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HIGHLIGHTS 15 

⚫ Even with elevated evapotranspiration (ET), increased precipitation (P) will boost 16 

agricultural recharge. 17 

⚫ Runoff and soil moisture availability will allocate a portion of Δ (P– ET) in a higher 18 

precipitation condition. 19 

⚫ In humid areas, driving agricultural recharge is mainly precipitation, while for dry 20 
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areas, ET also affects changes in recharge. 21 

Abstract 22 

Groundwater is a crucial resource that helps ensure the security of food and water. 23 

Although the earth's water resources are being negatively impacted by climate change 24 

in every manner, there is still limited research on predicting future groundwater 25 

recharge. This study constructed the Soil and Water Assessment Tool (SWAT) under 26 

two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) in conjunction with two 27 

General Circulation Models (GCMs) from Coupled Model Intercomparison Project 6 28 

(CMIP6) to predict the change in agriculture groundwater recharge in 2021–2045 29 

relative to the baseline historical data. The Yang River Basin in Hebei Province, China, 30 

which is mainly covered by agricultural land along the basin, as the study area to 31 

understand how climate change drives groundwater recharge in agricultural land. The 32 

results show that the model performs well, with Nash-Sutcliffe Efficiency (NSE) of 33 

0.82 and 0.76 in the validation and calibration periods, respectively. The expected 34 

temperature and precipitation have increased more, 16.1%-31.3% and 1.8℃-2.5℃，35 

respectively, compared with the historical period 1981-2005.While evapotranspiration 36 

(ET) has increased, the distribution of agricultural groundwater recharge reflected 37 

spatially varying characteristics, with an overall increasing trend of 31.3% (2021–2045). 38 

Consequently, the study area was divided into five regions with varying degrees of 39 

wetness and dryness based on the spatial distribution of precipitation (P). It was found 40 

that in the higher-precipitation regions, runoff contributed a portion of the future net 41 
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atmospheric input (P-ET), and it was further concluded that precipitation was the 42 

primary climatic factor that drove the recharge to farmland, while evapotranspiration 43 

also had an impact on the change in recharge for the relatively dry regions. This will 44 

help the region achieve sustainable development and get ready for climate change in 45 

the future. It will also provide local policy makers with some knowledge. 46 

Graphical Abstract 47 

 48 

Keywords：Climate change；Agricultural groundwater recharge；SWAT； 49 

Evapotranspiration；Runoff 50 

1. Introduction 51 

Global change affects water resources around the world in generally unknown ways  52 

(Green et al., 2011). Groundwater is a vital freshwater resource (Döll, 2009), critical 53 

for global food and water security, and essential for sustaining ecosystems and human 54 

adaptation to variability and change (Amanambu et al., 2020b). Groundwater recharge 55 
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(GWR) is one of the major limting factor for the sustainable use of groundwater(Döll 56 

and Fiedler, 2008). Predictions indicate that climate change (CC) will be the main 57 

source of pressure affecting future surface and groundwater 58 

resources(Intergovernmental Panel on Climate, 2014).There is an increasing number of 59 

studies and investigations on the impacts of climate change on groundwater resources. 60 

Atawneh et al. (2021) summarised the majority of studies predicting declines in 61 

recharge around the world after reviewed the papers from 2010-2020 on the topic of 62 

groundwater and climate change, especially in the arid/semi-arid tropic (Amanambu et 63 

al., 2020a). Therefore, understanding how climate change drives groundwater recharge 64 

is of the essence for the development of water management policies. 65 

However，many potential impacts of climate change are still largely uncertain 66 

because of the the intricate network of interactions and feedbacks in the climate system 67 

(Munday et al., 2008). Previous studies also indicates that future climate change 68 

projections of GWR are subject to a wide range of sources of uncertainty(Anurag and 69 

Ng, 2022), including hydrological model(surface or groundwater) selection(Akbarpour 70 

and Niksokhan, 2018; Hashemi et al., 2015; Younggu et al., 2019) and all General 71 

Circulation Models(GCMs) contribute uncertainty in multi-GCM ensemble 72 

predictions(Younggu et al., 2019). In addition, a range of anthropogenic factors, 73 

including land-use/land-cover change, hydropower dams, and irrigation reservoirssuch, 74 

these can lead to changes in the direction of recharge predictions. Figure 1 depicts the 75 

intricate interrelationships between groundwater and land surface components. These 76 
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issues have also been taken into account in a number of studies, for example, Luo et al. 77 

(2016) quantified the temporal and spatial trends in contributions of climate and land 78 

use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest 79 

China using the Soil and Water Assessment Tool (SWAT). They determined that climate 80 

change has had the greatest impact on hydrological changes in the study area 81 

watersheds over the past three decades. Khoi et al. (2022) utilized CF downscaling 82 

technique  method to downscale climate data from 7 General Circulation Models 83 

(GCMs) under three SSPs scenarios (SSP1-2.6, SSP2-4.5, and SSP5-8.5) in the 84 

downstream part of the Dong Nai River Basin of Ho Chi Minh City (HCMC), Vietnam. 85 

The downscaled climate data were applied as input for the SWAT hydrological model 86 

to scrutinized the influence of climate change(CC) on river discharge and groundwater 87 

recharge (GWR). Results denoted that the GWR of HCMC is prognosticated to have a 88 

rising trend in the future period of 2021–2070. 89 

 90 
Fig.1. Interaction of groundwater systems with agricultural recharge in the face of climate change, and the 91 
numerous processes that partially affect groundwater systems. 92 

The prevalent approach for quantifying how climate change will drive groundwater 93 
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is to use hydrological models coupled with downscaled climate projections in reliance 94 

on the GCM simulations under different emission scenarios, which requires the 95 

selection of appropriate hydrological models as well as the selection of GCMs. SWAT 96 

(Arnold et al., 1998b) is a physical-based semi-distributed model capable of predicting 97 

the effects of climate change on the water balance and ultimately groundwater recharge. 98 

