from dredged sediment, *Waste
866 Management*, 85, 82–89, <https://doi.org/10.1016/j.wasman.2018.12.009>, 2019.

867 Gelesh, L., Marshall, K., Boicourt, W., and Lapham, L.: Methane concentrations increase in bottom
868 waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, U.S.A., *Limnol
869 Oceanogr*, 61, S253–S266, <https://doi.org/10.1002/lno.10272>, 2016.

870 Georgiou, K., Jackson, R. B., Vinušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J. W.,
871 Pellegrini, A. F. A., Polley, H. W., Soong, J. L., Riley, W. J., and Torn, M. S.: Global stocks and
872 capacity of mineral-associated soil organic carbon, *Nat Commun*, 13, 1–12,
873 <https://doi.org/10.1038/s41467-022-31540-9>, 2022.

874 Guillemette, F., McCallister, S. L., and Del Giorgio, P. A.: Differentiating the degradation dynamics of
875 algal and terrestrial carbon within complex natural dissolved organic carbon in temperate lakes, *J
876 Geophys Res Biogeosci*, 118, 963–973, <https://doi.org/10.1002/jgrg.20077>, 2013.

877 Hansen, L. S. and Blackburn, T. H.: Aerobic and anaerobic mineralization of organic material in
878 marine sediment microcosms, *Mar Ecol Prog Ser*, 75, 283–291, <https://doi.org/10.3354/meps075283>,
879 1991.

880 Haynes, R. J.: Labile Organic Matter Fractions as Central Components of the Quality of Agricultural
881 Soils: An Overview, *Advances in Agronomy*, 85, 221–268, [https://doi.org/10.1016/S0065-2113\(04\)85005-3](https://doi.org/10.1016/S0065-
882 2113(04)85005-3), 2005.

883 He, Y., Zhang, T., Zhao, Q., Gao, X., He, T., and Yang, S.: Response of GHG emissions to interactions
884 of temperature and drying in the karst wetland of the Yunnan-Guizhou Plateau, *Front Environ Sci*, 10,
885 <https://doi.org/10.3389/fenvs.2022.973900>, 2022.

886 Heckbert, S., Costanza, R., Poloczanska, E. S., and Richardson, A. J.: Climate Regulation as a
887 Service from Estuarine and Coastal Ecosystems, Elsevier Inc., 199–216 pp.,
888 <https://doi.org/10.1016/B978-0-12-374711-2.01211-0>, 2012.

889 Hedges, J. I. and Oades, J. M.: Comparative organic geochemistries of soils and marine sediments,
890 *Org Geochem*, 27, 319–361, [https://doi.org/10.1016/S0146-6380\(97\)00056-9](https://doi.org/10.1016/S0146-6380(97)00056-9), 1997.

891 Herfort, L., Schouten, S., Boon, J. P., Woltering, M., Baas, M., Weijers, J. W. H., and Sinninghe
892 Damsté, J. S.: Characterization of transport and deposition of terrestrial organic matter in the southern
893 North Sea using the BIT index, *Limnol Oceanogr*, 51, 2196–2205,
894 <https://doi.org/10.4319/lo.2006.51.5.2196>, 2006.

895 Holligan, P. M. and Reiners, W. A.: Predicting the Responses of the Coastal Zone to Global Change,
896 *Adv Ecol Res*, 22, 211–255, [https://doi.org/10.1016/S0065-2504\(08\)60137-3](https://doi.org/10.1016/S0065-2504(08)60137-3), 1992.

897 Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., and Schouten,
898 S.: A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid
899 tetraether lipids, *Earth Planet Sci Lett*, 224, 107–116, <https://doi.org/10.1016/j.epsl.2004.05.012>, 2004.

900 Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.: The effect of improved chromatography
901 on GDGT-based palaeoproxies, *Org Geochem*, 93, 1–6,
902 <https://doi.org/10.1016/j.orggeochem.2015.12.006>, 2016.

903 Hulot, V., Metzger, E., Thibault de Chanvalon, A., Mouret, A., Schmidt, S., Deflandre, B., Rigaud, S.,
904 Beneteau, E., Savoye, N., Souchu, P., Le Merrer, Y., and Maillet, G. M.: Impact of an exceptional
905 winter flood on benthic oxygen and nutrient fluxes in a temperate macrotidal estuary: Potential
906 consequences on summer deoxygenation, *Front Mar Sci*, 10,
907 <https://doi.org/10.3389/fmars.2023.1083377>, 2023.

