
1 

 

Evaluating the accuracy of downwind methods for quantifying point source emissions  1 

Mercy Mbua*,1, Stuart N. Riddick1, Elijah Kiplimo1 and Daniel Zimmerle1 2 

 1The Energy Institute, Colorado State University, CO, 80524, Fort Collins, USA 3 

*Correspondence to: Mercy Mbua (Mercy.Mbua@colostate.edu) 4 

Abstract. The accurate reporting of methane (CH4) emissions from point sources, such as fugitive leaks from oil and 5 

gas infrastructure, is important for evaluating climate change impacts, assessing CH4 fees for regulatory programs, 6 

and validating methane intensity in differentiated gas programs. Currently, there are disagreements between emissions 7 

reported by different quantification techniques for the same sources. It has been suggested that downwind CH4 8 

quantification methods using CH4 measurements on the fence-line of production facilities could be used to generate 9 

emission estimates from oil and gas operations at the site level, but it is currently unclear how accurate the quantified 10 

emissions are. To investigate model accuracy, this study uses fence-line simulated data collected during controlled 11 

release experiments as input for eddy covariance, aerodynamic flux gradient and the Gaussian plume inverse methods 12 

in a range of atmospheric conditions. The results show that both the eddy covariance and aerodynamic flux gradient 13 

methods underestimated emissions in all experiments.  Although calculated emissions had significant uncertainty, the 14 

Gaussian plume inversion method performed better.  The uncertainty was found to have no significant correlation 15 

with most measurement variables (i.e. downwind measurement distance, wind speed, atmospheric stability, or 16 

emission height), which indicates that the Gaussian method can randomly either underestimate or overestimate 17 

emissions. For eddy covariance, downwind measurement distance and percent error had negative correlation 18 

indicating that far away emissions sources were likely underestimated or be undetected. The study concludes that 19 

using fence-line measurement data as input to eddy covariance, aerodynamic flux gradient or Gaussian plume inverse 20 

method to quantify CH4 emissions from an oil and gas production site is unlikely to generate representative emission 21 

estimates.  22 

1 Introduction 23 

Methane (CH4), the primary component of natural gas (NG), is a potent greenhouse gas with a global warming 24 

potential of 27 carbon dioxide (CO2) equivalent over 100 years (US EPA, 2016). Methane emissions reduction is a 25 

key part of global initiatives to reduce climate change (Chung, 2021). The 2021 Global Methane Assessment by the 26 

Climate and Clean Air Coalitions (CCAC, 2024) and the United Nations Environment Programme (UN Environment 27 

Programme, 2024) state that reducing CH4 emissions from anthropogenic sources by 45% in 2030 would result in 28 

avoiding a global atmospheric temperature increase of 0.3°C in 2045 (Chung, 2021). Such measures would align with 29 

the Paris Agreement goal of limiting global temperature rise to 1.5˚C by 2030 (United Nations Climate Change, 2015). 30 

The US is one of the countries that reports its total greenhouse gas emissions to the Intergovernmental Panel on 31 

Climate Change as part of the Paris Agreement (United Nations Climate Change, 2015).  32 

Currently, the amount of CH4 emitted from US oil and gas production is calculated by the US Environmental 33 

Protection Agency (EPA) using a bottom-up inventory approach. The inventory approach multiplies emission factors 34 
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(CH4 emissions per equipment e.g., separator or emissions per event e.g., liquid unloading) by activity factors (total 35 

number of pieces of equipment or events (OAR US EPA, 2023)).  This quantification approach has several 36 

shortcomings, including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which 37 

practically are not independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin 38 

(Riddick et al., 2024a); 2. Some emission factors used are outdated (Riddick et al., 2024b) and others do not account 39 

for the temporal and spatial variation in emissions (Riddick and Mauzerall, 2023); and 3. Emission factors do not 40 

account for the long-tail distributions in emissions distributions (Riddick et al., 2024b). Recently, mechanistic models, 41 

such as the Colorado State University’s Mechanistic Air Emissions Simulator (MAES), have been developed to 42 

address shortcomings in bottom-up CH4 reporting (Colorado State University, 2021) but these still depend on direct 43 

measurements to inform emission factors.  44 

Top-down methods, including using aircraft and satellites, can also be used to infer emissions. For example, Carbon 45 

Mapper satellites can locate and quantify CH4 emissions using absorption spectra taken from space (Carbon Mapper, 46 

2024). However, these survey methods only quantify emissions over a very short period of time (< 10 s) and 47 

observations are typically made during the day which can often coincide with maintenance activities that can bias 48 

emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). Additionally, different top-down 49 

technologies measuring the same source have disagreed in their reported emissions which has called into question the 50 

credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, ensuring accuracy in models and 51 

technologies used in CH4 emissions quantification has been a complex issue.  52 

The accurate reporting of CH4 from fugitive emissions at oil and gas production sites is important for evaluating 53 

potential effects on climate change, correctly assessing CH4 fees on companies as part of the Methane Emissions 54 

