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Abstract. 

Global hydrologic models (GHMs) are increasingly relied upon for assessing climate-driven hydrologic changes from watershed 

to global scales. However, their ability to provide robust projections for a range of hydrologic variables remains unclear. Here, 10 

we evaluate the historical performance and future projections from the Community Water Model (CWatM) GHM against the 

Variable Infiltration Capacity (VIC) watershed hydrologic model for the Liard River basin in subarctic Canada. We drive both 

models with an ensemble of eight global climate models from the Coupled Model Intercomparison Project phase 6, downscaled 

and bias-corrected with a multivariate method. We analyze a range of hydrologic projections at 1.5 to 4.0 °C global warming 

levels (GWLs) above the preindustrial period. The historical performance benchmarking shows reasonable goodness-of-fit 15 

metrics for both models, with a slightly better performance for VIC. Projected hydrologic responses from CWatM are generally 

consistent with VIC in terms of annual water balance, and monthly snow water equivalent and flow changes, suggesting the 

robustness of the projections. Both models project coherent hydrologic changes, including progressively higher annual 

evapotranspiration; increased annual, winter, spring and maximum flows; increased frequency of extreme flow; and earlier 

timing of maximum flow, with higher GWLs. However, the magnitudes of maximum flow and late summer flow diverge 20 

between the two models, which can be explained by structural uncertainties associated with the representation of frozen soil and 

groundwater processes. Thus, our study provides insights into the robustness of hydrologic projections from a GHM, and offers a 

basis for model improvements. 
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1 Introduction 

Hydrologic models are essential tools for assessing historical and future changes in water cycle variables from a watershed to 

regional and global scales. It is a common practice to employ watershed-scale hydrologic models for assessing the impacts of 

anthropogenically driven change, such as land use, riverine and climate change (e.g., Byun et al., 2019; Chegwidden et al., 2019; 

Eum et al., 2016; Shrestha et al., 2019). In recent years, global water models have increasingly been relied upon for assessing the 30 

past or present changes, and projecting future changes in hydrological variables from regional to global scales (e.g., Döll et al., 

2018; Krysanova et al., 2020; Pokhrel et al., 2021; Greve et al., 2023).  

Global water models broadly originate from the climate science community as land surface models, the global hydrology and 

water resources community as global hydrologic models, and the vegetation and carbon modelling community as dynamic 

vegetation models (Bierkens, 2015; Telteu et al., 2021). Particularly, global hydrologic models (GHMs) are closely related to 35 

watershed hydrologic models (WHMs) in terms of modelling philosophy and functionality but may differ with WHMs in 

physical process representation and spatial discretization. Specifically, GHMs are generally designed to provide consistent 

simulation of the water cycle components at continental or global scales with a simplified representation of physical processes 

(Hattermann et al., 2017; Veldkamp et al., 2018). In contrast, WHMs typically include more sophisticated and complex process 

representations that are often tailored to the specific characteristics of a watershed or river basin. In terms of spatial 40 

discretization, WHMs offer finer resolution (typically ≤ 10 km) than GHMs (typically 0.5° x 0.5° or ~50 km x 50 km at the 

equator), allowing for greater topographic complexity. The two modelling approaches may also differ in terms of model 

parameterization, with GHMs generally parameterized to represent large-scale processes and not calibrated to watershed-specific 

conditions, whereas WHM parameters are calibrated using river discharge and other available observations, e.g. snow water 

equivalent, evaporation etc. (Krysanova et al., 2020).   45 

These differences could cause GHM-simulated responses to diverge from observations and WHM simulations, especially in 

replicating extreme maximum and minimum flows (Zaherpour et al., 2018; Heinicke et al., 2024).  Additionally, all GHMs are 

not created equal, and differences in process representation can lead to substantial disagreements in simulated responses among 

models (Krysanova et al., 2020; Gnann et al., 2023). In northern regions, some GHMs may perform poorly due to the lack of 

representation of cold-climate processes (Gädeke et al., 2020).  50 

These limitations are being addressed through ongoing enhancements in the GHMs (Bierkens, 2015; Telteu et al., 2021). For 

example, improvements in physical process representation have resulted in more reasonable reproduction of monthly and 

seasonal streamflow dynamics, as well as extreme flows (Huang et al., 2017; Veldkamp et al., 2018). Calibration of GHMs 

against observations (e.g. streamflow and evaporation) has also led to improvements in model performance (Zaherpour et al., 

2018; Burek et al., 2020; Döll et al., 2024). Additionally, finer spatial resolutions of 5-arc minutes or less are becoming more 55 

common in GHMs (e.g., Burek et al., 2020; Hanasaki et al., 2022; van Jaarsveld et al., 2024).  Thus, the predicted convergence 

of GHMs with WHMs (Bierkens, 2015; Bierkens et al., 2015) is being realized, and more consistent hydrological assessments 

from watershed to regional and global scales is being facilitated.  There is, of course no guarantee that a model that performs 

well for the historical climate will provide reliable future projections (Krysanova et al., 2020). However, it could be argued that a 

GHM’s ability to replicate future simulations of a WHM increases the confidence in GHM-based projections. In this respect, as 60 

suggested by Beven (2023) – a fit-for-purpose benchmarking to consider the suitability of a hydrologic model structure prior to a 

specific application – is highly relevant. Benchmarking GHMs prior to watershed scale or regional applications is also important 
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because these models are designed to represent large-scale hydrologic processes, and not tailored to specific hydrologic 

conditions.    

