
Compressing high-resolution data through latent representation
encoding for downscaling large-scale AI weather forecast model
Qian Liu2, Bing Gong3,1, Xiaoran Zhuang4, Xiaohui Zhong1, Zhiming Kang5, and Hao Li1,2

1Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China
2Shanghai Academy of Artificial Intelligence for Science, Shanghai, 200232, China
3Department of Electrical and Computer Engineering Shanghai Normal University, Shanghai, China
4Jiangsu Meteorological Observatory, Nanjing, Jiangsu, 21008, China
5Nanjing Meteorological Observatory, Nanjing, Jiangsu, 21009, China

Correspondence: Zhiming Kang (angzm@cma.gov.cn) and Hao Li (lihao_lh@fudan.edu.cn)

Abstract. The rapid advancement of artificial intelligence (AI) in weather research has been driven by the ability to learn from

large, high-dimensional datasets. However, this progress also poses significant challenges, particularly regarding the substantial

costs associated with processing extensive data and the limitations of computational resources. Inspired by the Neural Image

Compression (NIC) task in computer vision, this study seeks to compress weather data to address these challenges and en-

hance the efficiency of downstream applications. Specifically, we propose a variational autoencoder (VAE) framework tailored5

for compressing high-resolution datasets, specifically the High Resolution China Meteorological Administration Land Data

Assimilation System (HRCLDAS) with a spatial resolution of 1 km. Our framework successfully reduced the storage size of 3

years of HRCLDAS data from 8.61 TB to just 204 GB, while preserving essential information. In addition, we demonstrated

the utility of the compressed data through a downscaling task, where the model trained on the compressed dataset achieved

accuracy comparable to that of the model trained on the original data. These results highlight the effectiveness and potential of10

the compressed data for future weather research.

1 Introduction

Weather forecasting is crucial for society and various industries, supporting informed decision-making in areas such as agri-

culture, transportation, disaster management. Traditionally, numerical weather prediction (NWP)) models have been employed15

for this purpose, but they are computationally intensive, requiring substantial computing resources. Recent advancements in

deep learning offer promising alternatives to NWP models, potentially offering faster and equally accurate forecasts (Bi et al.,

2023; Li et al., 2023; Lam et al., 2022). However, the effectiveness of deep learning applications in weather and climate relies

heavily on the availability of large-scale datasets. The computational demands for acquiring, storing, and managing such data
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frequently exceed the capabilities of researchers with only modest setups, creating significant barriers for those lacking access20

to high-performance computing resources and data storage.

Moreover, to ensure accurate weather forecasting, numerous super-computing and research centers around the world con-

duct operational weather and climate simulations multiple times daily. For example, the European Centre for Medium-Range

Weather Forecasts (ECMWF) manages 230 petabytes (PB) of data and processes approximately 600 million Earth observations

each day. This data volume is projected to quadruple over the next decade due to increasing spatial resolution in forecasting25

models (Klöwer et al., 2021). While this data growth provides more opportunities for training deep learning models, it also

poses challenges as the sheer data volume can overwhelm the existing super-computing infrastructure and complicate the

distribution of weather products due to limited network bandwidth. Thus, effective data compression techniques are essential.

Compressing weather data is similar to the Neural Image Compression (NIC) task in the computer vision domain, where

the goal is to reduce the file size of images while maintaining acceptable quality. For example, Ballé et al. (2016) employed30

an end-to-end convolutional neural network for image compression, while Chen et al. (2022) developed a framework to com-

press automotive stereo videos by reducing temporal redundancy. Most of the prior work has focused on using Variational