Reduction Program created under the 2022 Inflation Reduction Act (OA US EPA, 2023), and validating CH4 content 55 

of reported differentiated gas composition where NG companies differentiate their market products based on the 56 

environmental impact (CO2EFFICIENT, 2022). Direct measurements have been recommended to augment/update 57 

emissions factors used in bottom-up inventories and for better understanding temporal/spatial variability of emissions 58 

(Riddick et al., 2024). Downwind methods are widely used to directly measure CH4 emissions from area and point 59 

sources at site/basin levels due to their low cost and wide coverage within a short time (Caulton et al., 2018; 60 

Heimburger et al., 2017; Riddick et al., 2020, 2022a; Sonderfeld et al., 2017). Commonly used downwind 61 

quantification methods include the Gaussian plume inversion method, eddy covariance, backward Lagrangian 62 

stochastic models, aerodynamic flux gradient, mass balance method, the EPA Other Test Method (OTM 33) and the 63 

Gaussian puff modelling approach (Denmead, 2008; Edie et al., 2020; Foster-Wittig et al., 2015; Jia et al., 2023; Kamp 64 

et al., 2020; Nemitz et al., 2018; Shaw et al., 2021).  65 

Currently, fence-line methods are used to detect, localize and quantify emissions. This approach uses point sensors 66 

fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds a 67 

threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling 68 

framework, usually based on a Gaussian plume approach (Bell et al., 2023; Day et al., 2024; Jia et al., 2023; Riddick 69 

et al., 2022a). The detection and localization of simulated fugitive emission have been successful, with controlled 70 

release testing against point sensors and scanning/imaging solutions reporting a 90% probability of detection for 71 
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emission of between 3.9 and 18.2 kg CH4 h-1 (Ilonze et al., 2024). Major shortcomings have been identified using a 72 

fence-line approach with quantified emissions reported at between a factor of 0.2 to 42 times for emissions between 73 

0.1 and 1 kg CH4 h-1, and between 0.08 and 18 times  for emissions greater than 1 kg CH4 h-1 (Ilonze et al., 2024). As 74 

a result, questions have arisen if other approaches, such as the eddy covariance or aerodynamic flux gradient would 75 

generate more accurate results.  These methods have been suggested as they have been used to quantify emissions 76 

from other sectors, i.e. agriculture (Denmead, 2008; Morin, 2019) and landfills (Xu et al., 2014), have been used to 77 

quantify emissions in large downwind areas (Vogel et al., 2024), and quantification does not require assumptions 78 

made on downwind dispersion coefficients or micrometeorology that are often required for dispersion modelling 79 

(Denmead, 2008).    80 

Due to interest in using a subset of these methods to quantify emissions from oil and production sites, this study will 81 

evaluate the quantification accuracy of the eddy covariance, aerodynamic flux gradient, and Gaussian plume inverse 82 

methods. Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the 83 

covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector 84 

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1A; Morin, 2019). It is typically implemented over 85 

long homogenous fetches where eddy mixing scale is a small fraction of the distance from the site providing more 86 

predictable vertical transport. The aerodynamic flux gradient method quantifies CH4 emissions from a source by 87 

comparing CH4 concentrations at two heights (Figure 1B; Querino et al., 2011). The Gaussian Plume Inverse method 88 

calculates CH4 mole fraction at a point in space (x, y, z) as a function of the downwind distance, perpendicular distance 89 

(crosswind), mean wind speed and atmospheric stability (Jia et al., 2023; Riddick et al., 2022b).  These approaches 90 

were developed to quantify emissions from single-point or area emission sources and have not been tested against a 91 

controlled release to evaluate their quantification performance. The aerodynamic flux gradient and eddy covariance, 92 

for example, have been used to measure trace gas, e.g., nitrogen oxide and carbon dioxide, fluxes from large croplands 93 

(Kamp et al., 2020).  94 

   95 

Figure 1: Illustrations of eddy covariance (A) and flux gradient measurements (B) where CH4 is methane 96 
concentrations, w is the vertical wind speed, L is the Monin-Obukhov length (measure of atmospheric stability), and 97 
z is the measurement height. 98 