Here, we present a benchmarking study that assesses the robustness of hydrologic responses from a GHM in comparison to a 65 

WHM in the context of climate change impacts. We focus on two key research questions: i) can a GHM, calibrated at a river 

basin scale, replicate the historical simulations and future projections from a WHM? ii) how do the model structural uncertainties 

affect the magnitude and direction of projected hydrologic response? To address these questions, we set up a state-of-the-art 

GHM, the Community Water Model (CWatM) (Burek et al., 2020) and a widely used WHM, the Variable Infiltration Capacity 

(VIC) (Liang et al., 1994; Hamman et al., 2018), for the Liard River basin in subarctic Canada. We drive both models with an 70 

ensemble of eight global climate models (GCMs) that participated in the Coupled Model Intercomparison Project phase 6 

(CMIP6) experiment (Eyring et al., 2016), downscaled and bias-corrected with the MBCn multivariate bias correction algorithm 

(Cannon, 2018b). After benchmarking a set of statistical goodness-of-fit metrics of CWatM and VIC simulations, we analyze the 

robustness of a set of projected hydrologic responses, including annual water balance, monthly flow and snow water equivalent, 

annual maximum flow and timing, and flood frequencies. We compare the range, magnitude, and direction of changes, as well as 75 

the agreement between the model ensembles, at the 1.5, 2.0, 3.0 and 4.0 °C global warming levels above the preindustrial period. 

Furthermore, this study updates CMIP5 based VIC model projections for the Liard River basin from previous studies (Shrestha et 

al., 2019, 2022). 

2. Study basin 

This study focuses on the Liard River basin (LRB), a large mountainous basin in northwestern Canada with a drainage area of 80 

approximately 275,000 km2. The river’s headwaters originate in the Cordillera mountains, with the drainage area covering parts 

of four Canadian provinces/territories: Yukon, British Columbia, Northwest Territories and Alberta (Fig. 1). The Liard River is a 

major tributary of the Mackenzie River, covering about 16% of its drainage area and contributing about 25% of discharge 

(Shrestha et al., 2019). Located in the subarctic zone, most of the basin is underlain by discontinuous permafrost (based on the 

classification by Heginbottom et al. 1995). The LRB is mostly in a pristine state, with very limited resource development and 85 

about 74% forest coverage (Bonsal et al., 2020). Thus, the basin offers a good case for assessing the effects of GHM and WHM 

structures in simulating the cold-climate hydrologic regime, dominated by flows from snowmelt and frozen ground, and not 

affected by direct human impacts such as dams and reservoirs. 

The mountainous topography of the region exerts a strong influence on the basin’s climatology, particularly over the Cordillera 

mountains, creating a strong precipitation gradient (Szeto et al., 2008). The mean annual precipitation, temperature, and runoff in 90 

the basin over the years 1979-2012 were about 570 mm, -2.0 °C, and 290 mm, respectively (Shrestha et al., 2019). Seasonally, 

the basin receives a higher fraction of annual precipitation between April and September, while the runoff regime is dominated 

by snowmelt-driven high flows during spring and summer months (Woo and Thorne, 2006).  Annual air temperature and 

precipitation in the basin have increased by 2.2 °C and 12%, respectively, over the years 1948-2016 (Bonsal et al., 2020). 

However, mean annual and maximum streamflow trends for most stations in the basin are negligible, except for the minimum 95 

flow increases (Shrestha et al., 2021). 
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Figure 1. Location map of the Liard River basin. Also shown are the outlets of the Liard-M and Liard-UC basins for which 

analyses were performed. 

3. Models, Data and Analyses 100 

3.1 Hydrologic models 

We employed the Variable Infiltration Capacity (VIC) hydrologic model version 5.0.0 (Liang et al., 1994, 1996; Hamman et al., 

2018), set up at a 1/16° spatial resolution for the LRB (Shrestha et al., 2019, 2022), as a benchmark WHM. VIC is a process-

based, semi-distributed hydrologic model that accounts for sub-grid variability in snow and vegetation. Since its initial 

development in the 1990s, the model has undergone several updates and refinements, including key cold-regions processes of 105 

energy balance over snow and frozen ground (Cherkauer and Lettenmaier, 1999, 2003; Andreadis et al., 2009). VIC has been 

used extensively for assessing the hydrologic impacts of climate change across cold-region river basins (Schnorbus et al., 2014; 

Chegwidden et al., 2019; Shrestha et al., 2019; Eum et al., 2016).  

We compared the Community Water Model (CWatM) version 1.081, a large-scale semi-distributed GHM developed for regional 

to global scale hydrologic applications (Burek et al., 2020), with the VIC model.  CWatM was developed with the philosophy of 110 

as complex as necessary but not more (Burek et al., 2020), and different hydrologic processes, including cold-region processes of 

snow accumulation and melt, are represented. Similar to VIC, it accounts for sub-grid variability in snow and land cover.  

CWatM has been used for streamflow simulation in several global-scale assessments (Burek et al., 2020; Greve et al., 2020; 
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Heinicke et al., 2024), and as part of a multi-GHM ensemble for future projections of floods, water shortage and drought 

(Boulange et al., 2021; Pokhrel et al., 2021; Satoh et al., 2022). However, to our knowledge, applications specifically focused on 115 

cold-regions are not available. For this study, we used the 5-arc-minute (or 1/12°) resolution CWatM configuration, including the 

static geospatial data made available by the model developers (ftp://rcwatm:Water1090@ftp.iiasa.ac.at/).  

As summarized in Table 1, the two model setups have a major difference in the number of subbasins, with VIC subdivided into 

28 subbasins and CWatM subdivided into two subbasins. While it is technically feasible to subdivide the CWatM setup to match 

the VIC subbasin structure, setting up and running it over 28 subbasins will be cumbersome, because like most GHMs, CWatM 120 

is designed for large-scale applications and not for running over nested subbasins with multiple parameter sets.  Furthermore, we 

wanted to apply these models as they are designed to be used: a GHM at large basin scale, and a WHM over multiple subbasins. 

Nevertheless, we set up CWatM for the Liard River at Upper Crossing (Liard-UC) subbasin to compare with the VIC model 

setup (Liard-UC is further subdivided into three subbasins in VIC) for a relatively small subbasin (drainage area = 32,600 km2). 

Besides the number of subbasins, the two model setups also differ in terms of spatial resolution and base geospatial datasets (soil, 125 

land cover and digital elevation model) (Table 1).  

