
‭Author Response to RC2: “Computationally efficient subglacial drainage modelling using‬
‭Gaussian Process emulators: GlaDS-GP v1.0”‬

‭Reviewer: Jacob Downs‬

‭Tim Hill, Derek Bingham, Gwenn E. Flowers, Matthew J. Hoffman‬
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‭This work outlines a Gaussian Process based emulator of the GlaDS subglacial hydrology model. Inputs‬
‭to the emulator consist of 8 scalar model parameters, while outputs include either spatio-temporal‬
‭flotation fraction fields or scalar metrics describing bulk properties of the subglacial drainage system.‬
‭Performance of the emulator is thoroughly examined by comparing emulators using different training sets‬
‭as well as using different numbers of principal components to represent flotation fraction fields.‬

‭Overall, this manuscript is well written, the methods are clear, and I appreciate the rigorous evaluation of‬
‭the emulator’s accuracy. In light of this, I believe this work represents a good contribution to the field.‬
‭However, I believe that this work would benefit from a more detailed discussion of how the GP emulator‬
‭compares to existing emulators. In particular, I think the discussion should outline more of the key‬
‭differences between this work and Verjans and Robel [2024], including differences in their potential use‬
‭cases.‬

‭The authors should outline in specific terms where their emulator could be applied versus other existing‬
‭methods. For instance, is this purely a tool for calibrating subglacial hydrology parameters or assessing‬
‭sensitivity? Is there a path for using this as a substitute for GlaDS to predict effective pressure when‬
‭coupled with an ice sheet model? What do the authors intend to do with this emulator, or what might‬
‭future work on the emulator entail? As someone interested in this space, I was hoping the authors might‬
‭delve more deeply into some of these topics in the discussion.‬

‭Thank you for taking the time to review our work in detail and for the constructive suggestions. We have‬
‭responded to your comments individually below.‬

‭Line 52 Might benefit from rewording to“The Gaussian Process emulators we develop take subglacial‬
‭drainage model parameters as inputs and predict spatially and seasonally resolved flotation fraction ... ”‬
‭We have revised this wording as suggested to improve the clarity of this sentence.‬

‭Line 63 Maybe this could be reworded as “where the radius of channels is modeled as a balance between‬
‭the creep closure of ice and opening by melt. ”‬
‭We have revised this to say, “[...], with the channel‬‭network emerging from‬‭radius determined by‬‭the‬
‭balance between creep closure of ice and opening by melt”.‬

‭Line 65 “The continuum distributed (sheet) drainage system is defined on the mesh nodes, with possible‬
‭channel locations defined by element edges.”‬
‭This could be clarified. Maybe you could say that variables describing the distributed system are‬
‭represented by linear finite elements with degrees of freedom on mesh nodes? This would help clarify that‬
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‭the distributed drainage system isn’t “confined” to the mesh nodes, but that’s where the degrees of‬
‭freedom are defined.‬
‭We have used the suggested, more accurate statement: “The governing equations, arising from‬
‭conservation of mass and energy, are discretized on an unstructured triangular mesh. Variables describing‬
‭the continuum distributed (sheet) drainage system are represented using finite elements with degrees of‬
‭freedom located on the mesh nodes, with possible channel locations defined by element edges.”‬

‭Line 83 “For details on Gaussian Processes”‬
‭Corrected, we have revised these citations to more precisely point the reader to the relevant references:‬
‭“For background on Gaussian Processes see Jones et al. (1998) and Rasmussen and Williams (2005), and‬
‭see Higdon et al. (2008) for a complete description of the emulators constructed here”‬

‭Line 130 Please mention why there are d+1 hyperparameters. Also, depending on the kernel, this number‬
‭could vary.‬
‭Thank you for highlighting this. The reviewer is correct, while it is usually d+1 hyperparameters, the‬
‭number can vary. Since we have not introduced a particular kernel function, it’s not appropriate here to‬
‭say how many hyperparameters there are yet. We have removed the number of hyperparameters from this‬
‭statement: “The fact that the GP model is simple enough to allow for Bayesian inference of the emulator‬
‭hyperparameter values θ, where uncertainty in the hyperparameters is reflected in the uncertainty in the‬
‭emulator predictions, is a key advantage compared to a neural network for uncertainty quantification”‬

