Author Response to RC3: “Computationally efficient subglacial drainage modelling using
Gaussian Process emulators: GlaDS-GP v1.0”

Tim Hill, Derek Bingham, Gwenn E. Flowers, Matthew J. Hoffman
Reviewer comments are in black and we provide our responses in blue.

This paper describes a Gaussian Process emulator of the GlaDS subglacial drainage model and its testing
on a synthetic ice-sheet margin setup. Modelling subglacial drainage is starting to become an important
aspect of ice dynamics simulations as that system impacts the basal boundary condition significantly.
However, subglacial drainage models are relatively costly to evaluate and in particular operate on
different, shorter time scales compared to ice flow. Thus running coupled ice-flow drainage simulations is
typically difficult and costly at the moment. Emulating the subglacial drainage model using a statistical
representation is likely an important step in making these types of coupled models readily applicable.

Whilst emulations of GlaDS with neural network based emulators have been achieved over the last few
years, this is the first time a Gaussian Process based emulator has been put forward. The advantage of GP
emulators is their greatly reduced number of parameters to fit compared to a neural network as well as
built-in capability to quantify uncertainties of the emulation.

The manuscript lays out the procedure to construct the GP emulator; of note is that this construction is
relatively involved as it also entails, for instance, decomposition of the GlaDS training data into principal
components, fitting of hyperparameters using Bayesian schemes, etc. The emulator is then tested
extensively on a synthetic setup and the authors discuss the pros and cons relative to neural network based
emulators.

The study and manuscript are carefully constructed. As I am not an expert in statistical emulators, I
cannot judge the appropriateness and correctness of the approach to implement the GP emulator. The
testing and assessment of the emulator is certainly fine and the discussion is interesting and relevant.
Thus, with above caveat, | recommend to publish this manuscript in GMD with the minor corrections
outlined below.

Thank you for the detailed and constructive review. We have responded to your comments individually
below.

Comments

I think it would be useful to discuss a bit more how this emulator could be used for inversions or for
coupled ice-flow & drainage simulations as, in my opinion, this are the most sought after usages of such
tools. This can just be in the Discussion and/or Introduction, no need for more simulations or an
implementation.

Thank you for the suggestion. We have expanded Section 6.6 “Applications and considerations” to
describe Bayesian inference of subglacial drainage model parameters as an appealing direct extension of
this work. We have described the steps needed to use the emulator for coupled ice-flow and subglacial
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drainage simulations and highlight some of the additional uncertainties related to the basal slip
relationship and the ice flow law that could be addressed by extending the current work.

The construction of the emulator has many steps. Looking through the manuscript, I can see:

- training data construction using parameter design matrix

- running the simulations with GlaDS

- principal component decomposition and component selection or (reduction of variables to scalars)
- fit the GP emulator to the data using an MCMC scheme

Then using the GP in different ways for predictions and analysis is then yet another step. Would it make
sense to somehow graphically represent this, flow-chart or some such? Or maybe a numbered list?

Thank you for suggesting ways to make the construction of the GPs more accessible. We have designed
and added the following summary of the steps involved in the emulator construction.
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Figure: Overview of steps involved in constructing the Gaussian Process emulators. X is the design
matrix of GlaDS parameters (defined in Table 2) with corresponding GlaDS outputs Y. The Gaussian
Process emulator is constructed as a truncated linear combination of p principal components w;(0) and
basis vectors v; fori=1, ..., p, where 0 are Gaussian Process hyperparameters that are inferred by
Markov Chain Monte Carlo (MCMC) sampling. Emulators are fit using m-member subsets of the training
data and constructed using different numbers of principal components p. The performance is evaluated on
the independent set of 100 test simulations. The emulator is used to compute the sensitivity of model
outputs to model parameters (Section 5).

Irrespective of the lack of such a graphical overview, I struggled to understand the GP emulator from the
description. I am not sure whether I should expect to understand GP emulation from reading about it in
such a publication or whether I should just need to go elsewhere to learn it. I see that the authors try to
keep the reading smooth by moving quite a bit of the explanations to the appendix but I wonder whether
that makes it even harder to understand as now the content is disjoint? Maybe if this layout is kept, then
make it even more high level in the main text and have the full description in the appendix which then
could be in one place; or, alternatively, move all into the main text? In fact, I think that would be my
preferred option and, I think, would fit GMD well as this journal is mostly about methods and not science.
As it is, I think it is a bit of a difficult split.

Thank you for highlighting that Section 2.2 was not as accessible to non-experts as we had intended and
for suggesting improvement in the content and structure. We have expanded Section 2.2 to integrate the
content from Appendix B so that the reader has all the information in one place. We have also expanded
the high-level description of the terms in the equations and defined all statistical terminology. At the
beginning of the GP section, we have also clarified our intention to provide a high-level overview with
only the details necessary to understand our application of the method and the differences compared to
other statistical models (e.g., neural networks):
“This section briefly provides a high-level overview of the Gaussian Process (GP) model and the
architecture that we use to emulate spatially and temporally resolved GlaDS outputs. For
background on Gaussian Processes seeJones et al. (1998) and Rasmussen and Williams (2005),
and see Higdon et al. (2008) for a complete description of the emulators constructed here.”