With the Intergovernmental Panel on Climate Change Sixth Report (IPCC AR6), which 99 

updated the new scenarios called Shared Socioeconomic Pathways (SSPs) and assessed 100 

the trends of groundwater change over historical time and into the future, it is 101 

recognized that groundwater has become an important source of water to meet global 102 

agricultural production and domestic demand (LIU et al., 2022). It is worth noting that 103 

incorporating CMIP6 in future hydrological studies will be completely new 104 

breakthroughs and challenges. 105 

No one can deny the importance of groundwater in meeting crop water demands 106 

(Awan and Ismaeel, 2014). Climate change is expected to impact agricultural 107 

production conditions and groundwater resources, and the study have inspected that a 108 

decrease in groundwater recharge leads to a 10-fold increase in the share of 109 

groundwater used for irrigation(Kreins et al., 2015). Hebei Province in China is a 110 

typical resource-based water-scarce province, and agricultural water use relies mainly 111 

on groundwater resources(Liu et al., 2021)，however，little is known about how they 112 

will impact recharge there. Accordingly, it is very important to evaluate the climate 113 

change influence on agricultural groundwater recharge in Hebei Province, which is 114 
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essential for a robust comprehension of projected changes in water availability. 115 

Our study area is the Yang River Basin in Hebei Province, China, which is mainly 116 

covered by farmland along the basin, and the use of groundwater irrigation is an 117 

important way to meet crop water demand. We used the Soil and Water Assessment 118 

Tool (SWAT) under two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5) of 119 

the Geophysical Fluid Dynamics Laboratory Earth System Model Version 4.0(GFDL-120 

CM4)(Dunne et al., 2020) and Meteorological Research Institute Earth System Model 121 

Version 2.0(MRI-ESM2-0)(Yukimoto et al., 2019) from Coupled Model 122 

Intercomparison Project 6 (CMIP6) to simulate the changes in recharge in the future 123 

period to analyze the influence of future climate change on groundwater recharge in 124 

farmland. In order to better understand the elements influencing agricultural recharge, 125 

this study further separated the research area into regional analyses based on 126 

precipitation. It is anticipated that the findings will support the region's future 127 

sustainable development and offer guidance to pertinent practitioners. 128 

2. Materials and methods 129 

2.1.  Study area 130 

The study area is the Yang River basin of Hebei province, which is a part of the 131 

Yongding River Basin dam (Fig. 2a). The watershed region, which mostly includes 132 

Zhangjiakou City and Huai'an County, is roughly. It belongs to the temperate 133 

continental climate (Wang Hui et al., 2019), with cool and dry summers and cold 134 

winters, with an average annual temperature of 3-5℃ and the average annual 135 
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precipitation is between 300 and 400 millimeters, and the precipitation progressively 136 

decreases as one moves southward. The entire study area was split into five sections, 137 

WP1–WP5, based on the spatial distribution of precipitation (Fig. 3d), with WP5 having 138 

the highest precipitation.   139 

 140 
Fig.2. (a) Location of the study area  (b) Land use (c) Digital elevation model (DEM) with 12.5 m spatial 141 
resolution for the study area. 142 
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 143 
Fig.3. 25-year (1981-2005) historical (a)average precipitation(cm/yr) (b) average temperature(℃/yr). 144 
(c)Simulated 25-year (1981-2005) historical recharge(mm/yr). (d) Dry and wet areas divided by precipitation 145 

The study area has a high land utilization rate, with agricultural land constituting 146 

the main type along the basin (Fig.2b), which occupies 36.95% of the total area，about 147 

4311km2. The total groundwater recharge in the study area gradually decreases from 148 

east to west, and the model predicts that the recharge from farmland in the basin will 149 

account for 90.45% of the total recharge in the future (2021-2045), with an average 150 

annual value of 37.8mm/ yr (Fig.4). As a result, the main emphasis of this study is how 151 

climate change is affecting groundwater recharge in agricultural areas. 152 
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 153 
Fig.4. Agricultural recharge and total recharge as well as ∆ precipitation of the study area in the future 25-154 
year (2021-2045). 155 

2.2.  Model description 156 

The Soil and Water Assessment Tool (SWAT) (http://swat.tamu.edu/), is a 157 

physically based, semi-distributed hydrological model (Arnold et al., 1998a) that 158 

evaluates small watersheds to rivers, simulates surface water as well as groundwater 159 

processes(Figure 5)，was developed to assist water resource managers in assessing the 160 

impact of management on water supplies (Arnold et al., 1998a; Mann, 1945). One of 161 

the important outputs of SWAT modeling is that it estimates both unconfined (shallow) 162 

aquifers and confined (deep) aquifers (Kilinc et al., 2024). The model divides the 163 

watershed into distinct sub-watersheds by setting drainage area thresholds (Xiao et al., 164 

2023), and each sub-watershed consists of hydrological response units (HRUs) together 165 

(Zhang et al., 2014). In this study area watersheds were divided into 29 subbasins and 166 

526 HRUs. The water balance equation on which the SWAT model is based (Arnold et 167 

al., 1998b)： 168 
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𝑆𝑊𝑡 −  𝑆𝑊0 = ∑ (𝑅𝑑𝑎𝑦
𝑡
𝑖=0 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)                    (1) 169 

Where: 𝑆𝑊𝑡 refers to the final soil water content (mm), 𝑆𝑊0 represents to the initial 170 

soil water content (mm), t is the time (days), 𝑅𝑑𝑎𝑦 indicates the amount of precipitation 171 

on the day i (mm), 𝑄𝑠𝑢𝑟𝑓 is the amount of surface runoff on the day i (mm),  𝐸𝑎 refers 172 

to the amount of evapotranspiration on the day i (mm) , 𝑊𝑠𝑒𝑒𝑝 denotes the amount of 173 

water entering the vadose zone from the soil profile on day i (mm), and 𝑄𝑔𝑤 is the 174 

amount of return flow on day i (mm). Further details about SWAT are available in its 175 

theoretical documentation (Neitsch et al., 2011). 176 

 177 

Fig.5. Structural schematic of rainfall infiltration in the hydrological cycle 178 

2.2.1. Dataset and model set-up 179 

The SWAT input dataset involves digital elevation model (DEM), topography, soil 180 

characteristics, meteorological data, and observed discharge information (Javed et al., 181 