Autoencoders (VAEs) for image compression (Ballé et al., 2018; Cheng et al., 2020). For instance, Cheng et al. (2020) demon-

strated that employing discredited Gaussian Mixture Likelihoods to parameterize the latent code distributions achieves greater

accuracy than traditional entropy models.35

Although NIC based on VAEs shares similarities with weather data compression in exploring latent representation patterns,

significant differences remain. Natural images, with high correlation among red, green, and blue (RGB) channels, allow tra-

ditional compression techniques to exploit these relationships effectively. In contrast, while weather data exhibits correlations

among its variables, these relationships are not as straightforward correlated as nature images. Thus this further complicates the

application of conventional methods. Additionally, the volume of weather data is substantially large. For example, the ERA540

reanalysis dataset Hersbach et al. (2020) consists of hourly data at a spatial resolution of 31 km, with 640 × 1280 points,

totaling approximately 226 terabytes (TB))]. In comparison, the High Resolution China Meteorological Administration Land

Data Assimilation System (HRCLDAS) Shi et al. (2014); Han et al. (2020a) offers a regional product with a spatial resolution

of 1 km, incorporating 4500× 7000 grid points hourly. Managing such large datasets for weather applications introduces chal-

lenges for NIC in deep learning, including increased data loading times and processing requirements that can hinder training45

and model convergence, ultimately degrading compression performance. Thus, this study proposes a new data compression

method tailored specifically to weather data to address these challenges.

Furthermore, to evaluate the effectiveness of the proposed data compression method, we employed statistical downscaling as

a proof-of-concept downstream application. Despite advancements in deep learning for downscaling, the conflict between the

need for extensive data and limited computational resources remains a significant challenge. For instance, Leinonen et al. (2020)50

utilized a generative adversarial model to stochastically downscale coarse radar data to high resolution without additional

conditional variables. Harris et al. (2022) divided the entire UK region into smaller patches to incorporate more conditional

inputs given computational constraints. yet this approach limits the deep learning model’s ability to capture global features.

Similarly, Zhong et al. (2024b) used high-resolution assimilation data as ground truth for downscaling, but their application
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was confined to specific small regions in China. Thus, demonstrating the successful application of compressed data for these55

tasks could serve as a promising example in the field, alleviating computational constraints and promoting broader application

of deep learning techniques in weather downscaling.

In addressing the challenges of managing large-scale weather data, we propose a NIC framework specifically designed for

this purpose, compressing high-resolution weather data into a latent representation space to ease the data burden for down-

stream tasks. The main contributions of this research are as follows:60

– Introduction of a novel data compression framework tailor to weather data: We present a Variational Autoencoder

(VAE) method for reducing high-resolution weather data. The VAE’s encoder generates a quantize latent Gaussian distri-

bution through the variational inference process. Our comparison of training strategies reveals that pre-training followed

by a fine-tuning yields the best reconstruction performance, resulting in superior latent representation of the original

data.65

– Proof of Concept with large HRCLDAS Data: We applied our framework to 1-km high-resolution HRCLDAS data,

successfully compressing three years’ worth of data from a total of 8.61 TB to a compact 204 GB data. Reconstruction

results demonstrate that the VAE decoder can accurately reproduce the raw data with minimal loss of information and

detail, effectively recovering and preserving key properties of the original data, such as extreme values.

– Downstream Application - statistical downscaling: We provide a downstream application - statistical downscaling70

the output from a deep learning based weather forecasting model, i.e. FuXi Chen et al. (2023), over China as proof of

concept. Unlike most studies that resolve the NWP outputs, our research is the first to downscale deep learning-based

weather forecasting model outputs, enhancing their resolution. Our results indicate that our framework significantly

reduces computational costs while maintaining model performance.

2 Methodology75

2.1 Data sources

To assess the performance of the proposed compression framework, we employed downscaling as a proof-of-concept applica-

tion, using HRCLDAS as the high-resolution ground truth. HRCLDAS Shi et al. (2014); Han et al. (2020a) is a blended dataset

that integrates station observations, satellite data, and NWP data station advanced land surface and data assimilation techniques

(Han et al., 2020b; Zhong et al., 2024b). In this study, the HRCLDAS data encompasses three years of data from 2019 to 2021,80

including hourly 2-meter temperature (T2M ), 10-meter u-component of wind (U10M ), and 10-meter v-component of wind

(V10M ). Its original dimensions are 4384 × 6880 × 3, covering latitudes from 15° to 55° and longitudes from 75° to 135°. We

used the data from May 2019 to October 2019 and July 2020 to August 2021 as training dataset, and from September 2021 as

testing for data compression task.

