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Abstract.

The orientation of ice crystals affects their microphysical behaviour, growth, and precipitation. Orientation also affects

interaction with electromagnetic radiation, and through this, influences remote sensing signals, in-situ observations, and optical

effects. Fall behaviours of a variety of 3D-printed plate-like ice crystal analogues in a tank of water-glycerine mixture are

observed with multi-view cameras and digitally reconstructed to simulate falling of ice crystals in the atmosphere.5

Four main falling regimes were observed: stable, zigzag, transitional, and spiralling. Stable motion is characterised by no

resolvable fluctuations in velocity or orientation, with the maximum dimension oriented horizontally. The zigzagging regime

is characterised by a back-and-forth swing in a constant vertical plane, corresponding to a time series of inclination angle

approximated by a rectified sine wave. In the spiralling regime, analogues consistently incline at an angle between 7 and 28

degrees, depending on particle shape. Transitional behaviour exhibits motion in between spiral and zigzag, similar to that of a10

falling spherical pendulum.

The inclination angles that unstable planar ice crystals make with the horizontal plane are found to have a non-zero mode.

This observed behaviour does not fit the commonly-used Gaussian model of inclination angle. The typical Reynolds number

when oscillations start is strongly dependent on shape: solid hexagonal plates begin to oscillate at Re = 237, whereas several

dendritic shapes remain stable throughout all experiments, even at Re > 1000. These results should be considered within remote15

sensing applications wherein the orientation characteristics of ice crystals are used to retrieve their properties.

1 Introduction

Understanding the motion of falling ice crystals is important to both the microphysical processes within clouds and their bulk

characteristics, such as radiative and optical properties. However, their dynamics are not well understood; ice crystals have

complex and irregular shapes, and can exhibit fluttering, spiralling, and tumbling motions.20

To quantify the orientation of analogues, the inclination angle, θ, is the angle made between the rotated ice crystal’s c-axis

and the global vertical y-axis (Figure 1). Falling ice crystals, when stable, have a constant θ of 0° (List and Schemenauer,

1971). When unstable, it is commonly assumed crystals have Gaussian distributions of orientations, with a modal θ of 0°, and

standard deviations varying between 10° (pristine ice crystals) and 40° (heavily aggregated snowflakes) (Melnikov and Straka,

2013; Ryzhkov et al., 2020). However, ice crystals exhibit a variety of unstable falling regimes, each corresponding to different25

distributions of orientations.
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Figure 1. Axes of a crystal inclined by theta of 20◦ and pointing towards an azimuth, φ, of 45◦, both relative to the lab frame of reference,

given by an (x,z) horizontal plane and a vertical y-axis. The crystal plane is represented by the a and a’-axis, where the a-axis is aligned with

one of the crystal branches. The c-axis is perpendicular to the crystal plane. The views provided are for an observer facing (a) the c-y plane

(b) the a’-y plane (c) the x-z plane.

1.1 Importance of Orientation of Ice Crystals

The orientations of falling crystals impact their projected area in the horizontal plane, their sedimentation rate, and the rate

at which they can collide with other hydrometeors (Westbrook et al., 2010). Compared to ice crystals with purely vertical

motion, ice crystals with horizontal motions in addition to the vertical will travel a farther distance, providing more opportunity30

to collide with other hydrometeors than ice crystals with vertical motion alone (Wang, 2021). This further impacts cloud

macrophysical properties, such as radiative impacts and cloud lifetime.

Properties of ice crystal motion have important implications for radar and lidar observations: orientation directly influences

signals sampled by dual-polarisation radar, as the orientation of crystals changes the Differential Reflectivity (ZDR) (Bringi

and Chandrasekar, 2001). Unstable motion causes fluctuations in the crystal velocity in the component of the crystal motion35

along the radar beam, broadening the Doppler spectrum width (Feist et al., 2019). Differences in assumptions of orientation can

therefore impact the relationship between derived ice crystal diameter and Doppler or polarimetric remote sensing observations,

ultimately affecting radar-derived precipitation rates (Matrosov, 2011; Schrom et al., 2023).

Horizontal orientation of ice crystals affects lidar observations, especially in the case of specular reflection, causing enhanced

return for lidars pointing exactly at zenith or nadir (Sassen, 1977; Platt, 1977; Gibson et al., 1977; Hogan and Illingworth,40

2003). The magnitude of the enhancement and its variation with elevation angle are strongly dependent on the chosen model

for crystal orientation (Platt, 1977).

For clouds containing ice, crystal size, concentration, habit, and orientation all play a significant role in determining cloud

radiative properties such as optical depth and albedo (Curry and Ebert, 1992; Ishimoto et al., 2012; Hirakata et al., 2014).
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Changes in these particle orientation assumptions can lead to high variation in the retrieval of cirrus properties from satellite45

observations. In certain cases, decreasing the assumed standard deviation of θ from 20◦ to 5◦ doubled the estimated optical

depth (Masuda and Ishimoto, 2004). Horizontally oriented ice crystals have also been theorised to increase cloud shortwave

albedo by up to 40% (Takano and Liou, 1989).

When ice crystals are horizontally oriented, this gives them distinctive optical characteristics (Cho et al., 1981; Sassen,

1987). For instance, horizontal crystals can create a range of atmospheric optical phenomena such as sun dogs, light pillars,50

and Parry arcs, among others (Moilanen and Gritsevich, 2022). Additionally, spiralling ice crystals have been hypothesized to

cause the rare ‘Bottlinger’s rings’ effect (Lynch et al., 1994; Tränkle and Riikonen, 1996).

Ice crystal orientation also impacts the apparent crystal properties (e.g. size, projected area, aspect ratio) inferred from anal-

ysis of 2D projections sampled by ground-based imagers such as PIP (Jiang et al., 2017; von Lerber et al., 2017). To estimate

the three-dimensional parameters relevant for drag calculations from two-dimensional projections of snowflakes assumptions55

about particle orientation, shape, motion, must be made (Köbschall et al., 2023). Dunnavan and Jiang (2019) find that for

highly eccentric particles (such as aggregates) that have large fluctuations in θ, very limited information can be inferred about

a particle’s 3D shape without specifying appropriate particle orientation distributions.

1.2 Phenomenology of Circular Discs

Analogies may be drawn between the aerodynamics of ice crystals and those of other idealized shapes, such as thin circular60

discs. There has been extensive experimental research on the aerodynamic behaviour of thin circular discs (e.g. Willmarth et al.,

1964; Field et al., 1997; Ern et al., 2011; Zhong et al., 2011). Two dimensionless ratios have been proposed to characterise the

motion of falling circular discs: the Reynolds number, Re, and the dimensionless moment of inertia, I* (Willmarth et al., 1964;

Field et al., 1997), discussed in the following subsections.

1.2.1 Reynolds Number65

The Reynolds number is defined as:

Re=
VmeanD

υ
(1)

where υ is the dynamic viscosity of the fluid, Vmean is the mean vertical velocity of the particle, and D is the maximum

dimension of the particle.

Willmarth et al. (1964) identified that Re 100 - 200 is the critical point for the onset of unstable motions for circular discs,70

after which periodic behaviour begins. The value of the critical Reynolds number varies depending on particle shape. Field

et al. (1997) report an experimental study of how metal circular discs fall through water and glycerol mixtures, and how paper

discs fall through air. Different falling regimes were observed depending upon the experimental parameters; discs could fall

steadily, exhibit oscillating periodic motions, or tumble.

Periodic behaviour includes zigzag and spiralling sub-types of behaviour, and more recently, an in-between behaviour was75

identified as transitional, through experimental investigations by Zhong et al. (2011). Zhong et al. (2011) find that for circular
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discs, at low Re and I*, the most common behaviour is spiralling, whereas at high Re and I* zigzagging behaviour is most

common, with transitional behaviour occurring at intermediate I* and Re. (Figure 2).

At Reynolds numbers below the critical Reynolds number, flow around crystals is stable. For planar crystals in this regime,

laboratory and field measurements have shown that the largest dimension becomes normal to the axis of gravity, and the80

plate crystals achieve a horizontal orientation, corresponding to a constant inclination angle of zero (Jayaweera 1965; List and

Schemenauer 1971; Pruppacher and Klett 1997 (see chapter 10), Kajikawa 1992; Wang 2021)

At a critical Reynolds number, the flow around the crystal becomes unstable, forming vortices as part of the boundary layer

of fluid at the surface of the particle. When shedding of these vortices in the wake of crystal occurs, the distribution of pressure

on the crystal changes, exerting forces that cause it to rotate (Zhong et al., 2013; Tagliavini et al., 2021a). These unstable85

motions are observed as oscillations in orientation, as well as the vertical and horizontal velocities, such that they are non-zero,

fluctuating, and have a distribution. There is a current lack of understanding about the orientation of ice crystals in unstable

regimes, and one of the aims of this paper is to explore this.