2024). The soil data as well as the land use data needed to be calculated with 182 
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modifications based on the characteristics of the study area, and the data entered the 183 

weather generator database were pre-processed. The following is a detailed description 184 

of the data used: 185 

DEM For the model extraction of the river network and automatic identification 186 

of watershed boundaries (Du et al., 2017). The data were collected by Phased Array L-187 

band Synthetic Aperture Radar (PALSAR) (Niipele and Chen, 2019), with World 188 

Geodetic System 1984 (WGS_1984) and projected coordinates Universal Transverse 189 

Mercator Projection with a resolution of 12.5 meters. 190 

The land use data reflects the land use resource utilization in the study area, and 191 

this paper focuses on farmland, which is used in this paper as the China Land Use Status 192 

Remote Sensing Monitoring Database, a national dataset of land use types. The dataset 193 

includes five periods in the late 1980s (1990), 1995, 2000, 2005, and 2010, and the data 194 

production is generated by manual visual interpretation using Landsat Thematic 195 

Mapper/Enhance Thematic Mapper (TM/ETM) remote sensing images of each period 196 

as the main data source. Before inputting into the model, we reclassified the data into 197 

agricultural land, forest land, grassland, urban residential land, water bodies, and 198 

unused land. 199 

In this study, soil data were downloaded from the Harmonized World Soil 200 

Database (HWSD) at a resolution of 1 km x 1 km. The soil characteristics from HWSD 201 

are reliable for research related to carbon capture, land use change, soil loss estimation, 202 

soil organic carbon stock, hydrological modelling, ecosystem services, and so 203 
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on (Othman et al., 2021; Rivas-Tabares et al., 2020). According to the Chinese soil 204 

classification, the soil data was reclassified as shown in Figure 6 and Table 1. The 205 

classified soil types were calculated, and the soil database in the SWAT model was 206 

modified. 207 

The meteorological variables used in this study are described in detail in section 208 

3.2. The Meteorological Generator database was constructed from seven 209 

meteorological stations, Huai'an, Wanquan, Zhangjiakou, Xuanhua, Zhoulu, Chongli, 210 

and Huailai, using daily precipitation, maximum and minimum temperatures, relative 211 

humidity, radiation, and wind speeds from 1981 to 2005. After inputting a series of data, 212 

a SWAT model was initially constructed to divide the Yang River basin into 29 sub-213 

basins. 214 

 215 

 216 

 217 

 218 

 219 

Fig.6. Spatial distribution of different soil series (local names) in the study area. 
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Table 1 

Soil types and related parameter 

       

  

 

   

 

 

 

 

 

 

      

 

 

      

 

 

      

       

 

 

      

 

 

      

 

 

      

To analyze the impact of climate change on agricultural groundwater recharge, 220 

the steps of SWAT model simulation and the study process are shown below: 221 

Soil type Sand(%) Silt(%) Clay(%) K( 𝐦 𝐝−𝟏 ) AWC(%) Texture 

LVk LS-SL 

GRh SL-CL 
15 

15 

0.375 

0.362 

23 

28 

53 

48 

24 

24 

83 

76 

6 

8 

0.118 

0.148 

11 

17 

6 

7 

37 

37 

42 

43 

21 

20 

0.289 

0.362 

14 

13 

L-L 

36 

34 

43 

43 

L-L 
14 

13 

0.326 

0.333 

21 

23 

L 37 44 19 0.256 14 

47 

51 

34 

31 

19 

12 

0.271 

0.278 

 

11 

10 

 

L-L 

34 

36 

48 

46 

18 

18 

0.348 

0.343 

 

14 

13 

 

L-L 

SL-SL 
22 

19 

 

0.075 

0.096 

 

4 

5 

6 

6 

90 

89 

ATc 

CMc 

KSh 

RGe 

FLc 

LPk 
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 222 

Fig.7. Methodology framework for analysis of future agricultural recharge. 223 

Step 1: Two GCMs (GFDL-CM4 and MRI-ESM2-0) were selected to generate the 224 

future climate change scenarios (2021-2045) under two emissions scenarios (SSP2-4.5 225 

and SSP5-8.5) from CMIP6. 226 

Step 2: Process DEM, land use, and soil data, validate and calibrate the model, and 227 

bring future climate data into the SWAT model to begin simulating projections. 228 

Step 3: After generating farmland groundwater recharge and each hydrological 229 

parameter from the model, study the changes in farmland recharge under different 230 

scenarios and identify the factors driving the changes in recharge. 231 

In the following sections, this is explained in detail. 232 

2.2.2. Model calibration and validation 233 

In this study, Sequential Uncertainty Fitting version 2 (SUFI-2) was used to 234 

perform sensitivity analyses of 9 parameters in the SWAT model to improve the 235 
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accuracy of the results. The nine commonly used parameters (CN2; CH_N2; ESCO; 236 

GW_DELAY; GWQMN; GW_REVAP; SOL_BD; SOL_K; SOL_AWC) and their 237 

ranges were selected for monthly calibration. 238 

The model warm-up period was set at one year, the rate period at 2000-2001, and 239 

the validation period at 2002, using Nash-Sutcliffe Efficiency (NSE) and Coefficient of 240 

determination (𝑅2). According to Moriasi et al., if NSE>0.5, the model performance 241 

can be assessed as "satisfactory", as shown in the formulas(Moriasi et al., 2007)： 242 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚,𝑖−𝑄𝑠,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑚,𝑖−𝑄𝑚̅̅ ̅̅ ̅)
2𝑛

𝑖=1

                                              (2)                                          243 

𝑅2 =
[∑ (𝑄𝑚,𝑖−𝑄𝑠,𝑖)(𝑄𝑠,𝑖−𝑄𝑠 ̅̅ ̅̅𝑛
𝑖=1 )]