For the downscaling task, we used forecasts from the FuXi-2.0 model as low-resolution inputs. The FuXi-2.0 model is a85

cascaded machine learning weather forecasting model that provides 15-day global forecasts with a temporal resolution of 1
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hour and a spatial resolution of 0.25 °Chen et al. (2023); Zhong et al. (2024a). In this study, we selected forecasts with lead

times ranging from 1 to 24 hours initialized at 00 UTC and 12 UTC for our training set.

We selected 40 input variables at surface and pressure levels from the FuXi forecasts for downscaling task, guided by domain

knowledge (see Table 1). The dataset spans from May 2019 to October 2019 and July 2020 to August 2021, while the testing90

set includes data from November 2019 to June 2020 for testing the downscaling performance. The training set consists of

14,000 hours of data, whereas the testing set contains 6,346 hours, with no overlap between the two. Prior to inputting the data

into the downscaling model, all input and output variables are normalized using z-score normalization.

Table 1. The details of input variables.

Variable Full Name Unit

Press Level U(50, 200, 500, 700, 850, 925, 1000, hPa) U-component of wind m s−1

V(50, 200, 500, 700, 850, 925, 1000, hPa) V-component of wind m s−1

Z(50, 200, 500, 700, 850, 925, 1000, hPa) Geopotential m2 s−2

T(50, 200, 500, 700, 850, 925, 1000, hPa) Temperature K

Q(50, 200, 500, 700, 850, 925, 1000, hPa) Specific humidity kg kg−1

Surface T2M 2 meter temperature K

TP Total precipitation m h−1

U10M 10 meter U-component of wind m s−1

V10M 10 meter V-component of wind m s−1

MSL Mean sea level pressure Pa

2.2 Overview of Data Compression Framework

Problem statement We represent high-dimensional atmospheric data at a given time t using a tensor Xt with dimensions V ×95

H×W, where H and W denote the number of latitude and longitude coordinates, respectively. For HRCLDAS, V=3, W=4384,

H=6880. The indexing scheme Xt
v,h,w indicates the value of variable v at time t and latitude-longitude coordinates (h,w).

The first objective of this study is to compress Xt to a lower-dimensional representation space Zt using an encoder with

learnable parameters within the proposed VAE compression framework. The second goal is to utilize the compressed data for

the downstream task of downscaling. Here, we select input Yt
v , which represents a variable with a lead time of t from the FuXi100

forecast outputs. Our aim is to learn a mapping function f that converts the low-resolution input state Yv at timestamp t to Zt.

VAE data compression framework Fig. 1 illustrates the overall compression framework based on the VAE neural network.

The VAE consists of an encoder E and a decoder D. The encoder E compresses the information from the current timestamp

into a low-dimensional latent vector Z. The decoder reconstructs the original high-resolution data X ′
t,i from latent vector Z

through upsampling and convolution layers. To facilitate random sampling, E outputs a mean µ and standard deviation σ,105

followed by a sampling function that generates the latent representation Z.

4

https://doi.org/10.5194/egusphere-2024-3183
Preprint. Discussion started: 22 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Specifically, the encoder E first transforms the input to a higher-dimensional feature space using a 1×1×C convolutional

layer, with C (the number of channels) initially set to 128. This is followed by four stages, where the first three each contain

two ResNet blocks and a downsampling block. Each ResNet block utilizes two convolution layers with a kernel size of 3,

followed by a Swish activation function (Ramachandran et al., 2017) and group normalization layers. Residual connections110

link the input and output, mitigating the risk of vanishing gradients.

