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Abstract 14 

Semi-arid ecosystems dominate variability and trend of the terrestrial carbon sink. They are sensitive to environmental changes 15 

following anthropogenic influence, such as an altered ratio of nitrogen (N) to phosphorus (P) due to increasing N deposition. 16 

Semi-arid savannas with different vegetation compositions have complex carbon dynamics, and their responses to 17 

environmental change are not yet well understood. We analysed a long-term (2016-2022/2023) dataset of flux, 18 

biometeorological and vegetation data (satellite and ground measurements) of a manipulated semi-arid savanna to reveal how 19 

altered nutrient levels and stoichiometric balance affect the seasonal sensitivity of net ecosystem exchange (NEE) to its drivers. 20 

We used the Singular Spectrum Analysis to extract the seasonal signal of all variables and assessed the key drivers of NEE 21 

over the study period as a whole and in different seasons, using Pearson correlation and Information Theory. We found that 22 

both N and N+P addition to the ecosystem increased seasonal NEE variability, driven by greenness of the herbaceous layer. 23 

Analysing 7 years of data together, the water limitation in summer and energy limitation in winter outcompeted the fertilization 24 

effect. By investigating different phenological seasons, effects of nutrient addition on NEE-control relationships became 25 

clearer. In the summer, N+P addition led to a potential change in species composition and productivity resulting in a stronger 26 

interaction between herbaceous layer and NEE. During the transitional seasons (i.e., drydown and regreening), which 27 

determine the senescence and regreening of the herbaceous layer, we found NEE to be less sensitive towards meteorological 28 

drivers like relative humidity, radiation and air temperatures with N addition. The increasing NEE variability might become 29 

even more pronounced with N deposition and a changing climate in the future. 30 
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1 Introduction 31 

Terrestrial ecosystems are a major component of the global carbon cycle, with the ability to store significant amounts of carbon 32 

(Friedlingstein et al., 2022). While forests and wetlands contribute most to the terrestrial carbon sink, semi-arid ecosystems 33 

dominate its trend and interannual variability (Ahlström et al., 2015; Poulter et al., 2014; Zhang et al., 2016). Semi-arid 34 

ecosystems typically take up carbon from the atmosphere during the wet season and are dormant or emit carbon during the dry 35 

season (Metz et al., 2023). Net ecosystem exchange (NEE) describes this balance between carbon uptake through 36 

photosynthesis, typically expressed as gross primary productivity (GPP), and carbon release through ecosystem respiration 37 

(Reco). NEE in semi-arid regions varies strongly from year to year, depending on the climatic conditions and water availability 38 

(Haverd et al., 2017; Piao et al., 2020).  39 

Despite their important role in the global carbon cycle, semi-arid ecosystems and their dynamics are still not well understood. 40 

Long-term in-situ measurements from these regions are scarce. Particularly, eddy covariance (EC) measurements, which 41 

provide high-frequency and continuous ecosystem trace gas and water flux data (Baldocchi, 2020), are underrepresented in 42 

these regions (Jung et al., 2020). Consequently, semi-arid ecosystems remain poorly represented in terrestrial biosphere models 43 

(Fawcett et al., 2022; MacBean et al., 2021) due to their complex structure and high spatio-temporal variability, which are 44 

difficult to generalize.  45 

Recently efforts have been made to reveal drivers of NEE in semi-arid savannas to understand better their role in the global 46 

carbon cycle (Baldocchi and Arias Ortiz, 2024; Kannenberg et al., 2024; Ma et al., 2007, 2016; Zhang et al., 2010). Water 47 

related variables like precipitation and soil moisture availability are amongst the main NEE drivers (Archibald et al., 2009; 48 

Baldocchi and Arias Ortiz, 2024; Del Grosso et al., 2018; Huang et al., 2016b; Morgan et al., 2016), as they promote plant 49 

photosynthesis (Parton et al., 2012) and enhance heterotrophic respiration rates (Ma et al., 2016). Furthermore, 50 

photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and air temperatures can strongly impact NEE 51 

(Archibald et al., 2009; Baldocchi and Arias Ortiz, 2024; Del Grosso et al., 2018). Light absorption propels the electron 52 

transport mechanism integral to photosynthesis. VPD influences the modulation of stomata opening and temperature impacts 53 

the kinetics of enzymes involved in carboxylation processes, the process of carbon uptake into the plant (Baldocchi and Arias 54 

Ortiz, 2024). Also, other biotic factors, like soil microbial communities and organic matter play an important role in the 55 

ecosystem carbon cycle and contribute to Reco (Austin and Vivanco, 2006; Bastida et al., 2016; Hu et al., 2014). These drivers 56 

can differ for different vegetation types. Typical ecosystems in semi-arid regions are savannas where coexisting vegetation 57 

layers (e.g., tree and grass) interact in complex ways. The layers differ in their rooting depths (Moreno et al., 2005; Rolo and 58 

Moreno, 2012), water use strategies (Cubera and Moreno, 2007; Miller et al., 2010; Steiner et al., 2024) and phenological and 59 

life cycle strategies (Whitecross et al., 2017). Especially the herbaceous vegetation in two-layer ecosystems is often 60 

underestimated in its importance for the ecosystem water and carbon fluxes (Dubbert et al., 2014). In the Iberian Peninsula 61 

dehesas (or montados in Portugal), human shaped savanna-like agroecosystem, are wide-spread (Den Herder et al., 2017). 62 

Dehesas are open oak woodlands with an herbaceous layer that consists mainly of annual grasses and sometimes crops. The 63 
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tree layer is evergreen (Moreno, 2008), whereas the herbaceous layer typically follows an annual cycle of growth, senescence 64 

and regreening (Ma et al., 2007; Perez-Priego et al., 2015). As savannas are typically characterized by changing resource 65 

limitations throughout the year (Luo et al., 2020; Ries and Shugart, 2008), limited by water in the dry season and by nutrients 66 

and energy in the wet season (Moreno, 2008; Morris et al., 2019; Nair et al., 2019), these drivers change with the seasons 67 

throughout the year. The complex interactions between tree and grass layers, along with changing limitations result in a high 68 

complexity of the ecosystem’s carbon dynamics, which remain to be fully understood.  69 

Semi-arid ecosystems face numerous human-induced environmental changes, including stoichiometric imbalances between 70 

nitrogen (N) and phosphorus (P). These imbalances arise from increasing N inputs into ecosystems due to fertilizers and 71 

combustion of fossil fuels (Steffen et al., 2015) without corresponding increase in P inputs (Penuelas et al., 2013). Few studies 72 

have dealt so far with the impact of altered nutrient levels on NEE and its drivers in semi-arid regions. The availability and 73 

stoichiometric balance of N and P influences ecosystem functioning and plant traits (Reichstein et al., 2014), water use 74 

efficiency (El-Madany et al., 2021; Huang et al., 2016a), canopy structure (Migliavacca et al., 2017), composition of species 75 

(Sardans et al., 2012), and the seasonality of vegetation activity (Luo et al., 2020). However, different plant types react 76 

differently to changes in nutrient availability, due to variations in generation times and buffering capacities (Pardo et al., 2011). 77 

Therefore, the understanding of the response of complex tree-grass ecosystems to changes in N and P availability and their 78 

stoichiometric balance is still poor. 79 

 80 

In this study we took advantage of the unique long-term dataset collected in a semi-arid dehesa, Majadas de Tiétar, in South-81 

Western Spain. A large-scale nutrient addition experiment has been running here since 2015, providing an exceptional 82 

opportunity to study the long-term influence of altered N:P ratios on ecosystem functioning (El-Madany et al., 2021). Three 83 

EC flux towers have been set up, with the footprint of one tower receiving N fertilization, another one receiving N+P 84 

fertilization and the third serving as control. Previous studies found that both treatments increased the annual carbon uptake of 85 

the ecosystem and that N+P addition increased the water use efficiency of the ecosystem more than N-only addition, which 86 

could be attributed to higher transpiration rates and a changed root strategy in the N-only fertilized plot (El-Madany et al., 87 

2021; Nair et al., 2019). Nutrient addition further led to a higher seasonal amplitude of maximum GPP and a faster increase 88 

during the regreening period, but also a faster senescence during the drydown period, which indicates changes in plant structure 89 

and physiology (Luo et al., 2020). 90 

Here we analysed a 7-year (2016-2022) timeseries of daily values of environmental and biogenic variables from Majadas de 91 

Tiétar, combining flux data, meteorological measurements, digital repeat photography and satellite data to address the 92 

following questions: How do altered nutrient levels and stoichiometric balance affect  93 

− annual NEE and its variability in a semi-arid savanna? 94 

− the relationship between NEE and its key controls? 95 

− the relationship between NEE and its key controls in different seasons? 96 

− the sensitivity of NEE to its controls over time? 97 
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The relationships between NEE and its controls vary across different time scales (Mahecha et al., 2007). To disentangle these 98 

timescales from a time series and eliminate noise from the high-frequency measurements, we can use decomposition methods 99 