2

∑ (𝑄𝑚,𝑖−𝑄𝑚̅̅ ̅̅ ̅)
2𝑛

𝑖=1 ∑ (𝑄𝑠,𝑖−𝑄𝑠̅̅̅̅ )
2𝑛

𝑖=1

                                         (3) 244 

Where 𝑄𝑚 is the measured flow; 𝑄𝑠 is the simulated flow; 𝑄𝑚̅̅ ̅̅  is the mean of the 245 

measured flow and 𝑄𝑠̅̅ ̅ is the mean of the simulated flow. 246 

2.3. Accumulative anomalies 247 

Mathematically, the accumulated anomaly is a method to visually distinguish the 248 

change tendency of discrete data and is widely used in meteorology to analyze 249 

precipitation and temperature variations (Ran et al., 2010). For a discrete series 𝑋𝑖, the 250 

accumulated anomaly (𝑋𝑡̂) for data point xt can be expressed as: 251 

𝑋𝑡̂ = ∑ (𝑥𝑖
𝑡
𝑖=1 − 𝑥̅)     𝑡 = 1,2,3, … , 𝑛                                       (4) 252 

𝑥̅ =  
1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1                                                          (5) 253 

where 𝑥̅ is the mean of the discrete series 𝑥𝑖, and n is the number of discrete data 254 

points. The increase of the value of accumulated anomaly indicates the involving data 255 

point is larger than the average, otherwise lower than the average. A rising curve 256 
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indicates an upward trend in the time series of the meteorological factor, a falling 257 

indicates a downward trend and a flat curve indicates an insignificant trend of change. 258 

In this study, the variable x represents stations annual average temperature and average 259 

precipitation, respectively. 260 

2.4. Mann-Kendall trend test  261 

Mann-Kendall test is a rank-based non-parametric test(Kendall, 1990; Mann, 1945) 262 

that does not require any a priori assumptions about the statistical distribution of the 263 

data, and to detect variations in hydrometeorological time series data(Forthofer and 264 

Lehnen, 1981) and to detect variations in hydrometeorological time series data (Ashraf 265 

et al., 2021). For the meteorological data series 𝑥𝑖 (i=1, 2, 3, ... n) of length n (n=25 in 266 

this study, corresponding to 1981-2005 and 2021-2045, respectively), the standardized 267 

statistic Z is mainly used to test the trend and significance of the time series(Güçlü, 268 

2020)，the decreasing (increasing) expression is used for the time series with negative 269 

(positive) Z value . The Mann-Kendall test statistic S is determined based on the rank 270 

of the data points and they are calculated by the formula:  271 

𝑍 =

{
 
 

 
 

𝑆−1

√𝑛(𝑛−1)(2𝑛+5)/18
 ；𝑆 > 0

0；𝑆 = 0
𝑆+1

√𝑛(𝑛−1)(2𝑛+5)/18
 ；𝑆 < 0

                                         (5) 272 

 273 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑖
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 − 𝑥𝑗), 𝑖 < 𝑗                                      (6) 274 

       275 
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𝑆𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗) = {

−1，(𝑥𝑖 − 𝑥𝑗) < 0

0，(𝑥𝑖 − 𝑥𝑗) = 0

1，(𝑥𝑖 − 𝑥𝑗) > 0

                                    (7) 276 

Where: If 𝑍 ≥ |±2.58| ,it represents that the significance level has reached low a 277 

confidence level; If 𝑍 ≥ |±1.96|, it represents that the significance level has reached 278 

a high confidence level. In this study, this method to detect the significance of the trend 279 

of change in temperature and precipitation of the stations in the future under different 280 

scenarios.  281 

2.5. Pearson correlation analysis 282 

Pearson correlation coefficients were used to investigate correlations between 283 

independent and dependent variables (Wu et al., 2023). To evaluate the correlation 284 

between precipitation(P)、evapotranspiration(ET)、soil water、runoff and groundwater 285 

recharge, the Pearson coefficient between them is as follows (Zhu and Zhang, 2022)： 286 

𝑟 =
𝐶𝑜𝑣(𝑋,𝑌)

𝜎(𝑋)𝜎(𝑌)
 =

∑(𝑥𝑖−𝑥𝑖̅)(𝑦𝑖−𝑦𝑖̅)

√∑(𝑥𝑖−𝑥𝑖̅)
2 √∑(𝑦𝑖−𝑦𝑖̅)

2
                                        (8) 287 

Where X and Y are independent and dependent variables, respectively.𝐶𝑜𝑣(𝑋, 𝑌)  is 288 

covariance, 𝜎 is standard deviation. 289 

2.6. Future climate data 290 

With the continuous development of research and development teams in various 291 

countries around the world (Howarth and Viner, 2022), the number of climate models 292 

participating in the Coupled Model Intercomparison Project 6 (CMIP6) is gradually 293 

increasing compared to the past. This study used China’s downscaled CMIP6 294 
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precipitation, temperature, and wind speed dataset (1979-2100). This data product 295 

contains historical (1979-2014) and future (2015-2100) daily downscaled 296 

meteorological variables for the SSP2-4.5 and SSP5-8.5 emission scenarios. SSP2-297 

4.5(Elsadek et al., 2024) is the updated Representative Concentration Pathway(RCP) 298 

4.5 scenario which has a sustained increase in  greenhouse gas (GHG) emissions due 299 

to the fact that the land use and aerosol pathways of SSP2-4.5 are not as extreme as the 300 

other scenarios have become the focus of interest for the Detection and Attribution 301 

Model Intercomparison Project (DAMIP) and the Decadal Climate Prediction Project  302 

(DCPP) (Scafetta, 2024),with resulting warming of 3.8-4.2℃. Whereas SSP5-8.5 is the 303 

highest emission scenario (Tang et al., 2023), fossil fuel consumption is rapid, allowing 304 

for rapid global economic growth while making mitigation more difficult (Kriegler et 305 

al., 2017). In this study, we compare climate projections for the future 25 years from 306 

2021-2045 with the historical period from 1981-2005. 307 

We selected GFDL-CM4 and MRI-ESM2-0 from CMIP6 and calculated future 308 

precipitation and temperature changes for these two General Circulation Models 309 

(GCMs) under the medium and high scenarios, respectively. Overall, the GCMs 310 

generally agree that the watershed will be wetter in the future, with a 6%-18% rise in 311 

precipitation predicted for the MRI-ESM2-0 compared to the historical period, and as 312 

can be seen in Figure 8 the most significant increase in precipitation is seen in GFDL-313 