The first convolutional layer of each stage doubles the feature map size, while the second convolutional layer maintains the

same size. At the end of each stage, a downsampling block is applied, consisting of a convolutional layer with a kernel size of

3 and a stride of 2 to reduce the volume by half, replacing the traditional pooling operation. The fourth stage differs in that it

does not include a downsampling layer. Instead, it uses two additional ResNet blocks to refine the compressed features. Finally,115

a convolutional layer with a feature map size of 4 is used to generate the mean µ and var σ,both with dimensions 548×860×4.

The decoding process is a symmetric process with the encoding process. The decoder initially uses a convolutional layer

to convert the channel dimension from 4 to 512. Bilinear interpolation method is used for upsampling at the end of each

stage. Two ResNet blocks in the decoder further refine the features. The four decoding stages process the features sequentially,

yielding feature map sizes of 548×860×4, 548×860×512, 548×860×512, 1096×1720×256, and 2192×3440×128, respec-120

tively. Finally, a convolutional layer converts the channel dimension to the output dimension, resulting in an output size of

4384×6880×3.

The loss component of the VAE consists of the reconstruction loss and the Kullback–Leibler divergence Dkl. We utilized

the charbonnie loss (Lai et al., 2018) as reconstruction loss function as described in Eq. 1 to better handle the outliers situation.

In addition, the Kullback–Leibler divergence Dkl regularizes the posterior distribution of the latent space P = N(µ,σ2) to125

match the prior distribution, a standard Gaussian distribution Q = N(0,1). Those parameters are optimized with the help of

the re-parametrization trick (Kingma et al., 2016).

L(X,X ′) =
√
||X −X ′||2 + ϵ2 (1)

KL(P ||Q) =
∑

x

P (X)log(
P (X)
Q(X)

) (2)

130

Downscaling Model: For the downstream task, we selected downscaling as a case study to evaluate the usability of the com-

pact data generated by our proposed VAE framework. The primary objective of the downscaling model is to enhance the output

resolution of FuXi forecasts. Once the VAE model is trained, the HRCLDAS data are encoded by the VAE encoder to extract

latent representations, which serve as ground truth for the downscaling model. We employed U-Net for this task(Ronneberger

et al., 2015). The original FuXi forecast input has dimensions of 176×276 with a spatial resolution of 25 km. For downscaling,135

we interpolate the data to a resolution of 550×3862×3 with a spatial resolution of 8 km.

U-Net utilizes a similar encoder-decoder architecture as the VAE. It comprises four stages, each containing two ResNet

blocks in both the encoder and decoder. The decoder Dunet, which serves as an expansive path, employs upsampling layers to
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Figure 1. (Illustration of the proposed framework.

project the encoder output to the resolution of the compact data. The decoding part of U-Net is connected to the corresponding

encoder part via skip connections. A convolution operation is applied to the concatenated output of the up-sampled output and140

its encoder counterpart, as illustrated in Fig. 1. Eventually, the U-Net trained on the original HRCLDAS data has 118 million

trainable parameters, while the U-Net trained on compressed data has 94.8 million parameters.

2.3 Implementation details

We first trained a VAE for data compression. The model was trained with a batch size of 8 and optimized using the Adam

optimizer with a learning rate of 1.6e-5. Given the high resolution of the original HRCLDAS data, we split it into 1000×1000145

patches with overlaps in the latitude direction, resulting in 35 patches per dataset. To reduce computational costs and accelerate

convergence, we further divided these 1000×1000 patches into smaller 256×256 patches. We pre-trained the VAE model on

these smaller patches for the first 10 epochs and subsequently fine-tuned it using the larger patches for an additional 5 epochs.

