
‭Author Response to RC1: “Computationally efficient subglacial drainage modelling using‬
‭Gaussian Process emulators: GlaDS-GP v1.0”‬

‭Reviewer: Vincent Verjans‬

‭Tim Hill, Derek Bingham, Gwenn E. Flowers, Matthew J. Hoffman‬

‭Reviewer comments are in black and we provide our responses in‬‭blue‬‭.‬

‭This study develops a Gaussian Process (GP) emulator to emulate output from the subglacial hydrology‬
‭model GlaDS (Werder et al., 2013). In particular, the GP is trained to reproduce the sensitivity of flotation‬
‭fraction output to 8 different GlaDS parameters. A principal component truncation is performed to reduce‬
‭the dimensionality of the outputs to be emulated. Training is performed on an idealized glacier‬
‭configuration, with a pre-specified melt input forcing. The performance of the emulator is then evaluated‬
‭on 100 test combinations of GlaDS parameters, unseen during the emulator training.‬

‭This study contributes positively to efforts towards computationally efficient solutions to simulate‬
‭subglacial hydrology. It also offers a promising tool to evaluate parametric uncertainty of subglacial‬
‭hydrology models. This latter aspect is important, since subglacial hydrology models are heavily‬
‭parameterized, with very few physical constraints on parameter values. I value positively the technical‬
‭approach used for the emulator development. On the idealized configuration tested here, the emulator‬
‭shows a good performance on non-training data samples. The manuscript is clearly structured and‬
‭well-written. I have nonetheless a concern regarding the impact of the study. The authors have developed‬
‭a subglacial hydrology emulator, but the real scientific value of this lies in the implications for areas‬
‭where subglacial hydrology plays a role, many of which are provided as motivations in the introduction.‬
‭As presented, both the emulator performance and the potential for uncertainty quantification are hard to‬
‭interpret, because no application of the emulator is demonstrated. I detail this concern in my Major‬
‭comment below, and I emphasize that this lack of impact (1) is my personal opinion, and it is the editor‬
‭who decides which impact is expected from studies published in Geoscientific Model Development, and‬
‭(2) does not influence my positive opinion about the quality of the work performed by the authors, but‬
‭only on what more could be done. My review further includes a Minor comment regarding the‬
‭quantitative evaluation of the emulator, and Technical comments aiming to improve the structure and‬
‭clarity of the manuscript. Line numbers in this review correspond to the preprint manuscript.‬

‭Thank you for the detailed review and sharing your expertise in this area. We appreciate your suggestions‬
‭to improve the manuscript and plan to implement them in the revised version. We have responded to your‬
‭comments individually below.‬

‭Major comment: Impact‬
‭As mentioned in my introduction, emulation and uncertainty quantification of subglacial hydrology by‬
‭themselves are not of great scientific interest. It is really the implications of subglacial hydrology for‬
‭different fields, primarily ice flow modeling but also others listed in the introduction, that make it a‬
‭critical research topic. However, none of these implications is explored here. As such, I feel like the‬
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‭prediction performance and the potential for uncertainty quantification from the GP emulator are not very‬
‭meaningful as presented.‬

‭I note that GlaDS has been run with the Ice-sheet and Sea-level System Model (ISSM, Larour et al.,‬
‭2012). As such, it should not be a big step to compute ice flow simulations (1) using the GlaDS output‬
‭and (2) using the emulator output in order to evaluate the implications of emulator performance on‬
‭modeled ice flow. Furthermore, it would be very interesting to see differences in modeled ice flow across‬
‭the range of GlaDS parameters investigated in this study. This would really demonstrate the benefits of‬
‭uncertainty quantification of subglacial hydrology when it comes to modeling ice flow velocities. Even‬
‭though this study focuses on a single idealized glacier and melt forcing configuration, such ice sheet‬
‭model experiments would be a great contribution to constraining ice flow uncertainty caused by‬
‭subglacial hydrology.‬

‭If the authors are concerned about the length of the manuscript if such experiments are included, I would‬
‭recommend reconsidering the inclusion of the simulations of scalar quantities (f‬‭Q‬‭, T‬‭s‬‭, and L‬‭c‬‭). In my view,‬
‭these experiments are not of great relevance, as I do not see which research area would benefit from‬
‭predictions and uncertainty quantification of these variables. Again, I repeat here that the decision of‬
‭sufficient impact from this study for publication in Geoscientific Model Development is ultimately a‬
‭decision of the editor. I express here my personal opinion. And I emphasize that the work presented in this‬
‭manuscript is of good quality, with only a single Minor comment and some Technical comments that I‬
‭provide below.‬

‭Thank you for suggesting ways to make the work more interesting to a broader audience. However, we‬
‭disagree with the statement that subglacial drainage modelling by itself is unimportant and uninteresting.‬
‭For example, Ehrenfeucht et al. (2024) recently pushed physics-based subglacial drainage modelling‬
‭forward by producing full-Antarctic GlaDS runs. That this work was published in GRL suggests‬
‭community interest in subglacial drainage modelling. Moreover, recent work towards understanding the‬
‭physics of subglacial drainage models (e.g., Sommers et al., 2023; Warburton et al., 2024), and‬
‭constructing models with approximate physics in order to improve computational scaling (Kazmierczak et‬
‭al., 2024) is evidence that model developments are a community priority. These latter works have‬
‭highlighted open questions about drainage models that warrant attention separately from their application‬
‭to ice-sheet modelling.‬

‭The suggestion to include an ice-flow component in the current work is an interesting idea that we have‬
‭considered throughout the process of the larger project that this paper is one part of. We have not done so‬
‭here because we believe that including an appropriately detailed and nuanced ice-flow application would‬
‭be out of scope for this model description paper. Given uncertainty arising from the choice of a sliding‬
‭law, the representation of basal drag would be a nontrivial addition. Moreover, forcing an ice-sheet model‬
‭one-way with emulated effective pressure fields would miss important two-way hydrology–dynamics‬
‭feedbacks (e.g., Hoffman et al., 2014), and running two-way coupled simulations remains non-trivial even‬
‭with ISSM-GlaDS. It is also not clear how interesting the ice-flow application would be for the synthetic‬
‭geometry that we have used. The uncertainty-aware emulation methods that we have used can be one part‬
‭of accepting and quantifying these uncertainties, but this is out of the scope of the current work. We have‬
‭summarized this discussion in an expanded Section 6.6 (Applications and Considerations).‬
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‭Finally, we would like to highlight a recent preprint where we explore calibrating the subglacial drainage‬
‭model with borehole water pressure data (‬‭https://doi.org/10.31223/X5GQ68‬‭).‬‭We had intended to include‬
‭an ice-flow component in this work to allow for calibration with both borehole water pressure and‬
‭seasonal surface velocities. However, this preprint identifies serious shortcomings in the model relative to‬
‭the data, indicating that further work is needed on the subglacial drainage models themselves before their‬
‭potential for ice-sheet modelling can be fully realized.‬