The representations of hydrologic processes in VIC and CWatM are mostly similar, except for subsurface flow, snow and frozen 

ground (Table 2). Specifically, the three-component runoff generation processes in CWatM, consisting of direct runoff, interflow 

and baseflow, differ from the two-component formulation in VIC, consisting of surface runoff and subsurface flow (baseflow). 

The presence of groundwater storage in CWatM can be expected to lead to delayed baseflow response, compared to VIC without 130 

groundwater storage and baseflow response represented by a nonlinear function. Additionally, differences in snowmelt methods, 

consisting of full energy balance in VIC and radiation-restricted approach in CWatM, can potentially lead to differences in 

snowmelt and runoff outputs. Finally, the coupled soil thermal and moisture flux process representation in VIC, which is used to 

control soil water movement through frozen soil, contrasts with the simple frost index method used to restrict soil water 

movement in CWatM.  These differences can be expected to influence runoff generation pathways and consequently streamflow 135 

simulation. Additionally, the differences in calibration parameters (Table 1) can be expected to influence streamflow simulation.  

Table 1. Model resolution, geospatial and meteorological datasets and model calibration for the VIC and CWatM model setups in 

this study 

 VIC CWatM 

Spatial 

resolution 

1/16°, sub-grids for vegetation and elevation bands 

snow. 

1/12°, sub-grids for land cover and elevation bands 

for snow. 

Digital elevation 

model 

7.5 arc-second Global Multiresolution Terrain 

Elevation Data 2010  (Danielson and Gesch, 2011) 

3 arc-second from the National Aeronautics and 

Space Administration Shuttle Radar Topographic 

Mission (Hole-filled seamless SRTM data V4 583, 

2024) 

Land cover 250-m land cover dataset from North American 

land change monitoring system (Latifovic et al., 

2012) 

1 arc-second forest land cover (Hansen et al., 

2013), 5 arc-minute land use dataset with crop 

groups from Hyde 3.2 database (Klein Goldewijk et 

al., 2017) 

Soil 1/12° soil classification and 30 arc-second from Harmonized World Soil 

Database 1.2 (FAO, 2012) 
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parameterization dataset based on the Soils 

Program in the Global Soil Data Products CD-

ROM (Global Soil Data Task, 2014) 

Temporal 

resolution/ 

Meteorological 

inputs 

3 hourly: average air temperature, total 

precipitation, wind speed,  

atmospheric pressure, incoming shortwave 

radiation, incoming longwave radiation, vapor 

pressure. Disaggregated and generated from daily 

from maximum and minimum air temperature, total 

precipitation, wind speed (PNWNAmet datasets 

(Werner et al., 2019) and downscaled GCMs) using 

MTCLIM in-built in the VIC model (Thornton et 

al., 2000) 

Daily: average, maximum and minimum air 

temperature, total precipitation, wind speed, 

atmospheric pressure, relative humidity, incoming 

shortwave radiation, incoming longwave radiation. 

Generated from daily maximum and minimum air 

temperature, total precipitation, wind speed 

(PNWNAmet datasets (Werner et al., 2019) and 

downscaled GCMs) using MTCLIM/MetSim 

(Thornton et al., 2000; Bennett et al., 2020) 

Model 

calibration 

Model calibrated at the outlets of 28 subbasins by 

comparing with the discharge data from the Water 

Survey of Canada hydrometric stations 

(wateroffice.ec.gc.ca). Calibration using the 

nondominated sorting genetic algorithm (NSGA-II) 

(Deb et al., 2002). Best performing model selected 

from the trade-off of three objective functions: (i) 

Nash–Sutcliffe coefficient of efficiency (NSE), (ii) 

NSE of log-transformed 

discharge (LNSE), and (iii) volume bias (VB) using 

fuzzy preference selection method (Shrestha and 

Rode, 2008).  

Calibration period: 1984-1993; Validation period: 

1994-2003. 

Model calibrated at the outlet of 2 subbasins only 

(headwaters: Liard-UC, outlet: Liard-M) by 

comparing with observed discharge from the Water 

Survey of Canada hydrometric stations 

(wateroffice.ec.gc.ca). Calibration using the single 

objective version of the NSGA-II (Deb et al., 2002) 

as implemented in the Python DEAP package 

(Fortin et al., 2012) with KGE criteria (Gupta et al., 

2009).  

 Calibration period: 1984-1993; Validation period: 

1994-2003. 

Calibration 

parameters 

Six parameters: variable infiltration curve 

parameter; fraction of maximum soil moisture for 

nonlinear baseflow; maximum velocity of 

baseflow; fraction of maximum velocity for 

nonlinear baseflow; and saturated hydraulic 

conductivity with soil moisture. 

Ten parameters: snowmelt coefficient; crop factor 

for ET; soil depth factor; preferential flow constant; 

infiltration capacity; interflow factor; groundwater 

recession coefficient; runoff concentration; 

Mannings n; reservoir normal storage limit.  

 

 140 
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Table 2. Summary of key physical process representation in the VIC and CWatM models as used in this study 

 VIC CWatM 

Potential 

evapotranspiration  

Penman-Monteith equation with canopy resistance 

set to zero (Shuttleworth, 1993) 

FAO Penman-Monteith with hypothetical 

reference vegetation (Allen et al., 1998) 

Snow 

accumulation and 

melt 

2-layer energy balance snow model (Andreadis et 

al., 2009) 

Radiation-restricted degree-day factor (Erlandsen 

et al., 2021) – introduced in CWatM version 1.081 

– modified for this study to account for snow 

albedo decay as in the VIC model 

(https://github.com/aranhax/CWatM). 

Infiltration Xinanjiang infiltration capacity method  (Zhao and 

Liu, 1995) 

Xinanjiang infiltration capacity method  (Zhao and 

Liu, 1995) 

Soil water 

movement 

Unsaturated flow through 3-layer soil column 

using one-dimensional Richard’s equation. 