1.2.2 I*

The dimensionless moment of inertia for a circular disc is defined as the ratio of the moment of inertia of a circular disc about90

its diameter and a quantity proportional to the moment of inertia of a rigid sphere of fluid of the same diameter, such that:

I∗disc =
π

64

ρP
ρf

t

D
(2)

where ρP is the density of the particle, ρf is the density of the fluid, t is the thickness of the disc, and D is its diameter

(Willmarth et al., 1964). For more complex shapes, the more general non-dimensional moment of inertia is:

I∗ =
Ia

ρfD5
(3)95

where D is the maximum dimension of the particle. The moment of inertia for rotation around the 3 principal axes of the

crystals is calculated, where Ia is the smallest of these three moments, aligned in the a-axis of the crystal (Fig. 1) (Kajikawa,

1992). For reference, further information regarding the calculation of the moments of inertia can be found in Gregory (2006,

p.570).

1.2.3 Comparing ice crystals to discs: Re - I* Phase Space and Area Ratio100

Figure 2 presents a summary of the coverage of the data presented in McCorquodale and Westbrook (2021a, b), also used

in this study, throughout Re and I* phase space, as well as the key prior experiments on ice crystal shapes (Kajikawa, 1992;

Cheng et al., 2015; Nettesheim and Wang, 2018) and circular discs (Field et al., 1997; Zhong et al., 2011) that are discussed

in sections 1.3 and 1.4 . Using a mass-diameter relationship from Nakaya and Terada (1935) for planar dendritic crystals, and

methods for estimating I* from Kajikawa (1992), we find that a 10 mm, 1 mm, and 0.1 mm planar dendritic crystal where the105

density of ice is 917 kgm−3, and the density of air is 1.2 kgm−3, have an I* of 0.02, 0.2, and 2.0 respectively. The hatched
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Figure 2. Phase diagram showing the stable (black) and unstable (purple) behaviour of falling particles as a function of I* (dimensionless

moment of inertia) and Re (Reynolds number). Data from TRAIL (this study and McCorquodale and Westbrook (2021a, b)) is in solid circles,

and all other data points are for shapes relevant to ice crystals, (Nettesheim and Wang, 2018; Kajikawa, 1992; Cheng et al., 2015). Solid

lines and annotations are from Field et al. (1997), dashed lines and rotated annotations are from Zhong et al. (2011), presenting the observed

behaviour for circular discs. Acronyms in legend refer to the shapes Table 1. Hatched region is the expected range of I* for dendritic planar

ice crystals.

region of Figure 2 displays this expected range of I* for planar dendritic ice crystals — this matches up well with the range of

previous observations of ice crystals.

Our study focuses on planar crystals. These range from hexagonal plates (which present a solid obstacle to the flow at all

Reynolds number), to stellar crystals and dendrites which have much more open projections. One way to characterise this110

shape variability is by area ratio; the ratio of the maximum cross-sectional area of the particle and the area of its circumscribing

circle, which helps compare to circular discs. Fluid experiments on planar shapes report that the amplitude of oscillations in the

descent velocity was maximum for circular discs and decreased with area ratio, suggesting that unstable motions are inhibited

by more complex shapes (Esteban et al., 2018).
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1.3 Existing Work on Orientation of Ice Crystals115

A variety of approaches have been developed to study the aerodynamics of ice crystals. Using the Cloud–Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO), Zhou et al. (2013) simulated crystal distributions and orientations and

found that horizontally oriented plates occurred in 60% of optically thick ice and mixed-phase cloud layers. Similarly, Stillwell

et al. (2019) found that horizontally oriented plates must occur in at least 25.6% of all ice-only column observations using

polarization lidar for their simulations to match the observations.120

Common models of particle orientation distribution assume either uniform distribution, horizontal orientation with inclina-

tion angle of zero, or a Gaussian distribution with a peak at zero inclination angle (e.g., Borovoi and Kustova, 2009). However,

models of particle orientation distribution for falling particles suggest modal inclination angles of approximately 10◦ (Klett,

1995). Melnikov and Straka (2013) attempt to retrieve the spread of fluttering angles from polarimetric radar data, assuming

that the mean inclination angle is zero, and that the distribution has a fixed, size-independent width, retrieving fluttering am-125

plitudes on the order 2-23◦. However, remote sensing is an indirect measurement rather than a direct observation of the fall

motion.

More direct measurements are possible, such as in-situ observations of ice particles near the surface, (e.g., Zikmunda, 1972;

Locatelli and Hobbs, 1974; Kajikawa, 1992; Garrett et al., 2015; Fitch et al., 2021). Falling natural planar snow crystals placed

into a tube were studied by Kajikawa (1992), and utilising a stereophotogrammetric method found that hexagonal plate crystals130

exhibited stable and unstable motions, including a swing motion (zigzag), and a helical rotation motion (spiralling). The critical

Reynolds number, above which crystals exhibited unstable motion, was found to vary depending on the specific crystal habit,

as classified by Magono and Lee (1966). For crystals of classification P1a (hexagonal plates), the critical Reynolds number

was found to be 47, while for P1f crystals (fern-like crystals), the critical Reynolds number was found to be 91. Nonetheless,

the tendency of ice crystals to break, evaporate, and melt when handled led to high uncertainties in direct observations of ice135

crystals at the ground.

Multi-Angle Snowflake Camera (MASC) observations by Garrett et al. (2015) found that the modes of the distribution

of inclination angles were 20◦, 16◦, and 13◦, for graupel, rimed particles, and aggregates respectively, indicating that snow

particles show a preference for near-horizontal orientation but have non-zero modal values. Recent research into the MASC

measurements by Fitch et al. (2021) has also reported preferential non-horizontal inclinations for the orientation of snow140

particles, with a modal value of 12◦ observed for light wind speeds in shielded conditions.

These findings suggest that the assumption of Gaussian orientation distribution may not always be accurate, and that the

orientation of snow particles may exhibit preferential orientations that are non-horizontal, even in quiescent environments.

Lynch et al. (1994) proposed modelling falling ice crystals’ swinging motion as similar to that of a pendulum where the pivot

of the pendulum falls vertically at constant velocity. This notion is supported by Esteban (2019) who found that oscillatory145

motions of discs and a variety of other planar shapes in both quiescent and turbulent fluids had pendulum-like motions, with

turbulence simply adding noise to the oscillations.
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We hypothesize that planar ice crystal analogues will behave similarly to this previous experimental work, and test that

hypothesis in this study. Falling ice crystals may be well approximated as falling pendulums, and there is a relationship between

the distribution of angles and other fall motion aspects such as velocity fluctuations, perceived projected areas, and perceived150

aspect ratios.

Cheng et al. (2015) explored the behaviour of hexagonal plates using numerical simulation, with Re ranging from 46 to 974

and I* ranging from 1.1 to 0.3. The plates are stable at Re=46 and unstable at Re=135. Smaller plates exhibit a zigzag motion

while larger plates exhibited spiralling, and none of the plates tumbled during the simulation, in contrast to the work by Field

et al. (1997) and Zhong et al. (2011) on circular discs.155

Nettesheim and Wang (2018) used numerical simulations to study the fall behaviour of branched crystals, showing unstable

fall motions for sector plate at Re=384 and broad branched plate at Re=345. They also provided data on other experiments,

with sine wave fits to the Euler angles of the particles during the experiments. However, the time series the angles are fit over

include a spin up period between the initial “release” of the crystal and it settling into its preferred fall motion, which precludes

a quantitative comparison to the results presented in our study.160

As the unsteadiness of falling particles is a complex, nonlinear, multi-degree-of-freedom phenomenon, numerical simu-

lations impose significant computational cost and technical challenges. These simulations also rely on assumptions about

turbulence, vortex shedding, and how these interact with falling particles, making it difficult to confidently simulate the wide

range of conditions ice crystals experience.

Using analogues —scaled up models of natural crystals— presents a promising avenue for studying the fall behaviour of ice165

crystals in a laboratory environment. List and Schemenauer (1971) report measurements of machined analogues of snowflake

particles falling in solutions of water and glycerine or salt water, and exploit dynamic similarity. This dynamic similarity only

applies when falling steadily at terminal velocity, since the only dimensionless variables are Re and particle shape. When

falling unsteadily the ratio ρp/ρf , contained within I∗, is also significant. To compare the results to natural snowflakes falling

in the atmosphere. The study considers 5 different designs of planar ice crystals and observes stable behaviour at Re < 100.170

For discs, hexagonal plates, and broad branched models, small oscillations are observed at Re ≈ 200, although no oscillations

are observed at this Reynolds number for stellar, dendritic, or stellar-with-plate shapes. Köbschall et al. (2023) used analogues

of aggregate snowflakes, finding that the area of complex snowflake analogues projected in the direction of flow is often

maximized, and for many of their analogues, a rotation around the vertical axis was seen.

