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Abstract. Snow water equivalent (SWE) retrieval from Ku-band radar measurements is possible with complex retrieval algo-

rithms involving prior information on the snowpack microstructure and a microwave radiative transfer model to link backscat-

ter measurements to snow properties. A key variable in a retrieval is the number of snow layers, with more complex layering

yielding richer information but at increased computational cost. Here, we show the capabilities of a new method to simplify

a complex multilayered snowpack to less than or equal to 3 layers, while preserving the microwave scattering behavior of the5

snowpack and conserving the bulk snow water equivalent. The method is based on a K-means clustering algorithm to group

the snow layers based on the extinction coefficient and the height of the layer. Then, a weighted average using the extinction

coefficient and the thickness was applied to the snow properties. We evaluated our method using snow properties from simula-

tions of the SVS-2/Crocus physical snow model at 11 sites spanning a large variety of climates across the world and the Snow

Microwave Radiative Transfer model to calculate backscatter at 17.25 GHz. Grouping and averaging snow stratigraphy into 310

layers effectively reproduced the total snowpack backscatter of multi-layered snowpacks with overall root mean squared error

= 0.5 dB and R2 = 0.98. Using this methodology, SWE retrievals can be applied to simplified snowpacks, while maintaining

similar scattering behavior, without compromising the modeled snowpack properties. Reduction in the mathematical complex-

ity of SWE retrieval cost functions and reduction in computation of up to 80% can be gained by using fewer layers in the SWE

retrieval.15

1 Introduction

Snow Water Equivalent (SWE) is a key element of the hydrological cycle and an important component of the surface energy

balance, so it must be well-represented in environmental prediction systems. Because conventional SWE observations are

exceptionally sparse, new spaceborne radar missions to deliver SWE information are under development, such as the Canadian

Terrestrial Snow Mass Mission (TSMM, Derksen et al., 2021; Tsang et al., 2022). A state-of-the-art SWE retrieval from the Ku-20

band radar measurements delivered by a mission like TSMM requires a radiative transfer model (RTM) to link snow properties

to backscatter (Saberi et al., 2021; Zhu et al., 2021; Pan et al., 2017, 2023). Snow properties including layer thickness, density,

temperature, and microstructure (e.g., specific surface area) are necessary to properly model the microwave signal with a RTM.

Prior, or first-guess information on layered snow properties is needed to constrain retrievals (Merkouriadi et al., 2021; Durand
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et al., 2024). This information can come from vertical snowpack measurements, either manually, or using an instrument like25

a high-resolution snow penetrometer (SMP, Proksch et al., 2015). More typically, observations are unavailable, so snowpack

information must come from physical snow models that provide multi-layered snow properties based on meteorological forcing

data.

Detailed physical snow models like Crocus (Vionnet et al., 2012) and SNOWPACK (Bartelt and Lehning, 2002; Lehning

et al., 2002) are one-dimensional multi-layer physical schemes that can model the evolution of the snowpack (including its mi-30

crostructure) by taking into account energy exchange between the snow, the atmosphere, and the soil based on meteorological

inputs. In Crocus, the snowpack is vertically discretized on a finite element grid with specific rules to allow the snowpack layer-

ing to evolve dynamically from new precipitation, compaction and/or metamorphism. One such rule is the dynamic attribution

of the number of layers and thicknesses to simulate the snowpack layering. The minimum number is 3 layers but the maximum

is 50 (Vionnet et al., 2012). Setting a large number of layers can improve dynamic physical processes within the snowpack,35

such as heat and mass fluxes within the snowpack, and spring snowmelt initiation (Cristea et al., 2022) or the identification of

weak layers in the context of avalanche hazard forecasting (Morin et al., 2020), but can prove challenging for remote sensing

applications.