The Gaussian plume inversion method has been used to quantify emissions from oil and gas production sites (Caulton 99 

et al., 2014; Riddick et al., 2022b) but it assumes a homogenous, steady state flow, uniform dispersion of gas in an 100 
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open area free of obstructions (Hutchinson et al., 2017). Oil and gas emissions are characterized by intermittent, non-101 

uniform, single or multiple point source emissions, varying in leak size, location, height and distance between the 102 

source and sensor, and are typically in complex aerodynamic environments (i.e. not flat). The need for accurate CH4 103 

quantification and reporting necessitates evaluating the performance of these downwind quantification approaches in 104 

different controlled release and characterized meteorological conditions, to ensure credibility. 105 

This study aims to investigate the performance of these methods in quantifying emissions for known gas release rates 106 

and evaluating uncertainties that could result in incorrect CH4 reporting. Specifically, the study will (1) evaluate the 107 

overall quantification accuracy of eddy covariance, aerodynamic flux gradient, and the Gaussian plume inverse 108 

method in quantifying single-point and multi-point emissions that simulate oil and gas emissions, (2) evaluate the 109 

probability of these models quantifying within a defined range (i.e. ±30%), and (3) investigate which variables have 110 

the largest effect on quantification uncertainty. 111 

2 Methods 112 

2.1 Experimental Setup 113 

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions Technology 114 

Evaluation Center (METEC) in Fort Collins, CO, USA, between February 8, and March 27, 2024. The weather 115 

conditions during the test period were mostly sunny but precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 116 

7 cloudy and 1 foggy day; Supplementary Information Section 1). Wind speeds were between 0 and 25 m s-1 and 117 

temperatures ranged between -15 and +19 °C (Supplementary Information Section 1). Two stationary masts holding 118 

the instrumentation were setup on the North-West corner of METEC to take advantage of the predominant wind 119 

direction, avoid the largest aerodynamic obstructions and to simulate the likely placement of a fence line instrument 120 

(Figure 2; Day et al., 2024; Riddick et al., 2022a). Fenceline sensors are typically placed within the oil and gas 121 

perimeter (~30 m) (Riddick et al., 2022a). This study collected data for both close and far away releases, distances 122 

between 9 and 94 m.  123 
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124 
Figure 2:  Left pane: Map illustration of major pieces of equipment and the measurements points at Colorado State 125 
University’s Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  4S denotes the 126 
location of horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. 127 
1 is the measurement point for the Microportable Greenhouse Gas Analyzer and 2 is the measurement point for the 128 
Aeris analyzers. The red dotted lines with yellow numbers show the average distances (meters) between emission 129 
equipment and measurement points. Right pane: Image of METEC showing relative heights of equipment (“METEC 130 
| Colorado State University,” 2024).       131 
    132 
To calculate emissions using the aerodynamic flux gradient approach, two sampling inlets were mounted at 2 and 4 133 

m heights on mast 2 and connected to the inlets of two Aeris (Hayward, CA, USA) MIRA Ultra Series analyzers 134 

(Figure 3A). The analyzers were housed in a temperature-controlled unit and sampled at 5 Hz. Data from the 2 m 135 

analyzer were also used as input for the Gaussian Plume Inverse method analysis. To collect CH4 concentration data 136 

for the eddy covariance method, the inlet tubing of the ABB (Zurich, Switzerland) GLA131 Series Microportable 137 

Greenhouse Gas Analyzer (MGGA) sampling at 10 Hz was collocated with an R. M. Young (Traverse City, MI, USA) 138 

81000 sonic anemometer (R.M. Young Company, 2023) which measured micrometeorology at 10 Hz, 3 m height 139 

above ground level on mast 1 (Figure 3B).  140 
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 141 

 142 

Figure 3: A is the aerodynamic flux gradient and Gaussian plume inverse sampling points and B is the eddy covariance 143 
sampling point. The two sampling points are 9.4 m apart. 144 

2.2 Controlled Methane Releases 145 

At METEC, natural gas of known CH4 content was released from above-ground emission points attached to equipment 146 

typically present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged between 147 

0.005 kg h-1 and 8.5 kg h-1, and the release durations ranged from 10 seconds to 8 hours, simulating both fugitive and 148 

large emission events. The releases were run both during the day and night. The distance from the release points to 149 

the measurement points ranged between 9 and 94 m, and emission heights were between 0.4 and 6.9 m (Figure 2). 150 

Emission points simulate the realistic size and locations of typical emission from components such as the thief hatches, 151 

pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The releases included 152 

both single point emissions (single releases) and multi-point emission events (multiple simultaneous releases). 153 

2.3 Data Processing 154 

Methane concentrations data from the analyzers were aggregated with the meteorological data from the sonic 155 

anemometer. For aerodynamic flux gradient and Gaussian plume inverse method data were averaged to 1 Hz, for the 156 

eddy covariance the raw CH4 10 Hz data was used. The aggregated meteorological-concentration data were then 157 

merged with METEC’s release data and metadata, and event tables created. The meteorological-concentration-release 158 

event data were then separated into single-point and multi-point events. The event tables were split into 20-minute 159 

emission events for aerodynamic flux gradient and Gaussian plume inverse method as they are dependent on 160 

atmospheric stability that is typically determined in time durations of 15 to 30 minutes. Shorter duration measurements 161 