Building on previous work by Westbrook and Sephton (2017), McCorquodale and Westbrook (2021a) utilized modern175

3D-printing techniques to fabricate analogues for studying the aerodynamics of ice particles through the analogue method.

Experimental studies on these analogues were analysed through a custom algorithm, producing digital reconstructions of

the trajectory and orientation of the particle. From these experiments, analogues of aggregates are found to exhibit different

preferential orientations depending on Reynolds number for the same particle shape (McCorquodale and Westbrook, 2021c)

Tagliavini et al. (2022) performed numerical simulations with dendritic crystals, and compared results to free falling analogues,180

using the particle tracking algorithms described in McCorquodale and Westbrook (2021a, b). They found that throughout the

Re range in both numerical simulations and laboratory observations, the wake and motions of dendritic crystals was stable,
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even as high as Re = 1500, supporting the idea that the onset of unstable motions is sensitive to crystal geometry. This is a topic

explored in the current article.

1.4 Investigating unresolved questions185

It is evident that the representation of crystal orientation in many studies is not well constrained at present. There is evidence

that unstable motions may be more complex than a simple zigzag motion, but the conditions under which this happens are not

clear.

There is extremely limited data quantifying how the orientations of unstable crystals are distributed, and what that distribu-

tion depends on, as well as how frequent and large the velocity fluctuations (in both vertical and horizontal) are in response to190

the unstable wake of the falling crystal and how they are correlated with the variations in orientation. In this article we present

new data to address these areas of uncertainty.

Building on previous work by Westbrook and Sephton (2017), McCorquodale and Westbrook (2021a) utilized modern

3D-printing techniques to fabricate analogues for studying the aerodynamics of ice particles through the analogue method.

To link the behaviour of real ice crystals to the theoretical behaviour observed by Esteban et al. (2019, 2018) in laboratory195

experiments, we further examine the experiments by McCorquodale and Westbrook (2021a), focusing on the fall behaviour of

quiescent plate-like particles, identify the angles at which ice crystal analogues fall and test the potential relationship between

the distribution of fall angles and other motion aspects.

The paper is organised as follows: In Section 2, we describe the experiment by McCorquodale and Westbrook and the data

sets derived from it. In Section 3 we discuss the results, beginning with section 3.1, discussing which particles fall steadily.200

Section 3.2 introduces and and describes four case studies of periodic motion and how their orientations, velocities, and

oscillation frequencies can be characterised. Section 3.3 discusses the broader trends and characteristics of the full data set,

including how distributions of θ, oscillation frequencies. and motion type vary by shape and Reynolds number, as well as how

velocity components vary with one another. Further discussion of these results, including summary and conclusions, can be

found in Section 4.205

2 Data

A diverse range of ice particle analogues were included in this study, ranging from hexagonal plates with an area ratio of 0.87

to open branched crystals with area ratios as low as 0.23 (Table 1). The area ratio of the particles included is calculated using

the observed projected area of the particle divided by the circumscribing circle at each time-step during experiments when fall

motion is stable. The mean calculated area ratio is then used to describe each result.210

The ice crystal analogues were produced using a Form 2 3D printer (Formlabs), which achieves a high level of precision

with a minimum layer thickness of 25µm and a laser spot size of 140µm. The maximum dimensions of particles ranged from

1 to 3 cm, with aspect ratios varying between 0.04 and 0.2, and area ratios varying between 0.2 and 1 (Table 1). Due to an

artefact of how the numerical code from Reiter (2005) was used to create some of the crystal shapes, a few of the models (S,
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Table 1. Particle shapes analysed in this study. Area ratio is calculated using the observed projected area divided by the circumscribing circle

around the maximum diameter, as seen from beneath when fall motion is steady. Re is calculated using the observed mean velocity and

maximum observed diameter as seen from beneath.

Shape Abbreviation Image Area ratio Aspect ratio Re Range

Circular disc CD 1.0 0.04, 0.1, 0.2 3 - 1660

Hexagonal plate HP 0.87 0.04, 0.1, 0.2 7 - 1680

Wang Sector plate Wang-S 0.80 0.025 9 - 1567

Broad-branched plate BBP 0.64 0.04, 0.07, 0.1 5 - 1104

Plate-branched PB 0.56 0.04, 0.07, 0.1 23 - 1675

Wang Broad-branched plate Wang-BBP 0.5 0.025 6 - 1542

Fernlike dendrite F 0.47 0.04, 0.07, 0.1 21 - 1831

Dendrite-V1 D1 0.39 0.04, 0.07, 0.1 10 - 1615

Dendrite-around-plate DP 0.34 0.04, 0.07, 0.1 15 - 1811

Dendrite D 0.31 0.04, 0.07, 0.1 17 - 2007

Stellar dendrite S 0.23 0.04, 0.07, 0.1 15 - 2162

F, D, DP, and PB) were later realised to be non-hexagonally symmetric and instead have a horizontal aspect ratio (the diameter215

in the a-axis to the diameter of the a’-axis) of 1, instead of 1:1.15 for a regular hexagon. We do not expect this to affect the

broad behaviour of their fall motions, and indeed we observe zigzag, spiral, and transitional behaviour for these particles, but

as noted later, this asymmetry may influence the details of the critical axis that zigzag motions are oriented around.

To replicate atmospheric conditions in the laboratory, the dynamical similarity experiment was conducted in a transparent

acrylic tank with internal dimensions of 0.4×0.4×1.8m. The tank was filled with uniform mixtures of water and glycerol, with220

the volume fraction of glycerol ranging from 0% to approximately 50%. By varying both the density and viscosity of the fluid,

and the size of the analogues, it was possible to sample a wide range of Reynolds numbers for each shape (Table 1).

During the experiment, the ice particle analogues were allowed to free-fall through the tank and recorded using three orthog-

onal cameras. Each camera records the fall of the particle through a region approximately 0.2×0.2×0.2m in size, 1.5 m below

the surface of the fluid. By this point, the particles have reached their terminal velocities and their behaviour is insensitive to225

the initial release orientation.

The Trajectory Reconstruction Algorithm implemented through Image anaLysis (TRAIL) then produced digital reconstruc-

tions of the trajectory and orientation of the particle in free fall. The orientation of the particles was reconstructed using a set of
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Euler angles. More details on the fabrication of the analogues, experimental setup, and reconstruction algorithm can be found

in McCorquodale and Westbrook (2021a).230

This data, referred to as TRAIL, provides time series of the 3D positions and orientation of the falling analogues, from

which the 3D velocity vectors at each time step can be derived. The reconstructed orientations, described by the Euler angles,

further permit the calculation of the inclination angle, θ, which is more widely used in atmospheric applications. A total of 354

experiments with plate-like shapes were conducted, resulting in the range of values described in Table 1.

The instantaneous velocity at each time step is calculated by applying the central difference formula to the coordinate values,235

providing an estimate of the instantaneous velocity of the particle at each time point.

3 Results

Motion observed in the laboratory was typically stable or periodic. Based on the variation of the particle inclination angle,

θ (Figure 1), the periodic behaviour can be divided into 3 sub-types: zigzag, spiral, and transitional behaviour, and will be

analysed below.240

3.1 Crystals which fall steadily

Particles in the TRAIL dataset were diagnosed as exhibiting stable motion when the Euler angles that describe rotation about

the a- and a’-axes (see figure 1) fluctuate by less than ±2.5◦ across the measurements region; this threshold corresponds to the

resolution of the 3D reconstruction. Stable particles fall horizontally with their a-axis in the horizontal plane and c-axis oriented

vertically (i.e. with a near-zero inclination angle), with no measurable fluctuations in velocity, and no horizontal movements.245

223 ice crystal analogues exhibited stable motion, while 131 exhibited unstable, periodic motion. Across all shapes, Reynolds

number alone cannot be used to predict stability: the Reynolds numbers observed ranged from 3 – 1615 for stable motion and

197–2162 for unstable motion. The range of dimensionless moment of inertia values was 0.14·10−3–12·10−3 for stable motion

and 0.28·10−3–11·10−3 for unstable motion. With both variables exhibiting a considerable overlap in presented behaviours,

the onset of unstable motions for ice crystals cannot be considered the same as for circular discs, which become unsteady250

around Re = 100-200 (Field et al., 1997) and around Re = 200 for our results (Figure 3).