908 Hulthe, G., Hulth, S., and Hall, P. O. J.: Effect of oxygen on degradation rate of refractory and labile
909 organic matter in continental margin sediments, *Geochim Cosmochim Acta*, 62, 1319–1328,
910 [https://doi.org/10.1016/S0016-7037\(98\)00044-1](https://doi.org/10.1016/S0016-7037(98)00044-1), 1998.

911 Huo, C., Luo, Y., and Cheng, W.: Rhizosphere priming effect: A meta-analysis, *Soil Biol Biochem*, 111,
912 78–84, <https://doi.org/10.1016/j.soilbio.2017.04.003>, 2017.

913 Hutchings, J. A., Bianchi, T. S., Najjar, R. G., Herrmann, M., Kemp, W. M., Hinson, A. L., and Feagin,
914 R. A.: Carbon Deposition and Burial in Estuarine Sediments of the Contiguous United States, *Global
915 Biogeochem Cycles*, 34, <https://doi.org/10.1029/2019GB006376>, 2020.

916 IJsseldijk, L. L., Camphuysen, K. C. J., Nauw, J. J., and Aarts, G.: Going with the flow: Tidal influence
917 on the occurrence of the harbour porpoise (*Phocoena phocoena*) in the Marsdiep area, The
918 Netherlands, *J Sea Res*, 103, 129–137, <https://doi.org/10.1016/j.seares.2015.07.010>, 2015.

919 Jørgensen, B. B., Wenzhöfer, F., Egger, M., and Glud, R. N.: Sediment oxygen consumption: Role in
920 the global marine carbon cycle, *Earth Sci Rev*, 228, <https://doi.org/10.1016/j.earscirev.2022.103987>,
921 2022.

922 Kaal, J.: Analytical pyrolysis in marine environments revisited, *Analytical Pyrolysis Letters*, 1–16,
923 2019.

924 Kaal, J., Martínez Cortizas, A., Mateo, M. Á., and Serrano, O.: Deciphering organic matter sources
925 and ecological shifts in blue carbon ecosystems based on molecular fingerprinting, *Science of the
926 Total Environment*, 742, 140554, <https://doi.org/10.1016/j.scitotenv.2020.140554>, 2020.

927 Keil, R., Montluçon, D., Prahl, F., and Hedges, J.: Sorptive preservation of labile organic matter in
928 marine sediments, *Nature*, 370, 549–552, <https://doi.org/https://doi.org/10.1038/370549a0>, 1994.

929 Kirichek, A., Rutgers, R., Wenssween, M., and van Hassent, A.: Sediment management in the Port of
930 Rotterdam, in: *Baggern - Unterbringen - Aufbereiten - Verwerten*, Steinbeis-Transverzentrum
931 Angewandte Landschaftsplanung, 1–8, 2018.

932 Kraal, P., Burton, E. D., Rose, A. L., Cheetham, M. D., Bush, R. T., and Sullivan, L. A.: Decoupling
933 between water column oxygenation and benthic phosphate dynamics in a shallow eutrophic estuary,
934 *Environ Sci Technol*, 47, 3114–3121, <https://doi.org/10.1021/es304868t>, 2013.

935 Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P. O. J.,
936 Humborg, C., Jilbert, T., Jürgens, K., Meier, H. E. M., Müller-Karulis, B., Naumann, M., Olesen, J. E.,
937 Savchuk, O., Schramm, A., Slomp, C. P., Sofiev, M., Sobek, A., Szymczycha, B., and Undeman, E.:
938 Biogeochemical functioning of the Baltic Sea, <https://doi.org/10.5194/esd-13-633-2022>, 2022.

939 Kuwae, T., Kanda, J., Kubo, A., Nakajima, F., Ogawa, H., Sohma, A., and Suzumura, M.: Blue carbon
940 in human-dominated estuarine and shallow coastal systems, *Ambio*, 45, 290–301,
941 <https://doi.org/10.1007/s13280-015-0725-x>, 2016.

942 Lamb, A. L., Wilson, G. P., and Leng, M. J.: A review of coastal palaeoclimate and relative sea-level
943 reconstructions using $\delta^{13}\text{C}$ and C/N ratios in organic material, *Earth Sci Rev*, 75, 29–57,
944 <https://doi.org/10.1016/j.earscirev.2005.10.003>, 2006.