(i.e. <15 minutes) may not represent the mean atmospheric state, while longer periods (> 30 minutes) may cause errors 162 

especially during rapid transitions in weather conditions (Crenna, 2006). 30-minute events were used for eddy 163 
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covariance processing following published typical averaging times of eddy covariance measurements (Nemitz et al., 164 

2018), and its quantification is assumed to be independent of atmospheric stability (Denmead, 2008).  165 

For eddy covariance and aerodynamic flux gradient, Monin-Obukhov length (L) was calculated as the measure of 166 

atmospheric stability for every 20 or 30-minute time period, depending on the method, using output from the sonic 167 

anemometer. L was calculated from the surface friction velocity (u*, m s-1), mean potential temperature (Θ, K), von 168 

Kármán's constant (k, 0.41), gravitational acceleration (g, 9.8 m s-1) and the surface (kinematic) turbulent flux of 169 

sensible heat w’Θ’ (Eq. 1 and 2) (Kljun et al., 2015; Stull, 1988).  170 

𝐿 = −
𝑢∗

3𝛩

𝑘𝑣𝑔𝑤′𝛩′ 
 

(1) 

 171 

𝑢∗ = [(𝑢′𝑤′)
2

+ (𝑣′𝑤′)
2

]
1/4

 (2) 

  

For the Gaussian method, atmospheric stability was calculated based on the EPA standard operating procedure for 172 

point source Gaussian method (US EPA, 2013). The average local wind stability class (pgi) was calculated as the 173 

average of atmospheric stability determined using the standard deviation of the wind direction, and the stability 174 

calculated from turbulent intensity (ratio of the standard deviation of the wind speed to the average wind speed). The 175 

dispersion coefficients used for Gaussian quantification were extracted from the EPA operating procedure that 176 

provided coefficients for distances ranging from 1 to 200 m from source (US EPA, 2013).  177 

The wind direction (WD) and speed (WS) were calculated from the wind vectors u and v, based on the manufacturer’s 178 

configuration: +u values = wind from the east, +v values = wind from the north, and +w = updraft (Eq. 3 and 4).  179 

 180 

𝑊𝐷 = mod(90 − atan2d(𝑣, 𝑢), 360) (3) 

  

𝑊𝑆 =  √𝑢2 + 𝑣2  (4) 

  

The bearing of each release point to the masts' location was calculated using the latitudes and longitudes of the release 181 

points provided in the METEC metadata. This bearing was used to determine when the masts were downwind of the 182 

release points during the 20/30-minute period. The models' quantification accuracies were tested in three downwind 183 

ranges: ±10°, ±20°, and ±30°. A mast was considered downwind when the wind direction was within the specified 184 

range for 30% of the 20/30-minute duration. Results for the 20-degree range are presented in the Results section, while 185 

the 10- and 30-degree results are included in the Supplementary Material. The 30% threshold was chosen to ensure 186 

sufficient data points for evaluating the models. The data were categorized into single release single emission (single 187 

emission at the site and the mast was downwind of the release point), multi release single emission (multiple emissions 188 

at the site level, but the mast was downwind of a single release point), and multi release multi emission (multiple 189 

emissions at the site level, but the mast was downwind of more than one release point).  190 
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2.4 Methane Emissions Quantification 191 

2.4.1 Background Concentration 192 

Background concentration was determined for each of the sensors to calculate CH4 enhancement. Due to inherent 193 

variation in sensors that were used in this study, CH4 background was calculated for each sensor separately. CH4 194 

background was calculated as the average of the lowest 5th percentile of all continuous concentration readings (US 195 

EPA, 2013). Methane enhancement was determined as CH4 concentration measurement minus the background 196 

concentration measurement. 197 

2.4.2 Eddy Covariance 198 

Emissions were quantified using the eddy covariance method for all three emissions scenarios (single release single 199 

emission, multi release single emission and multi release multi emission). Methane flux (F, kg m-2 s-1) was calculated 200 

as the covariance between the vertical wind speed (w, m s-1) and CH4 enhancement (c, g m-3) over 30 minutes (Eq. 5; 201 

Denmead, 2008).  202 

𝐹 = 𝑤′𝑐′  (5) 