Unsaturated flow through 3-layer soil column 

using one-dimensional Richard’s equation. 

Runoff 

components, 

groundwater 

storage and 

baseflow 

Two component runoff: surface runoff and 

baseflow. Groundwater storage not available, 

ARNO baseflow recession curve for drainage from 

bottom soil layer, with parameters controlling non-

linear baseflow  (Franchini and Pacciani, 1991). 

Three component runoff: direct runoff, interflow 

(that contributes to both surface runoff and 

groundwater) and baseflow. Groundwater storage 

using linear reservoir approach, and baseflow a 

function of groundwater storage and recession 

coefficient (Burek et al., 2020).  

Frozen ground Soil thermal and moisture fluxes are coupled 

processes, with soil water movement under frozen 

soil condition dependent on ice content. Ground 

heat flux through the soil temperature profile using 

the finite difference method and no flux boundary  

(Cherkauer and Lettenmaier, 1999, 2003). 

No frozen soil formulation, empirical frost index 

method (Molnau and Bissell, 1983) to consider 

frozen soil state and restrict soil water movement 

through top two layers. 

River routing Linearized version of the Saint-Venant equations, 

with impulse response functions (i.e. unit-

hydrographs) to represent distribution of flow at 

the outlet point (Lohmann et al., 1998). 

Kinematic wave approximation of the St. Venant 

equation (Chow, 2010) with coefficients calculated 

using Manning’s equation.   

3.2 Climate data and downscaling 

We used daily temperature, precipitation and wind speed from the Pacific North Western North America gridded meteorological 

data PNWNAmet (Werner et al., 2019) as inputs for the calibration of both the VIC and CWatM models, and as the target dataset 145 

for statistical downscaling (Table 1). PNWNAmet is a spatially contiguous and temporally consistent dataset spanning the years 

1945-2012, which has been found to outperform other gridded observational data products available for the region in terms of 

climate means, extremes and variability, as well as streamflow trends and runoff ratios when used to drive the VIC model 

(Werner et al., 2019).  The PNWNAmet dataset has a spatial resolution of 1/16°, matching the resolution of the VIC model used 

in this study. 150 
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We used an ensemble of eight CMIP6 GCMs (summarized in ESM Table S1) based on the GCM selection by Mahony et al. 

(2022) for the Intergovernmental Panel on Climate Change (IPCC) reference Northwestern North America region. The GCM 

selection methodology uses ten different criteria, and the selected eight-model subset represents the very likely range of Earth’s 

equilibrium sensitivity according to IPCC’s recent assessment (Arias et al., 2021).  For each GCM, we considered historical 

period (1950-2014) and two shared socioeconomic pathways (SSP), consisting of high (SSP5-8.5) and moderate (SSP2-4.5) 155 

scenarios over the years 2015-2100. Thus, uncertainties due to GCM structure and greenhouse gas concentration and 

anthropogenic forcings pathways – which are the most important sources of uncertainties in projecting hydrologic impacts of 

climate change (Hattermann et al., 2018; Chegwidden et al., 2019) – are considered in this study. 

We employed a state-of-the-art N-dimensional probability density function transform, multivariate bias correction method 

(MBCn) (Cannon, 2018a, b) to spatially disaggregate and bias-correct coarse-resolution GCM outputs, consisting of daily 160 

precipitation, maximum and minimum temperature and wind speed, to the 1/16° resolution of the PNWNAmet  dataset. This 

method preserves multivariate dependence of the target observational data, which is an important consideration for multivariate 

climate extremes (Zscheischler et al., 2018)  and cold-regions hydrologic processes, such as precipitation and temperature 

interactions on snow accumulation and melt processes (Meyer et al., 2019; Warden et al., 2024). MBCn builds on an image 

processing technique (Pitié et al., 2007) that operates by iteratively (i) applying a random orthogonal rotation to both climate 165 

model and observational target datasets, (ii) correcting the marginal distributions via quantile mapping, and (iii) rotating datasets 

back to the original axes and checking convergence. The iterative steps ensure the transfer of the climate model’s marginal 

distributions and empirical copula in the historical calibration period to those of observations. For the future period, projected 

changes in the corrected quantiles are also constrained to match those of the raw climate model. We used the 63-year 1950–2012 

period for calibration of MBCn, with bias corrections applied over three 21-year sliding window blocks to match the length of 170 

the calibration period. For further details on the MBCn, readers are referred to Cannon (2018a).  

Both PNWNAmet and downscaled GCMs required pre-processing before they could be used as inputs to the VIC and CWatM 

models. For VIC, we employed the built-in Mountain Microclimate Simulation Model (MTCLIM) (Thornton and Running, 

1999) to disaggregate and generate 3-hourly meteorological inputs of precipitation, maximum and minimum air temperature, 

wind speed, longwave radiation, shortwave radiation, atmospheric pressure and vapor pressure for running it in an energy 175 

balance mode. For CWatM, we first regridded the daily maximum and minimum air temperature, total precipitation and wind 

speed from both PNWNAmet and downscaled GCMs to the CWatM model resolution of 1/12° by using bilinear interpolation. 

We then used the MTCLIM method, available in the Python Meteorology Simulator package (Bennett et al., 2020), to generate 

additional daily inputs required for CWatM, which include longwave radiation, shortwave radiation, atmospheric pressure and 

relative humidity. After calibrating VIC and CWatM with the pre-processed PNWNAmet dataset as inputs, we forced the two 180 

models with pre-processed CMIP6 GCMs over the transient period 1950-2100, by combining historical and SSP scenarios. 

Hence, this study updates the CMIP5 GCM driven VIC model simulations from previous studies (Shrestha et al., 2019, 2022) 

with CMIP6 GCMs. 