Shape (approximated by area ratio) is found to have a large impact on instability. The coverage of stable and unstable

behaviours for all ice crystal analogues in TRAIL is summarised in Figure 3, and it can be seen that onset of unstable motions

can be at larger Re (by up to an order of magnitude) than the predicted onset of unsteadiness for circular discs. The spread of

experiments and their motion types by Reynolds number, separated by shape, is presented in Figure 3.255

Some particles are stable for a much larger range of Reynolds numbers than others. A few shapes (D1 at all aspect ratios,

as well as D, DP, S, and F at aspect ratio 0.04) remained stable throughout all conditions, even at Re > 103. Previous studies

report an increase in drag coefficient when planar particles fall unsteadily (McCorquodale and Westbrook, 2021b). That is, the

onset of unsteady motion is coupled with a change in wake structure (Zhong et al., 2011; Tagliavini et al., 2021b; Nettesheim

and Wang, 2018), which in turn influences the drag coefficient. This change in CD is more pronounced when area ratio is high260
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Figure 3. Motion type coverage of Reynolds number for each shape and aspect ratio. Stable, zigzag, transitional, and spiral, are black crosses,

pink circles, black diamonds, and blue triangles respectively. Particle shape labelling is defined in Table 1

than when it is low (McCorquodale and Westbrook, 2021b), suggesting that unsteadiness is less vigorous in particles with low

area ratios, such as dendrites.

3.2 Case studies of periodic motion

Four case studies are presented to illustrate the periodic motion sub-types, seen in Figure 4 and described in Table 3. These

cases were picked by visual inspection as characteristic types of behaviour. In this section, we will quantitatively describe the265

4 case studies, and then objectively classify their motion based on inclination angle in Section 3.2.5.

Each case study experiment was conducted in pure water. The case study examples are of hexagonal plates except the

spiralling case (Fig. 4g,h) which was a broad-branched plate as none of the hexagonal plate studies exhibited pure spiralling

behaviour with no wobble, but instead exhibited transitional-spirals. Figure 4a, c, e and g present side-views of the particle

cases, viewed from a lab frame of reference. Figure 4b, d, f, h, present the linearly-detrended centre of mass of each particle270

at each timestep, effectively subtracting the mean fall velocity, such that the particle is viewed from an observer falling at the

same mean velocity as the particle.

11



Figure 4. Case studies visualising the periodic motion sub-types. Side views of the particle motion (a, c, e, g), and linearly de-trended centre

of mass normalised by particle diameter (b, d, f, h), coloured by inclination angle θ (◦) for the Zigzag, Zigzag-Transitional, Transitional, and

Spiral cases respectively.

3.2.1 Characteristics of periodic motion

The first of the periodic motion types seen is the zigzag case study: the particle swings back and forth in one plane, and

as the particle swings away from its centre of fall, its inclination angle increases, akin to a planar pendulum motion. The275

zigzag-transitional case introduces an element of rotation around the vertical axis, such that the plane of swing slowly moves

anticlockwise, and had the experimental run been longer, it may have rotated back to its original position. The transitional-
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Table 2. The experimental conditions for the presented case studies from Fig.4-8.

Motion type Shape Aspect ratio Reynolds number I* · 10−3

Zigzag HP 0.04 546 1.59

Zigzag-Transitional HP 0.10 757 3.94

Transitional HP 0.04 684 1.58

Spiral BBP 0.04 512 1.07

spiral case is similar, but the rate of rotation around the vertical is faster, producing wider loops. Spiralling, the final sub-type of

periodic motion remains at a near-constant inclination angle and does not swing back and forth, and instead precesses around

its central point without touching its mean centre of fall.280

The sub-types of periodic motion can be approximated by the sub-types of spherical pendulums: zigzagging is similar to

a planar pendulum, spiralling is comparable to a conical pendulum, and transitional motion captures the range of pendulum

motion between the two extremes, with the horizontal displacement approximating a rhodonea curve (Helt, 2016). A conical

pendulum characteristically traces out a circle in the horizontal plane, akin to spiralling cases, which also trace out a circle in

the horizontal plane. Similarly, a planar pendulum serves as an analogy for the zigzagging motion, as they are both constrained285

to movement in a single plane, tracing out a line in the horizontal plane.

3.2.2 Time series of θ and φ

Series of inclination angles, θ, for the periodic motion types can be approximated as sinusoidal (Figure 5). To distinguish

between the regimes, rectified sine waves are fit to these inclination angle time-series, using a fast Fourier transform as a first

guess of the frequency of the sine wave, and SciPy’s curve fit function (Virtanen et al., 2020), such that:290

θ = |θamp sin(ωt+ω0) + θtilt| (4)

Where θ is the inclination angle, t is the time in seconds, θamp is the amplitude of the wave, and θtilt is the angular displacement

of the sine wave, the period of the sine wave is 2π/ω (in seconds), and ω0 is the phase shift.

:::
All

:::::::
unstable

::::::
motion

::::::::
presented

::
in

:::
this

:::::
study

:::
was

::::::::
observed

::
to

::
be

:::::::
periodic

:::
and

::
is

:::::::::::
approximated

:::::::
through

:::::::
equation

::
4.

:::
We

::::::::
observed

::
no

::::::::
complex

::::::::
tumbling,

::::::
chaotic

:::::::::
fluttering,

::
or

:::::::::
behaviour

::::
with

::::::::::
significantly

:::::::::::::
non-sinusoidal

::::::
motion

::
to
:::

it.
::::::::
However,

:::
we

::::
note

::::
that295

::::
there

:::
are

::::
some

:::::::::::
experiments

::
in

::
the

:::::
study

::
in

::::::
which

::::::::
additional

:::::::
(weaker)

::::::
modes

::
of

:::::::::
oscillation,

::
in
:::::::
addition

::
to
:::
the

:::::::
primary

:::::::::
frequency,

::::
seem

::
to

:::
be

:::::::
present.

:::
For

::::::::
example,

:::
the

::::::::::
transitional

::::
case

::
in

::::
Fig.

::
5c

:::
has

:::
an

:::::::::
amplitude

:::
that

:::::::::
fluctuates

::::::
slightly

::
in

:::::
time,

::
at

::
a

:::::
lower

::::::::
frequency

::::
than

:::
the

:::::::
primary

::::
mode

:::
of

::::::::
oscillation

::::::::
captured

::
by

:::
the

::::::
simple

::::::::::::::
single-frequency

::
fit.

:::
We

:::
did

:::
not

:::::::
attempt

::
to

::::::
capture

:::::
these

::::
finer

:::::
details

::
in
::::
our

:::::
fitting

:::::::::
procedure.
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Figure 5. Time-series of inclination angles (◦) for the periodic motion sub-types shown in Figure 4 (black), and their fitted curves from

equation 4 (blue). A histogram of angles is shown to the right of each panel, using 2.5 ◦ bins.

The root mean square error of the rectified sine wave fits to the four case studies is 1.1\degree◦, 1.3\degree◦, 2.7\degree◦,300

and 0.9\degree ◦for the zigzag, transitional-zigzag, transitional, spiral, cases respectively. The root mean square error of all fits

to the data have a mean of 1\degree ◦and are provided in the supplementary data.

θamp and θtilt are found to summarise the motion types well, as they represent the variability and tilt of the particle respec-

tively and constrain the pendulum model. They also allow the periodic sub-types to be distinguished quantitatively: a spiralling

particle has a low θamp and a high θtilt, as it is consistently inclined and does not flutter.305

Zigzagging behaviour is the opposite: a potentially high θamp and a near-zero θtilt, as it swings around a horizontal orienta-

tion, but flutters much more than a spiralling particle (Fig. 5). For example, the zigzag example case (Fig. 5a) has a fitted θamp

of 34 ◦, and a θtilt of 0 ◦.

The transitional zigzag case behaves similarly, but never samples (close to) θ = 0, and it is just starting to transition to

having a slow rotational component. It should be noted that although the transitional-zigzag case has a higher θamp (42◦),310

than the zigzag case (where θamp is 34◦), this does not negate categorisation of behaviour for either case, as the trajectory of

the transitional-zigzag case is close to zigzag behaviour but never samples exactly θ = 0, and it is just starting to transition to

having a slow rotational component.
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Figure 6. Time-series of azimuth angles, φ, (◦) for the periodic motion sub-types.

The transitional case (Fig 5c) has a smaller amplitude than both zigzag and zigzag-transitional cases; θamp is 9◦, but θtilt

is much higher, at 24◦. The spiralling case (Fig. 5d) has an even smaller amplitude still, with θamp is 1◦, but θtilt at 20◦.315

Spiralling behaviour can have nonzero θamp, although θamp is small. This small variation in θ is referred to as wobble for

spiralling cases. It may be worth considering how much of this wobble is a physical phenomenon vs an artifact or experimental

uncertainty; a wobble of 2.5◦ could easily originate from experimental uncertainty. Given the wobble in figure 5d appears to

have a uniform period, we believe the wobble in this case is partly a physical phenomenon, but you can see the impact of

experimental uncertainty in the traces within figures 5(a-c) at the limits of inclination angle (e.g. for zigzag the angle often320

doesn’t reach 0). This will partly be due to the finite time-resolution of the measurements and partly due to accuracy of the

orientation reconstruction.