Some algorithms couple a physical snow model and a snow RTM to retrieve SWE using microwave remote sensing data

(Langlois et al., 2012; Larue et al., 2018; Singh et al., 2024). Snow RTMs can model the radar backscatter using snow param-40

eters from complex layered snowpacks. In a SWE retrieval like Pan et al. (2017), the SWE (depth and density) of the different

layers is estimated by minimizing the difference between the modeled and measured backscatter. However, larger numbers of

layers increase the complexity of the retrieval by increasing the number of variables in the cost function. Also, most RTMs

solve the radiative transfer equation based on the discrete ordinate and eigenvalue method (Picard et al., 2004), which dis-

cretizes the radiative transfer equation and solves a nonhomogenous system of linear equations based on the number of layers.45

Increasing the number of snow layers thus increases the computational cost at many levels within the retrieval algorithm. This

is why current retrievals typically employ a one or two-layer model (Saberi et al., 2021; Durand et al., 2024; Pan et al., 2017).

However, neglecting stratigraphy by using a small number of layers model reduces the performance of the retrieval (Durand

et al., 2011) because layering strongly influences the backscattering properties of snow (Rutter et al., 2016). A one-layer model

oversimplifies the scattering behavior of the snowpack and so is not adequate in most cases (Rutter et al., 2019; Meloche et al.,50

2024; Montpetit et al., 2024). For this reason, a two or three-layer model provides notably better SWE retrievals (Pan et al.,

2017).

To reduce the number of layers, a mass or thickness weighted average is commonly used to average all properties of the

snowpack (Durand et al., 2011) and conserve snow mass (i.e., SWE). Singh et al. (2024) applied the same logic in averaging

a multi-layered snowpack into a two-layered snowpack, and chose the height that corresponded to the maximum change in55

density to split the snowpack into two layers. Other SWE retrievals (Saberi et al., 2021; Pan et al., 2017) focused on arctic

snowpack by setting the initial two-layer snowpack from well-documented layer properties (e.g., wind slab and depth hoar for

Arctic snowpacks) (Rutter et al., 2019; Vargel et al., 2020; Derksen et al., 2009, 2012). For assimilation of passive microwave

data, Larue et al. (2018) used a detailed physical snow model (Crocus) coupled with a RTM with a limit of 15 layers as a
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compromise between accuracy and computation time. If a method that reduces the number of layers while preserving SWE60

and microwave scattering exists, the accuracy would not be compromised and the computation time reduced. To our knowledge,

a robust method does not exist to effectively reduce the number of layers of a given snowpack while minimizing changes in

scattering properties.

The goal of this paper is to develop a simple algorithm to convert a multi-layered snowpack with a large number of layers

(20-50) into a simplified snowpack (2-3 layers) that preserves its snow mass and scattering behavior, thereby improving the65

computational cost with minimal impact on performance. The method should preserve backscatter within 1 dB, since it is the

calibration uncertainty of most synthetic aperture radar (Schmidt et al., 2018). To evaluate our method, we test it on multi-

layered Crocus simulations at 11 sites across various snow climates over multiple seasons. From the 50-layer simulations

(maximum layering), we compare various methods to obtain a "radar equivalent" snowpack by evaluating differences in snow

mass and simulated backscatter using the Snow Microwave Radiative Transfer Model (SMRT, Picard et al., 2018).70

2 Methods

2.1 Study Site and Data

A total of 11 sites were selected to cover a wide range of snowpack conditions and climates, and meteorological forcing and

evaluation datasets were previously published. Amongst the 11 sites, 6 are in mountain environments (Col de Porte, Kühtai and

Weissfluhjoch in the European Alps, Reynolds Mountain, Senator Beck and Swamp Angel are in the Western USA); 2 are in75

tundra environments (Bylot and Trail Valley Creek in the Canadian high Arctic), 2 are in taiga environments (Umiujaq in the

Canadian Boreal Forest and Sodankylä in the Finnish Boreal forest) and 1 is in a Maritime climate (Sapporo in Japan). Details

of each dataset are shown in Table 1.

Table 1. Overview of sites used to evaluate Crocus snowpack layering reduction methods.