‭Minor comment: Quantitative evaluation‬
‭The title of Section 6.1 is “What is the fidelity of the subglacial drainage model emulator?”. In my view,‬
‭this question has not been evaluated thoroughly enough. I think that simply adding a table with important‬
‭evaluation metrics would be sufficient to address this concern. Evaluation metrics could be averaged‬
‭spatio-temporally as well as across the 100 test simulations.‬‭It would be insightful to provide 5th, 50th,‬
‭and 95th percentiles of RMSE, MAPE, coefficient of determination (R‬‭2‬‭),‬‭and bias across the 100 test‬
‭simulations, where these metrics are time- and spatially-averaged. In addition, it would be nice to add the‬
‭same metrics but (i) for the upper and lower 30 km parts of the domain separately, and (ii) for the DJF and‬
‭JJA months separately. Such evaluation metrics would give the reader a better and more quantitative‬
‭appreciation of the performance of the GP emulator. Finally, for each of these metrics, I recommend also‬
‭providing between parentheses the same metric but computed on the training data. This would be‬
‭insightful to evaluate the potential degradation of the GP emulator performance when used on inputs‬
‭unseen during training.‬

‭Thank you for the suggestion to add the table and include the coefficient of determination (R‬‭2‬‭). We‬‭have‬
‭added the suggested table (copied below), that provides mean and 5th and 95th percentiles for each‬
‭suggested statistic, to Section 4.2.2 “Model evaluation” and have referenced this table in Section 4.2.2‬
‭and Section 6.1. Since the GP interpolates the training data (c.f., neural nets), we fear that providing those‬
‭statistics would be misleading, so we provide only statistics on the test data.‬
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‭Technical comments‬
‭●‬ ‭General (1): The authors make an excessive use of parentheses throughout the text. In my view,‬

‭parentheses should only be used to provide additional non-essential details in the text. I‬
‭recommend that the authors clean up their parentheses by making more sentence separations‬
‭instead of overloading single sentences.‬

‭We have simplified the language throughout where it has been appropriate and there are now‬
‭fewer parentheses than the original manuscript. In many cases, especially in Section 2.2‬
‭(Gaussian Process model), we retain parentheses to provide in-line definitions or examples of‬
‭technical language to ensure that non-experts can follow the text.‬

‭●‬ ‭General (2): Throughout the manuscript, the authors use both the terms “inputs” and “parameters”‬
‭to refer to the same notion: the parameters of GlaDS passed to the emulators. To avoid any‬
‭confusion, a single term should be used consistently in the entire manuscript.‬

‭Thank you for highlighting that these two terms were used interchangeably for the same object.‬
‭As suggested, we have changed most instances of “inputs” to “parameters” or “GlaDS‬
‭parameters”. We have retained a few instances of “inputs” since it has sometimes been useful to‬
‭speak about “inputs to the emulator” more abstractly than by referring to the GlaDS parameter‬
‭values, particularly in Section 2 where we provide a high-level overview of the GP emulator. We‬
‭have acknowledged this by stating that “Following the vocabulary of Higdon et al. (2008) and‬
‭Verjans et al. (2024), these GlaDS model parameters are called the inputs to the emulator”. We‬
‭have moved this statement into the beginning of Section 2 where we introduced the concept of a‬
‭GP emulator and before the first instance of “inputs”. Whenever “inputs” is now used, we have‬
‭clarified that we mean “emulator inputs” or “inputs to the emulator” to indicate that we are‬
‭talking about the GP methodology more abstractly.‬

‭L5: Replace “construct robust” by evaluate uncertainty in.‬
‭Done.‬

‭L6: uncertainty quantification.‬
‭If we understand the reviewer correctly, this suggestion is to replace “uncertainty” with “uncertainty‬
‭quantification” in the sentence: “Here, we develop Gaussian Process (GP) emulators that make fast‬
‭predictions‬‭accompanied by uncertainty [quantification]‬‭of subglacial drainage model outputs”.‬
‭What we mean to say here is that predictions have associated uncertainty, so we have revised this‬
‭sentence to read: “Here, we develop Gaussian Process (GP) emulators that make fast predictions‬‭with‬
‭associated uncertainty‬‭of subglacial drainage model‬‭outputs”.‬

‭L14: “of the water pressure variance”: it is unclear if this refers to spatial variance, temporal variance,‬
‭and/or variance across the samples of the parameter space.‬
‭Thank you for highlighting this point, we mean variance as parameters are changed. We have revised this‬
‭statement to: “[...] 90% of the variance in modelled water pressure in response to parameter changes”‬
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‭L15: I believe that the mention to observational data is misused here, as no observational data is‬
‭integrated in this study.‬
‭We have included a reference to integrating observational data to highlight this as an extension of the‬
‭methods that we describe in this work: “The GP emulator approach described here is well-suited to‬
‭integrate observational data with models to make calibrated, credible predictions of subglacial drainage”.‬
‭As part of another reviewer’s comments, we have added a paragraph to Section 6.6 Applications and‬
‭considerations that outlines how this work could be extended to calibrate model parameters. We hope that‬
‭this discussion that we have added helps to provide additional details and context for this suggestion of‬
‭related future work.‬

‭L25: “well-established”: I understand what the authors mean here. However, this wording is misleading,‬
‭because although there is consensus about the existence of an influence of subglacial hydrology on ice‬
‭flow, this influence remains highly uncertain.‬
‭This is a good suggestion, we have rephrased this statement to: “Most commonly, studies of subglacial‬
‭hydrology are motivated by the influence on ice-flow velocities of glaciers …”‬

‭L26: Replace flow by sliding.‬
‭We are trying to be careful here to not explicitly imply hard-bed sliding, including also the possibility of‬
‭effective pressure-dependent sediment deformation. We have changed the two instances of “basal flow” to‬
‭“basal slip”, a more common catch-all term to encompass both of these processes (e.g., Cuffey &‬
‭Paterson, 2010; Zoet & Iverson).‬

‭L31-36: This sentence is too long, and I do not know what “which” (L36) refers to.‬
‭We agree and have removed “, which guides the selection of model physics” since it is not necessary to‬
‭make our point. Each set of references is already directly associated with a specific contribution to our‬
‭understanding of subglacial hydrology.‬

‭L36: Replace large by high-dimensional.‬
‭Done.‬

‭L52: Typo: “GP emulators we develop”.‬
‭We have corrected this to “The Gaussian Process emulators we develop take subglacial drainage model‬
‭parameters as their inputs”‬