Figure 5 also displays the distributions of θ for each case study. The zigzag case has a distribution that is consistent with that

expected for simple harmonic motion, where the most likely inclination is at the end of each swing where dθ/dt is smallest,

and least likely is an angle of zero. Spiral has an almost constant inclination angle, and hence a very narrow distribution of325

θ, centred on angle significantly higher than zero. Transitional has a distribution that is in-between the other two cases, and

in common with spiral cases θ is always above zero. This is in significant disagreement with the common assumption that

orientation is a Gaussian distribution where most common orientation is horizontal (θ = 0).
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An azimuth angle, φ, represents where the c-axis of the crystal when projected into plan view is pointing relative to the x

axis (in the lab reference frame) (Figure 1c). A spiralling particle has a linear increase (or decrease, in cases not shown) of330

azimuth angle, and dφ/dt is constant (as seen in Fig. 6 d). The saw-tooth shape is produced by the angle being limited to ±
180◦.

Purely zigzag cases swing around one axis: when the particle goes from pointing one way to pointing another, φ changes

by ∆180◦ seen by the square-wave shape (Fig. 6 a.) .dφ/dt is constant and zero for pure zigzag cases except for close to the

instant where the particle becomes horizontal (θ = 0) and φ becomes highly uncertain, as the c-axis is momentarily pointing335

towards the vertical (and can be ignored). The axis that zigzagging cases pivot around tends to be the branches of the crystal,

in the plane of the a and a’-axes. For shapes that are non-hexagonally symmetric (S, F, D, DP, and PB), the shortest branches

are the axis the crystal pivots around.

Transitional cases have a non-constant dφ/dt, a combination of the saw-tooth and square waves seen in the spiral and zigzag

cases. For the zigzag-transitional case (Fig. 6 b), φ increases during its time along each loop of the rhodonea curve, and then340

jumps by a value close to 180◦ when the orientation of the c-axis is close to vertical. The transitional case (Fig. 6 c)has no

visible jumps in φ except for the aliasing at ± 180◦, as θ never becomes close to zero.

3.2.3 Velocity fluctuations

The amplitudes of the u and w components of velocity (in the x and z directions respectively) changed in the presence of

any component of rotation around the vertical. Therefore, a combined horizontal component of velocity, U, was calculated as345

follows:

U =
√
u2 +w2 (5)

Sine waves can be fit to the vertical component of velocity, V, and the horizontal component of velocity, U, such that:

V = Vamp sin(ωV t+ωV 0) +Vmean (6)

U = |Uamp sin(ωU t+ωU0) +Uoffset| (7)350

These velocity components of the particles were found to follow a sinusoidal pattern consistent with the pendulum model

(Fig. 7). U is fit with a rectified sine wave as horizontal speed can become zero in zigzag cases, but cannot be negative (equation

5).

For all experiments with periodic motion, θ, U , and V , are all found to have sinusoidal patterns with the same period, (i.e.

ωV = ωU ) but different offsets and amplitudes. Uoffset is not always zero: it is non-zero for particles that drift as they descend,355

or particles with a spiralling component.

A summary of the sine wave fit components can be found in Table 3. Horizontal velocity, U, is found to peak when the tilt

was lowest (i.e., when the particle was flat or the inclination angle of the particle was closest to zero) just after vertical velocity,

V, peaks.
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Figure 7. Time-series of the horizontal and vertical velocity components for the periodic motion sub-types, normalised by the mean vertical

velocity in each experiment.

The amplitude of V fluctuations relative to the mean vertical fall speed (Vamp/Vmean) are 0.37, 0.47, 0.42, and 0.03 for the360

zigzag, zigzag-transitional, transitional, and spiral cases respectively. The amplitude of horizontal velocity fluctuations relative

to the mean fall speed (Uamp/Vmean) are similar to their vertical components (0.41, 0.55, 0.49, 0.03 for each case respectively).

In the case of the spiralling particle, U and V are held relatively constant compared to the other cases, effectively making the

spiralling cases a quasi-steady mode with a non-zero near-constant inclination.

For the non-spiralling cases, large fluctuations suggest that the mean vertical velocity, Vmean, does not sufficiently char-365

acterise the velocity of a particle. The distributions shown in Figure 7 for the non-spiralling cases are broad, suggesting that

a broad spectrum of instantaneous velocities for a single type of oscillating particle should be considered when interpreting

Doppler spectra.

3.2.4 Projected area fluctuations

One major application of this research is for dwelling radars and lidars, whether ground-based (usually close to zenith) or370

spaceborne (usually close to nadir). Variation in projected area affects assumptions in backscatter cross-section and hence

retrieval of particle size and number. Fluctuations will also affect polarimetric measurements and retrievals using these, par-

ticularly when the particles are viewed from the side. Figure 8 presents the timeseries of reconstructed projected areas as seen
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Figure 8. Time-series of reconstructed projected areas as seen from below for each case study, normalised by the observed projected area

when θ = 0 (blue). θ (dashed, black) and cosθ (dashed, light blue) provided for reference.

from below for each case study, normalised by the planar cross sectional area of each analogue. Projected area as seen from

below anti-correlates with θ in each time-series, displaying an out-of-phase relationship: as θ increases, the aspect ratio of the375

analogues increases (becoming closer to 1), while the area ratio and projected area decrease.

For all four cases, vertical velocity and projected area exhibit a 180◦out-of-phase relationship, where vertical velocity peaks

just after projected area reaches its minimum point. Projected area is more in-phase with horizontal velocity, peaking just after

U reaches its maxima. This supports the idea that vertical velocity increases when projected area is minimised, as drag is

minimised in the vertical direction, allowing the particle to accelerate.380

In the case of an infinitely thin particle, projected area as seen from below is equal to the cross-sectional area of the particle

multiplied by cosθ (and hence correlated with cosθ, as evident from Figure 7
:
8). In the presence of particle thickness, the

normalised projected area is expected to be greater than or equal to cosθ, and therefore should never fall below 0.7, as θ never

exceeds 45◦ for periodically oscillating cases.
:
In

::::
fact,

::::
the

:::::::
observed

::::::::
projected

::::
area

:::::::::::
occasionally

:::::::
exceeds

:::
that

:::
of

:::
the

::::::::
projected

:::
area

:::
of

:::
the

:::::::
particle

:::::
when

:::::::::
horizontal

:::
(i.e.

::::
the

::::
ratio

::
in

::::::
Figure

:::
8b

:::::::
slightly

:::::::
exceeds

:::
1):

:::
this

::::
can

::::
only

:::
be

::::::::
achieved

:::::::
through

:::
the385

:::::::
influence

::
of
:::
the

:::::
finite

::::::::
thickness

::
of

:::
the

:::::::
particle.

:

3.2.5 Motion type parameter, ε

Since these four cases are not discrete classes of behaviour, we propose a parameter to characterise where each experiment

lies on the continuum of motions between zigzag and spiral. To quantify the spectrum of periodic behaviour, a motion type
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Table 3. The observed behaviours of the presented case studies.

Motion type θmean θtilt θamp ε Vamp/Vmean Uamp/Vmean Stθ Stφ

(◦) (◦) (◦)

Zigzag 22 0 34 0.01 0.37 0.41 0.45 0.028

Zigzag-Transitional 27 0 42 0.00 0.47 0.55 0.34 0.079

Transitional 24 24 9 0.73 0.42 0.49 0.91 0.57

Spiral 20 20 1 0.94 0.03 0.03 0.90 0.46

parameter, ε, is defined as:390

ε=
θtilt

θtilt + θamp
(8)

Such that particles with ε= 1 correspond to spiralling, as θtilt� 0, and θamp ≈ 0 for spiralling cases. Zigzagging behaviour

corresponds to ε= 0, as zigzagging behaviour has high amplitudes, θamp� 0, and θtilt ≈ 0 . Transitional cases can have

nonzero θtilt and θamp, and ε can therefore range between 0 and 1. The four case studies presented have ε= 0.01, 0.00, 0.73,

and 0.94 for zigzagging, zigzag-transitional, transitional, and spiral respectively. The parameter ε characterizes the distribution395

in θ and does not account for variation in φ. This explains why the transitional-zigzag motion case (Fig. 4b) has near-zero

ε — the distribution shape of θ in that example is very close to that of a pure zig-zag motion, even though there is also a

weak azimuthal rotation superimposed which distinguishes it from the zig-zag case. Although ε does not capture azimuthal

variations, these details are often not practically significant when considering the statistics of a crystal population in a cloud;

instead it is the distribution of inclination angle θ which is of primary interest, and this motivates our definition of ε.400

3.2.6 Oscillation frequencies

For bulk approximations (retrievals, microphysics schemes), it is useful to characterise the frequency of oscillatory behaviour.

To nondimensionalise the frequency of oscillation of the experiments, Strouhal number is calculated as:

Stθ =
fD

Vmean
(9)

where f is the frequency of oscillation found by the sine waves fit to θ (Kajikawa, 1992). Stθ is therefore representative of the405

number of oscillations in θ of the particle in the time it takes for the particle to fall the vertical distance equal to its diameter.