Site Code Source Time Period Lat. (◦) Lon. (◦) Elev. (m) Country Snow cover

Bylot BYL Domine et al. (2021) 2014-2019 73.15 -80.00 22 Canada Arctic

Col de Porte CDP Menard and Essery (2019) 1994-2014 45.30 5.77 1325 France Alpine

Kühtai KUT Krajči et al. (2017) 1990-2013 47.21 11.01 1920 Austria Alpine

Reynolds Mountain RME Menard and Essery (2019) 1988-2008 43.19 -116.78 2060 USA Alpine

Sapporo SAP Menard and Essery (2019) 2005-2015 43.08 141.34 15 Japan Maritime

Senator Beck SNB Menard and Essery (2019) 2005-2015 37.91 -107.73 3714 USA Alpine

Sodankylä SOD Menard and Essery (2019) 2007-2014 67.37 26.93 179 Finland Taïga

Swamp Angel SWA Menard and Essery (2019) 2005-2015 37.91 -107.71 3371 USA Alpine

Trail Valley Creek TVC Tutton et al. (2024) 2013-2018 68.75 -133.5 91 Canada Arctic

Umiujaq UMQ Lackner et al. (2023) 2012-2020 56.56 -76.48 130 Canada Taïga

Weissfluhjoch WFJ Menard and Essery (2019) 1996-2016 46.83 9.81 2536 Switzerland Alpine
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2.2 SVS2-CROCUS

The snowpack model Crocus (Brun et al., 1992; Lafaysse et al., 2017; Vionnet et al., 2012) was used to simulate the evolution80

of the snowpack properties, i.e. number of layers, and thickness, density, liquid water content, temperature, and specific surface

area for each layer specifically. The version of Crocus used in this study is implemented into the Soil, Vegetation and Snow

version 2 (SVS-2) land surface scheme (Garnaud et al., 2019; Vionnet et al., 2022; Woolley et al., 2024). The snowpack model

is coupled to a multi-layered soil model that includes soil freezing and thawing (Boone et al., 2000). SVS-2 is an improvement

to the SVS land surface scheme (Alavi et al., 2016; Husain et al., 2016; Leonardini et al., 2021) used at Environment and85

Climate Change Canada for hydrological prediction. For the simulations at the Arctic sites (Bylot and Trail Valley Creek), the

Arctic version of Crocus (Royer et al., 2021b; Woolley et al., 2024) was used. This version improves the simulation of the wind

slab properties and includes the impact of basal vegetation on the snowpack properties.

At each site, simulations were run with a maximum number of 50 snow layers. Table A1 summarizes the options of Crocus

for each physical process and the snow aging parameters (Gaillard et al., 2024) used for the simulations at the different sites.90

At the two arctic sites, the polar vegetation height was set to 10 cm (Woolley et al., 2024) and for taiga sites, it was set to 50

cm and 20 cm for the UMQ and SOD respectively. The model uses a time step of 10 minutes and the meteorological forcing is

provided hourly.

2.3 Snow Microwave Radiative Transfer (SMRT)

SMRT is a multi-layer snow radiative transfer model that can compute backscatter in the microwave range. It considers each95

snow layer as a homogeneous random medium composed of air and ice and solves the radiative transfer equation for a multi-

layered snowpack (Picard et al., 2018). Each snow layer is represented by temperature, density, thickness and microstructure

parameters, all of which are provided by Crocus. One key component of SMRT is determining the scattering and absorption

coefficients (κs, κa) of each layer. These coefficients dictate the radar scattering and absorbing behavior of the medium (snow).

For snow, this generally implies that scattering (κs) dominates for dry snow, and absorption (κa) dominates for wet snow. The100

extinction coefficient (κe = κs +κa) characterizes the interaction within the medium by accounting for both coefficients and is

a key parameter of the snow layer reduction algorithm presented in this paper. Multiple formulations of the coefficients can be

used depending on the electromagnetic model, but here we focus on the Improved Born approximation (IBA, Mätzler, 1998)

implemented in SMRT. The choice of the electromagnetic model does not influence the final result of this method, only the

way the κe is calculated.105

The phase function of snow in the 1-2 frame (e.g. ice particles (medium 2) in an air matrix (medium 1)) is defined by:

p1-2 frame(ϑ,φ) = ϕi(1−ϕi)(ϵ2− ϵ1)2 Y2(ϵ2,ϵ1)k4
0 M(|kd|)sin2 χ (1)

where k0 is the wavenumber in free space, ϕi is the volume fraction of the scattering constituent (ice) described ϕi = ρsnow/ρice

with ρsnow the snow density (kg m−3) and ρice the pure ice density (kg m−3), ϵ is the relative permittivity of both media and χ

is the polarisation angle define from sin2 χ = 1− sin2 ϑcos2 φ for the scattering (ϑ) and the incident (φ) direction. The mean110
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square field ratio (Y2) accounts for the difference in the electric field between the background and scattering medium (see