‭L53: I suggest this definition for flotation fraction: ratio of water pressure to ice-overburden pressure.‬
‭Thank you, we will take this definition as it is more clear.‬

‭L55: Please explain here the meaning of “global sensitivity indices”.‬
‭We have changed “to” to “that” in the following sentence to provide a definition of the global sensitivity‬
‭indices: “we compute variance-based global sensitivity indices‬‭to‬‭that‬‭precisely determine the‬
‭combinations of parameters that most strongly control modelled subglacial hydrology”‬

‭L63: If possible, please use another word than “emerging”.‬
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‭This has been changed to “[...], with the channel‬‭network emerging from‬‭radius determined by‬‭the‬
‭balance between creep closure of ice and opening by melt”‬

‭L69: Please provide units of variables.‬
‭We have added units for hydraulic potential (Pa), sheet thickness (m) and channel area (m‬‭2‬‭)‬

‭Eq. (1): Although obvious, please define g.‬
‭Added to the description of Eq. (1), g is gravitational acceleration (Table 2).‬

‭L77: “ each of these quantities defines a two-dimensional, time-varying field”: this is confusing because I‬
‭believe that both zb and pi are not time-varying.‬
‭Thanks for pointing this out, we have clarified that “ϕ, N and fw are two-dimensional, time-varying‬
‭fields”, since zb and pi are not time-varying.‬

‭L83: Please specify: For details about GPs‬
‭Following another reviewer's suggestion, we have integrated the content from Appendix B into the main‬
‭text. We have revised this reference to more precisely point to the appropriate material: “For background‬
‭on Gaussian Processes see Jones et al. (1998) and Rasmussen and Williams (2005), and see Higdon et al.‬
‭(2008) for a complete description of the emulators constructed here.”‬

‭L85: I do not understand what is meant by: “in terms of the proportion of output variance corresponding:‬
‭to each GlaDS parameter”. Please clarify.‬
‭What we mean to say here is that we used the emulators to determine how each parameter influences the‬
‭GlaDS outputs. We have clarified this statement to: “Following tuning and evaluation of the emulator, we‬
‭apply the emulator to quantify the relationship between‬‭GlaDS parameters an‬‭d GlaDS output.” We‬
‭provide a full technical definition, now including defining equations, in Section 5.‬

‭L91: Rephrase: Let‬‭y‬‭i‬ ‭denote the vectorized model‬‭output of all variables (...).‬
‭If we understand the reviewer correctly, it appears that this statement was suggesting that we were‬
‭concatenating the variables into a joint vector. Here, we intend‬‭y‬‭i‬‭to be a placeholder for a single variable‬
‭(e.g., flotation fraction). We have clarified this in the text by letting “‬‭y‬‭i‬ ‭denote the vectorized‬‭model‬
‭output of interest”.‬

‭L94: Typo: “which are not a part of”.‬
‭It appears the reviewer is pointing out the typo that it is incorrect to refer to‬‭y‬‭i‬ ‭as the prediction‬‭for new‬
‭parameter values since‬‭y‬‭i‬ ‭is previously defined as‬‭the output corresponding to parameters‬‭x‬‭i‬‭. We will‬
‭avoid overloading‬‭y‬‭i‬ ‭by writing that “The emulation‬‭task is to predict the simulation output for new input‬
‭values which are not a part of the design matrix‬‭X‬‭”.‬‭Elsewhere, we use‬‭y‬‭p‬ ‭to represent the emulator‬
‭prediction.‬

‭L104 Add a comma after‬‭θ‬‭.‬
‭If we are interpreting this suggestion correctly, it was unclear whether the hyperparameters were‬
‭associated with the covariance function or with the mean function. We have reversed the ordering of the‬
‭mean function and covariance function in this sentence to avoid this potential source of ambiguity:‬
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‭“The GP is completely specified by the mean function μ(x) and the covariance function k(x‬‭i‬‭, x‬‭j‬‭; θ) with‬
‭hyperparameters θ”.‬

‭L110: Refer to µ(‬‭x‬‭) after “mean function”.‬
‭Thank you for catching this, we will ensure to refer to variable symbols after their names throughout the‬
‭text.‬

‭L110: “to set the mean to zero” should be to set the prior mean to zero. In the following sentences, it is‬
‭also important to emphasize that it is only the prior mean that is zero.‬
‭Thank you for suggesting this technical correction, we have changed the quoted statement to: “to set the‬
‭prior mean to zero”, with corresponding changes throughout this section.‬

‭Eq. (5): This should be‬‭y‬‭p‬ ‭|‬‭Y‬‭,‬‭θ‬‭,‬‭x‬‭p‬

‭Thank you for catching this mistake, we have corrected this as indicated‬

‭L124: I recommend being more specific here: (...) contains the pair-wise covariances between‬‭x‬‭p‬ ‭and‬
‭each: entry of‬‭x‬‭(...).‬
‭This is a good suggestion to clarify that‬‭k‬‭p‬ ‭is also a pairwise covariance vector. However, we would like to‬
‭emphasize that the covariance function‬‭k‬‭represents covariance between model outputs, not covariance‬
‭between model parameters. We have now clarified that‬‭“the vector k‬‭p‬ ‭= k(x‬‭p‬‭, x) contains the pairwise‬
‭covariance between the model outputs from the simulation ensemble and the estimated output for‬
‭parameters x‬‭p‬‭”.‬

‭L126: Specify: The prediction mean‬
‭Done.‬

‭L127: Refer to Eq. (4) after “covariance function”.‬
‭Good suggestion, done.‬

‭L136 and L137: Replace “will” by would.‬
‭Done.‬

‭L138: Typo: “a variety solutions”.‬
‭Corrected: “a variety of solutions”.‬

‭L148: Please specify here that Eq. (8) assumes uncorrelated errors. This may not be entirely valid in this‬
‭case.‬
‭The reviewer is correct, this has been revised to acknowledge that “This error model assumes that errors‬
‭at each spatial position and timestep are uncorrelated, which might not be strictly true for our‬
‭application.”‬

‭L152: “can be viewed as”: this wording is inappropriate, because it is a dimension reduction by definition.‬
‭We have added a more direct statement about the PC decomposition to the beginning of this paragraph:‬
‭“In order to reduce the dimensionality of the simulation outputs, which leads to the obstacles described‬
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‭above, the multivariate output field is modelled directly by using a principal component (PC)‬
‭decomposition.”. We were trying to be cautious not to lead the readers to think that a PC decomposition is‬
‭the only way to address the size of model outputs.‬

‭L162: The authors can also invoke the orthogonality property of the PC decomposition to motivate their‬
‭univariate approach.‬
‭Good suggestion, we have added the explanation: “Following Higdon et al. (2008), since the PCs are‬
‭orthogonal, independent univariate GPs are fit to model the relationship between the inputs…”‬