946 LaRowe, D. E. and Van Cappellen, P.: Degradation of natural organic matter: A thermodynamic
947 analysis, *Geochim Cosmochim Acta*, 75, 2030–2042, <https://doi.org/10.1016/j.gca.2011.01.020>, 2011.

948 LaRowe, D. E., Arndt, S., Bradley, J. A., Estes, E. R., Hoar frost, A., Lang, S. Q., Lloyd, K. G.,
949 Mahmoudi, N., Orsi, W. D., Shah Walter, S. R., Steen, A. D., and Zhao, R.: The fate of organic carbon
950 in marine sediments - New insights from recent data and analysis, *Earth Sci Rev*, 204, 103146,
951 <https://doi.org/10.1016/j.earscirev.2020.103146>, 2020.

952 Laruelle, G. G., Dürr, H. H., Slomp, C. P., and Borges, A. V.: Evaluation of sinks and sources of CO₂
953 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves,
954 *Geophys Res Lett*, 37, 1–6, <https://doi.org/10.1029/2010GL043691>, 2010.

955 de Leeuw, J. W., Versteegh, G. J. M., and van Bergen, P. F.: Biomacromolecules of algae and plants
956 and their fossil analogues, *Plant Ecol*, 182, 209–233, <https://doi.org/10.1007/s11258-005-9027-x>,
957 2006.

958 Li, M., Guo, Y., Cai, W. J., Testa, J. M., Shen, C., Li, R., and Su, J.: Projected increase in carbon
959 dioxide drawdown and acidification in large estuaries under climate change, *Commun Earth Environ*,
960 4, 1–10, <https://doi.org/10.1038/s43247-023-00733-5>, 2023.

961 Li, Y., Zhan, L., Chen, L., Zhang, J., Wu, M., and Liu, J.: Spatial and temporal patterns of methane
962 and its influencing factors in the Jiulong River estuary, southeastern China, *Mar Chem*, 228, 103909,
963 <https://doi.org/10.1016/j.marchem.2020.103909>, 2021.

964 Lovley, D. R. and Phillips, E. J. P.: Availability of Ferric Iron for Microbial Reduction in Bottom
965 Sediments of the Freshwater Tidal Potomac River, *Appl Environ Microbiol*, 52,
966 <https://doi.org/https://doi.org/10.1128/aem.52.4.751-757.1986>, 1986.

967 Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J.,
968 Kennedy, H., Kuwae, T., Lavery, P. S., Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B.,
969 Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W., Hall-Spencer, J. M.,
970 Huxham, M., Hendriks, I. E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P.,
971 McGlathery, K. J., Megonigal, J. P., Murdiyarso, D., Russell, B. D., Santos, R., Serrano, O., Silliman,
972 B. R., Watanabe, K., and Duarte, C. M.: The future of Blue Carbon science, *Nat Commun*, 10, 1–13,
973 <https://doi.org/10.1038/s41467-019-11693-w>, 2019.

974 Maeck, A., Delsontro, T., McGinnis, D. F., Fischer, H., Flury, S., Schmidt, M., Fietzek, P., and Lorke, A.:
975 Sediment trapping by dams creates methane emission hot spots, *United States of America,*
976 *Environmental Science and Technology*, 8130–8137, 2013.

977 Magen, C., Lapham, L. L., Pohlman, J. W., Marshall, K., Bosman, S., Casso, M., and Chanton, J. P.: A
978 simple headspace equilibration method for measuring dissolved methane, *Limnol Oceanogr Methods*,
979 12, 637–650, <https://doi.org/10.4319/lom.2014.12.637>, 2014.

980 McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E.,
981 Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: Toward an improved
982 understanding of the role of vegetated coastal habitats in sequestering CO₂, *Front Ecol Environ*, 9,
983 552–560, <https://doi.org/10.1890/110004>, 2011.

984 Middelburg, J. J. and Herman, P. M. J.: Organic matter processing in tidal estuaries, *Mar Chem*, 106,
985 127–147, <https://doi.org/10.1016/j.marchem.2006.02.007>, 2007.

986 Middelburg, J. J. and Nieuwenhuize, J.: Carbon and nitrogen stable isotopes in suspended matter and
987 sediments from the Schelde Estuary, *Mar Chem*, 60, 217–225, [https://doi.org/10.1016/S0304-4203\(97\)00104-7](https://doi.org/10.1016/S0304-4203(97)00104-7), 1998.