Picard et al. (2018) for equations). The microstructure term (M(|kd|)) is defined by the Fourier transform of the correlation

function of the medium (ACF). Here, we used the exponential model (Mätzler, 2002)) where the ACF is characterized by

a correlation length (lmw) estimated by the specific surface area (SSA) and the snow density. More details on the ACF and

M(|kd|) can be found in Picard et al. (2018).115

From the phase function, we define p11 = p1-2 frame(ϑ,φ = π/2) and p22 = p1-2 frame(ϑ,φ = π) . The κs can be calculated

from the following equation:

κs = π

π∫

0

[ p11(ϑ) + p22(ϑ) ]dϑ (2)

where p11 = p1-2 frame(ϑ,φ = π/2) and p22 = p1-2 frame(ϑ,φ = π) are defined from the phase function. The κa is defined by:

κa = 2k0ℑ(
√

ϵeff) (3)120

where ϵeff is the effective permittivity using the Polden-van Santen general mixing formula (Shivola, 1999).

In addition to the simulations using the full number of Crocus snow layers, SMRT was also used to simulate the backscatter

of the snowpack to evaluate our averaging methods (Section 2.4). Crocus provides the layered snow density and SSA to estimate

the microwave grain size with :

lmw = Klp = K
4(1−ϕi)
ρice SSA

(4)125

where K is the polydispersity of the microstructure. The polydispersity was assumed to be 1 for all grain types in this experi-

ment but is presented in the equation because it strongly influences scattering (Picard et al., 2022). Future work could include

a K for different Crocus grain types.

Simulations were performed first at the high Ku-band (17.25GHz), the TSMM frequency that is the most sensitive to volume

scattering (Derksen et al., 2021) but later the frequency range, X to Ka-band, was also investigated. VV polarisation was the130

focus since HH will not be measured as part of TSMM (Derksen et al., 2021). A simple absorber for the background was used,

i.e. no scattering from the ground is assumed, to only obtain the snow contribution to the modeled backscatter. The incident

angle was set to 35 ◦ as a typical median value for SAR sensors such as TSMM. The snow layer interfaces were assumed to be

flat.

2.4 Algorithm135

The algorithm aims at reducing the number of snow layers to 2 or 3 relevant layers while preserving SWE and scattering

behavior with respect to the reference snowpack (defined as the 50-layer Crocus simulations). The main goal is to develop

a robust method to aggregate and average snow layer properties in a microwave SWE retrieval context. Figure 1 shows the

general methodology and the different explored options to obtain a radar equivalent snowpack with reduced layers.

The grouping of layers was done in two ways. The first method (referred to equal thickness) aggregated layers based on the140

normalized height (hnorm). For an averaged two-layer snowpack, the top half of the snowpack, i.e all the layers with hnorm >

5

https://doi.org/10.5194/egusphere-2024-3169
Preprint. Discussion started: 25 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Schematic of the methodology. Necessary steps in the snowpack simplification are shown vertically and the different options

(grouping and averaging) are shown horizontally where hnorm is the normalized height and hi is the layer thickness. The 4 snow properties

considered are: thickness, density, temperature and SSA.

0.5 would be aggregated into a first layer and the bottom half (layer with hnorm ≤ 0.5) into the second layer. This method is a

basic way to obtain an equivalent snowpack with layers of equal thickness. The 1-layer was created by grouping all layers into

1 group. The second method was based on K-means clustering (Ikotun et al., 2023), which finds groups based on the parameter

space. In our case, the parameter space is the extinction coefficient (κe) of each layer and the respective layer height in the145

snowpack. Layers with strong extinction coefficients (high κe) will have strong interaction with the incident wave. A layer with

a low extinction coefficient will be practically transparent to the incident wave. This method creates groups of layers based on

their microwave properties (κe) and their location in the snowpack.