CM4 under the SSP5-8.5 high discharge scenario at about 21%. It is worth saying that 314 

both GFDL-CM4 and MRI-EMS2-0 show a more humid precipitation pattern in SSP5-315 
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8.5 compared to SSP2-4.5, and the temperature change are also similar. Under SSP5-316 

8.5 conditions, the temperature rises more. 317 

Table 2  318 
List of selected GCMs and average simulated future precipitation under SSP2-4.5 and SSP5-8.5 for study area 319 

 

 

  

 

  

  SSP2-4.5  436.7 

 SSP5-8.5  537.6 

  SSP2-4.5   441.1 

 SSP5-8.5  513.5 

 320 
Fig.8. Average monthly precipitation and temperature for GFDL-CM4 and MRI-ESM2-0 under SSP2-4.5 321 
and SSP5-8.5. 322 

 323 

 324 

 325 

 326 

 327 

GFDL-CM4 

MRI-ESM2-0  

GCMs 

Average 
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2021-2045(℃/yr) 

10.1 10.3 

10.4 

10.6 
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Model Agency 
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3．Results 328 

3.1. Modelling calibration and validation 329 

Due to the spatial variability of the land surface of the watershed and the large 330 

number of input parameters when building the model, which makes output results have 331 

a great uncertainty, the Sequential Uncertainty Fitting version 2 (SUFI-2) was utilized 332 

for the model calibration (Abbaspour et al., 2015). According to the Calibration and 333 

Uncertainty Program (SWAT-CUP), this study selected the nine parameters that have a 334 

large impact on the results for the rate determination (Zhang et al., 2022)(Table 3), and 335 

finally, the values were determined by continuously inputting the parameters to narrow 336 

the range of values.  337 

Table 3 338 

SWAT hydrological model parameter rate ranges and values 339 

 

 

 

 

 

 

 

 

      

    

    

    

    

    

    

    

    

 The Nash-Sutcliffe coefficients are very close to the station's coefficients of 340 

Parameter Description   Fitted value Value range 

CN2 

CH_N2 

ESCO 

GW_DELAY 

GWQMN 

GW_REVAP 

SOL_BD 

SOL_K 

SOL_AWC 

SCS runoff curve number 

Soil evaporation compensation factor 

compensation r 

Soil available water content 

layer 

87.5 

0.15 

0.17 

83.3 

1.67 

0.10 

2.23 

1666.7 

0.83 

35~98 

0~1 

0~200

0 

0.001~0.30

0 
0~1 

0~200 

0~2 

0.002~0.20

0 0.9~2.5 

Groundwater delay time 

 
Threshold depth of water in the shallow aquifer 

required for return flow to occur  

  Groundwater “revap”coefficient 

Soil moist bulk density 

Saturated hydraulic conductivity 

conductivity 

 

  

River manning factor 
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determination for both the model calibration and validation periods, and the parameters 341 

for the validation period outperform the calibration period, with Nash-Sutcliffe 342 

coefficients of 0.76 and 0.82, respectively. Figure 9 shows simulated and measured 343 

flows at the basin hydrological stations during the validation period of 2002. It can be 344 

seen that SWAT model simulates better in the dry season (January, February, September, 345 

October, November, and December) than in the rainy season.  346 

 347 
Fig.9. Simulated and measured discharges during the validation period at station. 348 

To further ensure the accuracy of the model result output, we used the data product 349 

to calibrate the potential evapotranspiration (PET) of the model output, with a time 350 

scale of months, and the calibration time is 2001-2005, with 𝑅2= 83.7%, as shown in 351 

Figure 10. 352 
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 353 
Fig.10. Simulated and measured potential evapotranspiration during the period 2001-2005 at station. 354 

3.2. Projected changes in climatic variables 355 

3.2.1. Significant and sudden changes in temperature and precipitation 356 

Before analyzing the recharge changes, we analyzed the future climate elements at 357 

six meteorological stations in the Yang River basin, respectively Huai'an (HA), 358 

Wanquan (WQ), Zhangjiakou (ZJK), Xuanhua (XH), Zholu (ZL), and Huailai (HL). 359 

The Mann-Kendall test and cumulative anomaly method to analyze the phased tendency 360 

of the two primary climate variables, temperature and precipitation as well as their 361 

abrupt changes under different scenarios. Tables 4 and 5 display the notable variations 362 

in temperature and precipitation predicted by GFDL-CM4 and MRI-ESM2-0 under 363 

SSP2-4.5 and SSP5-8.5 scenarios. The results indicate that in the future period (2021-364 

2005), both temperature and precipitation at these six stations predicted by the GCMs 365 

show a growing trend, and the increasing trend of each meteorological factor predicted 366 

by GFDL-CM4 is more significant than that of MRI-ESM2-0. Particularly, under the 367 

SSP2-4.5 scenario, GFDL-CM4 predicts a significant level of temperature at all sites, 368 

with a highly significant increase in temperature at Wanquan, but for precipitation, the 369 
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overall increase is more significant under the high emission scenario. Remark, the 370 

precipitation changes predicted by MRI-ESM2-0 are equivalent to those mentioned 371 

above, with a more pronounced trend of rising in precipitation under SSP5-8.5 as 372 

opposed to SSP2-4.5, where the trend of increasing precipitation in Huai'an and 373 

Wanquan in the future period also reaches a certain level of significance.  374 

Table 4  375 
Mann-Kendall trend test for stations temperature and precipitation (GFDL-CM4   SSP2-4.5   SSP5-8.5) 376 

  377 

↑ indicates an upward trend; **、*** indicating significance tests with confidence levels of 99% and 99.9% 378 

 379 

Table 5 380 
Mann-Kendall trend test for stations temperature and precipitation (MRI-ESM2-0   SSP2-4.5   SSP5-8.5) 381 

   382 
↑ indicates an upward trend; *、＋ indicating significance tests with confidence levels of 95% and 90% 383 