988 Middelburg, J. J., Vlug, T., Jaco, F., and van der Nat, W. A.: Organic matter mineralization in marine
989 systems, *Glob Planet Change*, 8, 47–58, [https://doi.org/10.1016/0921-8181\(93\)90062-S](https://doi.org/10.1016/0921-8181(93)90062-S), 1993.

990 Middelburg, J. J., Nieuwenhuize, J., Iversen, N., Høgh, N., De Wilde, H., Helder, W., Seifert, R., and
991 Christof, O.: Methane distribution in European tidal estuaries, *Biogeochemistry*, 59, 95–119,
992 <https://doi.org/10.1023/A:1015515130419>, 2002.

993 Mirabito, A. J. and Chambers, L. G.: Quantifying mineral-associated organic matter in wetlands as an
994 indicator of the degree of soil carbon protection, *Geoderma*, 430, 116327,
995 <https://doi.org/10.1016/j.geoderma.2023.116327>, 2023.

996 Neumann, A., van Beusekom, J. E. E., Eisele, A., Emeis, K. C., Friedrich, J., Kröncke, I., Logemann,
997 E. L., Meyer, J., Naderipour, C., Schückel, U., Wrede, A., and Zettler, M. L.: Macrofauna as a major
998 driver of benthic-pelagic exchange in the southern North Sea, *Limnol Oceanogr*, 66, 2203–2217,
999 <https://doi.org/10.1002/lno.11748>, 2021.

1001 Nierop, K. G. J., Reichart, G. J., Veld, H., and Sinninghe Damsté, J. S.: The influence of oxygen
1002 exposure time on the composition of macromolecular organic matter as revealed by surface
1003 sediments on the Murray Ridge (Arabian Sea), *Geochim Cosmochim Acta*, 206, 40–56,
1004 <https://doi.org/10.1016/j.gca.2017.02.032>, 2017.

1005 Nijman, T. P. A., Lemmens, M., Lurding, M., Kosten, S., Welte, C., and Veraart, A. J.: Phosphorus
1006 control and dredging decrease methane emissions from shallow lakes, *Science of the Total
1007 Environment*, 847, 157584, <https://doi.org/10.1016/j.scitotenv.2022.157584>, 2022.

1008 Plante, A. F., Fernández, J. M., Haddix, M. L., Steinweg, J. M., and Conant, R. T.: Biological, chemical
1009 and thermal indices of soil organic matter stability in four grassland soils, *Soil Biol Biochem*, 43,
1010 1051–1058, <https://doi.org/10.1016/j.soilbio.2011.01.024>, 2011.

1011 Puyuelo, B., Ponsá, S., Gea, T., and Sánchez, A.: Determining C/N ratios for typical organic wastes
1012 using biodegradable fractions, *Chemosphere*, 85, 653–659,
1013 <https://doi.org/10.1016/j.chemosphere.2011.07.014>, 2011.

1014 Revsbech, N. P., Sorensen, J., Blackburn, T. H., and Lomholt, J. P.: Distribution of oxygen in marine
1015 sediments measured with microelectrodes, *Limnol Oceanogr*, 25, 403–411,
1016 <https://doi.org/10.4319/lo.1980.25.3.0403>, 1980.

1017 Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic geochemistry of glycerol
1018 dialkyl glycerol tetraether lipids: A review, *Org Geochem*, 54, 19–61,
1019 <https://doi.org/10.1016/j.orggeochem.2012.09.006>, 2013.

1020 Schulz, H. and Zabel, M.: *Marine Geochemistry*, Springer Berlin Heidelberg New York, 132 pp., 2006.

1021 Shao, L., Wu, D., Zhang, D., and Feng, T.: Using Isotopes to Identify the Sources of Organic Carbon
1022 and Nitrogen in Surface Sediment in Shallow Lakes Alongside Poyang Lake, *Wetlands*, 39, 25–33,
1023 <https://doi.org/10.1007/s13157-017-0988-z>, 2019.

1024 Smith, R. W., Bianchi, T. S., and Savage, C.: Comparison of lignin phenols and branched/isoprenoid
1025 tetraethers (BIT index) as indices of terrestrial organic matter in Doubtful Sound, Fiordland, New
1026 Zealand, *Org Geochem*, 41, 281–290, <https://doi.org/10.1016/j.orggeochem.2009.10.009>, 2010.

1027 Steele, J. H., Thorpe, S. A., and Turekian, K. K.: *Marine Chemistry & Geochemistry*, edited by: Steele,
1028 J. H., Thorpe, S. A., and Turekian, K. K., 2010.