Once the grouping of layers is done with the K-means method, the thickness of each group (hgroup) is calculated by the

sum of all the individual layer thicknesses (hi) within that group. For both grouping methods, the snowpack layer properties150
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(density, temperature and SSA) were averaged. We investigated three different ways of averaging: 1) a weighted average based

on hi (referred to as hi) and 2) a weighted average based on the optical thickness (τ = κe hi) (Zhu et al., 2021) for SSA

and temperature and hi for the density. Averaging the density using a weighted average with hi preserves SWE since SWE is

implicit in the weighted average equation. The average density (ρ̄) of a snowpack with multiple layer thicknesses (hi) can be

defined by:155

ρ̄ =
∑n

i=1 hiρi∑n
i=1 hi

(5)

If we replace
∑n

i=1 hi by the thickness of the whole snowpack hn and rearrange equation 5, the SWE equation is obtained:
n∑

i=1

hiρi = hnρ̄ = SWE (6)

The backscatter was estimated for the reference simulation (maximum of layering from SVS2) and 5 other grouping methods

referred to as 1-layer, 2-equal and 3-equal with the equal thickness layering method and 2-Kmeans and 3-Kmeans layers using160

the K-means grouping. The root mean squared error (RMSE) with the reference simulation is used to evaluate each method.

Backscatter simulations using transparent internal layers were used to estimate the influence of all the interfaces in the

multi-layered snowpack configurations. The experiment referred to as transparent was done by leaving the surface to the

default SMRT interface (flat Fresnel) and changing all internal interfaces to transparent which yields no reflection and full

transmission of the radar signal at each interface. The difference in backscatter was also estimated between the reference165

simulation and the transparent simulation. This quantifies the effect of the reflections at each snow layer interface because it is

known that the backscatter in snow comes from both volume scattering and reflection at these interfaces. For example, when

reducing the number of layers from 50 to 2, 48 interfaces are removed from the simulations. This reduces the overall internal

layer reflections of the signal in the snowpack because of the reflected signal at each interface. However, if the permittivity

contrast between two layers is low, then the reflection will be negligible.170

3 Results

3.1 Grouping and averaging methods

Figure 2 presents examples of the 2-layer equivalent snowpacks (first column) and 3-layer equivalent snowpacks (second

column) derived from the two methods (equal thickness and K-means) for two different dates at WFJ. The equal thickness

method is shown by the dashed lines and the K-means method is shown by the colored symbols. The K-means method groups175

together layers with similar scattering, whereas the equal thickness method creates transitions that are not always consistent

with transitions in scattering. For some vertical snow profiles, transitions between equal thickness layers can coincidentally

occur with a change in κe (for example in Figure 2) but the K-means consistently identifies changes in κe. One particular

case of K-means grouping is seen in Figure 2f, where the classification of certain layers are mixed (groups 1 and 2). The two

layers classified as 2 at approximately 50 cm depth were "added" to the bottom layer. The effect of this particular grouping is180

discussed later in the section.
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Figure 2. Snowpack properties (scattering, density, SSA and grain type) from Crocus and SMRT simulations at WFJ for the winter 2013-

2014. The first row is 2013-12-08 and the second row is 2014-02-09. The grouping using the K-mean cluster is shown by the colors in

(a,b,e,f). The hnorm used for equal thickness grouping is also shown by the dashed lines. The colors and nomenclature for the grain types

follow the international classification for seasonal snow on the ground (Fierz et al., 2009).

The grouping and averaging methods were investigated first at three different sites that represent alpine, maritime and

arctic snowpacks. Figure 3 shows the simulated backscatter with SMRT for the 2013-2014 winter season. Not surprisingly,

aggregating the layers into a 1-layer snowpack with averaging using the hi method (Figure 1) resulted in the highest overall

bias. Increasing the number of layers (1 to 3) reduced the bias with the reference simulation as well as using a K-means185

grouping with respect to equal thickness grouping. The backscatter of the arctic snowpack at TVC is well represented for most

grouping methods. Using a K-means is not always better than equal grouping. For some dates, the K-means falls closely to the

equal grouping (Figure 2) and the resulting backscatter is similar. Averaging using the keD method (Figure 1) was superior to

averaging with hi to preserve the backscatter.