‭Line 170 That seems reasonable. If I understand, would it be fair to say that you hope that much of the‬
‭spatial/temporal complexity is captured in the principal components while the response of the coefficients‬
‭of the principal components to variations in parameters is expected to be smooth?‬
‭Yes, this is precisely what we are trying to say, and we have revised this section to read: “While the‬
‭flotation fraction field need not be smooth in space and in time, the principal components w‬‭ij‬ ‭(θ) tend‬‭to‬
‭vary smoothly with respect to the GlaDS parameters since the the spatiotemporal complexity is captured‬
‭by the principal component basis.”‬

‭Line 285 Interesting, I like the commentary on the first couple principal components, and I think‬
‭interpretability is a really nice advantage of this method.‬
‭Thank you for the nice comment, and we agree that the interpretability of this method is a nice feature.‬

‭Line 321 ”Using 8 PCs reduces the height...”‬
‭Corrected.‬

‭Figure 4 I’m not sure what is meant by 95% prediction interval in c and f. Is this the prediction‬
‭uncertainty of the emulator integrated through time and space? Also, when considering the prediction‬
‭error, is this accounting for uncertainty in θ (sampled via MCMC) as well as the GP prediction‬
‭uncertainty? Or is it just the latter, and you are using the most probable estimate for the hyperparameters?‬
‭Presumably the advantage of using MCMC on θ as opposed to maximum likelihood estimation is to‬
‭characterize its effect on uncertainty as well?‬
‭Fig. 4c and 4f show the prediction interval averaged through time and space. We have added an‬
‭explanation of this figure to the text: “Fig.4a--c show the distribution of the RMSE, MAPE and the‬
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‭spatiotemporally averaged 95% prediction interval across the test ensemble for emulators constructed‬
‭using different numbers of PCs. Since GP prediction uncertainty varies across the space of emulator‬
‭inputs depending on the distance to training runs, we assess the overall prediction uncertainty by‬
‭computing a Monte Carlo integral across the space of GlaDS parameters, indicated as black circles in Fig.‬
‭4c, f).”‬
‭The 95% intervals include (1) uncertainty in the hyperparameters, (2) GP prediction uncertainty, and (3)‬
‭uncertainty arising from the truncated basis via the error term and‬‭λ‬‭sim‬‭. We have added a Figure providing‬
‭an overview of the methods, including a summary of the algorithm used to draw posterior realizations‬
‭from the GP. We hope this figure helps to clarify the uncertainties included in the emulator predictions.‬

‭Line 340 Before discussing results for the test cases with different levels of error, please introduce what‬
‭the “high-error” and “median-error” simulations are. I think I found this information in the figure 6 and 7‬
‭captions, but it would be helpful to include it in the text.‬
‭Good suggestion, we have explained these test cases in the text: “To assess how emulator performance‬
‭varies across the test set, we evaluate the performance on test simulations with 95th-percentile (“high‬
‭error”), 50th-percentile (“median error”) and 5th-percentile (“low error”) RMSE.”‬

‭Figure 9 It’s difficult to see the differences in the median error across different numbers of simulations‬
‭due to the scale of the outliers.‬
‭This is true, especially for the log-sheet transit time (row 2). We would also like to point out that the‬
‭difficulty in seeing changes in the mean is a useful interpretation of the experiment. For these scalar‬
‭metrics, it requires only ~32 simulations to obtain predictions with a median error (bias) near zero.‬
‭Adding more simulations primarily reduces the error in the worst-case scenarios (outliers and the spread‬
‭of the whiskers) and the uncertainty in predictions.‬

‭Section 6.4 I think some of this discussion could be expanded to highlight more of the nuances of the‬
‭different approaches. For example, the emulator in Verjans and Robel [2024] aims to be fairly general‬
‭purpose, and it's more of a one-to-one substitute for GLaDS. Hence, I see their neural network based‬
‭approach as fundamentally different from yours in its intent. This also makes the comparison of the‬
‭number of parameters difficult as the input / output spaces in Verjans and Robel [2024] is very broad,‬
‭meaning more parameters are likely needed.‬

‭There are certainly a number of appealing elements to your GP approach, including interpretability, the‬
‭speed at which it can be trained, and how you also obtain uncertainty estimates without additional work.‬
‭But I feel like its difficult to directly compare your emulator to Verjans and Robel [2024], and I have a‬
‭hard time seeing the two emulators being used in the same way. In this sense, I see your emulator as being‬
‭far more comparable to Brinkerhoff et al. [2021].‬
‭Thank you for the suggestion, and we agree with your assessment that our approach is most similar in‬
‭spirit and applications to Brinkerhoff et al. (2021). We have added a discussion about the utility of these‬
‭three studies to Section 6.4:‬