(Linscheid et al., 2020). On short timescales the NEE sensitivity follows the diurnal cycle of the sun, showing a great 100 

dependency on radiation. Ecosystem-level responses, in contrast, often develop on scales of months, seasons or years (Ma et 101 

al., 2016). Therefore, we extracted the seasonal signals of all variables from the timeseries with the Singular Spectrum Analysis, 102 

a data-driven timeseries decomposition method. On the seasonal scale we assessed the key drivers of NEE with Pearson 103 

correlation coefficient and information theory-based methods, accounting for collinear relationships as well as leading and 104 

lagging effects. As NEE controls vary in their importance throughout the year due to a high seasonality of the ecosystem, we 105 

split the dataset into phenological seasons defined by vegetation responses to different limitations. 106 

2 Material and Methods 107 

2.1 Site Description 108 

The Majadas de Tiétar research site is located in Western Spain (39°56′25″N 5°46′29″W). The local ecosystem consists of an 109 

herbaceous stratum and scattered evergreen oak trees (98% Quercus ilex). The tree density is around 20-25 trees per hectare 110 

(El-Madany et al., 2018), the fractional canopy cover of trees is 23 % and the canopy height is on average 8.7 m (Bogdanovich 111 

et al., 2021). The tree leaf area index (LAI) is around 0.35 m2 m-2, the grass layer has a peak LAI in spring but is quite spatially 112 

heterogeneous at between 0.5 and 2.5 m2 m-2 (Migliavacca et al., 2017). The site is managed and continuously used for grazing 113 

livestock at a low density of 0.3 cows per hectare (El-Madany et al., 2018). In the driest months (July - September) the farmers 114 

move the cattle to nearby mountain grasslands (personal communication).  115 

The climate at the site is semi-arid with an annual precipitation of around 650 mm with strong interannual variability. Almost 116 

85 % of the annual precipitation falls in the wet season between October and April, whereas the rest of the year is dry with 117 

occasional rains (El-Madany et al., 2021). According to Nair et al. (2024) we defined five different seasons. Spring is the main 118 

growing season and usually starts around March and ends in late May. Then the drydown period starts and the grasses start to 119 

become senescent due to depletion of soil moisture, increasing temperatures, radiation and vapor pressure deficit. The summer 120 

(typically between end of June until end of September) is characterized by long-lasting dryness and a dormant/dead herbaceous 121 

layer. With the onset of precipitation (usually in October), the autumn starts and the herbaceous layer regreens (Nair et al., 122 

2024). The winter months (December-February) are energy limited. The onset and offset of the different seasons vary from 123 

year to year, depending on water availability and winter temperature (Luo et al., 2020). The mean annual temperature is 16.7°C 124 

with an average minimum temperature of -4.7°C and maximum temperature of 41.1°C (between 2004-2019) (El-Madany et 125 

al., 2021). Dominant wind directions are West-Southwest and East-Northeast (El-Madany et al., 2018). 126 

Three EC towers at ecosystem level were operated simultaneously at the site. The ecosystem is heterogeneous with a high 127 

variability in plant species in the herbaceous layer (at scale of centimetres) and tree cover (at scale of meters). It becomes 128 

homogeneous on the scales of a few hundreds of meters. The daytime flux footprints of the three towers correspond to the 129 
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scale being homogeneous and they do not overlap with each other under prevailing meteorological conditions (El-Madany et 130 

al., 2018). The control tower (Fluxnet ID: ES-LMa) has been operated since 2003, it is hereafter referred to as CT. The North 131 

tower (Fluxnet ID: ES-LM1) was set up at a distance of 450 m from CT in north-western direction and the South tower (Fluxnet 132 

ID: ES-LM2) was located 630 m in southern direction from CT (El-Madany et al., 2018). Since 2015 a large-scale fertilization 133 

experiment has been conducted at the site, where N fertilizer is added in the footprint of the North tower (hereafter referred to 134 

as NT) and N and P fertilizer are applied in the footprint of the South tower (referred to as NPT) (El-Madany et al., 2021). 135 

After the initial application of 100 kg N ha-1 and 50 kg P ha-1 in March 2015 and November 2014, respectively, additional N 136 

and P addition were applied every 1-2 years with lower doses. Next to each flux tower there is a radiometric tower setup, 137 

measuring radiation components above tree and grass layer, alternating every 15 minutes providing half-hourly measurements 138 

for each layer.   139 

2.2 Eddy Covariance and Biometeorological Data 140 

Each of the three EC towers continuously measures sensible heat (H), latent heat (LE) and CO2 flux. Each system is equipped 141 

with a R3-50 sonic anemometer (Gill Instruments Limited, Lymington, UK) to measure three-dimensional wind components 142 

and sonic temperature, and a LI7200 infra-red gas analyzer (Licor Bioscience, Lincoln, Nebraska, USA) to measure CO2 and 143 

H2O mixing ratios. The measurement heights are the same at 15 m above ground (El-Madany et al., 2021). The flux and 144 

meteorological data were collected as described by El-Madany et al. (2018). The raw high-frequency data was processed with 145 

EddyPro v.7.0.9 (Fratini and Mauder, 2014). The post-processing was done in R using the REddyProc package (Wutzler et al., 146 

2018). The storage corrections of the CO2-flux were made with profile measurements from seven points on the flux towers. A 147 

friction velocity (u*) threshold was applied following Papale et al. (2006) and data with u* values below the defined threshold 148 

were removed. Missing and bad quality data were gap-filled (Mauder and Foken, 2011; Reichstein et al., 2005) for calculating 149 

the annual budgets. Additional atmospheric variables that we used are air temperature (Ta) and relative humidity (Rh) 150 

measured at two heights (2 m and 15 m), vapor pressure deficit (VPD), CO2-flux (NEE), air pressure (air_press) and friction 151 

velocity (ustar). Furthermore, we incorporated radiometric components such as longwave downward radiation (LWDR), 152 

shortwave downward radiation (SWDR) and photosynthetically active radiation (PAR). Soil measurements comprised soil 153 

water content integrated over the top 20 cm of the soil (SWCn), soil temperature in open pasture (TsoilSun) and below oak tree 154 

canopy (TsoilShd), and soil heat flux in open pasture (SHF_Sun) and below oak tree canopy (SHF_Shd).  155 

Some small data gaps existed in meteorological variables and were filled with the average of the remaining two towers and 156 

interpolation. However, the PAR sensor at CT had a malfunction over a long period and therefore we used the PAR timeseries 157 

from NT to substitute, as the incoming radiation should not differ substantially between the towers (El-Madany et al., 2018). 158 

In addition, we calculated Evaporative Fraction (EF) as the ratio between LE and available energy (EF = LE/(LE+H)) (Gentine 159 

et al., 2007; Tong et al., 2022). EF is a normalized measure of the surface energy partitioning and can serve as diagnostic of 160 

vegetation water status (Nutini et al., 2014). We calculated it at half-hourly timesteps from only positive LE and H values to 161 

not introduce extreme outliers into the analysis. EF is strongly linked to meteorological variables like soil moisture, VPD and 162 
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net radiation (Gentine et al., 2007; Tong et al., 2022), but also to vegetation cover and LAI (Gentine et al., 2007). A full 163 

overview of analysed variables is shown in Table 1.  164 

2.3 Vegetation indices 165 

We used three different vegetation indices to represent vegetation greenness, derived from in-situ data (Green chromatic 166 

coordinates and albedo) and satellite data (Normalized difference vegetation index).  167 

 168 

Green chromatic coordinate (GCC) is an effective measure for describing greenness variation in semi-arid ecosystems (Luo et 169 

al., 2018, 2020). We used daily mean GCC values extracted from the RGB images collected by digital cameras (Stardot 170 

NetCam 5MP) which were installed at the top of each ecosystem EC tower facing north, collecting images every 30 minutes. 171 

The cameras were set up according to the protocol of the PhenoCam network (https://phenocam.sr.unh.edu/webcam/tools/) 172 

and collect red, blue, green (RGB) images (Luo et al., 2018). GCC was computed as the fraction of green digital numbers 173 

(GDN) in relation to the sum of red (RDN), blue (BDN) and green digital numbers (Richardson et al., 2009): 174 

𝐺𝐶𝐶 =  
𝐺𝐷𝑁

𝑅𝐷𝑁+𝐵𝐷𝑁+𝐺𝐷𝑁
           (1) 175 

 176 

At each site we selected two regions of interest in which we calculate GCC, one capturing the grass layer (gcc_gr) and one 177 

capturing the trees (gcc_tr). The data derived from RGB images can be found on the website of the PhenoCam network (IDs: 178 

ES-LM1, ES_LMa and ES_LM2 for the NT, CT and NPT, respectively). At each site we chose the masks GR_1000 for the 179 

grass layer and EB_1000 for the trees.  180 

 181 

We further calculated albedo as the ratio of outgoing shortwave radiation to incoming shortwave radiation, measured at the 182 

radiometric tower setup at each site. We distinguished ecosystem albedo (Alb_eco), tree (Alb_tr) and grass albedo (Alb_gr) to 183 

account for reflectance and as another proxy for vegetation greenness and water status of the plants. We used daily averages 184 

from only daytime hours (11:00-15:00) to guarantee a high solar zenith angle for reliable measurements. Furthermore, cloudy 185 

days were filtered out and only timesteps where the ratio of downward radiation to extra-terrestrial radiation at the top of the 186 

atmosphere was 0.7 or more were kept (Wood et al., 2015). 187 

 188 

Finally, we use Normalized Difference Vegetation Index (NDVI) from the FluxnetEO dataset, as a proxy describing the amount 189 

and health of vegetation cover (Tucker, 1979). The dataset complements ground measurements by providing satellite-based 190 

vegetation indices, surface reflectance and land surface temperatures for a 2 km radius around a flux site (Walther et al., 2022). 191 