Two GCMs showed projected sudden changes in yearly precipitation and 384 

temperature at all stations under medium to high emission conditions, but the particular 385 

years and trends of the rapid shifts were basically inconsistent. Figure 11 demonstrates   386 

the precipitation predicted by MRI-EMS2-0 varies abruptly in 2037 and 2038, with a 387 

decrease in the early stages and an upward trend after 2038, with an increase of 2.2% -388 
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4.5% in precipitation. While the precipitation predicted by GFDL-CM4 not only 389 

exhibits a sudden increase but also a sudden drop, and the overall trend of change is 390 

inconsistent under SSP2-4.5 and SSP5-8.5 conditions. Regarding temperature, under 391 

the SSP2-4.5 scenario, the temperature change of MRI-ESM2-0 increases and then 392 

dramatically decreases in 2039, whereas the temperature of the high-emission scenario 393 

declines in the first period and then increases in the second period. Among all scenarios, 394 

only GFDL-CM4 has a relatively consistent year of temperature mutation, which occurs 395 

near 2030 and 2038.  396 

 397 

https://doi.org/10.5194/egusphere-2024-3186
Preprint. Discussion started: 29 November 2024
c© Author(s) 2024. CC BY 4.0 License.



 

26 

 

398 
Fig.11. Accumulated anomalies for annual average temperature and average precipitation for GCMs under 399 
SSP2-4.5 and SSP5-8.5. Which: Huai'an (HA), Wanquan (WQ), Zhangjiakou (ZJK), Xuanhua (XH), Zholu 400 
(ZL), Chongli(CL)and Huailai (HL) 401 

3.2.2. Seasonal variation 402 

Seasonal trend changes appear in various climatic variables, and the results are 403 

shown in Figure 12, which illustrates the future changes in mean monthly rainfall, 404 

maximum temperature (𝑻𝒎𝒂𝒙) in the study area watersheds predicted by the GCMs 405 

under the SSP2-4.5 and SSP5-8.5 scenarios. The selected GCMs predicted higher 406 

changes in mean temperature under the more extreme SSP5-8.5 scenario, with 𝑻𝒎𝒂𝒙 407 

increasing by 2.17°C and 2.44°C for SSP2-4.5 and SSP5-8.5 compared to the historical 408 

base period (1981-2005), with the MRI-ESM2- 0 increase generally stronger than the 409 

GFDL-CM4 model by 15.7%. The maximum rise in annual 𝑻𝒎𝒂𝒙 is likely to occur in 410 

future periods under the SSP5-8.5 scenario, at approximately 2.5°C. Notable seasonal 411 
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variations, the 𝑻𝒎𝒂𝒙 rise is stronger in the rainy season than in the dry season, except 412 

for an anomalous change in January.  413 

Compared to temperature, there is greater variability between GCMs in 414 

precipitation predictions and emission scenarios (Ali et al., 2023), and for the two 415 

selected GCMs, average rainfall shows an upward trend in the future under both the 416 

SSP2-4.5 and SSP5-8.5 scenarios, with a more violent trend, but with a greater 417 

magnitude of the increase in SSP5-8.5 is larger. Annual rainfall is expected to increase 418 

by 16.4-19.3% under SSP2-4.5, and by 21.9 -31.3% under SSP5-8.5, with GFDL-CM4 419 

showing a wetter future than MRI-ESM2-0. Overall, in terms of seasonal variations, 420 

precipitation increases to varying degrees in both the wet and dry seasons. It is pertinent 421 

to note that under the SSP5-8.5 scenario, precipitation is elevated by 18.7%-22.9% and 422 

34.2%-44.9% during the rainy and dry seasons, respectively, and this trend is probably 423 

going to continue further in the future.  424 
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 425 

 426 
Fig.12. Projected changes in monthly precipitation, maximum temperature (𝑻𝒎𝒂𝒙), and GWR in Yang river 427 
in the future period (2021-2045) under (a) SSP2-4.5, and (b) SSP5-8.5.  428 

3.3. Projected changes in agricultural GWR 429 

3.3.1. Temporal average changes in recharge 430 

Agricultural groundwater recharge predicted by the SWAT model under both GCM 431 

forecasts demonstrates a positive reaction to climate change, with a range of future 432 

changes in recharge of -18% to +56%, and varying reductions in recharge despite the 433 

increase in precipitation under all scenarios. ET ranges from -34% to +69% average 434 
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change over the next 25 years under all future scenarios projected, with an increasing 435 

trend towards less dry season and rainier season, which becomes a potential factor 436 

leading to a decline in recharge. Observing Figure 12, it can be inferred that the GWR 437 

predicted by MRI-ESM2-0 has basically been decreasing from October to May of the 438 

following year (dry season), which is associated with the increase in 𝑻𝒎𝒂𝒙 predicted 439 

by MRI-ESM2-0, where warming coupled with evapotranspiration has led to a 440 

reduction in recharge, with recharge decreasing by 17% in the SSP2-4.5 and 28% in the 441 

SSP5-8.5 prediction. On the contrary, the GFDL-CM4 predicted recharge growth has a 442 

more pronounced trend, with increases of 44.6-62.9 % cent compared to the historical 443 

baseline period (1981-2005), so it seems that the level of uncertainty between the 444 

different GCMs is still large.  445 

 446 
Fig.13. Changes in groundwater recharge to agricultural land in the future period (2021-2045) under the 447 
SSP2-4.5 and SSP5-8.5 scenarios for GFDL-CM4 and MRI-ESM2-0  448 

3.3.2. Spatial average changes in recharge 449 

 Figure 14 displays the spatial variation in the distribution of agricultural 450 

groundwater recharge, and it can be seen that there is a spatial trend in the recharge 451 
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projections for each region. From WP1 to WP5, there are both increases and decreases 452 

in future projected recharge, with increases being a little more common. The overall 453 

increase in recharge is higher in the high-emission scenario than in the low-emission 454 

scenario, and across scenarios, the GFDL-CM4 illustrates a more humid picture, with 455 

increases in agricultural groundwater recharge ranging from 15.8% to 56.2% across the 456 

study area. The WP5 region shows the largest increase in recharge (16.9%-60.1%), and 457 

the largest change in recharge in WP4, which changes by 47% from a decrease to an 458 

increase, while the WP2 recharge decreased the most, with an average decrease of about 459 