To better understand the performance of the K-means approach, Figure 4 shows biases for the 3-equal-hi and 3-Kmeans-hi190

layers as a function of snow properties. The 3-equal-hi method shows increased negative biases for low density, and high SSA

at the WFJ and SAP sites compared to biases for the Kmeans method that were smaller and constant across density and SSA.

These layers have less scattering and low SWE (low density and high SSA) with respect to other snow layers supporting the
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Figure 3. Backscatter time series for the reference simulation and different grouping and averaging methods. The backscatter (first row) and

the biases (second row) with respect to the reference simulation for the season 2013-2014 are shown.

idea that those snow layers were better handled by the K-means grouping because of the ability to identify and group these

transparent layers. Biases for both methods tend to increase as the snow layers were warmer which can be linked to changes195

in backscatter from the interface because of the contrast in the permittivity of warmer layers (liquid water). For TVC, biases

remain relatively small (< 1 dB) for the majority of the season because the SWE is fairly small ( < 100 mm), and changes in

stratigraphy are less frequent due to the lack of precipitation. Arctic snowpacks also tend to have a simple stratigraphy, well

represented by a 2-layer snowpack (Vargel et al., 2020; Royer et al., 2021a).

Analysis of all sites and seasons (Table 2) produces results consistent with the example cases shown in Figure 3. The higher200

number of layers and grouping with K-means generally had better results in terms of RMSE and R2 (Table 2). Again, the

3-Kmeans-keD method is the most promising method to preserve SWE and the scattering behavior because the RMSE for all

sites is the lowest (RMSE = 0.5 dB and R2 = 0.98). TVC, KUT and SWA had the highest RMSE (0.7-0.8 dB) compared to

BYL, CDP and UMQ which had the lowest RMSE (0.3-0.4 dB). There is no pattern with respect to snow climate (alpine and

arctic) and performance of the 3-Kmeans-keD method. The 2-Kmeans-keD method produced the second-best overall RMSE205
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Figure 4. Box plot of bias in backscatter as a function of mean density, SSA and temperature per simulation for the sites WFJ, SAP and TVC

for the 2013-2014 season.

of 0.7 dB and R2 = 0.98 which achieved similar performance to the 3-Kmeans-keD model. This indicates that the K-means is

less important in terms of preserving the microwave behavior than the keD averaging of the snow properties.

Layer averaging using a weight defined by the layer thickness is not sufficient to produce a backscatter bias under 1 dB.

Averaging using τ = κe hi reduced the backscatter bias under 1 dB. This method was effective in preserving the backscatter

because this averaging approach puts more weight on strong scattering layers due to κe. The thickness is also a good indicator210

of scattering because a thicker layer will scatter more than a thin layer with the same scattering properties. This is an effective

way to average snow properties and preserve the scattering behavior of the snowpack. The keD averaging method seems the

most promising method to preserve the scattering behavior.

Transparent layer simulations yielded on average an RMSE of 0.3 dB from full layering simulations (Table 2). This indi-

cates that on average the internal layering contributions are around 0.3 dB based on the number of layers from SVS2-Crocus215

simulations and the different sites and seasons. For the arctic sites (BYL, TVC and UMQ), the RMSE from the 3-Kmeans-

keD method and the transparent experiment is the same, indicating that the snowpack reduction method is almost perfectly

preserving the scattering behavior of the snowpack with the exception of the layer contributions. For the other sites especially
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Table 2. Overview of the RMSE and correlation coefficient (R2) of the estimated backscatter for the different grouping and averaging

methods for all sites and all seasons.