We use NDVI from MODIS (Moderate Resolution Imaging Spectroradiometer) with a daily temporal resolution (Walther et 192 

al., 2022). NDVI is calculated from the normalized difference between the reflectance of near-infrared (NIR) and red-light 193 

bands (Tucker, 1979).   194 
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 195 

Table 1: Flux, meteorological, soil variables and vegetation indices used in this study. Soil heat flux and soil temperatures were 196 
calculated based on the shadow fraction estimated from the solar zenith angle (variable SZA) and a canopy cover of 20%. 197 
 198 

variable name variable description unit measurement device 
measurement height/ 

depth 

NEE 
net ecosystem exchange on 

ecosystem level 
µmol m-2 s-1 R3-50, Gill LTD UK, LI-7200 15m, 15.5m (CT) 

EF evaporative fraction  
R3-50, Gill LTD UK, LI-7200, 

calculated 
 15m, 15.5m (CT) 

air_press air pressure Pa Young 61302V   

Rh02 relative humidity at 2m % CPK1-5 2m 

Rh15 relative humidity at 15m % CPK1-5 15m 

Ta02 temperature at 2m degreeC CPK1-5 2m 

Ta15 temperature at 15m degreeC CPK1-5 15m 

VPD water vapor pressure deficit Pa  calculated 15m 

ustar friction velocity m s-1 R3-50, Gill LTD UK 15m 

SWDR short wave downward radiation W m-2 CMP22/CNR4 9m 

LWDR long wave downward radiation W m-2 CNR4 9m 

PAR 
incoming photosynthetically active 

radiation 
umol m-2 Kipp& Zonen PQS1 9m 

SWCn 
normalized soil moisture content 

for top 20cm 
 ML2x, Delat-T Devices Ltd 20cm 

SHF_Sun soil heat flux sun W m-2 HP3/CN3 Rimco 5cm 

SHF_Shd soil heat flux shadow W m-2 HP3/CN3 Rimco 5cm 

TsoilSun soil temperature sun degree C UMS Th3-s 10 cm 

TsoilShd soil temperature shadow degree C UMS Th3-s 10 cm 

Alb_eco ecosystem Albedo  CNR4 15 m 

Alb_gr grass level Albedo  CNR4 
9m (CT, NT), 12m 

(NPT) 

Alb_tr tree level Albedo  CNR4 
9m (CT, NT), 12m 

(NPT) 

gcc_gr 
grass level green chromatic 

coordinates 
 stardot netcam SC5 15m 

gcc_tr 
tree level green chromatic 

coordinates 
 stardot netcam SC5 15m 

NDVI 
normalized difference vegetation 

index 
 MODIS satellite   

 199 
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 200 

2.4 Data Analysis 201 

2.4.1. Aggregation to daily data 202 

For our analysis we calculated from the biometeorological and flux data daily mean values aggregated from the half-hourly 203 

measured values during daytime. Daytime includes only values measured after sunrise and before sunset, identified using the 204 

suncalc package in R (Thieurmel, 2017). We discarded flux measurements with quality flag 1-3 and kept only measured values 205 

to not confound following analyses of NEE controls with gap-filled values which are based on other meteorological variables. 206 

This does not apply to vegetation indices as they were calculated as described above. GPP and Reco were not assessed in this 207 

study as partitioning methods depend on other environmental factors that would also confound the analysis of NEE controls. 208 

If not stated differently, the following analyses cover the 7-year period from 2016-2022 as in this time all variables are available. 209 

For the assessment of NEE variability and budgets, we utilized data spanning 8 years (2016-2023) because this extended 210 

dataset was available and incorporating additional years enhances the robustness of observed trends. 211 

2.4.2 Time Series Decomposition with Singular Spectrum Analysis 212 

Decomposition methods assume that observed time series are composed of additively superimposed sub-signals, each shaped 213 

by different scales of variability (Mahecha et al., 2010). Consequently, the time series represents the sum of a trend, oscillatory 214 

components at various scales, and noise (Liu et al., 2022).  215 

Here we used Singular Spectrum Analysis (SSA) for the decomposition. SSA is entirely data-driven and non-parametric and 216 

is therefore free of the bias of function-selection (Golyandina et al., 2001; Liu et al., 2022; Mahecha et al., 2007). This makes 217 

it advantageous compared to other decomposition methods like Fourier and wavelet analysis (Baldocchi et al., 2021). It is 218 

more flexible in grouping components of similar frequencies than wavelet decomposition (Liu et al., 2022) and able to detect 219 

aperiodic or non-harmonic sub-signals from short and noisy signals (Golyandina and Zhigljavsky, 2013; Mahecha et al., 2007). 220 

Since it is fully phase-amplitude modulated, and relatively robust against instationarities of the signal mean and variance, it is 221 

suitable for nonstationary signals (Allen and Smith, 1996; Golyandina and Zhigljavsky, 2013; Yiou et al., 2000). Even 222 

fragmented timeseries can be handled with it, as SSA can be used for filling gaps according to the first reconstructed component 223 

which is a low-frequency signal (Kondrashov and Ghil, 2006). This makes it particularly useful for flux data (Mahecha et al., 224 

2007). 225 

SSA consists of four steps: embedding, decomposition, grouping and reconstruction. In the first step a one-dimensional 226 

timeseries y(t) is embedded into a two-dimensional lagged matrix X, by shifting a moving window of a certain window length 227 

(L) along the timeseries. In the second step X is decomposed into its orthogonal components by determining eigenvalues and 228 

eigenvectors corresponding to principal components (singular value decomposition). Then the eigenvalues of the covariance 229 

matrix X ⋅ X are ranked. In the next step, the components are grouped, as some sub-signals consist of a set of components with 230 
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complementary oscillatory frequency. In the last step, by inverting the ranked principal components, the reconstructed 231 

components of the original time series are computed. These reconstructed components show how much of the variability of 232 

the original timeseries is associated with the different timescales. A more detailed description of the method can be found in 233 

Golyandina et al. (2018).  234 

Here we used the rssa – package in R (Golyandina and Korobeynikov, 2014) for our analysis. To support our hypothesis that 235 

daily-scale NEE variations are predominantly influenced by radiation, with a neglectable effect of nutrient addition, we 236 

conducted a preliminary analysis extracting the daily signal of NEE and all potential driving variables from half-hourly 237 

measurements. Detailed procedures and results of this analysis are provided in the Supplementary Material (S1).  238 

For our analysis we extracted the seasonal signal of the daily timeseries of all variables shown in Table 1. First, we gap-filled 239 

the timeseries with the igapfill – function. For gap-filling, as a window length (L) of n/2.5 is recommended (Mahecha et al., 240 

2007), we selected a gap-filling window length of L = 1000 for 2557 datapoints from 7 years of daily data. By conducting a 241 

sensitivity analysis, we found that adding a three-month margin at the beginning and the end of a timeseries can help to reduce 242 

edge effects during the gap-filling (details see S.2).  243 

To extract the seasonal signal, we reconstructed the components of the frequency bin of 15 to 366 (days). We selected L = 732 244 

(2 years) based on the criteria that L should be less than n/2 and ideally an integer multiple of the period length to be extracted 245 

to ensure a clear signal (Biriukova et al., 2021; Golyandina and Zhigljavsky, 2013). Frequency contributions of less than 0.2 246 

were defined as noise (Liu et al., 2022). For the grouping we used the automated method provided by the rssa-package, which 247 

identifies groups using a hierarchical clustering algorithm based on the w-correlation matrix. The w-correlation matrix shows 248 

the weighted correlations between reconstructed components (Buttlar, 2014; Golyandina and Korobeynikov, 2014).  249 

For analysing the changes in seasonal NEE variability and budgets, we used data from 2016-2023. Accordingly, L was set at 250 

1169 (L = n/2.5, with n = 3105). To account for seasonal variability, we calculated for each year the standard deviation of the 251 

reconstructed NEE signal to capture the variation amplitude.  252 

2.4.3 Pearson Correlation Coefficient 253 

To find out the key drivers of NEE we first computed in R the Pearson correlation coefficients (r) between NEE and all the 254 

investigated variables (Table 1) from the reconstructed seasonal signal using the daily datasets. It is calculated as follows: 255 

𝑟 =  
∑ (𝑥𝑖−𝑥)(𝑦𝑖−𝑦)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦)2𝑛

𝑖=1

          (2) 256 

 257 

With n as the timeseries length, xi and yi as the single timestep values within the timeseries and 𝑥 and 𝑦 as the sample means. 258 

We calculated values for each tower and then ranked r according to their absolute value to identify the main drivers of NEE.  259 
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2.4.4 Information Theory 260 