Stθ (frequencies) of the four cases are 0.45, 0.34, 0.91, and 0.90 for zigzag, zigzag-transitional, transitional, and spiral

respectively (Table 3).

A secondary Strouhal number can also be calculated using the rate of change of φ:

Stφ =
1

360◦

∣∣∣∣dφdt
∣∣∣∣ D

Vmean
(10)410
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where |dφdt | is the mean absolute rate of precession of the particle. Stφ is therefore the number of full turns around a vertical

axis that a particle makes during the time it takes for the particle to fall the vertical distance equal to its diameter. Stφ for the

zigzag and zigzag-transitional cases are 0.028 and 0.079 respectively. The zigzag case is effectively nonrotational around the

vertical axis, and therefore has the lowest Stφ. The transitional and spiral cases have substantial rotation around the vertical

axis, and therefore have Stφ of 0.57, and 0.46 respectively. The transitional case spirals faster and wobbles faster than the spiral415

case, but otherwise both Stθ and Stφ appear to increase with ε.

3.3 Characteristics of the full data set

3.3.1 Distributions of θ

Figure 9 displays the distributions of inclination angle across Re, excluding stable experiments, and separates the cases by

particle shape and ε greater than or less than 0.5 to demonstrate the impact of ε on the distributions. Onset of unsteadiness is420

seen at Re ≈ 200, (Re = 212 for non-circular disc shapes) and lowest onset of spiralling in particular is seen at Re = 461 (for

non-circular disc shapes), and the onset of spiralling for circular discs is seen as low as Re ≈ 300.

Different shapes show different distributions of inclination angles, as well as exhibiting different θtilt and θamp (Figure 9).

For a particular shape, the distribution remains similar between adjacent Reynolds number bins; once a specific motion regime

is reached for a particular shape, the same θtilt and θamp are maintained. For instance, Wang-BBP shapes spiral and have a425

mean θ of around 21 degrees (along with a narrow distribution), while circular discs tend to have a much wider distribution,

corresponding with high amplitude zigzag behaviour.

Many of the shapes that present spiralling behaviour at high Re first present zigzagging behaviour at intermediate Re (see

also Figs. 3 ,11, and 10).

3.3.2 Characterisation of motion430

Sine waves were fit using equation 7 to all velocity components and to θ for all periodic experiments (equation 4), and the

motion type parameter ε was subsequently calculated (Figure 12) (equation 8).

There is discrepancy between the literature on circular discs and our observations of ice crystal shapes when taking I* into

account. The motion parameter, ε, increases for increasing Reynolds number and dimensionless moment of inertia (Fig. 10,

which is the opposite of the result found in Zhong et al. (2011), who found that, for circular discs exhibiting periodic motions,435

spiralling occurred at lower Re and I*, and zigzagging occurred at higher Re and I*. Our result instead agrees with Cheng

et al. (2015), who found that hexagonal plates exhibit a zigzag motion at low Re while larger plates at higher Re exhibited

spiralling. Jayaweera (1965) also finds that, for falling spheres, zigzagging occurs at lower Re than spiralling, which occurs at

very high Re (Re > 105). Our results also deviate from the stable-periodic division line provided by Field et al. (1997), as the

ice crystal shapes do not become unsteady until higher Reynolds numbers than circular discs, as shape has a strong impact on440

the conditions that the onset of unsteady motions occur.
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Figure 9. Inclination angle distributions of all unstable experiments, equally weighted by experiment, binned by Reynolds number and

particle shape, with shapes in order of decreasing area ratio, excluding CD-P and D1. Experiments are split by spiral, ε > 0.5 (upper, orange)

or zigzag (ε≤ 0.5) (lower, blue). Quartiles (dashed) and mean values (solid) are inside each distribution. θamp θtilt are the mean values of

θamp and θtilt for each set of experiments (separated by ε and particle shape). Reported values are the mean (± standard deviation of the

mean) for each set of distributions.
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Figure 10. As in Figure 2, but with each experiment in TRAIL coloured by ε. stable experiments are marked with black crosses. Solid lines

are from Field et al. (1997) and dashed lines are from Zhong et al. (2013).
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Figure 11. Phase diagram showing the stable (black crosses) and periodic (coloured by ε) behaviour of falling particles as a function of Area

ratio and Reynolds number. Equation 11 is shown as the black line.

Whilst I* is used successfully for studies on circular discs, shape must also be taken into account when considering the

broad range of shapes that ice crystals exhibit. Differences in shape can be quantified by area ratio (the ratio of the maximum

cross-sectional area of the particle and the area of its circumscribing circle).

Across the experiments, ε increases for increasing Reynolds number and area ratio (Figure 11. In agreement with Esteban445

et al. (2019) and Tagliavini et al. (2021a), stable fall behaviour is found to be much more likely for particles with lower area

ratios — i.e., ice crystals with more dendritic or complex shapes are more likely to fall steadily when under the same Reynolds

number.
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Figure 12. Mean inclination angle, θmean (a), θtilt (b) and θamp (c) by Reynolds number, coloured by ε. Histogram of ε (d).

Using linear support vector classification (Pedregosa et al., 2011), we identify a line of best fit that maximises the distance

between stable and periodic behaviour, such that periodic behaviour occurs when:450

log10(Re)>
2.82−Area ratio

0.87
(11)

The critical point of this expression is displayed in Figure 11.

Mean inclination angle was not found to distinguish well between periodic motion types (Fig. 12a). θtilt is found to be

near-zero for zigzagging cases (where ε < 0.5), but θamp can reach up to 45◦(Fig. 12b). For all experiments where ε > 0.5, θtilt

is between 7 and 28 degrees (Fig. 12c).455
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to all experiments (a), experiments where ε <0.5 (b) and experiments where ε >0.5 (c)

The distribution of ε was found to be bimodal (Figure 12d) favouring either zigzag or spiralling behaviour, with transitional

motion being less likely. Out of all 131 periodic platelike observed experiments, 65 experiments displayed ε < 0.2, 34 were

found to have ε between 0.2 and 0.8, and 32 experiments were ε > 0.8. The potential cause of this is discussed in Section 3.3.4.

3.3.3 Velocity fluctuations

Across all periodic experiments, the amplitude of the vertical velocity, Vamp, was found to be approximately 85% of the am-460

plitude of the horizontal speed, Uamp (Fig. 13a), using least-squares linear regression. In contrast to our findings, Kajikawa

(1992) reported that the standard deviation of the horizontal velocity, U , was considerably larger (5 to 20% of the fall veloc-

ity) than the standard deviation of the vertical velocity (<3% of the fall velocity) for dendritic-shaped particles undergoing

periodic oscillation. The reason for the difference between our findings and those of Kajikawa is unknown and it is hard to

understand why fluttering particles would have large horizontal velocity fluctuations but almost constant vertical velocity. More465

investigation of natural particles using modern observations, such as Maahn et al. (2023), may help explore this in the future.

For zigzagging particles, as θamp increases, the amplitudes of both the vertical and horizontal speed components increased

exponentially (Fig. 13b). For spiralling particles, as θtilt increases, amplitude of vertical velocity increases slightly (i.e. there

is more wobble). θtilt has no influence on amplitude of vertical velocity for zigzagging particles, as it is near-zero (Fig. 13c).

:::::
Other

::::::::::
relationships

::::::::
between

:::
the

::::::::
variables

:::::::::
mentioned

::
in

::::
this

:::::
study

::::
were

::::
also

:::::::::
explored;

:::::::
however

:::
no

::::
clear

:::::::
patterns

:::
or

::::::
simple470

::::::::::
relationships

:::::
were

::::::
evident.

:

3.3.4 Strouhal numbers

Strouhal numbers were calculated for all experiments as detailed in equations 9 and 10. For experiments where ε≤ 0.2 Stθ has

a mean of 0.29 and a standard deviation of 0.10, with no significant trend with Re (Figure 14). Zigzagging particles (ε≤ 0.2)
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Figure 14. Scatter plot of Strouhal numbers (Stθ) for each unstable experiment versus Reynolds number, coloured by ε. Box plots of observed

Strouhal numbers for particles with θamp > 2.5◦ alongside.

never have Stθ above 0.50. Despite having typically much smaller amplitudes than zigzagging particles, spiralling experiments475

(ε≥ 0.8) have a larger range of Stθ, with a potential for Stθ up to 1.50 and mean Stθ of 0.5. Stθ for spiralling particles may be

greater than for zigzagging; the wobbling of a spiralling particle is at a much smaller amplitude (θamp) than that of a zigzagging

particle.
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Figure 15. Scatter plot of azimuth Strouhal numbers (Stφ) for each unstable experiment versus Reynolds number, coloured by ε. Experiments

where θamp < 2.5◦ marked with crosses. Box plots of observed Strouhal numbers for particles with θamp > 2.5◦ alongside.