2.4.3 Aerodynamic Flux Gradient 203 

Aerodynamic flux gradient quantification was also tested in all three cases. Methane flux (F, kg m-2 s-1)  was calculated 204 

based on surface friction velocity (u*, m s-1), von Kármán's constant (kv, 0.41), the difference in the average CH4 205 

enhancement between the higher and lower height (g, m-3), natural log of the higher and lower height, and stability 206 

correction factors Ψ (Eq. 6; Denmead, 2008; Kamp et al., 2020).  207 

𝐹 =
𝑢∗𝑘𝑣(𝑐2−𝑐1)

𝐼𝑛 (
𝑧2 

𝑧1 
) − 𝛹𝑐,2 + 𝛹𝑐,1  

 
(6) 

2.4.4 Determining the Area of Vertical Flux Contribution 208 

Eddy covariance and aerodynamic flux gradient measurements at a point (0, 0, z) generate vertical fluxes in kg m-2 s-209 

1. In this study, these fluxes represent emissions from single-point or multi-point sources distributed over an area (m2). 210 

The Kljun et al. (2015) footprint model, was used to calculate footprint, and determine the area that contributed 80% 211 

(r = 80, 10 ≤ r ≤ 90) of the vertical flux measured by the eddy covariance and aerodynamic flux gradient systems. In 212 

previous studies, 80% footprints have been used due to the difficulty of reproducing 90% of the sources under neutral 213 

and stable conditions, where footprints tend to be long. The difference between the 80% and 90% contours is typically 214 

excessively large, despite minimal flux contributions in that area (Rey-Sanchez et al., 2022). The Kljun et al. (2015) 215 

model calculates footprint as a function of effective height (zm = sensor height (z) – displacement height  (m)), 216 

roughness length (zo, m) / mean wind speed (umean, m s-1 - used in this study), height of the boundary layer (h, m), 217 

Obukhov length (L, m), standard deviation of the lateral velocity (σv, m s-1), and friction velocity (u*, m s-1) (Kljun et 218 

al., 2015). The roughness sublayer in the model was set to 1 (footprint is calculated even if zm is within the roughness 219 

layer).  The area of vertical flux contribution was calculated as the polygon area covered by the contour. Due to the 220 

limitations of the flux footprint model for the measurement height and stability (Kljun et al., 2015), 20/30-minute files 221 

flagged by the footprint model when zm/L < -15.5, were excluded from further analysis. 222 
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2.4.5 Gaussian Plume Inverse Method 223 

The Gaussian plume inverse method was used to quantify single release single emission and multi release single 224 

emission. The quantified emission (Q, kg h-1) was calculated from the CH4 enhancement (X, g m-3), wind speed (u, m 225 

s-1), horizontal dispersion coefficient (σy, m), vertical dispersion coefficient (σz, m), crosswind distance (y, m), 226 

sampling height (z, m), emission height (hs, m), and the height of the boundary layer (Equation 7; Riddick et al., 227 

2022b). 228 

𝑋(𝑥, 𝑦, 𝑧) =
𝑄

2𝜋𝑢𝜎𝑦𝜎𝑧
𝑒

−
𝑦2

2𝜎𝑦
2

 (𝑒
−(𝑧−ℎ𝑠)2

2𝜎𝑧
2

+𝑒
−(𝑧+ℎ𝑠)2

2𝜎𝑧
2  

+ 𝑒
−(𝑧−2ℎ+ℎ𝑠)2

2𝜎𝑧
2  

+ 𝑒
−(𝑧+2ℎ−ℎ𝑠)2

2𝜎𝑧
2  

+ 𝑒
−(𝑧−2ℎ−ℎ𝑠)2

2𝜎𝑧
2  

) 
(7) 

3 Results 229 

3.1 Methane Emission Quantification  230 

3.1.1 Eddy Covariance 231 

For stable, continuous 30-minute release events, emissions calculated using the eddy covariance method were an 232 

underestimate for single release single emission, multi release single emission and multi release multi emission events 233 

(Figure 4). All data points were below the 1:1 line. A plot of the quantified emission versus controlled release (kg h-234 

1) did not show a linear correlation (R2 between 0.03 and 0.36), as all emissions were largely underestimated. The 235 

eddy covariance method reported emissions of between 0 and 0.5 kg h-1 overall, despite actual emissions being 236 

between 0 and about 7 kg h-1 (Figure 4). The underestimation was consistent across all downwind ranges, 10, 20 and 237 

30 degrees (Supplementary Material Section 2.1).  238 

 239 

Figure 4: Quantified emission calculated using the eddy covariance method. Left pane shows a scatter plot of 240 
quantified emission versus total controlled release for a single release at the site level and the mast was downwind of 241 
the release point. Center pane shows a scatter plot of quantified emission versus total controlled release for multiple 242 
releases at the site level, but the mast was downwind of a single release point. Right pane shows a scatter plot of 243 
quantified emission versus total controlled release for multiple releases at the site level and the mast was downwind 244 
of more than one release point. The dashed line represents the 1:1 line (points below the line were underestimated), 245 
the red line is the linear regression fit of the data, and n is the number of data points.  246 
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3.1.2 Aerodynamic Flux Gradient 247 