Backscatter RMSE (dB), R2

Site 1-layer 2-equal
2-Kmeans

keD
3-equal

3-equal

keD
3-Kmeans

3-Kmeans

keD
transparent

BYL 7.6, 0.39 1.8, 0.96 0.7, 0.99 1.4, 0.97 0.6, 0.99 0.6, 0.99 0.4, 0.99 0.4, 0.99

CDP 6.2, 0.64 3.5, 0.84 0.7, 0.99 2.5, 0.90 0.8, 0.98 0.7, 0.98 0.5, 0.99 0.3, 0.99

KUT 5.0, 0.65 2.5, 0.86 0.9, 0.96 1.9, 0.91 0.8, 0.97 1.1, 0.95 0.7, 0.97 0.3, 0.99

RME 4.7, 0.75 2.9, 0.87 0.7, 0.98 2.2, 0.91 0.7, 0.98 1.2, 0.96 0.5, 0.99 0.3, 0.99

SAP 4.4, 0.72 2.4, 0.88 0.4, 0.98 1.9, 0.91 0.5, 0.98 0.7, 0.98 0.3, 0.99 0.3, 0.99

SNB 2.7, 0.79 1.9, 0.89 0.7, 0.96 1.7, 0.92 0.6, 0.98 1.4, 0.93 0.5, 0.98 0.2, 0.99

SOD 5.5, 0.55 2.0, 0.91 0.6, 0.99 1.4, 0.95 0.6, 0.99 0.6, 0.99 0.4, 0.99 0.3, 0.99

SWA 4.1, 0.72 2.9, 0.80 0.9, 0.95 2.4, 0.84 0.7, 0.97 1.7, 0.90 0.7, 0.97 0.3, 0.99

TVC 9.0, 0.41 3.2, 0.71 0.9, 0.99 1.6, 0.91 0.7, 0.99 0.4, 0.99 0.4, 0.99 0.4, 0.99

UMQ 3.0, 0.78 2.0, 0.90 0.5, 0.99 1.7, 0.91 0.7, 0.98 0.7, 0.99 0.3, 0.99 0.2, 0.99

UFJ 4.0, 0.72 2.9, 0.84 0.9, 0.95 2.4, 0.88 0.7, 0.97 1.6, 0.92 0.7, 0.97 0.3, 0.99

All 5.1, 0.65 2.5, 0.86 0.7 , 0.97 1.9, 0.91 0.7, 0.98 1.0, 0.96 0.5, 0.99 0.3, 0.99

alpine sites (KUT, SWA and UFJ), the RMSE of 0.7 dB for the 3-Kmeans-keD method is larger than the layering contribution,

indicating there are still some effects from the reduction method that are not accounted for.220

The issue raised in Figure 2 about mixed layers between groups can be further discussed with the results of the transparent

layering. The two layers at 50 cm in Figure 2f that were grouped with the layers at the bottom with 3-Kmeans do not affect the

overall scattering effect of the snowpack since they will be accounted for in the weighted average using the optical thickness

whether they are in group 0 or 1. The only effect was the vertical change in permittivity that was modified, creating a reduced

reflection of the signal on the internal layers since the change in permittivity was less pronounced. However, the reflection of225

the internal layers was minimal (≈ 0.3 dB) so the overall effect of this special grouping case was minimal.

The simulations were performed earlier at VV polarisation since it will be the primary polarisation of TSMM but similar

simulations were also done at HH-polarisation (not shown here) and yielded a higher RMSE of 0.1 dB to VV-polarisation.

3.2 Frequency dependence and implications for SWE retrievals

A frequency analysis was done from X-band to Ka-band (10 to 40 GHz) where volume scattering is present and includes the230

frequency used in this study (17.25 GHz), which is the upper frequency chosen for the Terrestrial Snow Mass Mission (Derksen

et al., 2021). The errors between simulations with full layering and the 3-Kmeans-keD were similar to the values reported in

Table 2 for frequency > 10 GHz, up to 30 GHz. The performance of the Kmeans-keD method is based on κe which is frequency

dependent. This allows us to obtain similar results when frequency (and sensitivity to volume scattering) increases. Although

differences can be noted between sites, our method preserved similar performances from 10 GHz to 30 GHz. Under the 10235
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Figure 5. Backscatter simulations of 3-equal-hi and 3-Kmeans-keD methods as a function of frequency

GHz, a different simulation setup would be needed since the soil contribution will dominate. For frequencies > 40 Ghz, the

method based on κe became similar to the 3-equal-hi because the backscatter comes from the snow surface as the frequency

increases and the penetration depth decreases.