‭L169: Replace “permissive” by flexible.‬
‭We prefer “permissive” since, in our view, one reason to use a covariance function with a weaker‬
‭smoothness constraint is to permit a larger class of random functions. “Permissive” reflects this effect on‬
‭the space of random functions.‬

‭L169: “variations in the principal components that tend to be smooth with respect to the input‬
‭parameters”: why is that? I would expect a strong sensitivity of GlaDS to some of its parameters, even in‬
‭the PC subspace. Could the authors please clarify this statement?‬
‭We would like to clarify that strong sensitivity does not imply non-smoothness. The PC value can have‬
‭large variations as parameters are varied. As long as these variations are reasonably smooth, the‬
‭squared-exponential kernel is a reasonable choice. For clarity, we have revised this statement to: “While‬
‭the flotation fraction field need not be smooth in space and in time, the principal components w‬‭ij‬ ‭(θ) tend‬
‭to vary smoothly with respect to the GlaDS parameters since the the spatiotemporal complexity is‬
‭captured by the principal component basis.”‬

‭L173: How many GP realizations are sampled?‬
‭We draw 64 GP realizations to compute the mean and prediction quantiles for these comparisons. We‬
‭have found the mean and quantiles to be reasonably converged with this number of samples. For the more‬
‭detailed evaluation of the reference emulator, we use 512 GP realizations. We have added this detail to‬
‭this line.‬

‭L179-181: I am not sure to agree here. As I understand it, each univariate GP is fitted to a single series of‬
‭PC coefficient, regardless of the number p of PCs retained. The number of parameters scales linearly with‬
‭p, being p(d + 1) + 1. However, the amount of data used for fitting also scales linearly with p, because‬
‭increasing p by 1 implies that one more series of PC coefficients is used. As such, I do not see why “a‬
‭simpler model with fewer PCs and therefore fewer hyperparameters to estimate is desirable as it will have‬
‭less prediction variance (i.e., less tendency to overfit)”. On the other hand, I believe that using an‬
‭increasingly high number of PCs would imply increasingly many GPs fitted to low-variance component‬
‭of the GlaDS output, which can be regarded as noisy features of GlaDS results rather than dominant‬
‭components of the variability.‬
‭The reviewer is right in saying that we are expanding the amount of data used in training each time we‬
‭increase the number of principal components (p). Since the individual GPs are independent, each receives‬
‭a different orthogonal vector of PCs that are used to infer the hyperparameters for that particular GP.‬
‭Adding another GP therefore means that we use an additional column of the PC matrix to fit another set‬
‭of hyperparameters. As in Higdon et al. (2008), we find that GP prediction ability levels off beyond a‬
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‭certain number of principal components‬‭p‬‭(Fig. 3, 4). We have updated this statement accordingly: “In‬
‭practice, GP predictions can be less accurate for later principal components that explain a small fraction‬
‭of the ensemble variance (e.g., Higdon et al., 2008). Since including GPs for these later PCs does not‬
‭meaningfully improve predictions, we will select a model with a modest number of principal components‬
‭that nonetheless has similar performance obtained by using more components.‬

‭Section 3.1: In general, I think that more details are needed in this Section.‬
‭We have added details throughout this section as detailed in the following responses.‬

‭L192: Add one sentence to explain what the K-transect is.‬
‭We have described the K-transect as part of the western Greenland Ice Sheet.‬

‭L192-193: “adjusted from 0 m” and “increased to 40–1560 m”: are these adjectives with respect to the‬
‭SHMIP configuration? If so, please specify.‬
‭We have clarified these adjustments to: “The synthetic geometry consists of a flat bed with an elevation of‬
‭350 m (adjusted from 0 m in the SHMIP experiment) and surface elevation between 390–1909 m‬
‭(adjusted from 1–1520 m in the SHMIP experiment) to match the observed elevation range of this part of‬
‭the ice sheet.”‬

‭L196: Please put the basal melt rate imposed into a glaciological context. For example, how does it‬
‭compare with basal melt rate estimates in Greenland, or with the SHMIP forcing?‬
‭We have added that “This basal melt rate is in line with modelled basal melt rates in western Greenland‬
‭(e.g., 0.001–0.1 m w.e. a−1, Karlsson et al., 2021), but lacks the seasonality associated with basal‬
‭sliding”. We have omitted a comparison to the SHMIP basal melt forcing since comparing the prescribed‬
‭melt rates to the Karlsson et al. (2021) model results is a more robust comparison.‬

‭L199: “ following a moulin density that varies with elevation computed from a satellite-derived‬
‭supraglacial drainage map”: is it possible to provide the formulation of the moulin density as a function of‬
‭elevation?‬
‭We have added that “moulin density is parameterized by a normal distribution with mean 1138 m and‬
‭standard deviation 280 m”.‬

‭L200: “within each sub-catchment”: this is not explained.‬
‭We have added an explanation that surface catchments are defined by a Voronoi diagram: “Surface melt is‬
‭accumulated within sub-catchments surrounding each moulin defined by a Voronoi diagram and‬
‭instantaneously routed to the bed.”‬

‭Figure 1 Is it possible to add the melt rate using the right y-axis in Fig. 1a? What does the color scheme‬
‭represent in Fig. 1b? Is it possible to indicate the moulin locations in Fig. 1d?‬
‭We have updated Figure 1 to include:‬

‭●‬ ‭A right y-axis on (a) to indicate surface melt rate‬
‭●‬ ‭A colorbar for (b) (surface elevation, m asl.)‬
‭●‬ ‭Moulin positions on (b) and (d)‬
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‭L203: Replace “posed” by configured.‬
‭We have kept “posed” as this is the language used by Werder et al. (2013) to originally describe the‬
‭discretization of the model on a triangular unstructured mesh.‬

‭L204: The variable x is already used to denote the input to the GPs. Please do not use the same symbol for‬
‭two different variables.‬
‭Good point, this reference to‬‭x‬‭is unnecessary since‬‭we do not refer to‬‭x‬‭elsewhere, so we have removed‬
‭“‬‭x‬‭=0 km” from the description of boundary conditions.‬

‭L216: “Following the vocabulary of Higdon et al. (2008) and Verjans and Robel (2024)”: this is not‬
‭needed here.‬
‭Following our response to General comment (2), it has sometimes been helpful to use “emulator inputs”‬
‭rather than “GlaDS parameters” when talking about GP emulators more abstractly. We have moved this‬
‭statement ahead to the beginning of Section 2 to explain these different terms before they are used.‬