The aerodynamic flux gradient method also largely underestimated emissions for single release single emission, multi 248 

release single emission and multi release multi emission (Figure 5). A plot of quantified emission versus actual release 249 

did not show a linear relationship (R2 between 0.01 and 0.39), and most data points were below the 1:1 line (Figure 250 

5). The aerodynamic flux gradient quantified emissions were between 0 and about 1.6 kg h-1 despite actual emissions 251 

being between 0 and about 7 kg h -1 (Figure 5). The underestimation was also consistent across all downwind ranges, 252 

10, 20 and 30 degrees (Supplementary Material Section 2.2). 253 

 254 

Figure 5: Quantified emission calculated using the aerodynamic flux gradient method. Left pane shows a scatter plot 255 
of quantified emission versus total controlled release for a single release at the site level and the mast was downwind 256 
of the release point. Center pane shows a scatter plot of quantified emission versus total controlled release for 257 
multiple releases at the site level, but the mast was downwind of a single release point. Right pane shows a scatter 258 
plot of quantified emission versus total controlled release for multiple releases at the site level and the mast was 259 
downwind of more than one release point. The dashed line represents the 1:1 line (points below the line were 260 
underestimated), the red line is the linear regression fit of the data, and n is the number of data points. 261 

3.1.3 Gaussian Plume Inverse Method 262 

The Gaussian plume inverse method was tested for single release single emission and multi release single emission as 263 

the method is only used for single-point sources and preliminary results showed the method provided reasonable 264 

results within 20 degrees downwind range (Figure 6; Supplementary Material Section 1.3). For single release single 265 

emission, the method quantified emissions within a factor of 1.5 (Figure 6) and showed reasonably linear relationship 266 

(R2 of 0.65) (Figure 6). For multi release single emission, the gradient (m) of the linear regression was 0.95 and R2 of 267 

0.21.  This suggests that the linear relationship cannot be well explained due to a random scatter of calculated 268 

emissions. 269 
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 270 

Figure 6: Quantified emission calculated using the Gaussian plume inverse method. Left pane shows a scatter plot of 271 
quantified emission versus total controlled release for a single release at the site level and the mast was downwind of 272 
the release point. Right pane shows a scatter plot of quantified emission versus total controlled release for multiple 273 
releases at the site level, but the mast was downwind of a single release point. The dashed line represents the 1:1 line 274 
(points below the line were underestimated), the red line is the linear regression fit of the data, and n is the number 275 
of data points. 276 

3.2 Quantification within 30% Uncertainty 277 

3.2.1 Eddy Covariance 278 

The eddy covariance method showed a very low probability of quantifying emissions within 30% uncertainty (± 30%) 279 

(Figure 7). Only a single measurement in the multi release multi emission category showed an approximately 0.01 280 

probability of quantifying within 30% (Figure 7). The errors for eddy covariance were between -100 and -86% for 281 

single release single emission, between -100 and -82% for multi release single emission, and between -100 and about 282 

+30% for multi release multi emission (Figure 7). This shows that using eddy covariance to quantify single-point and 283 

multi-point emissions will largely underestimate emissions.  284 
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 285 

Figure 7: Cumulative distribution function (cdf) of percent errors for eddy covariance. Left pane shows a cdf plot for 286 
a single release at the site level and the mast was downwind of the release point. Center pane shows a cdf for 287 
multiple releases at the site level, but the mast was downwind of a single release point. Right pane shows a cdf for 288 
multiple releases at the site level and the mast was downwind of more than one release point. The area bounded by 289 
the red dotted line shows the region within ±30 uncertainty. 290 

3.2.2 Aerodynamic Flux Gradient 291 

The aerodynamic flux gradient also showed a very low probability of quantifying within 30% uncertainty (Figure 8). 292 

In the multi release single emission category results indicate a 0.02 probability of quantifying within 30% (Figure 8) 293 

of the true value. The errors for aerodynamic flux gradient were between -100 and -60% for single release single 294 

emission, between -100 and 0% for multi release single emission, and between -100 and -70% for multi release multi 295 

emission (Figure 8). These data show that the aerodynamic flux gradient will underestimate a point emission. Similar 296 

to eddy covariance, quantifying an emission within 30% uncertainty using aerodynamic flux gradient for point sources 297 

is highly unlikely. 298 

 299 

Figure 8: Cumulative distribution function (cdf) of percent errors for aerodynamic flux gradient method. Left pane 300 
shows a cdf plot for a single release at the site level and the mast was downwind of the release point. Center pane 301 
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shows a cdf for multiple releases at the site level, but the mast was downwind of a single release point. Right pane 302 
shows a cdf for multiple releases at the site level and the mast was downwind of more than one release point. The 303 
area bounded by the red dotted line shows the region within ±30 uncertainty. 304 