To consider collinear relationships and potential lagging effects between NEE and its controls, we extended our analysis using 261 

information theory. Metrics of Mutual Information (MI) are a powerful tool to understand non-linear and feedback-driven 262 

relationships in complex ecosystems (Chamberlain et al., 2020; Knox et al., 2018). MI is a non-parametric method and can 263 

disentangle interactions on different scales (Chamberlain et al., 2018; Knox et al., 2018; Sturtevant et al., 2016), by describing 264 

the average tendency for joint states of two variables X and Y to co-occur (Fraser and Swinney, 1986). This means it quantifies 265 

the amount of information that two variables X and Y hold in common, or the reduction of uncertainty of one variable, given 266 

the knowledge of the other (Chamberlain et al., 2020; Knox et al., 2021). It is a normalized measure of the statistical 267 

dependence of Y on X and no prior knowledge about their relationship is needed (Liu et al., 2022). Larger values indicate 268 

higher dependence, or a stronger interaction between the variables. With Shannon entropy (Hx) we can quantify the uncertainty 269 

in a system: 270 

 271 

𝐻𝑥 =  − ∑ 𝑝(𝑥𝑡)𝑙𝑜𝑔2 𝑝(𝑥𝑡)𝑥𝑡
                       (3) 272 

 273 

with p(x) as the marginal probability distribution of X, and Xt as the different states of X in the timeseries t. Here we discretized 274 

the states of continuous variables into ten fixed-interval histogram bins, as Sturtevant et al. (2016) and Ruddell and Kumar 275 

(2009) showed that ten histogram bins ensure sufficient resolution for a robust estimate. MI then was calculated with both the 276 

marginal and joint probability distributions of X and Y, p(x,y):  277 

 278 

𝑀𝐼 =  ∑ 𝑝(𝑥𝑡 , 𝑦𝑡)𝑙𝑜𝑔2
𝑝(𝑥𝑡,𝑦𝑡)

𝑝(𝑥𝑡)𝑝(𝑦𝑡)𝑥𝑡
            (4) 279 

 280 

To make the MI between NEE and different potential drivers comparable, we used here a normalized form of MI:   281 

 282 

𝑀𝐼𝑠𝑦𝑛𝑐 =  
𝑀𝐼

𝐻𝑦
                                                     (5) 283 

 284 

We refer to this relative MI as synchronous MI (MIsync), as it depicts the interaction between X and Y at the concurrent time 285 

step. A further power of MI lies in its capability to account for the temporal direction (τ) of the interaction between X and Y 286 

(Liu et al., 2022): 287 

 288 

𝑀𝐼𝑚𝑎𝑥 =  𝑀𝐼𝑠𝑦𝑛𝑐(𝜏)
=  

∑ ∑ 𝑝(𝑥𝑡−𝜏,𝑦𝑡)
𝑝(𝑥𝑡−𝜏,𝑦𝑡)

𝑝(𝑥𝑡−𝜏),𝑝(𝑦𝑡)
𝑦𝑡𝑥𝑡−𝜏  

− ∑ 𝑝(𝑦𝑡)𝑝(𝑦𝑖)𝑦𝑡
 

         (6) 289 
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 290 

Positive and negative values of τ show an asynchronous interaction between X and Y, with a lag or lead in Y relative to X. We 291 

chose 60 days as maximum value for τ to check if the potential driving variable (Y) is leading NEE (X) or vice versa (Liu et 292 

al., 2022). We then picked the highest MI value (MImax) in this window and the respective day of its occurrence. If MIsync > 293 

MImax, the interaction is synchronous, if MIsync < MImax, the interaction is asynchronous. If τ < 0, Y lags X, if τ > 0, Y leads X 294 

and can therefore be characterized as a driver or control of X. Significance thresholds were calculated from the 95th percentile 295 

(p < 0.05) of 1000 Monte Carlo random walks of the independent variable (Chamberlain et al., 2020; Ruddell and Kumar, 296 

2009). We calculated MI measures and the confidence thresholds in R, based on functions by Chamberlain et al. (2020).  297 

We determined MIsync and MImax for the 7-year time series (2016-2022) from the reconstructed seasonal signal. Gap-filled 298 

timesteps by SSA were removed before both the calculation of r and MI measures. Only for NDVI we kept them, as the gap-299 

filling is based on the original timeseries and does not depend on other variables (Walther et al., 2022). It therefore does not 300 

confound the analysis of potential drivers.  301 

 302 

2.4.5 Phenological Seasons 303 

As the NEE controls vary in their importance in different seasons (Baldocchi and Arias Ortiz, 2024), we calculated MIsync for 304 

each season to better capture how the nutrient addition and stoichiometric balance change the importance of different drivers 305 

over the study period. As this ecosystem’s strong seasonality is reflected in vegetation activity, we assigned seasons using 306 

PhenoCam imagery. We defined phenological seasons following Nair et al. (2024). Phenological transition dates were 307 

extracted using GCC at all three sites according to changes between stationary and rising or declining greenness (Luo et al., 308 

2018). Then, phenological transition dates averaged across the three sites for each year were calculated. According to these 309 

dates, each day of the 7-year timeseries was assigned to one season, describing different phases of net vegetation activity (i.e., 310 

spring, drydown, summer, autumn and winter, as described above in Chapter 2.1.). Figure 1 illustrates a typical annual cycle 311 

of the seasons at Majadas de Tiétar.  312 

We calculated MIsync values for each pair of interest (NEE and potential driving variable) in each season across all 7 years 313 

together. In addition, we estimated yearly MIsync for each single season (35 datapoints) to evaluate how sensitivity of NEE to 314 

drivers developed over time. To isolate the fertilization effect on the importance of different drivers for NEE, we calculated 315 

the differences in the MIsync values of each season in each year between the fertilized plots and the control plot, i.e., NT – CT 316 

and NPT – CT, referred to as MIdiff. We plotted the MIdiff values for each season along the 7-year period and calculated linear 317 

regressions to confirm whether there are significant trends in the importance of drivers. The significance level was set at p < 318 

0.05. Variables with MImax < 0.2 were discarded. 319 

 320 
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 321 

Figure 1: A typical annual cycle of midday green chromatic coordinates (gcc) derived from the grass layer at the control plot in 322 
2018, showing the five phenological seasons – winter, spring, drydown, summer and autumn. Spring is the main growing season 323 
(first peak in May), the grasses become senescent during drydown and dormant in summer, regreening starts (second peak around 324 
November) in autumn with the onset of rains, and winter is radiation and temperature limited. 325 

3 Results 326 

3.1 Seasonal NEE Variability 327 

At CT, not experiencing any manipulation, the annual ecosystem NEE derived from EC measurements was positive for the 328 

2016-2023 period, with an average annual NEE budget of 90.8± 48.0 gC m-2 y-1. This indicates that the ecosystem acted as a 329 

CO2 source. With fertilization treatment, the measured ecosystem NEE shifted towards CO2 neutrality, with annual averages 330 

of 34.1± 66.7 gC m-2 y-1 and 23.1± 69.5 gC m-2 y-1 at NPT and NT, respectively. Annual NEE budgets fluctuated between 331 

positive and negative values at the fertilized plots, while CT consistently showed positive NEE throughout the years. In the 332 

years of 2017, 2022 and 2023, we observed high positive NEE values (i.e., stronger CO2 source) at all three plots. Conversely, 333 

in years such as 2016, 2018, and 2021, fertilized areas exhibited higher CO2 uptake, acting as stronger CO2 sinks (Fig.2). This 334 

illustrates the high interannual variability of the CO2 fluxes in this ecosystem and the substantial impact of fertilization. 335 

Additionally, the nutrient addition led to higher seasonal variability of NEE, as shown by the greater yearly standard deviation 336 

of the seasonal reconstructed signal. The variability at NT and NPT further exhibited an increasing pattern over time (Fig.2). 337 

In 2017, NEE had comparatively low seasonal variability at all three sites, which might be attributed to the extraordinary 338 

dryness in that year. 339 

 340 
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 341 

Figure 2: Annual net ecosystem exchange (NEE) budgets (gC m-2 y-1) and yearly standard deviations calculated using the seasonal 342 
reconstructed signals at the three sites for the 2016-2023 period. CT- control site, NT – nitrogen fertilized site, NPT – nitrogen and 343 
phosphorus fertilized site. 344 

 345 

3.2 Key NEE controls 346 

We identified key controls of NEE at the three plots, comparing the results of Pearson correlation coefficient r, which considers 347 

only linear relationships between variables, and with Mutual Information (MI), which accounts for collinear relationships. and 348 

MIsync and r values show synchronous relationships, MImax values can account for leading and lagging interactions by 349 

identifying the day of the highest interaction between the potential driver and NEE within a 60-day window. 350 

At all plots, gcc_gr (i.e., grass layer GCC) and NDVI (at ecosystem level) were the most important predictors of NEE (Fig. 3). 351 

Both r and MI identified these proxies representing vegetation greenness as the most significant drivers. They were followed 352 

by EF (i.e., the fraction of heat transport that is done by LE), which is influenced by meteorological variables (such as soil 353 

moisture, net radiation and VPD) as well as vegetation properties like LAI. 354 

Regarding micrometeorological variables, at CT, TsoilShd and Ta15 exhibited strong interactions with NEE using both r and 355 