‭L222: Concerning the parameter ranges, the ranges provided in Table 2 are most likely not intuitive to a‬
‭majority of readers. I recommend adding a column in Table 2 specifying the ranges of parameter values‬
‭used in previous studies focused on uncertainty quantification from GlaDS parametric uncertainty (e.g.,‬
‭Brinkerhoff et al., 2021).‬
‭We fear such an addition would be misleading, rather than helpful, as only two of the parameters (channel‬
‭conductivity k‬‭c‬ ‭and bed bump aspect ratio r‬‭b‬‭) correspond‬‭one-to-one with Brinkerhoff et al. (2021), who‬
‭varied fewer subglacial drainage model parameters and used different cavity-opening and sheet-flow‬
‭parameterizations. We have therefore not made this change.‬

‭L223: “flotation fraction fw < −10”: in principle, any fw < 0 is nonphysical because it implies pw < 0.‬
‭Are all these simulations rejected from the training data? And/or is the GP constrained to predict pw > 0?‬
‭It is correct that any flotation fraction f‬‭w‬‭<0 is nonphysical since the model does not include physics for‬
‭open-channel flow. We do not reject simulations from the training data, we sample from the entire‬
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‭hyper-rectangle described by Table 2. We do not constrain the GP predictions since the goal of this work‬
‭is to produce an emulator that mimics the model of choice (GlaDS) as closely as possible. We have‬
‭clarified this description in the text: “We sample from the entire region described by the bounds listed in‬
‭Table 2 without filtering or discarding nonphysical training runs (c.f., Jantre et al., 2024). The ensemble‬
‭still contains some instances of negative or extremely high flotation fraction, but these do not appear to‬
‭negatively impact the principal component decomposition nor the emulator predictions.”‬

‭L234: As I understand, the test data do not include any extrapolation beyond the parameter space used for‬
‭training. Therefore, it should be mentioned here and in the Discussion that the extrapolation capability of‬
‭the GP emulator has not been evaluated.‬
‭This is correct, we have not evaluated the parametric extrapolation capability. When modelling a‬
‭deterministic process (e.g., computer model outputs) with scalar GPs, there is a clear notion of‬
‭interpolation. While it is not as clear in our case using the truncated basis representation, we still view the‬
‭GP as interpolating between the training simulations to make predictions for new inputs. With this‬
‭interpretation, we explicitly want to avoid extrapolating outside the range of parameters used in the‬
‭GlaDS ensemble. We have acknowledged this in Section 6.1 after discussing the performance of the GP‬
‭on the test data:‬
‭“Emulator performance has not been assessed when extrapolating outside of the range of parameters used‬
‭for training the model. For predictions far outside the training range, the zero-mean GP that we have used‬
‭will revert to predicting the mean of the ensemble of simulations, likely producing significantly higher‬
‭error than we have found on the test data. Predictions should therefore only be made within the parameter‬
‭ranges used in the GlaDS simulation ensemble.”‬

‭L242: Please change this sentence to “In addition to emulating the spatiotemporal flotation fraction, (...)”.‬
‭Done.‬

‭L277: Remove “small”.‬
‭Removed since this section acts as the Results and we want to avoid much interpretation here.‬

‭L279: “perhaps since the input space has been explored more thoroughly”: I do not think this is the case.‬
‭In my view, more PCs are needed simply because the rank of the output space increases. For example, if a‬
‭single simulation is run, it is fully characterized by a single PC. As more simulations are included, the‬
‭number of PCs required to fully characterize the outputs increases, and thus the number of PCs to‬
‭characterize a given % of the output variance also increases.‬
‭I think that we may have the same ideas about the size of the output space and the number of PCs. By‬
‭exploring the input space more (i.e., running more simulations, including further towards the edges and‬
‭the corners of parameter space), we obtain more linearly independent simulations, increasing the rank of‬
‭the output space. We have found that the number of PCs needed to obtain a certain RMSE or cumulative‬
‭variance threshold does not exactly scale with the number of simulations in the ensemble. For example,‬
‭by doubling the number of simulations from 256 to 512, we do not need to double the number of PCs to‬
‭maintain a consistent variance threshold. We have therefore not made any changes to this description.‬
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‭L284: “only the absolute value, not the sign, of the PC basis vectors should be interpreted”: I disagree.‬
‭Opposite signs indicate opposite phasing of variability. It would be more correct to say that the sign of‬
‭any given PC basis vector is arbitrary, but only looking at the absolute value would be wrong.‬
‭That is correct, we have updated this statement as suggested: “Note that the sign of the PCs and basis‬
‭vectors are arbitrary since inverting the sign of both the basis […]”‬

‭Figure 3: Specify if the lines show the mean or median of RMSE and MAPE taken across the test‬
‭simulations.‬
‭Lines show the median RMSE and MAPE across the test set. This caption has been revised to “Median‬
‭root mean square error (RMSE, a) and mean absolute percent error (MAPE, b) for GP emulator‬
‭predictions across the 100 test inputs [...]”‬

‭Figure 4c,f: I think that the presentation of the 95% prediction intervals is both unclear and misleading.‬
‭Firstly, I understand that the RMSE and MAPE boxplots show the errors averaged in both time and space.‬
‭But for the 95% prediction intervals, do the boxplots show the entire population of 95% prediction‬
‭intervals taken at each grid cell and each time step of each test simulation?‬
‭We have clarified that a–c “show the distribution of the RMSE, MAPE and the spatiotemporally averaged‬
‭95% prediction interval evaluated on the test ensemble”‬

‭Secondly, this Figure suggests that broad prediction intervals are a bad thing. However, the purpose of a‬
‭prediction interval is to communicate about the uncertainty in the output. Thus, it is a good thing that‬
‭prediction intervals are broader for cases with high RMSE (i.e., the simulations with low PC numbers in‬
‭this Figure). This means that the true GlaDS value may still lie within the 95% prediction interval despite‬
‭the larger error in the mean estimate. For this reason, I recommend to show the percentage of GlaDS‬
‭values falling outside of the 95% prediction intervals in Figure 4c,f, rather than the 95% prediction‬
‭intervals themselves. If the GPs are well-calibrated, this percentage should be 5%.‬
‭We agree that broad prediction intervals are good if the breadth is necessary to encompass the expected‬
‭proportion of the simulated values. We have added Fig. B4 (copied below) that presents the proportion of‬
‭emulator-predicted values that overlap the simulated values.‬