3.2.3 Gaussian Plume Inverse Method 305 

The Gaussian plume inverse method showed a higher probability of quantifying an emission correctly within 30% 306 

uncertainty than eddy covariance and aerodynamic flux gradient methods (Figure 9); ≈0.12 for the single release single 307 

emission and ≈0.25 for the multi release single emission categories (Figure 9). Percent errors of the Gaussian method 308 

calculated emissions are between -100 and +250% for single release single emission and between -100 and +800% 309 

for multi release single emission (Figure 9). This shows that even though the Gaussian method is designed for point 310 

sources, it is highly likely to miss, underestimate or overestimate an emission. Similar to eddy covariance and 311 

aerodynamic flux gradient, it is a challenge to correctly quantify a single emission event (single release or multiple 312 

release) using the Gaussian plume inverse method. 313 

 314 

Figure 9: Cumulative distribution function (cdf) of percent errors for the Gaussian plume inverse method. Left pane 315 
shows a cdf for a single release at the site level and the mast was downwind of the release point. Right pane shows a 316 
cdf for multiple releases at the site level, but the mast was downwind of a single release point. The area bounded by 317 
the red dotted line shows the region within ±30 uncertainty. 318 

3.3 Variables Affecting Quantification 319 

3.3.1 Eddy Covariance 320 

A Spearman’s rank correlation analysis of measurement and environmental variables (distance, controlled release, 321 

emission height, mean wind speed (WS), Monin-Obukhov length (L) and contribution area) to percent error in 322 

quantification as calculated by the eddy covariance method, showed that downwind distance had significant impact 323 

on quantification for the single release single emission (p = 4.73e-6), multi release single emission (p = 2.66e-4), and 324 

multi release multi emission (p=2.00e-3) categories for p < 0.01 significance level (Figure 10). The correlation 325 

coefficients were -0.74 for single release single emission, -0.31 for multi release single emission, and -0.30 for multi 326 

release multi emission. The negative correlation in all three categories suggests that the percent error became more 327 

negative as distance increased i.e., far away emission sources were likely underestimated or undetected. Also, 328 
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controlled release and emission height had significant impact on quantification only in the multi release single 329 

emission category, p = 2.00e-3 and 9.42e-3 respectively, (Figure 10) but this correlation was inconsistent across the 330 

three categories. Due to inconsistent correlation, and the errors being close to -100%, the results show that generally, 331 

quantifying emissions using an eddy covariance approach will not work for emissions typically observed at oil and 332 

gas production sites. 333 

 334 

Figure 10: Correlation analysis for eddy covariance in the three release categories. The area bounded by the red 335 
dotted line shows the region within ±30 uncertainty. 336 

3.3.2 Aerodynamic Flux Gradient 337 

A Spearman’s rank correlation analysis between the environmental and measurement variables and emissions 338 

calculated using the aerodynamic flux gradient method showed that only emission height in the single release single 339 

emission category had significant impact on model quantification (p = 1.79e-3) (Figure 11). The correlation between 340 

emission height and percent error in this category was -0.59 suggesting percent error became more negative as 341 

emission height increased. However, the correlation between emission height and percent error in the multi release 342 

single emission and multi release multi emission categories is approximately zero, meaning no correlation. Similar to 343 

eddy covariance, there is inconsistent correlation, and most errors are close to -100% (Figure 11). The results show 344 

that generally, quantifying emissions using an aerodynamic flux gradient approach will not work for emissions 345 

typically observed at oil and gas production sites. 346 
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 347 

Figure 11: Correlation analysis for aerodynamic flux gradient in the three release categories. The area bounded by 348 
the red dotted line shows the region within ±30 uncertainty. 349 

3.3.3 Gaussian Plume Inverse Method 350 

The Spearman’s rank correlation analysis between the emissions calculated using the Gaussian plume inverse method 351 

and measurement/environmental variables showed that only the mean wind speed and atmospheric stability had 352 

significant impact on the model quantification (Figure 12). In the single release single emission category, mean wind 353 

speed and percent error had a positive correlation (0.44, p = 2.74e-4) indicating that an increase in WS increased the 354 

model’s positive error. However, in the multi release single emission category, the correlation is opposite (a negative 355 

correlation of -0.21, p = 3.71e-3) (Figure 12).  Atmospheric stability had significant impact on model quantification 356 

in the multi release single emission category (p = 9.15e-5) but not in the single release single emission category (Figure 357 