22.2%. Compared to the other four regions, WP1 recharge change was the least variable 460 

compared to the other four regions. Surprisingly, the region with the highest increase in 461 

precipitation, WP3 (17% to 33%), also experienced the largest loss in recharge. This is 462 

further discussed below. 463 

 464 

Fig.14. Average changes in agricultural groundwater recharge（2021-2045）for (a)GFDL-CM4, and (b)MRI-465 
ESM2-0 under SSP2-4.5 and SSP5-8.5 scenarios. All values are in cm/yr. 466 
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4．Discussion: Drivers of Agricultural recharge changes 467 

4.1. Region-wide analysis 468 

To further evaluate how projected climate variables drive changes in agricultural 469 

groundwater recharge under various emission scenarios, we compare absolute changes 470 

in precipitation(P), temperature(T), and evapotranspiration (ET) for analysis. It is 471 

evident from Figure 15 that the change in recharge is relatively close to that of 472 

precipitation changes. As can be observed from Figure.15(a), recharging is more 473 

strongly impacted by ET when evapotranspiration changes are considerable. 474 

Additionally, the change in recharge is inversely correlated with the change in ET, with 475 

an increase in ET and a decrease in recharge. For the SSP5-8.5 scenario, on the other 476 

hand, the model predicts that ET continues to increase in the future, but precipitation 477 

exhibits a much larger increase, and changes in farmland recharge continue to closely 478 

follow changes in precipitation (Fig. 15. (b)), at which point the trend in recharge is 479 

mainly driven by precipitation. In the SSP2-4.5 scenario, the increase in ET essentially 480 

corresponds to the temperature trend. 481 

 482 

Fig.15. 25-year study area average different(Future[2021-2045]-Historical[1981-2005]) for temperature(℃)、483 
precipitation(cm/yr)、recharge(cm/yr) and evapotranspiration (cm/yr) for (a)SSP2-4.5, and (b)SSP5-8.5 . 484 
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According to the water balance equation, we understand that it is not only the 485 

climatic considerations that affect the recharge, particularly during periods of high 486 

precipitation (SSP5-8.5), but also other hydrological processes contribute to the change 487 

of recharge. Based on the water balance elements, the Pearson correlation coefficients 488 

are used to calculate the strong and weak links between precipitation, temperature, snow, 489 

ET, soil water, runoff, and recharge, and Figure 16 illustrates how variations in recharge 490 

have a significant positive correlation with precipitation and runoff. 491 

 492 

Fig.16. Pearson correlation coefficients for climatic variables and hydrological elements for SSP5-8.5 493 

To evaluate how future changes in precipitation will be partitioned into recharge 494 

versus other hydrological components, we evaluated the water balance for each of the 495 

two GCMs and the two emissions scenarios: 496 

∆𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 + ∆𝑆𝑛𝑜𝑤 = ∆𝐸𝑇 + ∆𝑆𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟 + ∆𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒 + ∆𝑅𝑢𝑛𝑜𝑓𝑓               497 

Where∆=  (Future 25 years [2021-2045] average)- (Historical 25 years [1981-2005] 498 
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average) 499 

In the hydrological compositional waterfall Figure 17, the changes in the increase 500 

in precipitation (snow) are all upward in the positive direction, whereas the changes in 501 

the positive direction of the precipitation assigned to the other hydrological elements of 502 

each constituent water balance are downward, with the figure looking from left to right, 503 

with the red indicating an increase in surface water, the darker blue representing a 504 

decrease of water at the ground surface, and the water balance virtually reaching zero 505 

on the right. Figure.17 shows that the precipitation is partitioned into constituent 506 

quantities, with the increase in ET being the largest, with 28% more ∆ET in GFDL-507 

CM4 than in MRI-ESM2-0, and the high ET offsets some of the increase in 508 

precipitation because ∆(P-ET) is not equal to 0 but is greater than 0. The change in 509 

recharge cannot be underestimated for the much larger increase in precipitation in 510 

GFDL-CM4, which, as previously mentioned, also confirms the previous analysis that 511 

precipitation is the main driver of the change in recharge. Additionally, as seen in 512 

Figure.17, it also shows that for ∆(P-ET) > 0, the increased snowmelt is allocated to 513 

runoff and to soil water content through soil infiltration. Consequently, agricultural 514 

groundwater recharge is more susceptible to variations in precipitation and ET, it is 515 

examined in greater detail for regions with varying degrees of wetness in the sections 516 

that follow. 517 
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 518 
Fig.17. Water balance analysis for GFDL-CM4 and MRI-ESM2-0 under SSP5-8.5 scenario. All values are in 519 
cm/yr. 520 

4.2. Analysis of wet and dry areas 521 

For our study area, the precipitation varies greatly, we separated it into WP1 to 522 

WP5 (Fig. 3(d)) based on the quantity of precipitation, with WP1 receiving the least 523 

amount of precipitation and the WP5 area receiving the most. Each region's differences 524 

in farmland recharge can be attributed to a combination of surface topography and 525 

climate, in addition to climatic influences. 526 

Recharge is significantly connected with precipitation, with a correlation index of 527 

0.97 (Figure 16), and the model simulation results indicate that future anticipated 528 

precipitation shows a rising trend independent of the emission scenario. The change in 529 

recharge is directly impacted by ET when future precipitation is less, and temperature 530 

is the primary driver of ET. Both temperature and precipitation are affected by 531 

differences in the distribution of spatial patterns, and for the whole study area, the WP5 532 

region, where ET is predicted to increase less coupled with more adequate precipitation, 533 

is the wettest of the five regions combined, which could explain the increase in recharge. 534 

However, Figure 17 also illustrates that precipitation and ET do not fully determine 535 
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changes in recharge and that net atmospheric inputs are also allocated to other 536 

hydrological processes into runoff as well as infiltration through the soil. By producing 537 

future changes in net atmospheric inputs versus future changes in agricultural 538 

groundwater recharge Δ (Precipitation – ET) and Δ Recharge scatter plots (Figure 18 539 

and 19), those falling on the 1:1 line indicate that atmospheric input water is entirely 540 

allocated to recharge.  541 

The scatter plots illustrate disparities between areas with different degrees of 542 

wetness and dryness based on climatic properties. From Figures.18 and 19, it can be 543 

observed that Δ (Precipitation - ET) > 0 and Δ Recharge is also positively varying, with 544 

scattered points distributed below the 1:1 line, suggesting that the net atmospheric input 545 

meets the recharge. Almost all the future net atmospheric inputs projected by MRI-546 