‭We agree with the reviewer that the most important point is accurately communicating uncertainty in the‬
‭emulator predictions. In presenting Fig. 4 and interpreting its results, we have not interpreted higher‬
‭prediction uncertainty to be necessarily good or bad. Considering that Fig. B4 (copied below) shows the‬
‭emulator uncertainty intervals contain the expected proportion of simulated values (i.e., are‬
‭well-calibrated), we use the width of the prediction intervals to illustrate how adding more training‬
‭simulations narrows the spread of predictions. If the intervals are properly calibrated (as shown by Fig.‬
‭C3), then the balance between prediction uncertainty and cost to run the ensembles can be an important‬
‭choice.‬
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‭Figure: Proportion of GP emulator-predicted flotation fraction values that overlap the simulated values‬
‭within the 95% prediction interval across the test set. (a) For emulators constructed using different‬
‭numbers of principal components. (b) For emulators using subsets of the training ensemble. Horizontal‬
‭lines indicate the median and black dots indicate the mean across the test set. The right axis in (b)‬
‭indicates the number of CPU-hours associated with running each subset of the GlaDS training ensemble.‬

‭Figure 4d,e,f: Please mention in the caption that the x-axis uses a logarithmic scale.‬
‭Added.‬

‭Figure 4 caption: “Black circles indicate the total integrated prediction uncertainty”: I do not understand‬
‭this.‬
‭Since GP uncertainty varies with the distance to training points, we wondered if using the median‬
‭uncertainty at the test points would overestimate the true mean if the test points were unusually far from‬
‭training points. We assessed this by a Monte Carlo integral of the 95% prediction spread across the space‬
‭of 8 GlaDS parameters. It is encouraging that the black circles (Monte Carlo-integrated) are near the‬
‭median, as this shows that the test points are representative in terms of their prediction uncertainty. We‬
‭have added the following explanation to the text: “Since GP prediction uncertainty varies across the space‬
‭of emulator inputs depending on the distance to training runs, we assess the overall prediction uncertainty‬
‭by computing a Monte Carlo integral across the space of GlaDS parameters, indicated as black circles in‬
‭Fig. 4c”‬

‭L320: I find that it is worth mentioning that the RMSE for the three GPs is very similar for the late-‬
‭September melt event, and I suggest to provide a succinct explanation of why this is.‬
‭This is a good observation. We have added an acknowledgement of this in the text: “All models have a‬
‭similar RMSE during the September melt event, with relatively little improvement obtained by including‬
‭more PCs.” We do not have a concise explanation of why this event appears to be hard for the emulator to‬
‭capture. Late-season melt events have persistently been difficult for the emulator, including in more‬
‭recent work that uses different melt forcing and realistic geometry (preprint:‬
‭https://doi.org/10.31223/X5GQ68‬‭). Observations of‬‭ice-sheet surface velocity show a similar type of‬
‭strong response to moderate surface melt rates at the end of the melt season (e.g., Andrews et al. (2014)‬
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‭Extended Data Figure 1c) as the drainage system is shutting down, suggesting this is an especially‬
‭sensitive time for the drainage system.‬

‭L321: Typo: “reduces by the height”.‬
‭Corrected: “Using 8 PCs reduces the height of”‬

‭L335: Table C1 should be referenced here.‬
‭We have added this reference.‬

‭L337: Please explain why fw > 2 is considered unrealistic.‬
‭We mean to say that any f_w>1 other than short-duration, highly localized events is unrealistic. We were‬
‭using f_w>2 as an example. To clarify, we have revised this to say “many of the GlaDS simulations‬
‭produce unrealistically high water pressure exceeding overburden (fw ≫ 1) for long periods of time and‬
‭over a large portion of the domain (e.g., Fig. 6a2 and Fig. 7a2, b2)”.‬

‭L343: “suggesting the emulator has reasonably accounted for basis truncation error”: please note that this‬
‭also suggests that the GP can correctly estimate uncertainty due to interpolation towards unseen parameter‬
‭values.‬
‭Correct, this has been changed to “interpolation and basis truncation error”‬

‭L345: Add comma after “spring”.‬
‭Thank you for the suggestion, we have added the indicated comma and revised this sentence to: “In the‬
‭higher-error simulation, however, the prediction intervals do not overlap the simulation outputs in‬‭the‬
‭spring‬‭,‬‭when the mean prediction significantly overestimates‬‭flotation fraction”.‬

‭L345: “the mean prediction significantly overestimates flotation fraction”: this suggests that the GP tends‬
‭to further amplify the unrealistic GlaDS output. Please mention this explicitly.‬
‭We have added: “In other words, the emulator has amplified the unrealistically high GlaDS flotation‬
‭fraction in the case of the 95th-percentile RMSE test simulation.”‬

‭Table 3: Specify: Single GlaDS simulation.‬
‭Added.‬

‭L353 and Figure 8: Please use coefficient of determination (R‬‭2‬ ‭) as an evaluation metric, rather than the‬
‭squared correlation coefficient (r‬‭2‬ ‭).‬
‭We have updated the analysis to compute the coefficient of determination (R‬‭2‬‭) instead of the squared‬
‭correlation coefficient (r‬‭2‬‭).‬

‭L350-359 and Figure 8: These comparisons are misleading, because the GP emulator has been trained to‬
‭reproduce‬‭f‬‭w‬‭. It is impossible to know what the performance‬‭of the GP would be if it had been trained to‬
‭reproduce ϕ or‬‭N‬‭. The discussion here should be rephrased‬‭as an evaluation of the error introduced by the‬
‭conversion from fw to ϕ and/or‬‭N‬‭, rather than “indicators‬‭of GP prediction performance” or “different‬
‭prediction skill” (L355).‬
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‭Our main claim is that converting from one measure of water pressure to another will change the‬
‭performance metrics of emulator predictions, as shown by Fig. 8. Based on this evidence, we suggest to‬
‭emulate and train using the variable of interest for the study at hand. By converting emulator and‬
‭simulator outputs to different units, we find that the hydraulic potential is the weakest of the three‬
‭indicators of prediction skill since this comparison yields the highest proportion of explained variance‬
‭(99.3%) when identical simulations and predictions are being compared. We have revised the text to‬
‭ensure the accuracy of our statements. We would like to emphasize that we do not make any claims about‬
‭the behaviour of hypothetical emulators constructed to predict effective pressure or hydraulic potential‬
‭directly.‬

‭Figure 9 column c: Same comment concerning the prediction intervals as for Figure 4c,f.‬
‭As with our discussion of Fig. 4, the results and discussion section corresponding to this figure use‬
‭reductions in prediction uncertainty as an example of why one might want to run additional simulations‬
‭even as RMSE and MAPE are nearly stationary as long as the uncertainty estimates are well-calibrated.‬