The authors state the principal component decomposition will make the representation necessarily smooth
(line 170). Around the channels the hydraulic potential is often not smooth but has the channel as a kink,
is that a problem (i.e. a spatial non-smoothness)? Also related to smoothness: in setups like the one
presented, where there is no lateral variation in topography, channel position is not necessarily stable with
parameter variation but they can jump around (and, for certain, channels move if the mesh is varied). Is
that a problem for GP?

The perturbation in hydraulic potential (or more precisely flotation fraction for our work) near a channel
is not a problem for the principal component-based GP. The spatial and temporal variations themselves do
not need to be smooth since this complexity is encoded by the basis, which has no smoothness
constraints. What the GP requires is that the principal components (w; in Eq. (9)) vary smoothly with
respect to the GlaDS parameters. We have tried to explain this more clearly: “While the flotation fraction
field need not be smooth in space and in time, the principal components w;; (0) tend to vary smoothly with
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respect to the GlaDS parameters since the the spatiotemporal complexity is captured by the principal
component basis.”

The comment about unstable channel positions is interesting. It’s possible that “boundaries” in parameter
space that cause changes in channel position would be reflected as discontinuities in the principal
components. This would show up as simulations with unusually high error when evaluating predictions
on the test set. We have not seen evidence of such issues.

Line-by-line

L4: "the combination of the number" is not clearly formulated. Reword.

We have revised this sentence to read “While they are used to understand processes such as the
relationship between surface melt and ice flow, the number of uncertain model parameters and the
computational cost of running models makes it difficult to [..]”

L8: "daily representation" is not clear to me. Maybe "diurnally averaged"?
Thank you for the suggestion, we have updated the text as suggested since “diurnally averaged” is more
accurate.

L66: I would cite the ISSM GlaDS implementation here too, I think that is Ehrenfeucht&al 2023.
Correct, we have added this citation.

L83: "see B" -> "see Appendix B"
Corrected.

L84: "fast predictions" is a bit sloppy, they are fast to run but not fast themselves.
That is correct, this sentence has been simplified to say: “Following tuning and evaluation of the
emulators, we apply them to compute the sensitivity of model outputs to parameters.”

Table 2: r_b is not defined in the original GlaDS paper nor in this manuscript. Needs to be defined, at
least in Appendix A.

Thank you for the suggestion. We have added the definition of the aspect ratio 1, as the ratio of the bump
length 1, to the bump height hy, such that the aspect ratio should be roughly >1, following equation (A2).

L108: state here that theta is what is fitted and maybe also state the (approximate) size of theta.

We have expanded the description of the GP hyperparameters: “The hyperparameters typically control the
variance of the Gaussian Process and the sensitivity to each input, but their interpretation depends on the
type of covariance function that is used. Gaussian Processes typically have a similar number of
hyperparameters as inputs to the emulator. The hyperparameters must be optimized to obtain an accurate
emulator.”

L110: "The second choice" really needs a clear statement above of what the first choice is (namely k),
otherwise the reader will stumble over this.
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Thank you for the suggestion, since we do not clearly articulate the covariance function as the first choice,
we have removed the language about “the second choice”. Instead, this paragraph begins with “We make
the common choice to set the prior mean to zero everywhere...”

L124: $x$ is not defined, or if its definition is "prediction input", then that is not clear enough.
We have defined x on line 88 as the vector of GlaDS model parameters. Since using both “model
parameters” and “inputs” to refer to the same thing is confusing, we have referred to x as model
parameters throughout (see also response to reviewer 1).

L127: the "posterior distribution" comes out of the blue here

Thank you for highlighting this. As detailed in our response to your third comment (clarity of the GP
exposition), we have revised this section to more fully explain the posterior distribution and posterior
predictions, keeping in mind to explain these statistical terms.

L130: are there d+1 hyperparameters for any k? Couldn't it be less as well? Or more?

The fact that there are d+1 hyperparameters is specific to how we have written the covariance function £.
Since we have not yet introduced a particular covariance function £ it is not appropriate yet to provide a
specific length of the hyperparameter vector. We have revised this sentence to remove the precise number
of hyperparameters: “the fact that the GP model is simple enough to allow for Bayesian inference is a key
advantage compared to a neural network for uncertainty quantification.”

L223: A negative floation fraction implies negative water pressure, right? But how can the water pressure
go negative in the presented setting? I don't think it can drop below the value of the Dirichlet BC which
corresponds to zero water pressure.

This is a good question, and the reviewer is correct that negative flotation fraction implies negative water
pressure. The negative flotation fraction (and water pressure) happens during the melt season in response
to a rapid drop in surface melt rates and only lasts for one to a few days. We have clarified that this is a
transient issue: “We have found that broadening the parameter ranges results in numerous nonphysical
simulations with nearly zero water pressure during the melt season, transient negative flotation fraction as
low as f,<-10 or extremely high flotation fraction as high as f,, >> 100 which degrade the performance of
the principal component decomposition.”