3.3 Evaluation methods and metrics  

We evaluated the performance of calibrated VIC and CWatM models by comparing simulated results against observations using 185 

four goodness-of-fit (GOF) metrics: (i) Nash Sutcliffe coefficient of efficiency (NSE) (Nash and Sutcliffe, 1970); (ii) NSE of 

log-transformed discharge (LNSE); (iii) Kling-Gupta efficiency (KGE) (Gupta et al., 2009); and (iv) volume bias (VB). NSE, 

LNSE and KGE values closer to one represent a better model fit, whereas volume bias close to zero indicates a better model fit.   
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Following the IPCC Working Group I sixth assessment (AR6) (Arias et al., 2021), we analyzed model results at 1.5, 2.0, 3.0 and 

4.0 °C global warming levels (GWLs) above the preindustrial period of 1850–1900. The period when each GWL is reached for 190 

individual GCMs depends on its climate sensitivity, as different GCMs respond very differently to the same combination of 

radiative forcings (Smith et al., 2020). Since we used bias-corrected GCMs, we calculated GWLs for individual GCMs relative 

to the recent period of 1995-2014 by assuming 0.85 °C warming between 1850-1900 and 1995-2014, which is the amount of 

observed temperature increase reported in IPCC AR6 (Gulev et al., 2021). As summarized in ESM Table S1, not all GCMs reach 

the 3.0 and 4.0 °C GWLs by the end of their simulations in the year 2100.  We analyzed projected responses at each GWL by 195 

combining all available ensemble members of SSP5-8.5 and SSP2-4.5 scenarios, which consist of 16 ensemble members for 1.5 

and 2.0 °C GWLs, and 12 and 6 ensemble members for 3.0 and 4.0 °C GWL, respectively. We considered the 30-year 

climatological period of 1971-2000 as the reference period – which corresponds to observed warming of approximately 0.5 °C 

since the preindustrial period (Forster et al., 2023) – to compare future projections at the four GWLs. The projected responses 

were analyzed for a set of responses (annual water balance, monthly flow and snow water equivalent, annual maximum 200 

streamflow and timing, and flood frequencies), by comparing the range, magnitude, and direction of changes relative to the 

reference period, and the percentage agreement of the ensemble members with the direction of median change.  

We analyzed extreme value statistics of annual maximum flows for the 1971-2000 reference period and four GWLs by 

combining all annual maximum flow values from all models in the ensemble. The combined sample sizes for 1971-2000 and 1.5, 

2.0, 3.0 and 4.0 °C GWLs are 240 (30 years x 8 members), 256 (20 x 16), 256 (20 x 16), 240 (20 x 12) and 120 (20 x 6), 205 

respectively. The use of combined annual maximum flow values from all GCM and SSP ensemble members – following a 

similar approach by Curry et al. (2019) – provides adequate samples for analyzing large return periods (e.g., 100 and 200 years), 

with the assumption that the reference period and each GWLs can be considered roughly stationary. We fitted a generalized 

extreme value (GEV) distribution to the samples by using the maximum likelihood parameter estimation (Hosking and Wallis, 

1993), as implemented in the R ‘extRemes’ package (Gilleland, 2024).  210 

4 Results and discussion 

4.1 Hydrologic model calibration/validation  

We present simulated streamflow results for the Liard River at Mouth (Liard-M) station as an aggregate response for the entire 

LRB, and for the Liard River at Upper Crossing (Liard-UC) station as a subbasin response (Fig. 2). The simulated results, in 

general, indicate a good ability of both VIC and CWatM to reproduce the dynamics of streamflow hydrograph, characterized by 215 

high snowmelt-driven flow during spring and summer and low flow in winter. However, both models have difficulty in matching 

the magnitude of the peak flow at both stations. Additionally, CWatM tends to produce earlier peak flows than observations and 

VIC simulations, especially for the Liard-M station (Fig. 2a). CWatM also underpredicts winter low flows at Liard-M, while VIC 

provides a better match. For the Liard-UC station, CWatM results match with observations and VIC results better, both for low 

and high flows.  220 

The comparison of the statistical GOF metrics of NSE, LNSE, KGE and VE reveals generally better performance of VIC 

compared to CWatM (Table 3). Additionally, while VIC results are similar for the Liard-UC and Liard-M stations, CWatM 

performed better for Liard-UC than Liard-M. Several factors likely contribute to these differences. Firstly, the subdivision of the 

LRB into 28 subbasins allows VIC to parameterize and calibrate to subbasin-specific conditions (6 parameters x 28 subbasins in 

total), and the use of calibrated upstream flows as inflows help to better match the flows at the outlets of Liard-UC and Liard-M. 225 
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In contrast, since CWatM was calibrated by lumping the large LRB into only two sets of parameters (10 parameters x 2 

subbasins), it is not able to capture the subbasin-level heterogeneity. Additionally, the aforementioned differences in model 

structure, especially those related to frozen ground and groundwater, affect the runoff generation processes and subsequently 

model performance. Particularly, the frost index method in CWatM, which prevents infiltration through the top two soil layers 

under frozen soil condition, likely leads to a higher proportion of surface runoff and contributes to earlier peak flows in CWatM 230 

compared to VIC, which allows infiltration through frozen soil using the coupled soil thermal and moisture flux representation 

(Cherkauer and Lettenmaier, 2003).  Besides these model related differences, both model results are also affected by 

uncertainties associated with input and calibration data. Specifically, the representativeness of the precipitation and temperature 

in the  PNWMAmet dataset due to sparse station density at high-latitude region (Werner et al., 2019), and limitations in observed 

discharge estimation during ice-covered and ice breakup events (Hamilton and Moore, 2012) can be major sources of 235 

uncertainty.  

 

Figure 2. Observed vs. simulated discharge from CWatM and VIC models for calibration (1984-1994) and validation (1994-

2004) periods for a) Liard-M station and b) Liard-UC station. 

  240 
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Table 3. Comparison of the goodness-of-fit (GOF) metrics for VIC and CWatM results. Summarized metrics include Nash-

Sutcliffe coefficient of efficiency (NSE), NSE of log flows, Kling-Gupta coefficient (KGE) and % volume bias (VB) for 

calibration (validation) 1984-1993 (1994-2003). 