‭L368: “Based on RMSE, MAPE and bias”: I am not sure that these performances can be compared so‬
‭easily from Table 4. For example, RMSE and bias have different units for the three variables. MAPE‬
‭could serve as a better comparison basis, but Ts has been log-transformed, and MAPE may not be‬
‭representative of the error on Ts itself. In addition, as mentioned by the authors, the MAPE values depend‬
‭on the degree of variability in each quantity and on the values themselves (e.g., the percentage error when‬
‭log Ts is 0 tends to infinity). Finally, when considering the ranges of values provided in Table 4, it is not‬
‭clear to me that “the channel discharge fraction emulator has the best performance”.‬
‭This is a good point. As the later part of the reviewer’s comment indicates, this comparison should only‬
‭be based on MAPE since the units of these quantities are different. We have refined this statement to more‬
‭precisely relate to percent error, and not include broad statements about performance for such different‬
‭quantities:‬
‭“We obtain the lowest percent error for the channel discharge fraction emulator (MAPE 5.02%), with‬
‭similar percent error for the sheet transit time and channel network length emulators (8.7%; Table 4)”‬

‭L389: “Sensitivity indices for the flotation field are defined as a variance-weighted sum of the sensitivity‬
‭indices for each principal component”: This one-sentence explanation is not clear to me. If possible, I‬
‭recommend providing the mathematical formulation for the sensitivity indices. That is, which formula is‬
‭used to compute the values shown in Figure 10? Furthermore, the difference between first-order and total‬
‭sensitivity indices should be explained.‬
‭We have added equations defining the sensitivity indices and expanded the description of how we‬
‭compute sensitivity indices for the flotation fraction field.‬

‭Figures 10 and 11: Some whiskers extend beyond the value of 1.0. While the value of 0 can be intuitively‬
‭interpreted as no sensitivity, what do values >1.0 mean?‬
‭These are errors from using only a finite number of GP predictions in estimating the sensitivity indices.‬
‭The Saltelli et al. (2010) estimators that we use are guaranteed to converge as the number of simulations‬
‭tends to infinity. In practice, the bootstrap sampling finds subsets where predictions holding certain‬
‭parameters fixed have a higher variance than predictions with all parameters varying. We have added a‬
‭brief description of the error bars, which was missing in the earlier version‬

‭15‬



‭“Confidence intervals for the sensitivity estimates are computed by bootstrap resampling. Confidence‬
‭intervals extending >1 are a result of numerical errors in the estimators, which are only guaranteed to‬
‭converge in the limit of infinite simulation runs (Saltelli et al., 2010)”‬

‭L418: “prediction RMSE is < 20% of the ensemble standard deviation”: across the 100 test simulations?‬
‭Yes, we have clarified this detail: “Across the input space, prediction errors are small relative to the‬
‭variations across the ensemble of simulations: prediction RMSE is <20% of the standard deviation of the‬
‭100-member test ensemble”‬

‭L422: “PC truncation RMSE on the test set for the reference model with 8 PCs is 0.034, while GP‬
‭prediction RMSE is 0.054, suggesting the PC truncation error contributes more than half of the prediction‬
‭error.”: I think that this statement requires a more thorough justification, and I am also not sure that I‬
‭agree with the authors about it. First, does the 0.034 value correspond to the case of 8 PCs for the curve‬
‭256 simulations in Figure 2a1? If so, please refer to Fig. 2a1 in the text. Second, Figure 4 shows that there‬
‭seems to be a baseline RMSE of the GP predictions of about 0.05, which does not decrease when going‬
‭from 7 to 11 PCs. On the other hand, the PC truncation error must decrease when going from 7 to 11 PCs.‬
‭As such, this indicates that there is a balance between (1) using only the first few PCs that seem to be‬
‭relatively easy to predict for the GP, and (2) including low-variance PCs that allow to reduce the‬
‭truncation error, but that seem to be harder to predict for the GP. As a consequence of this balance, the‬
‭baseline RMSE stagnates at 0.05. But saying that “Of the two error sources, PC truncation error is the‬
‭larger contributor” is misleading. I believe that if more PCs had been included, PC truncation error would‬
‭decrease, but GP error would increase. Thus, this conclusion seems to be due to the choice of truncating at‬
‭8 PCs, rather than an inherent attribute of the GP. At least, this is how I understand the results. I would‬
‭welcome any thoughts from the authors about this.‬
‭The reviewer is correct, and we were not clear in the text that these statements are only about the p=8‬
‭reference emulator. We have identified that we are talking about the reference emulator and‬
‭acknowledged that “the balance between basis truncation error and GP error depends on the number of‬
‭principal components used”.‬

‭L434: “5 − 10 × 10‬‭4‬ ‭time steps”: why such a range?‬‭I thought that all simulations had been performed‬
‭over the same time period and with the same temporal discretization.‬
‭This was unclear: we were adding up the time steps across the whole ensemble, i.e. up to 512 x 365 time‬
‭steps. We have clarified: “This ensemble contain a large volume of data: the ensemble consists of up to‬
‭512 simulations, each with 365 time steps and ~4000 nodes”‬

‭L446: “The impact of large errors in predicting the spring pressure maximum is also reduced for ice-flow‬
‭modelling applications”: I disagree with this statement. For example, Fig. 4d (magenta curve) and Fig.‬
‭S4c of Verjans and Robel (2024) show that the highest ice flow velocity errors due to the subglacial‬
‭hydrology emulation occurs in the spring pressure maximum (their Fig. 4d) and at the ice velocity peaks‬
‭(their Fig. S4c), which generally coincide with the spring pressure maximum. So, it is impossible to verify‬
‭this claim from the authors if they do not actually compare ice flow model realizations forced with the‬
‭GlaDS versus the GP output.‬
‭Thank you for pointing out that our original statement, definitively saying that errors associated with the‬
‭spring pressure maximum will be reduced for ice-flow applications, was too strong. We have changed this‬
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‭to suggest that errors “may be reduced” and clarified that “The impact of large errors in predicting the‬
‭spring pressure maximum may be reduced for ice-flow modelling applications if the difference is only in‬
‭the amplitude and not the duration of the pressure maximum.”, with the explicit acknowledgement that‬
‭“errors in the duration of water pressure exceeding the prescribed cap would propagate through the‬
‭ice-sheet model to produce discrepancy to some extent in modelled velocity fields relative to using GlaDS‬
‭directly”.‬

‭L454-455: “ the model of Verjans and Robel (2024), who report squared correlations (r‬‭2‬‭)”: this is not‬
‭correct. Verjans and Robel (2024) report the coefficient of determination (R‬‭2‬‭), which is not the same‬
‭metric as r‬‭2‬‭.‬
‭Thank you for correcting us, we have updated this to the coefficient of determination (R‬‭2‬‭).‬