MIsync. Using r, LWDR, and SWCn were also important in explaining NEE variations, while MIsync indicated that Ta02 and 356 

TsoilSun were more significant (Fig.3 (a), (b)). Variables describing water availability, such as VPD, SWCn and Rh were ranked 357 

in the middle ranges by MIsync (e.g., VPD at rank 9 and SWCn at rank 14). The MI analysis provided deeper insights into the 358 

interactions between the environment and NEE by considering leading and lagging effects, as shown by MImax (Fig. 3(c)). 359 

NDVI showed the highest interaction with NEE at a time lag of 16 days, and the second most important driver, gcc_gr, had a 360 

lag of 7 days. When considering leading and lagging effects, EF became relatively less important with a value of 0.29 at 15 361 

days. Soil temperatures were identified amongst the five most important controls by MImax, with lags of 37 and 43 days for 362 

TsoilShd and TsoilSun, respectively. SWCn was also important (ranked 6th) with a 20-day lag. Other variables such as air 363 

temperature and VPD showed the highest interaction with a lag of around a month. Radiation-related variables like PAR and 364 
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SWDR exhibited long lag times in their highest interaction with NEE (60 days and 53 days, respectively). All MI values can 365 

be found in the Supplementary Material (S3).  366 

At NT, the two synchronous methods agreed on the twelve most important predictors, with the exception that MIsync identified 367 

SWCn and LWDR as less important and TsoilSun as more important compared to r (Fig.3 (d), (e)). Soil temperatures, VPD, 368 

SWCn and air temperatures were among the most significant controls, following the most important drivers, vegetation 369 

greenness and EF. NDVI showed the highest interaction with NEE with a lag of 12 days, followed by gcc_gr with a lag of 6 370 

days. Soil temperatures exhibited the highest interactions with a lag of around a month, while air temperatures showed the 371 

highest interaction at a lag of 26 days. Moisture-related variables all showed similar time lags, with relative humidity having 372 

the highest interaction with NEE at 16-18 days prior, similar to SWCn and VPD at 18 and 20 days, respectively. EF had the 373 

highest interaction with NEE at a lag of two weeks. Shortwave radiation-related variables showed a strongly lagged effect (i.e., 374 

PAR 59 days, SWDR 57 days), while the effect of longwave radiation LWDR is less lagged, showing the strongest interaction 375 

26 days prior (Fig.3 (f)).  376 

At NPT, both r and MIsync detected soil temperatures, air temperatures and VPD as the most important NEE controls behind 377 

gcc_gr and NDVI, with only minor differences. LWDR was more important using r compared to MIsync. SWCn and Rh were 378 

in the middle ranks, PAR and SWDR in the lower ranks (Fig.3 (g), (h)). Additionally, NDVI and gcc_gr led NEE with the 379 

strongest interaction at lags of 2 weeks and 10 days, respectively, followed by soil temperatures and air temperatures with the 380 

highest interaction at a lag of around a month (Fig.3 (i)). EF showed the highest interaction at a lag of 12 days. Other moisture-381 

related variables like VPD, SWCn, and Rh were also detected to be in the middle ranks by MImax, with time lags of 26, 23, and 382 

20 days, respectively. PAR and SWDR showed the highest interaction with NEE at time lags of 53 and 52 days, respectively 383 

(Fig.3 (i)).  384 

MI and r agreed in the detection of the most important drivers, thereby proving that information theory is applicable to our 385 

case. Therefore, in the remainder of this paper we focus on values obtained using MI, as MI is able to detect collinear 386 

relationships as well as leading and lagging effects. Additionally, we discuss variables with MImax > 0.2 in the following 387 

sections to concentrate on the information provided by variables with greater explanatory value.  388 
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 389 

Figure 3: Pearson correlation coefficient (r) (a), (d), (g), synchronous mutual information (MIsync) (b), (e), (h) and maximum mutual 390 
information within a 60-day window (MImax) (c), (f), (i) between net ecosystem exchange (NEE) and potential drivers over the 7-year 391 
period (2016-2022) at the control plot CT (a)-(c), the nitrogen fertilized plot NT (d)-(f) and the nitrogen and phosphorus fertilized 392 
plot NPT (g)-(i). The color scale in the MImax plots indicates the day when MImax occurs, positive values indicate that the variable 393 
leads NEE, negative values vice versa. 394 

 395 
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3.3 Effect of Fertilization on NEE Sensitivity to its Controls 396 

The relationships between NEE and biogenic and environmental variables were asynchronous, as indicated by MIsync < MImax 397 

for all variables. Therefore, we focused on MImax to describe the differences in NEE sensitivity to various controls across 398 

towers.  399 

At NT and NPT, NDVI showed a slightly higher interaction with NEE (0.41 and 0.40) than at CT (0.36). However, the time 400 

lag was smallest at NT (12 days) compared to 15 and 16 days at NPT and CT, respectively. Thus, N fertilization appeared to 401 

shorten the reaction time of NEE to changes in NDVI. GCC at the grass level showed higher explanatory value for NEE at 402 

NPT and NT (MImax = 0.37) compared to CT (MImax = 0.33). EF showed only slight differences in interaction strengths among 403 

the sites. At CT, MImax was 0.29 with a lag of 15 days, MImax were 0.30 with lag times of 14 and 12 days at both NT and NPT, 404 

respectively (Fig. 4, S3).  405 

Relative humidity at two heights showed the lowest interaction with NEE at CT with MImax values around 0.24, while the 406 

fertilized sites had slightly higher values of 0.26-0.27. Furthermore, the reaction time of NEE to relative humidity decreased 407 

with fertilization. At CT, the time lag was 24-27 days, at NPT it was 20-22 days and at NT 16-18 days. VPD showed the 408 

highest explanatory value for NEE at NT (MImax = 0.31), followed by NPT (MImax = 0.30) and CT (MImax = 0.27). The 409 

interaction between NEE and air temperatures was slightly higher at the fertilized plots compared to the control. The MImax 410 

value was around 0.28 at CT, but higher at around 0.32 at NT and NPT. Soil temperatures showed similar interaction strength 411 

with NEE across treatments, with MImax ranging from 0.31 to 0.33 (Fig. 4, S3). 412 

Regarding radiation variables, PAR showed slightly higher interaction with NEE at NT (MImax = 0.28), than at NPT (MImax = 413 

0.26) and CT (MImax = 0.25). Similarly, SWDR showed highest interaction with NEE at NT (MImax = 0.26), while at NPT and 414 

CT it was equally strong (MImax = 0.24).  415 

In terms of soil variables, soil temperatures exhibited the strongest interaction with NEE. While soil temperatures below the 416 

canopy (TsoilShd) were almost the same across sites (MImax = 0.33), the importance of soil temperatures under open air differed 417 

at CT (MImax = 0.31) compared to the fertilized plots (0.34 and 0.33 at NT and NPT, respectively). SWCn showed the highest 418 

explanatory value for NEE at NT (MImax = 0.31), followed by CT (MImax = 0.28) and NPT (MImax = 0.27) (Fig. 4, S3). 419 

An overview plot with all variables including the ones with MImax < 0.2 is provided in the Supplementary Material (S4).  420 

 421 

Nutrient addition did not show a substantial effect on the sensitivity of ecosystem NEE to different drivers over the 7-year 422 

scale when considering the whole time series together. In the next step we examined the different seasons in greater detail. 423 
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 424 

Figure 4: (a) Synchronous (MIsync, grey) and maximum (MImax, colours) mutual information at the control site (CT), the nitrogen 425 
fertilized site (NT) and the nitrogen and phosphorus fertilized site (NPT) at the seasonal scale. The colour scale indicates the day 426 
when MImax occurs, with positive values indicating that the variable leads net ecosystem exchange (NEE) and vice versa. (b)  MIsync 427 
(dotted lines) and MImax (solid lines) values at the three sites. Variables with MImax < 0.2 are not shown here. 428 

 429 

3.4 Identifying Driver Importance in Different Phenological Seasons 430 

We split the 7-year dataset into five different phenological seasons derived from grass layer GCC derived from PhenoCam 431 

photos, and calculated MIsync between NEE and each of the drivers. This analysis showed that the most important drivers 432 

differed between seasons and treatments (Table 2). 433 

In the winter, the water vapor transfers of available energy, represented by EF, show a strong interaction with NEE at NPT 434 

and CT. Further, NDVI and tree-layer albedo, as well as radiation parameters such as PAR and SWDR were important in 435 

explaining NEE variations.  436 

In the spring (i.e., the main growing season), NDVI and GCC at grass (gcc_gr) and tree (gcc_tr) levels showed the strongest 437 

interactions with NEE, indicating that NEE was dominated by photosynthetic activity (GPP) during this season. Furthermore, 438 

soil temperatures showed strong interactions with NEE at CT and NPT, but not at NT.  439 