Strouhal number of the vortex shedding frequency of cylinders in flow is a function of Reynolds number, St for a cylinder

increases from St ≈ 0.1 at Re ≈ 50 to St ≈ 0.22 at Re ≈ 2000, and St ≈ 0.2 from Re 104− 106 (Katopodes, 2019). Stθ for480

the ice analogues may not correspond exactly to the nondimensionalised frequency of vortex shedding but was overall found

to be higher than previous work on discs, suggesting that vortices may shed more frequently for more complex shapes.

Similarly to Stθ and previous literature on circular discs, there is no particular trend in Stφ with Reynolds number (Figure

15). Stφ is close to zero for zigzagging particles (where ε≤ 0.2), as the rate of spiralling is very low (by definition), whereas

for spiralling particles (ε≥ 0.8) , Stφ can be as high as 0.7.
::
No

::::::::::
systematic

::::::::::
relationship

:::
was

::::::
found

:::::::
between

:::::
either

::::::::
Strouhal485

::::::
number

::::
(Stθ::

or
:::::
Stφ)

:::
and

::::
area

:::::
ratio.
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Figure 16. Scatter plot of azimuth Strouhal numbers (Stφ) vs inclination Strouhal numbers (Stθ). The slope of the dashed line is 2.
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When spiralling analogues rotate faster, they tend to also wobble more frequently. For high ε (and correspondingly, small

θamp) Stθ is approximately half of Stφ, corresponding with the classic observation that wobbling plates are found to wobble

twice as fast as they rotate (Figure 16 ) (Tuleja et al., 2007). When θamp is nonzero, the spiral motion that the centre of mass of

the analogue makes is not a perfect circle: the smaller the angle of wobble, the closer the traces of the analogue are to circles.490

When the spin is not a perfect circle Stφ no longer matches double the wobble rate, Stθ. For higher θamp (low ε) cases, Stφ

and Stθ appear to both remain low and not depend on one another.

3.3.5 Mean inclination angle

For particles that are already spiralling, the higher θamp is, the more likely the behaviour is to be transitional (non-perfect

spiralling), and the larger the swing the particle makes, and therefore the wobble is less frequent, and Stφ is lower. This may495

also be the cause of the bimodal distribution in ε (Fig. 12). Particles that have high Stφ spiral quickly relative to their vertical

velocity. This fast rotation around the vertical means that the any torque at 90◦ to the vertical axis of rotation (which causes

wobble in θ) will have less effect, because it is small relative to the gyroscopic torque. Therefore, the rotation of spiralling

particles likely inhibits any potential zigzagging motion. Across a set of experiments for a given particle, at low Reynolds

numbers, mean inclination angle, θ, is close to zero, as particles are stable, and at higher Reynolds number, particles become500

unstable and θ increases to a steady, nonzero value. To quantify and compare the onset of unstable motions for different particle

properties, a logistic curve is fit to the data using a least-squares method and the Trust Region Reflective algorithm from SciPy’s

curve fit function (Virtanen et al., 2020), for each particle shape (Figure 17) and area ratio (Figure 17b) as follows:

θ =
θunstable

1 + e−k(log10(Re)−log10(Re)onset)
+ θstable (12)

Where Reonset is the value of the function’s midpoint, θunstable+θstable is the supremum of the values of the function, k is505

the steepness of the curve, and b is the minimum θ value of the function. Particles with higher area ratio typically have bigger

oscillations with larger θ. Low area ratio dendrites and stellar crystals are stable at very high Re, and typically have a smaller

θ when unstable.

4 Discussion and Conclusion

Ten different platelike snowflake shapes, in addition to circular discs, of up to three different aspect ratios each were allowed510

to free fall through a tank of water-glycerine mixture to simulate behaviours of real ice crystals in the atmosphere. The fall be-

haviour of these analogues was viewed by three orthogonal cameras, allowing for the digital reconstruction of their trajectories

and orientations.

4.1 Summary

Four main falling regimes are observed: stable, zigzag, transitional, and spiralling. Stable motion has no measurable fluctua-515

tions, while other regimes involve periodic oscillations in both inclination angle and velocities. All unstable motions for the
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Figure 17. Mean inclination angle, θ, against Reynolds number, Re, for each experiment (scatter), grouped by particle shape (a) and area

ratio (b), with overlaid fitted logistic functions.

experimental series observed were of periodic behaviour: no tumbling behaviour is observed in this work. Stable analogues all

had θ = 0 - i.e. their maximum dimension was in the horizontal plane. Zigzag motion involves swinging back and forth, while

spiralling remains inclined at a constant, nonzero inclination angle.

Spiralling particles rotate steadily around the vertical axis at constant dφ/dt. That is, the rotation of spiralling planar particles does not result from a rotation around the c-axis of the particle (see figure 1); rather, periodic rotations of equal amplitude, but phase difference of 90o, occur about the a-axis and a’-axis such that θ is approximately constant. This rotation of the particle about the a- and a’-axes causes the particle’s centre of mass to trace a circular path. In contrast,520

::::
That

::
is,

:::
the

:::::::
rotation

::
of

:::::::::
spiralling

:::::
planar

::::::::
particles

::::
does

:::
not

:::::
result

:::::
from

:
a
:::::::
rotation

::::::
around

:::
the

::::::
c-axis

::
of

:::
the

:::::::
particle

:::
(see

::::::
figure

::
1);

::::::
rather,

:::::::
periodic

::::::::
rotations

::
of

:::::
equal

:::::::::
amplitude,

:::
but

::::::
phase

::::::::
difference

:::
of

::
90◦

:
,
:::::
occur

:::::
about

:::
the

:::::
a-axis

::::
and

::::::
a’-axis

::::
such

::::
that

::
θ

:
is
:::::::::::::
approximately

:::::::
constant.

:::::
This

::::::
rotation

:::
of

:::
the

::::::
particle

:::::
about

::::
the

::
a-

:::
and

:::::::
a’-axes

::::::
causes

:::
the

::::::::
particle’s

:::::
centre

::
of

:::::
mass

::
to

:::::
trace

:
a
:::::::
circular

::::
path.

::
In
::::::::

contrast,
:
zigzagging particles maintain a constant azimuth angle, φ, that has a square wave (such that the

minima and maxima are spaced 180◦ apart). Transitional cases are a mix of the two behaviours: they swing back and forth but525

also rotate as they do so. Particle components of velocity (V and U for vertical and horizontal respectively) were also found to

be sinusoidal with respect to time. Sine waves are fit to time-series of θ and U and V , and the rate of spiralling, dφ/dt, is found

through linear regression. The amplitude of the sine wave, θamp, was found to vary between 0◦ and 43.1◦. Periodic motion is

found to be analogous to range of spherical pendulum behaviour, corresponding to simple harmonic motion. Time-series of θ

and velocities for periodic experiments are therefore sinusoidal, and distributions of θ have a non-zero mode. Results do not530

support the common assumption of Gaussian orientation distributions with a zero-modal angle during unstable motions: the

distributions of θ have non-Gaussian distributions and have non-zero modes.
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In the spiralling regime, components of velocity are held relatively constant compared to the other cases, effectively making

the spiralling cases a quasi-steady mode with a non-zero near-constant inclination. When particles spiral, they are consistently

inclined at an angle, observed to typically be between 7 and 28 degrees. The central line of the sine wave fit, θtilt, is typically535

between 8 and 25 degrees for spiralling behaviour for all particles, with a mean of 18.4 ◦ and a standard deviation of 6.8◦.

Strouhal numbers (nondimensionalised frequencies) were found using the rate of spiralling, dφ/dt, and the frequency of the

sine waves of θ, finding Stφ and Stθ respectively. These each represent the number of turns the particle makes, and the number

of wobbles the particle makes, in the time taken for the particle to fall the vertical distance equal to its own diameter.

Stφ was found to be approximately half of Stθ for spiralling cases: particles were found to wobble twice as often as they540

made a full rotation around the vertical, consistent with previous work (Tuleja et al., 2007). For zigzagging cases, Stθ is found

to be 0.29±0.7 with no variation with Reynolds number.

Onset of unstable motions are found to be more likely for higher area ratios, corresponding to less complex shapes (such as

pristine hexagonal plates), in agreement with Esteban et al. (2018) and Tagliavini et al. (2021a) . The shapes D1 (at all aspect

ratios), DP, S, and F (at aspect ratio 0.04) remained stable throughout all experiments, even at Re > 103. Onset for circular545

discs was found to be as low as Re = 197.

A motion type parameter ε is calculated using θamp and θtilt to quantify the spectrum of behaviour from zigzag (ε= 0) to

spiral (ε= 1). ε increases for increasing Reynolds number and dimensionless moment of inertia: spiralling is more likely when

both parameters are higher. Particles were observed to exhibit zigzagging behaviour at lower Reynolds number than spiralling,

and some particles (Wang-BBP) were found to exclusively spiral when unsteady. This contrasts with findings from Esteban550

et al. (2018) and Zhong et al. (2013), who expect spiralling to occur at lower Re and I* than zigzagging.