Unlike natural images, where channels are highly correlated, weather variables exhibit weak inter-variable relationships. There-

fore, we trained separate VAE models for T2m, and U10M , V10M , respectively.150
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For training the downscaling model, we used the compressed data Zt with a resolution of 544×856 generated from the

trained VAE encoder as ground truth. We trained the U-Net model with a batch size of 16 for 50 epochs. The model was

optimized using the Adam optimizer with a learning rate of 3.2e-5. All the models were implemented using the PyTorch

framework and trained on 8 NVIDIA A100 GPUs.

2.4 Experiment setup155

Four experiments were conducted to assess the impact of different modeling strategies on data reconstruction performance

within the proposed VAE framework. Additionally, three experiments were performed to evaluate the model’s downscaling

performance using the compact data generated by the VAE.

The four experiments within the VAE framework are detailed in Table 2. The baseline model (resize) employs a straightfor-

ward downsampling technique to reduce dimensions and an upsampling method for data reconstruction. To achieve improved160

reconstruction results, we trained the two VAE models using two different loss functions: L1 loss and Charbonnier loss, on 256

× 256 patches. Since the target variables do not exhibit linear correlations with one another, we trained separate models (VAE

single variable) for each target variable, rather than treating them collectively, as is common with natural images. Finally, to

obtain more accurate results, we fine-tuned the model trained on smaller patches using the full resolution data (VAE fine-tune).

For the downscaling task, we used bilinear interpolation (Inter) as the baseline for comparsion. We trained the U-Net model165

on both the original HRCLDAS data (No-VAE) and the compact data generated by the encoder from VAE (fine-tune) model,

respectively, to access the impact of the data compression method on downstream task performance.

Table 2. The setting of different data compression methods

method L1 loss charbonnie loss 3 single variable fine tune

Resize

VAE (L1) ✓
VAE(charbonnie loss) ✓
VAE (single variable) ✓ ✓
VAE(fine-tune) ✓ ✓ ✓

2.5 Evaluation metrics

To evaluate the performance of the reconstruction and its downscaling capabilities, we use several metrics commonly applied

in the weather and climate domain (Rasp et al., 2024; Zhong et al., 2024b; Gong et al., 2022). Specifically, we calculate the170

mean square error (MSE), root mean square error (RMSE), and power spectrum.

The MSE measures the difference between the ground truth Xw,h and the reconstructed or downscaled results X ′
w,h, where

the grid corresponds to the cell center positions w and h in the zonal and meridional directions, respectively. RMSE, on the
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other hand, represents the average difference between the ground truth and the reconstructed data generated by the model. Both

MSE and RMSE are negatively oriented, with an ideal value of 0 indicating perfect reconstruction.175

MSE(v) =
1
N

W∑

w=1

H∑

h=1

[
X ′

v,h,w −Xv,h,w

]2
. (3)

RMSE(v) =

√√√√ 1
N

W∑

w=1

H∑

h=1

(X ′
v,h,w −Xv,h,w)2 (4)

In addition, to evaluate the local-scale variability and determine the information preserved or lost by the VAE framework for

the downstream tasks, we conduct power spectrum analysis following the methodology described by Rasp et al. (2024). The

power spectrum is calculated along lines of constant latitude as a function of wavenumber (unitless), frequency (km−1), and180

wavelength (km). The Discrete Fourier Transform (DFT), denoted as FK is computed using the following equation:

F (k) =
1
L

L−1∑

l=0

fle
−i2πkl

L (5)

Since our evaluation focuses on the regional rather than global scales, we do not consider the circumference in this study.

The power spectrum for constant latitude is obtained using the following equation:185

Sk = 2|Fk|2,k = 1,2, ...,L/2 (6)

Additionally, we approximate the average zonal power spectrum using:

l∫

0

|fl|dl ≈
L/2∑

k=0

Sk (7)

In addition to the meteorological evaluation, we incorporate the structural similarity index (SSIM) (Wang et al., 2004), which190

was initially developed for computer vision to quantify and compare spatial variability between downscaled fields and ground

truth data. This metric has recently been applied in meteorological research (Zhong et al., 2024b; Gong et al., 2022).