During the drydown phase, NEE was dominated by NDVI across treatments, with GCC at the grass level (gcc_gr) also showing 440 

strong interactions with NEE at CT and NPT. At NT, VPD exhibited a strong link with NEE, which was not as dominant at 441 

the other plots.   442 
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In the summer, soil temperatures showed high interactions with NEE, possibly relating to soil respiration. Additionally, 443 

radiation parameters (i.e., SWDR, PAR) were important in explaining NEE variations during this season. At CT and NT, tree-444 

layer GCC became important, which was logical as the grass layer becomes senescent in the summer and is dormant in terms 445 

of the ecosystem carbon flux. At NPT, gcc_gr showed a higher interaction with ecosystem NEE than gcc_tr. 446 

In autumn, the regreening starts with the onset of rains, and NDVI and grass layer GCC (gcc_gr) showed strong interactions 447 

with NEE, as GPP starts to dominate NEE again, driven by photosynthetic activity. Additionally, soil temperatures had a strong 448 

link with NEE (as soil respiration is also high in this season), strongest at CT, as well as air temperatures.  449 

 450 

Table 2: Five most important drivers in each phenological season at each tower derived using synchronous mutual information. CT 451 
= control site, NT = nitrogen fertilized site, NPT = nitrogen + phosphorus fertilized site.     452 

  CT NT NPT 

Winter 

wet and energy limited 

  

 

 

1. Alb_tr PAR EF 

2. PAR Alb_tr NDVI 

3. EF SWDR PAR 

4. TsoilShd NDVI SWDR 

5. TsoilSun SHF_Sun TsoilSun 

Spring 

main growing season 

  

  

  

1. gcc_gr NDVI NDVI 

2. NDVI gcc_tr gcc_gr 

3. gcc_tr gcc_gr gcc_tr 

4. TsoilSun Alb_tr TsoilSun 

5. TsoilShd EF TsoilShd 

Drydown 

senescence of grass 

layer 

  

  

  

1. NDVI NDVI NDVI 

2. TsoilShd TsoilSun gcc_gr 

3. gcc_gr TsoilShd TsoilShd 

4. EF VPD TsoilSun 

5. TsoilSun EF EF 

Summer 

Dormant/dead grass 

layer 

  

  

  

1. PAR SHF_Shd TsoilSun 

2. TsoilSun PAR TsoilShd 

3. SHF_Shd SWDR SHF_Sun 

4. gcc_tr gcc_tr gcc_gr 

5. SHF_Sun NDVI PAR 

Autumn 

Regreening of grass 

layer with onset of 

rains 

  

  

1. TsoilShd NDVI NDVI 

2. gcc_gr gcc_gr gcc_gr 

3. NDVI TsoilShd TsoilShd 

4. Ta15 Ta02 TsoilSun 

5. TsoilSun Ta15 Ta15 
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 453 

3.5 Changes in NEE Sensitivity over Time 454 

We observed that with N addition, NEE became less sensitive to certain variables during autumn (i.e., the regreening phase), 455 

the drydown phase, and winter over time (Fig.5). Specifically, in autumn, the sensitivity of ecosystem NEE to changes in air 456 

temperature (Ta15), shortwave radiation (SWDR and PAR), and NDVI decreased significantly over the 7-year period. In the 457 

drydown phase, the sensitivity of ecosystem NEE to changes in relative humidity (Rh02 and Rh15) and soil heat flux (SHF_Sun) 458 

also decreased significantly. In winter, however, we observed a significant increase in the sensitivity of NEE to variations in 459 

PAR, SWDR, and grass layer GCC (gcc_gr). 460 

With the addition of N+P, significant changes in NEE sensitivity over time were observed in all seasons except the drydown 461 

phase (Fig.5). In autumn, the fertilization with N and P led to a significant decrease in NEE sensitivity to air and soil 462 

temperatures (Ta02 and TsoilSun), PAR, and VPD. In spring, which is the main growing season, NEE sensitivity to variations 463 

in PAR increased significantly over time. In summer, NEE became significantly more sensitive to changes in grass layer GCC. 464 

In winter, NEE shows a significant increase in sensitivity to changes in both grass layer GCC (gcc_gr) and soil water content 465 

(SWCn). 466 

 467 

Figure 5: Linear regressions of the seasonal synchronous mutual information difference (MIdiff) between NT and CT (bottom) and 468 
between NPT and CT (top) in different phenological seasons. Only the relationships with significant trends are shown. Significance 469 
level is set at p < 0.05. Variables with overall MI < 0.2 at all towers are not shown here. 470 
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4 Discussion 471 

4.1 Nutrient addition increases seasonal NEE variability, driven by grass layer 472 

Our results indicate that nutrient addition enhances seasonal NEE variability compared to the control. Additionally, the 473 

seasonal variability increases over time at the fertilized plots. Looking at the difference between annual NEE maximum and 474 

annual NEE minimum, we notice a significantly increasing trend at the NPT plot (Fig.6). We argue that this nutrient effect is 475 

dominated by grass layer which substantially controls the NEE dynamics in this system. Our analysis supports that grass layer 476 

GCC and NDVI are most important in explaining NEE variations across treatments (Fig. 3, 4). Both variables represent grass 477 

layer greenness, as the larger fraction of the surface consists of annual grasses (Bogdanovich et al., 2021) and remotely sensed 478 

NDVI is dominated by the herbaceous layer. 479 

 480 

The added nutrients mostly stay in the herbaceous layer at the study sites (El-Madany et al., 2021), and it is therefore more 481 

affected by the nutrient manipulation than trees. It has been found that the nutrient addition leads to higher root biomass and 482 

root length density (Nair et al., 2019) and N can be absorbed and used for leaves. In the leaves, N enhances the photosynthetic 483 

capacity (Fleischer et al., 2013) which supports the faster increase in maximum GPP and biomass in the fertilized plots, as 484 

confirmed by Luo et al. (2020). NT and NPT show higher productivity and therefore higher biomass amount compared to the 485 

control (Luo et al., 2020). As the grass layer is senescent in summer, this results in a higher amount of dead biomass, which 486 

will then be respirated by soil microbes (Manzoni et al., 2020; Moyano et al., 2013) as soon as there is sufficient water available 487 

(Huxman et al., 2004). This indicates that there is a higher carbon turnover at the fertilized plots, leading to an increased range 488 

of NEE within a year (Fig.6). It agrees with findings from Ma et al. (2016), who found in a Californian oak grass savanna that 489 

the amount of grass litter determines the size of the fast carbon pool in consecutive seasons. 490 

Evergreen tree species have relatively constant foliage amount throughout the year and are able to use their deeper roots to 491 

access lower water resources in the soil (Baldocchi et al., 2004; Rolo and Moreno, 2012), the herbaceous layer is strongly 492 

dependent on rainfall variations as it accesses water in the topsoil with a dense near-surface root system (Ward et al., 2013). It 493 

is therefore much more sensitive to intra- and inter-annual climate variations (Luo et al., 2020). This is probably the reason 494 

that the seasonal NEE variability was very low at all sites in 2017. We attribute this to extraordinary dryness in that year, as 495 

dryness can lead to severe decreases in both GPP and Reco in this type of ecosystem (Ma et al., 2007). 496 

 497 
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 498 

Figure 6: Annual range of net ecosystem exchange (NEE) (i.e., maximum NEE minus minimum NEE) in gC m-2 y-1 calculated using 499 
the seasonal reconstructed signal at the control site (CT), the nitrogen fertilized site (NT) and nitrogen + phosphorus fertilized site 500 
(NPT). The range at NPT (p-value = 0.049) significantly increased over 8 years, while not at NT (p-value = 0.116) and CT (p-value 501 
= 0.270). 502 

 503 

4.2 Key controls of seasonal NEE 504 

Our results indicate that proxies for vegetation greenness (NDVI and GCC at grass layer derived from satellite and PhenoCam 505 

data, respectively) are the primary factors influencing the seasonal NEE signal in this ecosystem across treatments (Fig.3). 506 

However, depending on different seasons, other variables such as air temperatures, VPD, moisture-related variables, and soil 507 

temperatures can also be important.  508 

Many studies identify NDVI, a proxy for vegetation greenness and photosynthesis, as a primary predictor of NEE (Del Grosso 509 

et al., 2018; Hermance et al., 2015; Morgan et al., 2016). NDVI, generally derived from satellite data, represents ecosystem 510 

greenness and its connection with ecosystem CO2 fluxes has been intensively studied (Barnes et al., 2016; Hermance et al., 511 

2015; Morgan et al., 2016; Running and Nemani, 1988). However, quantifying the importance of coexisting vegetation layers 512 

is more complex and less understood. Digital repeat cameras and vegetation greenness indices derived from them provide a 513 

powerful tool for analysing the greenness of different plant types (Migliavacca et al., 2011; Petach et al., 2014; Richardson et 514 

al., 2009; Yan et al., 2019) and their influence on ecosystem fluxes (Luo et al., 2018; Moore et al., 2017; Wingate et al., 2015). 515 

Our analysis confirms that grass layer dynamics are dominant in controlling seasonal ecosystem NEE at this site.  516 