4.2 Implication of results

Past literature on ice crystal orientations often assumes that they can be modelled by a Gaussian distribution of inclination

angle with a mode at θ = 0◦, and with a breadth that is independent of the particle size.

Our findings show that in fact we should expect the distribution of inclination to be non-Gaussian, with a mode close to the555

maximum inclination that the particle experiences. For zig-zag motions the distributions may be rather broad, spanning a few

tens of degrees (figure 3a). For spiralling particles the distributions are very narrow (only a few degrees) but with a substantial

systematic inclination (figure 3d).

It is also evident from our data that the distribution of inclination angle varies sharply around some critical Reynolds number.

Small particles fall steadily with horizontal orientation. Large particles fall unsteadily with a substantial inclination on average.560

The data in figure 17 suggest that the transition between these two modes of fall is relatively sharp, and is dependant on the

shapes of the particles, with open shapes like stellars and dendrites falling stably at higher Reynolds number (larger diameter)

than hexagonal plates and broad-branched crystal forms.

Ground-based snowflake imagers have reported preferentially non-horizontal orientations, and the laboratory results reported

here may provide a means to understand that observation. In future work, we hope to make a more detailed comparison between565

field-observations of fluttering crystals Maahn et al. (2023), against our expectations from the laboratory.
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Incorporating this information into remote sensing retrievals and interpretation (e.g. polarimetric radar signatures) should

help improve the accuracy and robustness of those analyses. New electromagnetic scattering databases provide increasing

flexibility to integrate over arbitrary distributions of inclination angle (Brath et al., 2020). It is difficult as yet to make a simple

prescription for what the distribution of θ should be as a function of crystal size and shape - as we have seen, there is significant570

variability in behaviour across crystals of different cross section and aspect ratio. However, Figure 17 gives an indication of

what a realistic mean inclination angle could be for various Reynolds numbers, while Figure 9 provides more detail on the

typical form of those distributions. We suggest choosing assumptions for crystal orientation distributions that are consistent

with this data.

The observation that large fluctuations may occur in the fall velocity of unstable particles implies that a single mean speed575

cannot be used to approximate the velocity of a single fluttering crystal, and that a spread of velocities should be considered

when interpreting such spectra. This is expected to appear as a broadening of the Doppler spectrum from a vertical-pointing

radar. An estimate of the magnitude of these fluctuations can be deduced from Figure 13. Likewise the fluctuating horizontal

velocity of the crystals acts to broaden the Doppler spectrum for near-horizontally scanning weather radars, which should

be considered when inferring the distribution of turbulent air motions from such data, and raises the intriguing prospect of580

retrieving crystal fluttering characteristics from horizontal Doppler data in conditions where turbulence and wind shear are

weak or absent.

4.3 Limitations and future work

Strong turbulence, typically characterized by high kinetic eddy dissipation rates (e.g., > 0.1m2 s−3), could affect crystal ori-

entation when crystals are large (>1mm) (Klett, 1995; Garrett et al., 2015). In these cases, strong turbulence is found to widen585

the distribution of θ for both stable and unstable particles (Fitch et al., 2021). Our study only considers quiescent conditions,

as we want to know under what conditions particle instability still occurs, even without the addition of turbulence.

Although strong turbulence is typical within convective clouds and at the ground, typical turbulence induced velocity per-

turbations across the faces of ice crystals within clouds are approximately 50 times smaller than the vertical velocity of the

crystal, and other aerodynamic factors are involved (Westbrook et al., 2010). Studies of sun glints have shown that there are590

many cases in which turbulence does not dominate and conditions can be considered quiescent, such that ice particles have

horizontal orientations (Marshak et al., 2017; Varnai et al., 2020). Turbulence does not typically dominate the fall behaviour

of very small particles, as the scales of turbulence are not small enough to influence the orientation of the crystals, with only a

slight wobble of up to 2 degrees observed in some cases (Sassen, 1980; Klett, 1995).

In literature on circular discs,
:
Re is the key control on the onset of unsteadiness, while the parameter I* is argued to modulate595

the form of the unsteady motion (recall Fig. 2). In our data, it is clear that I* on its own is not the only relevant parameter, or

perhaps not even the leading control. Nevertheless, we acknowledge that I* in our current experiment is significantly smaller

than the case of ice crystals falling in air, largely due to the difference in density between the lab fluid (water) versus the

atmosphere (air). To address this, we are currently undertaking a new set of experiments with much lighter analogues falling

in air, and will report these results in a future publication.600
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Table A1. Output variables from logistic fits as presented in Figure 17 for each shape

Shape θunstable Reonset k θstable∗

(◦) (◦)

HP 23.6 237 14 0.2

Wang-S 18.6 287 100 0.4

BBP 21.5 398 37 1.8

PB 13.0 325 30 0.3

Wang-BBP 16.0 435 37 0.9

F 13.2 339 100 0.7

D1 1.85 413 100 0.5

DP 8.16 462 10 1.4

D 15.8 1763 10 1.1

S 9.02 1193 10 2.2

Many aspects of shape are not covered by area ratio, and other shape parameters could later be explored in addition to

area ratio, to capture the full variability of shape parameters. Future work therefore also includes exploration of the impact of

shape, with the aim of understanding the influence of experimental conditions on unsteadiness more accurately than the results

presented in this study.

Understanding the fall behaviour of ice crystals allows us to further understand the speed at which they grow, fall, and605

precipitate, allowing this behaviour to be modelled and parameterized more effectively. Further research exploring an even

wider range of ice crystal shapes, sizes, and environmental conditions will help build on these findings and advance our overall

understanding of ice crystal dynamics within the complex atmospheric system.

Data availability.

Data for the case studies and the characteristics of the full data set are available as supplementary material.610

Video supplement. Videos from the four case studies presented in Section 3.2 are supplementary material.

Appendix A: Appendix

A1 Calculating example
::::::::::
Estimation

::
of

:::
the

::::::::::
magnitude

::
of I* range

:
in

:::
the

:::::::::::
atmosphere
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Table A2. Output variables from logistic fits as presented in Figure 17 by binned area ratio.

Area Ratio θunstable Reonset k θstable∗

(◦) (◦)

0.8>&≤ 0.9 22.3 247 12 0.4

0.7>&≤ 0.8 23.2 281 5 0.0

0.6>&≤ 0.7 21.5 398 37 1.8

0.5>&≤ 0.6 13.0 326 30 0.2

0.4>&≤ 0.5 17.6 324 52 0.8

0.3>&≤ 0.4 7.79 622 10 0.7

0.2>&≤ 0.3 8.65 1540 10 1.8

The potential range
::
We

:::::::::
estimated

:::
the

:::::::::
magnitude

:
of I* for real ice crystals can be approximated

:::::
falling

::
in

:::
air

:::
by

:
using a

mass-diameter relationship from Nakaya and Terada (1935) for planar dendritic crystals:615

m= 0.0038 d2

where m is in mg and d is in mm. A predicted value for I* can then be calculated following the method in Kajikawa (1992),

such that:

Ia =
1

16
M D2

where Ia is the moment of inertia about the a-axis of the crystal, and M and D are the mass and diameter in kg and m620

respectively. This can then be used to calculate I* as:

I∗ =
Ia

ρfD5

where
::
we

:::
set

:
the density of ice to be 917 kgm−3, and the density of air to be 1.2 kgm−3 have been assumed in this

study
:::::::
kg m−3. We find that a 10 mm, 1 mm, and 0.1 mm planar dendritic crystal have an I* of 0.02, 0.2, and 2.0 respectively.

:::
The

::::::::::::
mass-diameter

::::::::::
relationship

::::
from

:::::::::::::::::::::::::
Nakaya and Terada (1935) was

::::::
chosen

::
as

:::
an

:::::::
example,

::
to

::::::::
illustrate

::
the

:::::
order

::
of

:::::::::
magnitude625

::
of

::
I*

:::
that

:::::
could

::
be

::::::::
expected

::
in

:::
the

::::::::::
atmospheric

::::
case

:::
(we

:::
are

:::
not

:::::::::
attempting

::
to

:::::::
provide

::::::
precise

:::::::
estimates

:::
of

::
I*

::
for

:::::::
specific

::::::
crystal

:::::
shapes

::::
and

::::::::::
dimensions).

::::
The

::::::::::
approximate

:::::::
formula

:::
for

::
I*

:::::
from

:::::::::::::::::
Kajikawa (1992) was

:::::::
selected

:::::::
because

:
it
:::::::
requires

::::
only

:::
the

:::::
mass

:::
and

:::::::
diameter

:::
of

::
the

::::::
crystal

::
as
::::::
inputs,

:::::::
without

:::::::
detailed

:::::::::
knowledge

::
of

:::
the

:::
full

:::::
mass

::::::::::
distribution

::::::
around

:::
the

:::::::::
snowflake.
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