Basin/ 

Subbasin 

VIC CWatM 

 NSE LNSE KGE VB NSE LNSE KGE VB 

Liard-M 0.86 (0.83) 0.87 (0.88) 0.92 (0.90) -1.6 (4.3) 0.72 (0.65) 0.82 (0.79) 0.83 (0.82) -6.4 (2.0) 

Liard-UC 0.86 (0.79) 0.88 (0.83) 0.92 (0.89) -2.0 (-0.9) 0.86 (0.68) 0.89 (0.80) 0.82 (0.81) -6.4 (-4.2) 

 

Further, the comparison of VIC and CWatM simulated snow water equivalent (SWE) with observations at three snow pillow sites 245 

with highest number of observations generally shows a good replication of the seasonal dynamics by both models (Supplement 

Fig. S1). Specifically, the seasonal SWE accumulation and ablation, as well as maximum SWE values are reasonably well 

replicated by both models. The good model performance is also indicated by GOF values (Table S2).  The SWE simulations from 

both models are also affected by uncertainties related to model structure and meteorological inputs, as discussed earlier. 

Additional sources of uncertainty include the mismatches between the observation station location and elevation with the model 250 

grid and elevation band, respectively, and measurement errors (e.g., SWE calculation from snow depth). Nevertheless, given the 

reasonable replication of the magnitude and dynamics of observed SWE and streamflow, as well as VIC simulated values, the 

calibrated CWatM model can be considered suitable for projecting future hydrologic responses.  

4.2 Temperature and precipitation changes 

Before evaluating projected future hydrologic responses from VIC and CWatM, we analyzed the MBCn downscaled temperature 255 

and precipitation from the GCM ensemble. As expected, the seasonal and annual temperature and precipitation over the LRB 

show progressive increases with the GWLs (Fig. 3). Furthermore, consistent with the projected higher warming over northern 

latitudes (Flato et al., 2019), the basin-scale seasonal and annual temperatures increases are higher than global temperature 

increases, with median increases of +1.8, +2.6, +4.1, and +5.6 °C relative to the 1971-2000 period at +1.5 (or +1.0 global 

warming from 1971-2000), +2.0 (+1.5), +3.0 (+2.5) and +4.0 (+3.5) °C GWLs, respectively. Seasonally, higher temperature 260 

increases are projected for the colder months (OND and JFM) than warmer months (AMJ and JAS). 

The projected annual precipitation in the LRB mostly shows progressive increases with GWLs, with median basin-scale annual 

increases of 6.5, 8.8, 16.9, and 24.3% relative to the 1970-2000 reference period at 1.5, 2.0, 3.0 and 4.0 °C GWLs, respectively.  

Seasonally, projected precipitation for most GCMs shows increases, with a larger variability of change for AMJ and smaller 

variability for OND. The median seasonal precipitation increases are largest in OND, except for the larger increases in AMJ at 265 

4.0 °C GWL.  Overall, the enhanced temperature and precipitation increases for CMIP6 GCMs over the LRB are similar to 

CMIP5 GCMs assessed in our previous study (Shrestha et al., 2019).  
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Figure 3. Mean annual and seasonal temperature and precipitation changes at 1.5 to 4.0 °C GWL relative to 1971-2000 reference 

period. The projected changes for SSP2-45 and SSP5-85 scenarios are shown together. 270 

4.3 Annual water balance change 

We first compared the VIC and CWatM model simulations of annual water balance variables, consisting of precipitation, 

evapotranspiration (ET) and runoff, averaged over the entire LRB (Fig. 4). Additionally, we assessed maximum SWE 

(SWEmax), as it is related to all water balance variables. The results from the two models depict very similar changes, 

characterized by progressive increases in annual ET and runoff in response to increasing precipitation and temperature. SWEmax 275 

changes are minimal at the four GWLs for both models, suggesting that the projected winter precipitation increases offset the 

temperature-driven snowpack declines. The ranges of median percentage changes are generally similar, and models typically 

agree on the direction of median change, except for the small changes in SWEmax.  

The results are consistent when comparing the distribution of precipitation into ET and runoff. Specifically, for both models, the 

median ET/precipitation ratios range between 0.45 and 0.48, while the runoff/precipitation ratios range between 0.52 and 0.55, 280 

with generally decreasing ET/precipitation ratios and increasing runoff/precipitation ratios at higher GWLs. Furthermore, the 

median SWEmax/October-March precipitation ratios, with a ratio > 0.5 used to characterize the hydrologic regime of a basin as 

snow-dominated (Elsner et al., 2010), decline successively from 0.84 to 0.65 with higher GWLs for both models.  Overall, the 

projected annual water balance changes from CWatM are consistent those from VIC. 
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 285 

Figure 4. Historical (1971-2000) and projected annual water balance variables (mm) at 1.5 to 4.0 °C global warming levels 

(GWLs) obtained from the GCM ensemble. The results show basin-averaged values for the entire Liard River basin, consisting 

of precipitation used as forcings, and a) VIC and b) CWatM simulated evapotranspiration (ET), runoff and maximum snow water 

equivalent (SWEmax). Top panels show the median change (%) at the four GWLs relative to 1971-2000, along with the model 

agreement (%) of the GCM ensemble with the direction of median change.   290 

4.4 Monthly SWE and flow changes 

Changes in basin-averaged monthly SWE values from the two models at different GWLs are also generally consistent (Fig. 5). 

Both models show slightly higher SWE accumulation in the colder upstream Liard-UC subbasin than the entire Liard-M basin.  