L274: RMSE is not defined yet. But then it gets defined in L.296.
Thank you for highlighting, we have defined root mean square error at the first instance of RMSE.

Fig 2: state to which fields the PCs are encoding

The principal components (a) and basis vectors (b) represent the spatiotemporal flotation fraction field.
We have added “flotation fraction” to the caption related to (b): “Width-averaged representation of the
first seven flotation fraction £, spatiotemporal principal component basis vectors [...]”

L283: It would be nice to have some snapshots of the PC fields and the GlaDS fields side by side
(probably in the appendix). So similar to Fig 2 panel b, but not width averaged but instead just a few
instances in time. This would allow to get a bit of a feel on how accurate the spatial fidelity of the PCs
are.
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This is a good idea, it will provide some intuition of how the PCs and GP behave. We have added the
following figure to Appendix C. We would also like to clarify that Fig. 2b does not show the PC low-rank
representation of the GlaDS-simulated flotation fraction. Fig. 2b shows the principal component basis, v,

in Eq. (9). We have referenced v;and Eq. (9) in the Fig. 2 caption to minimize confusion about the
quantity shown in (b).
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Figure: Principal component truncation error and GP prediction error. (a) GlaDS-simulated
flotation fraction for the test simulation with median RMSE on 29 July, (b) corresponding
principal component representation of the GlaDS flotation fraction using 8 PCs, and (c) Gaussian
Process (GP) emulator prediction. Difference maps show the principal component representation
(d) and the Gaussian Process emulator prediction (e) minus the GlaDS output.

Fig 4: Eyeballing the convergence of the two error metrics (panel a,b,d,e), it looks like that the errors do
not go to zero but approach some non-zero asymptote. Is that expected? If so, why? Maybe this could be
briefly mentioned in the text.

This is correct and expected. There are errors in the GP predictions from two main sources:

e Basis truncation error: using 1-11 PCs obtains only an approximation of the full set of
simulations (e.g., Fig. 1a)

e GP prediction error adds to the basis truncation error. The GP is only be expected to be a perfect
predictor of the principal component representation of the data in the theoretical limit of infinite
training runs

We have added a brief explanation where we present the results from Fig. 4 (now numbered Fig. 5):
“Figure 5 seems to suggest that the RMSE and MAPE are converging to nonzero values. This is an
expected outcome since the total error represents the sum of the basis truncation error associated with
using at most 11 PCs (Fig. 3) and error in the GP predictions of the principal components”

L394: "supporting the interpretation of PC1 as representing water pressure in the absence of surface melt

inputs": to me Fig2b1 shows that PC1 has a clear seasonal signal which the basal melt does not. So, I'm
not sure this statement is correct or at least needs some more information.
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Thank you for the question. While the first basis function (PC1 in Fig. 2b1) does indeed have a clear
seasonal signal, Fig. 2b1 shows that PC1 “turns off” by being nearly 0 in the melt season and especially at
lower elevations, so that PC1 does not contribute to the surface melt-forced drainage system. PC1 is
consistently “turned on” with absolute values >1 during winter and above the maximum melt extent.
From this, we argue that PC1 mostly represents subglacial drainage in the absence of surface melt. It turns
off when surface melt dominates the drainage system, allowing other PCs to dominate at these times. We
have expanded our explanation where we propose an explanation for PC1:

“Based on the first PC basis vector being nonzero in winter and upstream of the maximum surface melt
extent (~80 km), and not contributing to the solution at low elevations during the melt season, the
first and most important PC in terms of its explained variance (80.3%) appears to control the baseline
water pressure in the absence of surface melt inputs”

L444: Formulating more clearly what "in ice-flow modelling" means would be helpful
We have added the explanation: “if the emulated fields were used as part of the basal boundary condition
for ice-flow modelling”.

Tab5: here the typesetting seems a bit off: in the fields spanning multiple lines, the line spacing should be
less than between different rows.

We have had to adjust the formatting of Table 5 to force it to fit on a single page. We will ensure that the
formatting is correct in the final typeset version of this table.

L552: ideally a DOI and stable archived version of SEPIA and ISSM should also be provided. At the very
least the version of ISSM used needs to be stated.

We have used ISSM version 4.24, which is available as a release on GitHub
(https://github.com/ISSMteam/ISSM/releases/tag/v4.24), but not with a DOI. We have added “v4.24” to
the code and data availability statement. Since SEPIA and ISSM are not our code to archive, we have

provided the best publicly accessible links that we can.

L554: the air-temp dataset needs to be clearly specified. The provided link points to very many datasets.
Do note that this data-repository provides DOIs for each dataset.

The correct link to the Greenland weather station data is https://doi.org/10.22008/FK2/IW73UU and the
text has been amended accordingly

Eq A2: I would expect r_b to feature here.

Thank you for highlighting this mistake, this equation (and the following equation for time-evolution of
hydraulic potential) has been corrected to include the bed bump aspect ratio r_b instead of the bed bump
length 1 b:

hg — hy
a _fb ub—Ah |N|n 1N

The same correction has been made to Eq. (A3).

L613: "maximing" -> "maximising"
Corrected.
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