In situ measurements of vegetation greenness, however, are not available at all EC sites. We found that EF (i.e., evaporative 517 

fraction), representing the fraction of available energy transported by LE, is the third most important driver across treatments 518 

and methods on the synchronous scale. EF is strongly influenced by net radiation and water-related variables like soil moisture 519 

and VPD (Gentine et al., 2007; Tong et al., 2022). Since it depends on the portion of LE that is transpired by plants, it is also 520 
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impacted by LAI (Gentine et al., 2007). EF therefore serves as a bridge between meteorological and vegetation controls. We 521 

suggest that at semi-arid sites where GCC measurements are not available, EF, calculated from measured LE and H, can serve 522 

as important predictor of NEE.  523 

In water-limited semi-arid ecosystems, NEE variations are typically dominated by soil-water related variables such as SWCn 524 

and precipitation (Archibald et al., 2009; Baldocchi and Arias Ortiz, 2024; Huang et al., 2016b; Morgan et al., 2016). These 525 

variables usually exert a greater influence than radiation and temperature (Del Grosso et al., 2018; Kannenberg et al., 2024). 526 

Water availability promotes plant photosynthesis (Parton et al., 2012), but rain pulses can also enhance heterotrophic 527 

respiration rates (Morgan et al., 2016). While we do not use precipitation data for the MI analysis, as it tends to be zero on 528 

many days and cannot be used in MI (Gong et al., 2014), SWCn can capture topsoil moisture and indicate precipitation pulses. 529 

Additionally, EF can serve as a proxy for these pulses. In our analysis we identify EF as one of the most important NEE drivers, 530 

while other moisture-related variables (e.g., SWCn, VPD, Rh) are generally ranked lower in importance compared to air and 531 

soil temperatures (Fig.3).  532 

Air temperature can directly affect the speed of the enzyme responsible for carbon fixation and the rate of photosynthetic 533 

electron transport (Leuning, 2002; Xu and Baldocchi, 2003). Additionally, temperature impacts the availability of 534 

photosynthetic enzymes, membrane fluidity, and the expression of associated proteins (Yamori et al., 2014). However, our 535 

results show that soil temperatures, both under oak trees and in open areas, play a significant role in explaining seasonal 536 

ecosystem NEE variations (Fig.3), exceeding the importance of air temperatures. Soil respiration, one of the components in 537 

Reco, is highly sensitive to soil temperature (Conant et al., 2000), and elevated soil temperatures are associated with increased 538 

soil respiration in semi-arid ecosystems (Richardson et al., 2012). These temperatures influence heterotrophic respiration, 539 

which constitutes a substantial part of ecosystem NEE at our site (Casals et al., 2011). The high importance of soil temperatures 540 

hints to Reco dominating ecosystem processes and is especially relevant as the trend of increasing soil temperatures is stronger 541 

than increasing air temperatures in the Mediterranean, particularly in grasslands with low soil moisture availability (Wang et 542 

al., 2024). 543 

Radiation parameters, in particular PAR, do not appear to play a crucial role on the seasonal scale. While other studies have 544 

identified it as a major control of NEE in semi-arid ecosystems (Baldocchi and Arias Ortiz, 2024), we argue that PAR 545 

predominantly influences the daily NEE signal (S1.2), but its importance diminishes on seasonal time scales.  546 

Overall, we observe only marginal differences between the treatments when considering the 7-year period (2016-2022) 547 

together. The added nutrients, particularly N, are primarily absorbed by the herbaceous layer (El-Madany et al., 2021) that 548 

senesces annually. Consequently, some of the added nutrients may be lost from the system, diminishing the long-term effect 549 

of the fertilization. By calculating MIsync and MImax for one year post-fertilization (March 2016-February 2017), we observe 550 

greater differences between the three plots in MI values and lag times (S5). Additionally, the ecosystem is strongly water-551 

limited in the summer and energy-limited in the winter (Luo et al., 2018; Nair et al., 2019). These limitations can be more 552 

pronounced than nutrient limitations in their respective seasons, overshadowing the effects of added nutrients when analysing 553 
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the entire dataset together. Therefore, we divided the dataset into five phenological seasons to gain deeper insights into how 554 

added nutrients and altered stoichiometric balance affect seasonal NEE.  555 

4.3 Fertilization effects in different phenological seasons 556 

Looking into phenological seasons gives a deeper insight into how environmental variables influence seasonal NEE and how 557 

N:P levels affect this relationship. We find that nutrient addition has an effect on NEE - control relationships when other 558 

limitations are not too strong.  559 

In the primary growing season, spring, NEE is dominated by GPP. The key drivers during this season across sites are NDVI 560 

and GCC of both the herbaceous and tree layers (Table 2). Water is typically abundant promoting plant photosynthesis during 561 

moderate temperatures in this time (Baldocchi and Arias Ortiz, 2024). These conditions are further supported by increased day 562 

length and higher radiation levels (Luo et al., 2018). The rise in incoming radiation, extended daylight hours, and elevated 563 

temperatures, coupled with the increased atmospheric evaporative demand (i.e., higher VPD), lead to a strong correlation 564 

between precipitation and both GCC and GPP, as observed in various Mediterranean ecosystems (Diodato and Bellocchi, 2008; 565 

Luo et al., 2018; Ma et al., 2007).  566 

During the regreening of the herbaceous layer starting in autumn, NDVI shows the strongest interaction with NEE at the 567 

fertilized plots - but not at the control plot. This aligns with previous studies showing that the green-up in this season happens 568 

faster and the maximum GPP is higher at the fertilized plots, resulting from larger resource utilization at NT or improved 569 

resource use efficiency at NPT (Luo et al., 2020). With the increase in soil moisture in early autumn, a greater quantity of 570 

organic and inorganic nutrients becomes available to plants (Agehara and Warncke, 2005; Luo et al., 2020). N availability in 571 

the soil is expected to be highest in this time (Morris et al., 2019), leading to higher net carbon uptake rates (El-Madany et al., 572 

2021). Leaves quickly expand and pigments rapidly increase during this green-up period (Croft et al., 2015). At CT, the green-573 

up happens later compared to the fertilized plots and NEE is dominated for a longer time by Reco instead of photosynthetic 574 

activity (Luo et al., 2020). Our results indicate that soil temperatures below oak trees are more important than those in open 575 

areas during this season (Table 2). The carbon pools under oak trees are the largest, providing substantial material for 576 

heterotrophic decomposition (Casals et al., 2009). During autumn, after a prolonged dry season where a significant amount of 577 

litter and organic material has already been decomposed by microbes, litter remains available for further heterotrophic 578 

decomposition mainly below the trees. This ongoing decomposition under oak trees contributes to Reco, especially as the onset 579 

of rains enhances microbial activity due to increased water availability (Borken and Matzner, 2009). Additionally, the topsoil 580 

layer remains wet for longer after rain pulses under oak trees compared to open areas, as soil moisture is primarily influenced 581 

by soil evaporation in this season as the soil is rather bare. Therefore, differences in soil respiration between open and shaded 582 

pastures can also be attributed to variations soil moisture.  583 

In winter, the ecosystem is energy-limited (Luo et al., 2018), therefore radiation components (i.e., PAR and SWDR) are 584 

important predictors for NEE. Tree Albedo shows strong interactions with NEE at CT and NT, and NDVI shows strong 585 

interactions with NEE at both fertilized plots. Plant growth is enhanced by added nutrients (Luo et al., 2020) and made available 586 
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by abundant water availability (Lee et al., 2010) in this season. Also, N+P addition can lead to an increased species diversity 587 

due to alleviated nutrient limitation facilitating the co-existence of multiple species (Köbel et al., 2024). Additionally, EF 588 

shares high mutual information with NEE variations. This is likely because respiration does not change significantly during 589 

this period, and VPD is relatively low, leading to a strong coupling between NEE and LE. Additionally, in winter, the stomatal 590 

control of the tree transpiration is not too strong, as soil water is abundant (Klein et al., 2013).  591 

In the water-limited seasons, the nutrient effect is minimal as the grass layer is dormant and nutrients are not made available 592 

due to a lack of water. During the drydown period, soil moisture (i.e., SWCn) decreases drastically due to increasing air 593 

temperatures and scarce rainfall (Battista et al., 2018; Luo et al., 2018). This induces annual grasses to become senescent, 594 

leading to a loss of chlorophyll content (Luo et al., 2018). The rate of this senescence can determine whether NEE becomes 595 

positive or negative during this time. NDVI and grass layer GCC, the most important predictors of NEE in this season across 596 

sites, can provide insights into the dry down rate. At NT grass layer GCC is less important, which we attribute to a more rapid 597 

drydown, causing the grass layer to enter dormancy earlier than at other sites (Luo et al., 2020). This is because N addition 598 

promotes faster water usage (Luo et al., 2020), accelerating the decrease in SWCn and thereby hampering photosynthesis. It 599 

leads to a higher transpiration at NT compared to the other sites, potentially due to rhizosphere priming to increase P 600 

mobilization through microbes, as adding only N to the system leads to a P deficiency (El-Madany et al., 2021). In addition, 601 

N fertilization can alter species diversity and composition, likely selecting for species that senesce early (Wang and Tang, 602 