SSIM(y, ŷ) =
(2µŷµy + C1) + (2σŷy + C2)

(µŷ2 + µy2 + C1)(σŷ2) + σy2 + C2)
(8)
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Table 3. The performance in terms of RMSE for different data compression models, where U10M , V10M , and T2M represent 10 meter

U-component of wind, 10 meter V-component of wind, and 2 meter temperature.

RMSE U10M V10M T2M

Resize 0.0771 0.0783 0.7109

VAE (L1) 0.108 0.100 0.752

VAE(charbonnie loss) 0.104 0.090 0.578

VAE (single variable) 0.0428 0.029 0.353

VAE(fine-tune) 0.0181 0.0139 0.124

3 Experiments results

3.1 Representation performance195

Table 3 presents performance results for various data compression strategies, including simple resize, VAE with L1 loss, VAE

with Charbonnier loss, VAEs trained on single variables, and the VAE fine-tuning strategy. Among these methods, the VAE

fine-tuning strategy demonstrates superior performance in reconstructing U10M , V10M , and T2M . Additionally, we observed

that simple VAE with L1 and Charbonnie loss struggles to effectively represent the temperature and wind fields, leading to

a high RMSE. Notably, training on a single variable is consistently superior to training on multiple variables. Furthermore, a200

comparison between the VAE trained from scratch (single variable) and the VAE fine-tuned from pretraining with small patches

to full resolution indicates that the pretraining method significantly enhances the representation performance. The VAE fine-

tuning approach achieves RMSE values of 0.0181 K, 0.0139 K, and 0.124 K for the three variables respectively, which is

more than 4 times better than the linear interpretation method.

To further understand the VAE’s performance in data compression, particularly for extreme values, we examine the dif-205

ferences in density distributions among the ground truth, VAE, and a simple resize baseline model, as illustrated in Fig. 3.

For T2M (Fig. 3a), the VAE-reconstructed data closely aligns with the frequency of positive temperature values in the ground

truth HRCLDAS data. In contrast, the resize method results in a slight decrease in the frequency of positive temperatures. For

negative temperatures, the VAE model exhibits a lower frequency compared to the original HRCLDAS data. Regarding U10M

and V10M (Fig. 3b and Fig. 3c), the VAE effectively preserves a higher frequency of both extreme high and low values.210

3.2 Downscaling performance

In our study, we selected the fine-tuned VAE (fine-tune) as the data compression method, subsequently applying the com-

pressed data produced by VAE (fine-tune) for our downstream task - downscaling. Figure 4 and Figure 5 demonstrate the

performance of the UNet model trained on compressed HCLDAS data (VAE) and original data (No-VAE) in terms of MSE

(Fig. 4) and SSIM( Fig. 5) respectively, compared to the baseline model - interpolation method, across lead times from 1 to215

18 hours. The results indicate that the deep learning-based model significantly outperforms the simple interpolation method

(Inter). Specifically, the mean square error values for linear interpolation, No-VAE, and VAE are 11.58 K2, 4.965,79K2, and
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Figure 2. Example reconstructed fields by VAE (fine-tune) for T2M , U10M and V10M respectively on 9th September 2021, 00 UTC. (a) T2M

from HRCLDAS, (b) the reconstructed T2M field by VAEs (fine-tune), (c) differences between HRCLDA T2M and reconstructed T2M , (d)

U10M from HRCLDAS, (e) the reconstructed U10M field by VAEs (fine-tune), (f) differences between HRCLDA U10M and reconstructed

U10M , (g) V10M from HRCLDAS, (h) the reconstructed V10M field by VAEs (fine-tune), (g) differences between HRCLDA V10M and

reconstructed V10M .

(a) T2M (b) U10M (c) V10M

Figure 3. Displaying of log(density) plot for (a) T2M , (b) U10M , and (c) V10M by the VAE method comparing to the resize method and

HRCLDAS data.