1029 Stevenson, M. A. and Abbott, G. D.: Exploring the composition of macromolecular organic matter in
1030 Arctic Ocean sediments under a changing sea ice gradient, *J Anal Appl Pyrolysis*, 140, 102–111,
1031 <https://doi.org/10.1016/j.jaat.2019.02.006>, 2019.

1032 Stock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., and Semmens, B. X.: Analyzing
1033 mixing systems using a new generation of Bayesian tracer mixing models, *PeerJ*, 2018, 1–27,
1034 <https://doi.org/10.7717/peerj.5096>, 2018.

1035 Strong, D. J., Flecker, R., Valdes, P. J., Wilkinson, I. P., Rees, J. G., Zong, Y. Q., Lloyd, J. M., Garrett,
1036 E., and Pancost, R. D.: Organic matter distribution in the modern sediments of the Pearl River
1037 Estuary, *Org Geochem*, 49, 68–82, <https://doi.org/10.1016/j.orggeochem.2012.04.011>, 2012.

1038 Stronkhorst, J. and Van Hattum, B.: Contaminants of concern in Dutch marine harbor sediments, *Arch
1039 Environ Contam Toxicol*, 45, 306–316, <https://doi.org/10.1007/s00244-003-0191-5>, 2003.

1040 Szulc, W., Rutkowska, B., Gawroński, S., and Wszelaczyńska, E.: Possibilities of using organic waste
1041 after biological and physical processing—an overview, *Processes*, 9,
1042 <https://doi.org/10.3390/pr9091501>, 2021.

1043 Thornton, S. F. and McManus, J.: Application of organic carbon and nitrogen stable isotope and C/N
1044 ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay
1045 estuary, Scotland, *Estuar Coast Shelf Sci*, 38, 219–233, <https://doi.org/10.1006/ecss.1994.1015>,
1046 1994.

1047 Tumuluru, J. S., Hess, J. R., Boardman, R. D., Wright, C. T., and Westover, T. L.: Formulation,
1048 pretreatment, and densification options to improve biomass specifications for Co-firing high
1049 percentages with coal, *Industrial Biotechnology*, 8, 113–132, <https://doi.org/10.1089/ind.2012.0004>,
1050 2012.

1051 van de Velde, S., van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and Meysman, F. J. R.:
1052 Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state, *Sci Rep*,
1053 8, 1–10, <https://doi.org/10.1038/s41598-018-23925-y>, 2018.

1054 Wakeham, S. G. and Canuel, E. A.: Degradation and preservation of organic matter in marine
1055 sediments, *Handbook of Environmental Chemistry*, Volume 2: Reactions and Processes, 2 N, 295–
1056 321, https://doi.org/10.1007/698_2_009, 2006.

1057 Wiesner, M. G., Haake, B., and Wirth, H.: Organic facies of surface sediments in the North Sea, *Org*
1058 *Geochem*, 15, 419–432, [https://doi.org/10.1016/0146-6380\(90\)90169-Z](https://doi.org/10.1016/0146-6380(90)90169-Z), 1990.

1059 Wu, D., Deng, L., Liu, Y., Xi, D., Zou, H., Wang, R., Sha, Z., Pan, Y., Hou, L., and Liu, M.:
1060 Comparisons of the effects of different drying methods on soil nitrogen fractions: Insights into
1061 emissions of reactive nitrogen gases (HONO and NO), *Atmospheric and Oceanic Science Letters*, 13,
1062 224–231, <https://doi.org/10.1080/16742834.2020.1733388>, 2020.

1063 Yamamoto, S., Alcauskas, J. B., and Crozier, T. E.: Solubility of Methane in Distilled Water and
1064 Seawater, *J Chem Eng Data*, 21, 78–80, <https://doi.org/10.1021/je60068a029>, 1976.

1065 Zander, F., Heimovaara, T., and Gebert, J.: Spatial variability of organic matter degradability in tidal
1066 Elbe sediments, *J Soils Sediments*, 20, 2573–2587, <https://doi.org/10.1007/s11368-020-02569-4>,
1067 2020.

1068 Zander, F., Groengroeft, A., Eschenbach, A., Heimovaara, T. J., and Gebert, J.: Organic matter pools
1069 in sediments of the tidal Elbe river, *Limnologica*, 96, 125997,
1070 <https://doi.org/10.1016/j.limno.2022.125997>, 2022.

1071
1072
1073
1074
1075
1076
1077