2019). The higher interaction of soil temperatures with NEE in this season compared to the wetter seasons, show that Reco 603 

starts dominating NEE, as Reco is strongly connected to soil temperatures (Metz et al., 2023). VPD is a stronger control of NEE 604 

at NT compared to the other two plots. Transpiration is highest at NT, as plants transpire more to obtain limited P from the 605 

soil (El-Madany et al., 2021; Pang et al., 2018; Rose et al., 2018). It is therefore more sensitive to changes in VPD.  606 

In summer, the driest period at the ecosystem, Reco dominates NEE and thus we find a strong interaction between NEE and 607 

soil temperature and soil heat flux (i.e., SHF_Sun and SHF_Shd). Besides, PAR is important for predicting seasonal NEE, 608 

showing the strongest interaction at CT. The importance of PAR is lower at NT and lowest at NPT. N+P addition increases 609 

the light use efficiency most because P has a positive effect on photochemical quenching in leaves and on active fluorescence 610 

measurements (Martini et al., 2019; Singh and Reddy, 2014), leading to less dependency of NEE to radiation parameters at 611 

that site. At CT and NT, tree layer GCC is important as the grass layer becomes senescent in the summer and is dormant in 612 

terms of ecosystem carbon flux. Since the greenness of the oak trees is constant throughout the year, GPP is mainly determined 613 

by the tree layer in the summer months (Luo et al., 2018). However, gcc_gr shows a higher interaction with NEE than gcc_tr 614 

at NPT. Even though most of the grass layer is mostly dead in this season, there are some perennial species (e.g. cynodon 615 

dactylon) remaining green for longer in summer and can regreen after any rain events (personal communication with local 616 

collaborators). Therefore, N+P addition very likely leads to a consequential change in species composition (Köbel et al., 2024) 617 

with an increase in these perennial species or results in an increase in their productivity. So far it has been found that N+P 618 

addition can lead to an increasing number of forbs (Köbel et al., 2024), which tend to senesce later than other herbaceous 619 
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species at the site (Luo et al., 2020). Nevertheless, the occurrence of summer-green species following nutrient addition will 620 

have to be investigated further.  621 

The analysis of driver importance in different phenological seasons provides significant insights into ecosystem processes. 622 

However, some variables must be interpreted with caution. The soil properties at this site are highly heterogeneous, which 623 

affects the representativity of variables like soil temperature, soil water content and soil heat flux in the EC flux footprint (Luo 624 

et al., 2018; Paulus et al., 2022). This is particularly relevant given the substantial differences between below-canopy and 625 

open-air soil conditions. To address this, we have separated the measurements into areas under the oak tree canopy and sunlit 626 

areas (TsoilShd and SHF_Shd, and TsoilSun and SHF_Sun). Despite this effort, the local soil heterogeneity is more complex, 627 

influenced by varying proportions of sand, clay, and soil organic carbon (Casals et al., 2011; Weiner et al., 2018). Therefore, 628 

it is important to consider that these measures may not fully capture the sensitivity differences in the ecosystem. 629 

4.4 Future implications 630 

In winter, the ecosystem has abundant water availability, and energy becomes the primary limiting factor after nutrients were 631 

added. With N only addition, we observe that NEE becomes significantly more sensitive to changes in the radiation 632 

components, PAR and SWDR (Fig.5). However, the addition of N+P results in a significant increase in sensitivity to changes 633 

in soil water content rather than radiation components. N+P addition enhances water use efficiency in the ecosystem (El-634 

Madany et al., 2021; Martini et al., 2019), and consequently, water can be used more efficiently for photosynthesis with 635 

similarly low radiation levels and increased water availability could lead to a higher GPP. N fertilization primarily affects the 636 

herbaceous layer (El-Madany et al., 2021), and our results agree with this, showing a significantly increased sensitivity of NEE 637 

to grass layer greenness in winter at NT and an even steeper increase at NPT (Fig.5). At N+P plot there are more nutrients 638 

available at a higher N:P stoichiometric balance. 639 

In spring, the sensitivity to tree layer greenness decreases with N fertilization. An experimental study by Biro et al. (2024) 640 

supports these findings, demonstrating that N addition results in decreased tree growth due to competition with grass, which 641 

also intensively forages for P. The study suggests that grasses likely prevail in below-ground competition, primarily due to 642 

their substantial root biomass allocation and investment in nutrient-acquiring enzymes, such as phosphatase. These adaptations 643 

enable grasses to efficiently sequester both N and P from the soil, thereby outcompeting trees for these essential nutrients (Biro 644 

et al., 2024; Rolo and Moreno, 2012).With the addition of N+P, we observe that the NEE sensitivity to PAR increases 645 

significantly in spring (Fig.5). Water and nutrients are abundant in this season at NPT, making the availability of energy more 646 

crucial. 647 

In the water-limited seasons, ecosystem processes behave quite differently and we observe less effect of nutrient addition. 648 

With N+P addition, there is no significant trend in NEE sensitivity to its drivers, except for a significantly increased sensitivity 649 

to grass layer greenness in summer. This agrees with our previous findings that in summer gcc_gr is amongst the most 650 

important drivers at NPT (Table 2). This reflects changes in the species decomposition with N+P fertilization, enhancing 651 
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especially the growth and diversity of forbs and perennial species. We argue that long-term N+P addition could even lead to 652 

an increased productivity, leading to an increasing importance of grass layer greenness for ecosystem NEE.  653 

The significant increase of the yearly NEE range at NPT over time (Fig.6) is very likely caused by the increased NEE sensitivity 654 

to drivers in spring and summer, as the minimum NEE (usually occurring in spring) becoming more negative and maximum 655 

NEE (usually occurring in summer) becoming more positive. Consequently, the increased NEE sensitivity to changes in PAR 656 

in spring and increased sensitivity to gcc_gr in summer might enhance the size of this annual range.  657 

In the drydown phase we observe that with N addition, the sensitivity of ecosystem NEE to changes in relative humidity (i.e., 658 

Rh02 and Rh15) and SHF_Sun decreases significantly. This indicates that the ecosystem might become more resistant against 659 

variations in these variables in the future. 660 

In autumn both fertilized sites become less sensitive to changes in atmospheric variables such as the radiation components 661 

PAR and SWDR, air temperatures and VPD, compared to the control plot. This indicates that water availability is 662 

predominantly important for NEE with added nutrients, and the sensitivity to the other variables decreases. It is possible that 663 

either the vegetations or the microbes become less restricted by these variables.  664 

We conclude that with more N-input from human activities entering terrestrial ecosystems (Penuelas et al., 2013), savannas 665 

may become less sensitive to environmental factors like humidity, radiation, and temperature during the transitional seasons 666 

(i.e., drydown and regreening). These seasons determine the start and end of an active grass layer and therefore dominate the 667 

annual carbon balance of the ecosystem. In addition, we expect the NEE variability to increase even more in the future with 668 

more N deposition and a changing climate. To note, the results of this study cannot explain on how the long-term nutrient 669 

addition affects the ecosystems resistance to extreme events.  670 

 671 

5 Conclusion 672 

We analysed a long-term (2016-2022/23) dataset of flux, biometeorological, satellite and PhenoCam data from the semi-arid 673 

experimental site, Majadas de Tiétar, to evaluate the importance of different drivers for NEE across three different nutrient 674 

balances. To detect the most important drivers, we used only daytime daily values of observed data to extract the seasonal 675 

signal of all variables using the Singular Spectrum Analysis.  676 

With both Pearson correlation and mutual information analysis we show that the grass layer drives seasonal variations in NEE 677 

across all treatments, and that both N and N+P addition increases the seasonal NEE variability. We find that soil temperatures 678 

are more important in explaining NEE variations than previously expected. When looking into the entire 7-year data together, 679 

the water and energy limitation cycles overshadows the nutrient addition effect. Dividing the dataset into phenological seasons 680 

reveals how environmental variables and nutrient manipulation influenced NEE on a seasonal scale. Altered nutrient levels 681 

affect NEE-control relationships when water and energy limitations are not too strong, particularly during the primary growing 682 

season in spring, where NDVI and grass layer GCC are key drivers. In autumn, NDVI shows the strongest interaction with 683 
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NEE at fertilized plots, indicating faster green-up and higher GPP due to enhanced nutrient availability. During drier seasons, 684 

nutrient effects are less pronounced as the grass layer becomes dormant.  685 

N and N+P additions significantly alters the sensitivity of NEE to environmental controls over time. In winter, N addition 686 

increases NEE sensitivity to radiation, while N+P addition increases its sensitivity to changes in soil water content. In spring, 687 

N+P addition increases sensitivity to PAR. The herbaceous layer primarily benefits from nutrient additions, leading to 688 

increased sensitivity of NEE to grass layer greenness and decreased sensitivity to tree layer greenness. During water-limited 689 

seasons, nutrient effects were minimal, except for increased importance of grass layer GCC in summer at NPT, indicating an 690 

increase in abundance and/or productivity with N+P treatment due to changed species composition and higher biodiversity. 691 

We conclude that with increasing anthropogenic N deposition the carbon dynamics of savannas might become even more 692 

variable in the future, but more resistant to variations in some atmospheric variables in the transitional seasons, which 693 

determine the annual carbon balance of the ecosystem. However, their responses to extreme events in the future remains to be 694 

explored.  695 
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