‭L474: “since PC truncation typically preferentially dampens high-frequency variations”: I disagree with‬
‭the authors here. PC truncation selects the components of variability with maximum variance. If most of‬
‭the variance lies in high-frequency bands of the spectrum, there would not be any damping of‬
‭high-frequency variations. Whether PC truncations dampens high-frequency variability or not depends on‬
‭the power spectrum of the data.‬
‭The reviewer is correct. This statement was coming from our observations in previous work that using‬
‭higher-frequency melt forcing results in larger differences between simulations with different parameter‬
‭values relative to lower-frequency melt forcing (Hill et al., 2024). Based on this, we expect that using‬
‭lower-frequency melt forcing would lead to a more accurate truncated basis representation in terms of‬
‭RMSE. We have changed this statement to: “Smoother, averaged melt inputs (e.g., monthly, Table 5)‬
‭would likely lead to reduced PC truncation error and therefore more accurate GP predictions since GlaDS‬
‭simulations tend to have smaller variations in time and between simulations with lower-frequency melt‬
‭inputs (Hill et al., 2024)”‬

‭L477-479 It is also important for resolving sub-annual ice flow variability.‬
‭That is correct, but since we do not include an ice flow component to this study, this paragraph focuses on‬
‭implications for subglacial drainage models only.‬

‭L487: I believe that it would be relevant to add a sentence here about the propensity of GlaDS to produce‬
‭nonphysical output.‬
‭This is another compelling reason that physics-based machine learning for GlaDS outputs has uncertain‬
‭benefits. We have added this point to this section: “Considering the discontinuous nature of the‬
‭channelized drainage system and the tendency of GlaDS to produce unrealistically high water pressure, it‬
‭remains an open problem to apply physical constraints, such as mass conservation, to the subglacial‬
‭drainage model emulation task and determine the applications which would benefit from such‬
‭constraints.”‬

‭L493: Citing Verjans and Robel (2024) here is misleading, because their emulator is transferable to‬
‭different domains or melt inputs, i.e., the opposite of the sentence given here.‬
‭That is correct, this citation should be (c.f., Verjans and Robel, 2024) to highlight that we are contrasting‬
‭these approaches. As part of answering another reviewer’s comments, we have added a more nuanced‬
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‭discussion to Section 6.4 of the applications that each of the three emulation studies (this study;‬
‭Brinkerhoff et al., 2021; Verjans and Robel, 2024) are best-suited for.‬

‭L521-528: I found this entire paragraph a little vague and hand-waving. I recommend that the authors‬
‭focus on the current work and future developments. For example, why discussing emulator predictions of‬
‭global mean sea-level rise? This is clearly not the focus of this study.‬
‭This paragraph was intended to convey some of the decision points reached when designing an emulator,‬
‭using applications taken from a wider swath of glaciology. We have removed the reference to sea-level‬
‭rise contributions since that was distracting. As part of answering another reviewer’s comments, we have‬
‭added a paragraph discussing specific applications that are well-suited for the GP emulator approach that‬
‭we have presented. Hopefully this paragraph will help address the vagueness highlighted by the reviewer.‬

‭L542: Typo: “is is”.‬
‭Corrected.‬

‭L548-549: “fully Bayesian time-dependent calibration to provide observationally constrained distributions‬
‭of subglacial drainage variables”: I do not understand what the authors mean here.‬
‭We have clarified that we mean “Bayesian calibration with spatiotemporally resolved data to infer‬
‭constrained distributions of subglacial drainage variables.”‬

‭L561-562: Add regimes after “laminar and turbulent”.‬
‭Done.‬

‭Eq. A3: To make the notation less clumsy, I suggest replacing the third and fourth terms on the left-hand‬
‭side by ∂h/∂t .‬
‭Since both forms are technically correct, we have intentionally duplicated the terms to provide the most‬
‭explicit representation of the governing equations.‬

‭L603: Please specify: of a multivariate Normal distribution.‬
‭Added.‬

‭Eq. B3: For this equation to be valid, there needs to be an additional constant term on the right-hand-side.‬
‭Thank you for highlighting that we were slightly abusing notation here. As part of reviewer 3’s‬
‭comments, we have brought the appendix B content into the main text and we no longer include this‬
‭log-likelihood equation. In the corresponding likelihood equation in the main text (now Eq. (11)), we have‬
‭provided the complete likelihood including all constants to provide a direct visual analogy to the‬
‭univariate GP likelihood, Eq. (9).‬

‭L616: Typo: “includes” should be include.‬
‭Corrected.‬

‭L625: Typo: “by condition” should be by conditioning.‬
‭Corrected.‬
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‭Eq. B5: θ should be boldfaced.‬
‭Corrected.‬

‭L629: then sampling from equation (B5)‬
‭Thank you for checking our equation references. Equation (5), the GP posterior predictive distribution, is‬
‭the correct reference here.‬

‭L634: a major benefit of using‬
‭Corrected.‬

‭L635: Can the authors please remind here what are p and d so that the reader does not need to go back to‬
‭the main text?‬
‭This is a good suggestion, and we should also not be using‬‭p‬‭(the number of PCs) here since this is‬‭the‬
‭extension of the univariate GP section. We have changed this to‬‭d‬‭+1 “where d=8 is the number of GlaDS‬
‭parameters”.‬

‭Figure C2: It seems to me that some of the Markov Chains are not well-mixed, although it is hard to tell‬
‭from the scale of the y-axes. Did the authors compute convergence diagnostics? I recommend providing‬
‭R-hat values and effective sample sizes (Gelman et al., 2013).‬
‭Thank you for the good suggestion. We have now computed the R-hat values and effective sample size‬
‭N‬‭eff‬ ‭according to Gelman et al. (2013, p. 284–287).‬‭The median R-hat (1.065) and median effective‬
‭sample size N‬‭eff‬ ‭(58 using 4 chains) indicate reasonable‬‭convergence. However, chains for individual‬
‭parameters have not converged with R-hat as high as 1.3 (corresponding to h‬‭b‬ ‭for PC2) and N‬‭eff‬ ‭as low‬‭as‬
‭13 (corresponding to k‬‭c‬ ‭for PC8). Based on these diagnostics,‬‭we will:‬

‭1.‬ ‭re-investigate the step sizes used in the MCMC to ensure that the acceptance rates are in an‬
‭appropriate range (~20–50%),‬

‭2.‬ ‭extend the length of the MCMC chains to ensure that chains are reasonably converged (as‬
‭measured by R-hat) and that they contain a sufficient number of independent samples (as‬
‭measured by N‬‭eff‬‭),‬

‭3.‬ ‭report the acceptance rate, R-hat and effective sample sizes in the revised manuscript.‬

‭Figure C3: These figures should be shown in two dimensions rather than 3 for better clarity.‬
‭Part of the intention of this figure was to visualize the parameter interactions, which is best presented in‬
‭3D perspective. We understand the ambiguity in 3D plots with a single perspective, but we hope the‬
‭surfaces are clear enough since we have added the colour scale to indicate the value (i.e., height) of the‬
‭scalar quantities.‬
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