‭The GP emulator approach that we have described is closest in spirit and in practical applications‬
‭to that of Brinkerhoff et al. (2021). By emulating model outputs for different model parameter‬
‭values, the GP emulator constructed in this study and the Brinkerhoff et al. (2021) neural network‬
‭emulator are well-suited for quantifying parametric uncertainty, calibrating model parameters‬
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‭given data and exploring parameter sensitivity (e.g., Fig. 11). Both approaches use a principal‬
‭component decomposition that nicely introduces interpretability for the emulator (e.g., Fig. 3, 11).‬
‭Aside from structural differences in the type of emulator, the major differences between our work‬
‭and that of Brinkerhoff et al. (2021) is that we explicitly resolve subglacial water pressure and‬
‭drainage characteristics and we obtain a built-in prediction uncertainty estimate, whereas‬
‭Brinkerhoff et al. (2021) implicitly represent subglacial conditions through the influence on‬
‭surface velocities and take extra steps to estimate prediction uncertainty. Both approaches are tied‬
‭to a particular study area, limiting their utility for large-scale forward modelling. On the other‬
‭hand, Verjans and Robel (2024) use a convolutional neural network that can generalize to‬
‭arbitrary melt forcing and study areas, making it an ideal tool for forward modelling of ice-sheet‬
‭evolution forced with a basal boundary condition that is influenced by the hydrology emulator.‬
‭Since Verjans and Robel (2024) do not predict water pressure for different model parameters,‬
‭their emulator is not ideally suited for uncertainty quantification, calibration of drainage model‬
‭parameters or sensitivity analysis.‬

‭Line 481 To me, saying that IGM enforces conservation of momentum sounds as if it is enforced strictly.‬
‭Although IGM uses a physics-based loss function, conservation of momentum is only upheld‬
‭approximately. Contrast this with something like Horie and Mitsume [2024], in which a value is strictly‬
‭conserved in a neural network.‬
‭This is a good point, we have updated this wording to clarify that “Jouvet et al. (2023) use a loss function‬
‭that is based on conservation of momentum as part of a neural network ice-flow velocity emulator”, rather‬
‭than strictly enforcing their PDE constraint.‬

‭Section 6.6‬
‭I think this manuscript would significantly benefit from elaborating on specific use cases for this‬
‭emulator. For instance, do you see the emulator being used more or less as is, or do you think the value of‬
‭this work is in the general approach that you present? You mention uncertainty in future sea level rise, but‬
‭not a clear application of the emulator for this purpose.‬

‭There is a pretty clear use case for using the emulator to do Bayesian calibration of subglacial hydrology‬
‭model parameters, but what other use cases might it have? Do you see a path forward for coupling‬
‭effective pressure fields from the emulator to an ice sheet model? Clarifying the intended use of this‬
‭emulator or more concrete pathways for other applications would really strengthen the discussion.‬

‭Thank you for the suggestion to improve this discussion. We have added two paragraphs to Section 6.6 to‬
‭more clearly lay out where we see this methodology being used:‬

‭●‬ ‭Calibrating parameters of the subglacial drainage model using observations of quantities‬
‭corresponding to GlaDS outputs, such as borehole water pressure or moulin water level, tracer‬
‭transit times, or channel characteristics inferred from passive seismic measurements.‬

‭●‬ ‭Using emulated effective-pressure fields as inputs to a sliding law to characterize the sensitivity‬
‭and related uncertainty of ice flow (e.g., solid-ice discharge to the oceans) to drainage model‬
‭parameters.‬
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‭●‬ ‭More broadly, the GP methods have not been extensively tailored to the subglacial drainage‬
‭application, they have a place as part of uncertainty quantification across a range of glaciological‬
‭processes.‬

‭For the reviewer’s information, we would like to highlight that we have a recent preprint that applies the‬
‭GP approach described in this manuscript to the calibration task:‬‭https://doi.org/10.31223/X5GQ68‬‭. We‬
‭have added a reference to this preprint when we point to Bayesian calibration of drainage model‬
‭parameters as an extension of the present work.‬
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