Furthermore, monthly SWE values successively decline with higher GWLs during October and November, while the changes 

from December to March are relatively smaller. Monthly SWE values also decline successively with higher GWLs in April and 295 

May, with CWatM showing more rapid declines, particularly for the Liard-UC subbasin. However, the differences are marginal, 

and model agreement in the direction of median change is generally good between the two models for both Liard-M and Liard-

UC. Additionally, both models show higher agreement in the direction of median change in the months with larger snowpack loss 

(October, November, May and June) and lower agreement in the months with smaller snowpack change (January to March). The 

generally consistent monthly SWE and SWEmax results (Figs. 4 and 5) suggest that the differences in snowmelt algorithms in 300 

two models (VIC: full energy balance; CWatM: radiation-restricted degree-day) have a minor effect on the magnitude and timing 

of snowmelt.  However, these results may have been influenced by the necessity to calculate all energy fluxes from the same air 

temperature, precipitation and wind speed datasets in both models using MTCLIM. 

Projected mean monthly flows (Qmean) from the two models display consistent patterns, with progressive increases in cold-season 

(October-March) flows with higher GWLs for both Liard-M and Liard-UC stations (Fig. 6). Furthermore, both models project 305 

generally increased Qmean with higher GWLs in April and May, following the declining SWE patterns for these two months (Fig. 
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5).  The direction of projected Qmean change in June differs between the two stations but is consistent between VIC and CWatM, 

with a declining pattern at higher GWLs for the upstream Liard-UC station and an increasing pattern for the downstream Liard-

M station. The larger uncertainties in projected AMJ precipitation at 3.0 and 4.0 °C GWLs (Fig. 3) likely contributed to larger 

spreads of the projected flow responses during these months and GWLs.  July and August Qmean projections from the two models 310 

show some differences, with CWatM projections showing smaller declines for Liard-M and smaller decreases or increases for 

Liard-UC, compared to VIC, which shows larger declines for both stations.  September Qmean responses are consistent between 

the two models, with progressive increases in flows at higher GWLs. These similarities and differences in responses between the 

two models are also reflected by the median changes and model agreements. Specifically, both models show progressive 

increases in median values and high model agreement between October and May. For June to August, the median changes are 315 

less consistent, and direction of changes shows lower agreement.  

These differences in VIC and CWatM projections arise from the combined effect of several factors related to process 

representation and parameterization.  As discussed, the differences in the treatment of frozen soil processes in the two models 

affect infiltration and runoff pathways, with a higher proportion of surface runoff generation in CWatM than in VIC (Fig. S2) 

influencing early summer (June) Qmean. On the other hand, the presence of groundwater storage in CWatM, which stores 320 

percolated water and releases it as baseflow using a linear reservoir approach (Burek et al., 2020), delays the baseflow response 

and results in a higher late summer (July and August) Qmean from CWatM than from VIC, which uses a nonlinear baseflow 

function to release water stored in the bottom layer. Other factors that contribute to these differences include the routing method 

and parameterization, which influence runoff transport through the watershed and the timing and magnitude of flow delivered to 

the outlet, and the differences in watershed subdivision and model calibration. However, despite the inferior calibration 325 

performance for the downstream Liard-M station (Table 3), CWatM projection results for this station are not substantially 

different from VIC results.  This suggests that the uncertainties in projected responses due to lumped parameters and calibration 

may be relatively small.  
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Figure 5. Historical (1971-2000) and projected monthly SWE (mm) at 1.5 to 4.0 °C global warming levels (GWLs) obtained 330 
from the GCM ensemble. All SWE results are simulated basin-averaged values from model simulations, consisting of a) VIC for 

Liard-M station, b) CWatM for Liard-M station, c) VIC for Liard-UC station, and d) CWatM for Liard-UC station. Top panels 

show median change (%) at four GWLs relative to 1971-2000, along with model agreement (%) of the GCM ensemble with the 

direction of median change. 
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 335 

Figure 6. Same as Figure 4, but for monthly flows. 
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4.5 Maximum flow and timing 

Projected changes in maximum flows (Qmax) and their timing are generally consistent between the two models in terms of the 

direction of change and are seen to be dependent on GWLs, with progressively higher Qmax values and earlier Qmax timing with 340 

higher GWLs for both Liard-M and Liard-UC (Fig. 7). However, while the median Qmax values and timing are similar between 

the two models for Liard-UC, Liard-M Qmax values are generally smaller and Qmax timing occurs earlier for CWatM, compared to 

corresponding projections from VIC.  

 

Figure 7. Same as Figure 4, but for annual maximum flows and their timing. Top panels show median change (% or days) at four 345 
GWLs relative to 1971-2000, along with the model agreement (%) of the GCM ensemble with the direction of median change.   

The 2 to 200-year flood frequency curves show progressively higher flow values at a given return period at 2.0 and 4.0 °C GWLs 

compared to the 1971-2000 reference period for both models and stations (Fig. 8). An alternative interpretation of these 

nonstationary changes is that the return periods associated with specific magnitudes of flow decrease with higher GWLs. 

Increasing spreads of the 95% confidence intervals from 2 to 200-year return periods can also be seen from both models and 350 

stations. Interestingly, the flood frequency curve for Liard-M at 3.0 °C GWL (Fig. S3) covers a higher range than at 4.0 °C for 

both models, especially at higher return periods (> 40-year for VIC and > 80-year for CWatM). Although such patterns are not 

present for the Liard-UC station, the results for 4.0 °C GWL are affected by a smaller sample size (6*20 values) compared to 3.0 

°C (12*20 values); given that 6 and 12 out of 16 ensemble members reach 3.0 and 4.0 °C GWLs, respectively.  
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 355 

Figure 8. Flood frequency plots of annual maximum flows obtained from the model simulations driven by the GCM ensembles: 

a) VIC for Liard-M station, b) CWatM for Liard-M station, c) VIC for Liard-UC station, and d) CWatM for Liard-UC station. 

The results are shown for the historical period (1971-2000) and 2.0 and 4.0 °C GWLs. Dashed lines show the 95% confidence 

intervals. The years on the right axes of each plot indicate the two highest recorded historical flood events.   