5,79K2, respectively, demonstrating that the No-VAE and VAE outperform linear interpolation by approximately 53%, 60%

for temperature in terms of MSE.
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We also employed the SSIM, commonly used in downscaling tasks to access the perceptual similarity between images.220

SSIM quantifies and compares mean and global spatial variability in the downscaled fields against the ground truth and also

accounts for covariances. The SSIM comparisons for all models are presented in Fig 5, showing that both VAE and No-VAE

consistently outperform the interpolation method across all lead times and variables.

Furthermore, Figure 6 presents the average zonal power spectrum plots for the No-VAE and VAE downscaling models

at a 1-hour lead time, compared to the ground truth HRCLDAS data and the baseline interpolation method. The findings225

reveal that the baseline interpolation method fails to capture significant details across all scales for the three variables. This

is expected, as interpolation tends to average out variances, leading to a smoother appearance, as visually confirmed in Fig

8 and Fig. 10. In contrast, both the VAE and No-VAE models preserve more details, with their performances being quite

similar. This suggests that the compact data representation from the VAE does not lead to substantial information loss in our

proof-of-concept downscaling task compared to using the original HRCLDAS data.230

It is worth mentioning that the No-VAE model generates artifacts at small scales for T2M as the examples demonstrated

in Fig. 8c and Fig. 8f. Sudden temperature changes create strong contrasts in specific areas, such as northeast China. This

issue arises from the unpatching process, where small patches are reconstructed into the original image due to computational

limitations. In contrast, this problem can be effectively mitigated by feeding the U-Net the entire latent features of HRCLDAS

data directly from the VAE model, resulting in a smoother downscaling field, as demonstrated in Fig. 8d and Fig. 8g.235

In addition, we observed that both the VAE and No-VAE models struggle to capture fine-scale features of T2M . This limi-

tation is likely due to the significant elevation variations in the Himalayas and certain regions of China, where topography is

crucial for maintaining local temperature gradients. Since the primary focus of this study is to validate the VAE compression

method, we did not incorporate topography data in the current models. However, this will be considered in future research.

(a) T2M (b) U10M (c) V10M

Figure 4. Box-and-whisker plot for comparision in terms of MSE between baseline and machine learning methods for (a) T2M , (b) U10M ,

and (c) V10M with lead time of 1h to 18h. The solid horizon indicates the minimum and maximum MSE, excluding outliers; the box bounds

the interquartile range from the 25th to 75th percentiles, with the 50th percentile. The red color indicates the baseline model "resize"; the

green color indicates the U-Net trained on original HRCLDAS data; the blue color indicates the U-Net trained on compact HRCLDAS data

generated by VAE.
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(a) T2M (b) U10M (c) V10M

Figure 5. The Box-and-whisker plot for comparsion in terms of SSIM between baseline and machine learning methods for (a) T2M , (b)

U10M , and (c) V10M with a lead time of 1 h to 18 h. The solid horizon indicates the minimum and maximum MSE, excluding outliers; the

box bounds the interquartile range from the 25th to 75th percentiles, with the 50th percentile. The red color indicates the baseline model

"resize"; the green color indicates the U-Net trained on original HRCLDAS data; the blue color indicates the U-Net trained on compact

HRCLDAS data generated by VAE.

(a) T2M (b) U10M (c) V10M

Figure 6. Plot displaying of the power spectrum for (a) T2M , (b) U10M , and (c) V10M with a lead time of 1 h by the VAE method comparing

to the interpolation, Non-VAE, and HRCLDAS ground truth data. The x-axis indicates the number of wavelength ( km) and y-axis is the

number average power spectrum.