ESM2-0 are allocated to recharge (near the 1:1 line), further confirming that 547 

precipitation is the primary driver of recharge when precipitation is sufficient. However, 548 

in most cases, although Δ (Precipitation - ET) > 0 and Δ Recharge > 0, the scatters 549 

representing the various sub-basins are all some distance from the 1:1 line, indicating 550 

that the sufficiently large net inputs are also recharging other processes, and that runoff 551 

accounts for part of the volume after some analysis, which is illustrated in Figure 20.  552 
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 553 

Fig.18. Scatter plot of Δ (Precipitation – ET) vs Δ Recharge for each region and GCM for the SSP2-4.5 554 
scenario. All values are in cm/yr. The black, diagonal line represents the 1:1line. Δ = Future (2021–2045) - 555 
Historical (1981–2005). Recharge refers to agricultural groundwater recharge. 556 

 557 
Fig.19. Scatter plot of Δ (Precipitation – ET) vs Δ Recharge for each region and GCM for the SSP5-8.5 558 
scenario. All values are in cm/yr. The black, diagonal line represents the 1:1line. Δ = Future (2021–2045) - 559 
Historical (1981–2005). Recharge refers to agricultural groundwater recharge. 560 

When Δ (Precipitation - ET) > 0, P-ET is separated into recharge and runoff. 561 

Visual examination of Figure 20 demonstrates that the change in runoff plus the 562 

changes in recharge is not equal to the net atmospheric water transport, although the 563 
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very slight difference, on the other hand to analyze the soil also uses some of the water, 564 

it is presumed to be probably due to the distribution of crops on the surface, the root 565 

system of the crops absorbs and usage of the water, and the replacement of the natural 566 

vegetation with crops can significantly alter recharge through changes in 567 

evapotranspiration and infiltration (Scanlon et al.,2005; Ng et al.,2009). 568 

 569 
Fig.20. Scatter plot of study area average Δ(Precipitation - ET) (cm/yr) vs ΔRunoff (cm/yr) for each GCM for 570 
(a) SSP2-4.5 and (b)SSP5-8.5. The black diagonal line represents the 1:1 line. 571 

4.3. Limitations of the research 572 

 Changes in recharge are driven by a combination of factors, although we selected 573 

two climate models, GFDL-CM4 and MRI-ESM2-0, and imported coarse-resolution 574 

downscaled GCM climate projection data into the SWAT model to predict and simulate 575 

groundwater recharge to agricultural lands in the study area, and the results showed that 576 

recharge has a significant response to climate change. This study focuses on the impact 577 

of climate change on agricultural land recharge, in a series of processes that do not take 578 
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into account specific crops coverage and future agricultural expansion, as well as 579 

hydrogeological properties, and it is crucial to accurate estimates of groundwater 580 

recharge processes based on the soil cover characterizations and the hydrological 581 

behavior of the relevant land cover types (Cusano et al., 2024). Other future 582 

groundwater recharge studies included, but not incorporated here, include C 𝑂2 583 

concentrations from more vegetative transpiration (Mustafa et al., 2019a) and the use 584 

of model integration to represent model structural uncertainty (Green et al., 2007). 585 

5.  Summary and conclusions 586 

 This study uses the Soil and Water Assessment Tool (SWAT) to investigate future 587 

changes in agricultural groundwater recharge in the Yang River Basin, Hebei Province, 588 

using climate projections from two GCMs under two emission scenarios (SSP2-4.5 and 589 

SSP5-8.5). We analyzed the future agriculture groundwater recharge changes for 2021-590 

2045 relative to 1981-2005 baseline historical conditions. The results show that the 591 

model study area performs well, with Nash-Sutcliffe Efficiency of 0.82 and 0.76 in the 592 

validation and calibration periods, respectively. The anticipated future period will see 593 

increases in temperature and precipitation of 16.1-31.3% and 1.8-2.5°C, respectively, 594 

resulting in a cumulative 31.3% increase in agricultural recharge throughout the 595 

research area. Overall, it is unambiguous that climate change has an impact on 596 

recharging in the studied area.   597 

 The results further indicate that the net atmospheric water transport (P-ET) in the 598 

study area is distributed between recharge and runoff, suggesting that runoff is also an 599 
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important factor in moderating climate change changes on recharge. Against a 600 

background of global warming, drastic cryosphere melting has caused a sharp decrease 601 

in solid water resources, whereas the increasing meltwater volume is gradually altering 602 

hydrological processes and water cycle characteristics (Li et al., 2023). In high emission 603 

scenarios, even if evaporation increases due to higher temperatures (Al Atawneh et al., 604 

2021). Abundant precipitation cancels out some of the effects of ET, and the trend in 605 

recharge change is essentially the same as the trend in precipitation, when it is 606 

precipitation that drives the change in recharge. Under drier conditions, on the other 607 

hand, it is ET, in addition to precipitation, that influences the change in recharge. Finally, 608 

the formulation of unknown future conditions, such as climatic change scenarios and 609 

groundwater abstraction strategies, increases the uncertainty in groundwater model 610 

predictions (Mustafa et al., 2019b). 611 

Our analysis employs two GCMs with relatively coarse resolution, which greatly 612 

underestimates the uncertainty in the GCMs. Even though the SWAT model performed 613 

well in the study area, the uncertainty within the model is objective, which may affect 614 

the accuracy of the results. Future research will focus on specific crops to examine the 615 

surface cover of various crops in more detail, account for irrigation growing seasons, 616 

etc., and collaboratively examine variations in groundwater recharge.  It is hoped that 617 

our forecasts are intended to contribute to the body of knowledge regarding 618 

hydrological processes in temperate continental regions in response to potential future 619 

climate change.  620 
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