3.3 Computation efficiency

Computation time was also estimated for each method to evaluate the gain in computational efficiency. The reduction in240

computation time of the backscatter for reducing a complex multilayered snowpack (50 to 10 layers) to 2 or 3 layers is shown

in Table 3. The largest reduction in computation time was from 50 layers to 2 layers with 87% and the smallest was from 10

to 3 layers with 39%. Even the smallest reduction is considerable and motivates this work in the context of operational SWE

retrieval implementations, where these computations have to be done at large scales.

4 Conclusions245

In this paper, we showed the performances of different methods to simplify complex multilayered snowpacks to less than or

equal to 3 layers while preserving their microwave scattering behavior and bulk snow mass. We evaluated our method using

simulated snow properties generated by the Crocus snowpack scheme at 11 sites which were input to the SMRT model to

calculate backscatter at 17.25 GHz and VV polarization. This emulates potential future measurements from the Canadian

Terrestrial Snow Mass Mission. The method was a K-means clustering algorithm that groups the snow layers based on the250

extinction coefficient and the height of the layer in the snowpack. Then, a weighted average using the extinction coefficient

and the thickness was applied to the snow properties except for density for which snow layer thickness was used as a weight
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Table 3. Computation time of backscatter with SMRT and grouping methods. Results in various configurations of the number of layers are

shown here. The grouping times for the Kmeans method are also shown.

Reduction in σ0 computation time

Layering σ0 computation time to 3 layers to 2 layers

50 layers 0.90 s 83 % 87 %

40 layers 0.80 s 81 % 85 %

30 layers 0.67 s 78 % 82 %

20 layers 0.46 s 68 % 75 %

10 layers 0.25 s 39 % 53 %

Grouping σ0 computation time Grouping computation time

3-Kmeans 0.15 s 0.04 s

2-Kmeans 0.12 s 0.03 s

to conserve SWE. Grouping the original 50 snow layers into 3 layers using this method reproduced the snowpack backscatter

of the original multi-layered snowpacks with an overall RMSE = 0.5 dB and R2 = 0.98. Using this methodology in SWE

retrieval algorithms allows snowpack simplification without impacting the scattering behavior or compromising the geophysical255

properties. Reduction in mathematical complexity of SWE cost function and reduction in computation up to 80% can be gained

by using fewer layers in SWE retrievals.

We proposed a simple method that can also be applied to other fields of study that need to simplify a multilayered snowpack

without compromising on the electromagnetic properties of snow. For the TSMM workflow, this algorithm allows to simplify

the modeled snowpack from the SVS2-Crocus to the SWE retrieval. It can also be used in the assimilation schemes to link the260

posterior or "optimized" snowpack produced by the SWE retrieval. For these reasons, this method offers an effective way to

link physical snow modeling and snow radiative transfer modeling together in SWE retrievals.
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Appendix A

Table A1. Crocus schemes and parameters used at the different sites. The meaning of the Crocus schemes can be found in Lafaysse et al.

(2017) and Woolley et al. (2024). The different options are defined in their respective paper; B21: modified C13 from Carmagnola et al.

(2014), B92: Brun et al. (1992), R21: Royer et al. (2021b), V12: Vionnet et al. (2012) and Y81: Yen (1981). The γ parameter represents the

snow ageing coefficient and was determined at the sites in (Gaillard et al., 2024), except for Reynolds Mountain for which the default value

of 60 days was used.

Site Metamorphism Radiation Snowfall density Thermal conductivity Water percolation Compaction γ (d)

Bylot B21 B92 R21 Y81 B92 R21 900

Col de Porte B21 B92 V12 Y81 B92 B92 20

Kühtai B21 B92 V12 Y81 B92 B92 10

Reynolds Mountain B21 B92 V12 Y81 B92 B92 60

Sapporo B21 B92 V12 Y81 B92 B92 40

Senator Beck B21 B92 V12 Y81 B92 B92 60

Sodankylä B21 B92 R21 Y81 B92 R21 150

Swamp Angel B21 B92 V12 Y81 B92 B92 60

Trail Valley Creek B21 B92 R21 Y81 B92 R21 900

Umiujaq B21 B92 R21 Y81 B92 R21 200

Weissfluhjoch B21 B92 V12 Y81 B92 B92 200
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