To better understand the realism of downscaling performance, we selected three examples to compare the performance of240

temperature and zonal wind variables using "eyeball" analysis (see Fig 8 and Fig 10). These examples correspond to 1st Novem-

ber 2019, at 01:00 UTC, 15th April 2020, at 18:00 UTC, and 15th January 2020, at 12:00 UTC, representing FuXi forecasts

with 1-hour, 6-hour, and 12-hour lead times, respectively. As illustrated in Fig 8, it can be seen that the interpretation method

shows significant biases in temperature downscaling for southwestern China, particularly within the complex mountainous

terrain of the Himalayas (see topography map in Fig .7). This bias was especially pronounced in northeastern China during the245

cold winter period on 15th January 2020, when the No-VAE interpolation methods were applied. In contrast, the application of

the VAE method with the compressed data allowed the U-Net to more effectively capture and reduce errors in this region.
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Figure 7. Topography height of the surface in the target region.

4 Conclusion and Discussion

This study investigates the compression of high-dimensional, high-volume weather data using the NIC method, inspired by

advancements in the computer vision domain, for downstream weather and climate applications. Specifically, we employed250

our proposed VAE framework to compress three years of high-resolution HRCLDAS data, reducing the data size from 8.61

TB to a compact 204 GB, an impressive 42-fold reduction in storage requirements. The results demonstrate that the VAE

framework, enhanced with a fine-tuning strategy, outperforms other baseline methods, significantly reducing reconstruction

errors, thereby providing more accurate reconstructions of 2-meter temperature, 10-meter U-component of wind, and 10-meter

V-component of wind, in terms of RMSE. Moreover, the VAE-based model demonstrates superior performance in preserving255

extreme values, effectively maintaining both high and low values from the original HRCLDAS dataset.

To further validate the effectiveness and usability of the compact data generated by the VAE framework, we used it for

the downscaling task. The performance metrics reveal no significant differences in MSE and SSIM between the original

HRCLDAS data and compact HRCLDAS data. Although a slight degradation in performance was observed with the com-

pact data, likely due to the reduced number of parameters utilized by the U-Net model. Further evaluation based on the power260

spectrum suggests that both the original HRCLDAS and compact data significantly outperform the baseline bilinear interpo-

lation method. While using the compact data results in a minor loss of information at larger scales, it effectively retains key

information at finer scales for all three target variables, similar to the original HRCLDAS data. This demonstrates the usability

and effectiveness of the compact data for downstream downscaling tasks. Looking ahead, this approach has the potential to be

expanded to other applications, such as large-scale weather and climate forecasting, where the need for processing extensive265

datasets is more crucial.
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Figure 8. Example downscaling for 2 m temperature with a lead time of 1 h (panels: b - d), 6 h (panels: i-k) and 12 h (p-f), by interpretation,

No-VAE, and VAE methods respectively. (a,h,o) are the ground truth from the HRCLAS dataset. (e-g, l-n, s-u) The difference between the

ground truth and the downscaled fields generated by interpretation, No-VAE, and VAE method at the time of 1st November 2019, 01:00 UTC,

15st April 2020, 18:00 UTC, and 15st December 2020, 12:00 UTC.
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Figure 9. Example downscaling for U-component of wind with a lead time of 1 h (panels: b - d), 6 h (panels: i-k) and 12 h (p-f), by

interpretation, No-VAE, and VAE methods respectively. (a,h,o) are the ground truth from the HRCLAS dataset. (e-g, l-n, s-u) The difference

between the ground truth and the downscaled fields generated by interpretation, No-VAE, and VAE method at the time of 1st November 2019,

01:00 UTC, 15st April 2020, 18:00 UTC, and 15st December 2020, 12:00 UTC.
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Figure 10. Three examples of downscaling for 10 meter V-component of wind with a lead time of 1 h (panels: b - d), 6 h (panels: i-k) and

12 h (p-f), by interpretation, No-VAE, and VAE methods respectively. (a,h,o) are the ground truth from the HRCLAS dataset. (e-g, l-n, s-u)

The difference between the ground truth and the downscaled fields generated by interpretation, No-VAE, and VAE method at the time of 1st

November 2019, 01:00 UTC, 15st April 2020, 18:00 UTC, and 15st December 2020, 12:00 UTC.
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