Additionally, while the flood frequency curves are similar for the 1971-2000 reference period for the two models, the curves tend 360 

to diverge at higher GWLs and return periods, and the magnitudes of extreme flows at a specific return period are considerably 

lower for CWatM than VIC (Fig. 8).  For Liard-UC, it is notable that extreme flow values from the flood frequency curves are 

substantially lower for CWatM than corresponding values for VIC, although the median values from the two models are close to 

each other (Fig. 7). The divergence in responses arises from the differences in distribution of the entire ensemble, with higher 

upper limit of VIC projections contributing to higher values in the flood frequency curves for both stations.  As such, while the 365 

largest recorded 2012 flood events are within the range of the flood frequency curve at 1.5 °C GWL for VIC for both stations, 

they are only covered at 3.0 or 4.0 °C GWL for CWatM (Figs. 8 and S3).  
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As in the case of Qmean, the magnitudes and timing of Qmax are affected by structural differences in the two models, particularly 

runoff pathways. Specifically, the earlier Qmax timing in CWatM than VIC can be linked to the higher fraction of quicker-flowing 

surface runoff in the former (Fig. S2), resulting from the frost index method that prevents soil water movement through the 370 

frozen soil.  The higher Qmax from VIC compared to CWatM can be linked to the lack of groundwater storage in the former, 

which causes baseflow to increase rapidly using a nonlinear function when soil moisture exceeds a certain threshold and gets 

added to the total runoff (Fig. S2). Hence, the lack of groundwater storage in VIC likely causes an overestimation of annual 

maximum flows, and the lack of soil water movement through the frozen soil in CWatM likely causes an overestimation of the 

surface runoff contribution to the annual maximum flow and earlier annual maximum flows. However, notwithstanding these 375 

differences, key climate change signals of earlier and higher maximum flows, and nonstationary increases in the magnitudes of 

extreme flows are consistent between the two models.  

5 Discussion and Conclusions 

Our study contributes important insights on the robustness of future hydrologic projections from a GHM in comparison to a 

WHM. As suggested by Beven (2023), we designed a fit-for-purpose benchmarking study to compare future hydrologic 380 

projections from a state-of-the-art CWatM GHM with the widely used VIC WHM for the Liard River basin in subarctic Canada, 

by driving both models with a consistent set of downscaled CMIP6 climate forcings. Since the assessment focuses on a northern 

basin, our study provides a good case for evaluating the effects of model structure on cold-climate processes dominated by flows 

from snowmelt and frozen ground.  

Our evaluation revealed generally consistent patterns of projected hydrologic responses from the two models in terms of annual 385 

water balance, and monthly distribution of SWE and flow. Key hydrologic change signals of increasing annual 

evapotranspiration and runoff with higher global warming levels are projected by both models. CWatM is also able to replicate 

the prominent snowpack change signals from VIC, particularly the successive declines in late spring SWE with higher GWLs.  

Likewise, CWatM simulates increasing winter and spring flows with higher GWLs, consistent with the VIC model simulation. 

The direction of maximum flow and timing changes from CWatM are generally in agreement with VIC, characterized by 390 

increasing and earlier flows with higher GWLs. However, the magnitude of annual maximum flows diverges between the two 

models, with CWatM generally producing lower magnitudes and earlier timing compared to corresponding VIC projections.  

These differences in the annual maximum flows are also reflected in the extreme value analysis, with CWatM projecting 

considerably smaller extreme flood events than VIC at all GWLs, especially for longer return periods.     

The similarities and differences between the two model simulations lead to a subsequent question about the robustness of the 395 

projected changes. Overall, the consistency of the projected changes from the two models suggests that a calibrated GHM can 

provide robust projections of future hydrologic responses at annual and monthly time scales. The direction of SWE and flow 

changes obtained from both models are also consistent with the previous study based on CMIP5 GCMs driven VIC model 

simulations (Shrestha et al., 2019). An important consideration here is the process representation, particularly the representation 

of cold-climate processes of snow ablation and melt, and frozen soil.  In this respect, CWatM produced very similar monthly and 400 

annual maximum SWE values when compared to VIC despite having a simplified radiation-restricted snowmelt module versus 

the full energy balance in VIC. However, these results may have been influenced by the necessity to calculate all energy fluxes 

based on the same air temperature, precipitation and wind speed datasets for both models using MTCLIM. Differences in the 

representation of frozen soil processes, however, led to differences in surface and subsurface flow pathways. Specifically, the 

simplified frost index approach (Molnau and Bissell, 1983) in CWatM, which prevents soil water movement through the frozen 405 
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soil, results in a higher fraction of surface runoff than VIC, which includes a coupled soil thermal and moisture fluxes approach, 

with soil water movement under frozen conditions dependent on ice content (Cherkauer and Lettenmaier, 1999, 2003). These 

differences in flow pathways seem to have affected late summer monthly flows and annual maximum flows, with a larger 

fraction of surface runoff in CWatM likely resulting in earlier annual maximum flows. Additionally, while the lack of 

groundwater storage in VIC likely leads to a more rapid baseflow response, and consequently an overestimation of annual 410 

maximum flow and amplified extreme values. In contrast, the groundwater storage in CWatM, albeit a simplified linear reservoir 

approach, likely causes a delayed baseflow response and smaller maximum flows, as well as a smaller reduction or no change in 

summer flows. Regarding other factors, such as the subdivision of the watershed into subbasins and model calibration, given that 

the projected results are not substantially different for the downstream Liard-M station despite lumped parameter sets and 

inferior calibration performance, their effects seem small.  415 

Overall, CWatM GHM setup for the Liard River basin is generally able to replicate the projected hydrologic responses from VIC. 

The results are very consistent for directions of change and most magnitudes of change except maximum flows and summer 

flows. Hydrologic model structural uncertainties, specifically, the representation of frozen soil and groundwater processes, 

provide an explanation for the differences in the annual maximum flows and summer flows. Given such uncertainties, an 

important consideration is the robustness of model structure in simulating hydrologic metrics of interest for climate change 420 

impacts research (Ekström et al., 2018; Shrestha et al., 2016). In this respect, our results provide an important basis for 

improving not only the GHMs but also the WHMs.  
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