12). The correlation analysis for the Gaussian plume inverse model was inconsistent suggesting random errors in 358 

quantification. This shows that the model could either underestimate or overestimate an oil and gas emission at 359 

random.  360 
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 361 

Figure 12: Correlation analysis for the Gaussian plume inverse method in the three release categories. The area 362 
bounded by the red dotted line shows the region within ±30 uncertainty. 363 

4 Discussion 364 

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from different 365 

heights, different locations, encountering aerodynamic obstacles of different sizes, and of varying duration, amongst 366 

others. The ability to precisely quantify an emission using data collected by a point sensor, downwind of a source is 367 

directly influenced by plume dynamics. The CH4 plume downwind of a source will change in size and shape in 368 

different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in different seasons (Casal, 369 

2008). In this study, the precision to which downwind models (eddy covariance, aerodynamic flux gradient and 370 

Gaussian plume-based) could quantify the emission rate of point source(s) were tested in different atmospheric 371 

conditions (rain, sunny, snow, windy, calm etc.), and aerodynamic scenarios (emissions sources in open areas, behind 372 

obstacles, changing atmospheric stability, and day/night). As a result, testing the models’ predicted emission rates to 373 

controlled release rates in different conditions introduced real-world scenarios that have not previously been tested, 374 

hence better understanding model uncertainty in the application of quantifying emissions from oil and gas production 375 

infrastructure. 376 

4.1 Eddy Covariance 377 

Eddy covariance underestimated or failed to observe almost all emissions released during this study (linear regression 378 

m between 0 and 0.07, and R2 between 0.03 and 0.36) (Figure 4). The method measures CH4 atmospheric fluxes for 379 
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area sources transferred as eddies of different sizes as caused by turbulence within the atmospheric boundary layer 380 

(Babaeian and Tuller, 2023). Assumptions governing eddy covariance include: (1) the terrain is homogenous and 381 

horizontal, (2) CH4 fluxes are turbulent, (3) measurements at a point are from an upwind area, (4) measurements are 382 

within the boundary layer and in the constant flux layer, (5) instruments can capture small fluctuations at high 383 

frequency, (6) fluctuations in air density are negligible (Babaeian and Tuller, 2023), and (7) upward fluxes represent 384 

emissions and downward fluxes represent depositions (Zinke et al., 2024). Nemitz et al., (2018) adds that eddy 385 

covariance is frequently deployed to target large fluxes in high-emission ecosystems, which is not typical in oil and 386 

gas, and that data where wind direction includes obstructed wind sectors should be flagged (Nemitz et al., 2018). 387 

For oil and gas point sources, the measured gas concentration is dependent on plume dynamics as opposed to mass 388 

transfer and eddy covariance methods using fence-line measurements are unlikely to work because: 389 

• Oil and gas point sources violate assumptions (1), (2), and (4) as these sources are heterogenous and 390 

emissions are collimated plumes instead of turbulent fluxes.  391 

• As the measurement by a point sensor is dependent on being inside the plume, which changes in different 392 

atmospheric conditions, placing the sensor high enough, and/or far enough downwind, to where the flux 393 

layer is constant, is impractical.  394 

• Even though current eddy covariance application assumes the vertical flux at a point is independent of 395 

atmospheric stability (Denmead, 2008), atmospheric stability has impact on point source gas dispersion 396 

at fence line distances and hence needs to be accounted for even for eddy measurements.  397 

• Footprint models are designed for area sources that require horizontal homogeneity of the flow (Kljun 398 

et al., 2015). As a result, the area of contribution generated by the models do not accurately represent 399 

the area between the point sources and the measurement location at fence line distances. 400 

 In summary, this study shows that eddy covariance is not applicable for oil and gas point source quantification.  401 

4.2 Aerodynamic Flux Gradient 402 

Overall, aerodynamic flux gradient method underestimated the emission rate of all controlled releases during this 403 

experiment with high variability. The slope of the linear regression and R2 were both very small (linear regression m 404 

between 0 and 0.22, and R2 between 0.01 and 0.39) (Figure 5). The aerodynamic flux gradient model quantification 405 

is used to quantify emissions from area sources and relies on differences in CH4 concentrations between the higher 406 

and lower height, and stability correction factors. Assumptions of flux-gradient approach using Monin-Obukhov 407 

similarity theory include: (1) measurements require steady state conditions of wind direction and speed, (2) 408 

measurements should be done above the roughness sub-layer, (3) sufficiently large homogenous area for development 409 

of an adequately equilibrated layer of air, and for constant equilibrium during measurement (Prueger and Kustas, 410 

2015), and (4) positive fluxes represent emissions and downward fluxes represent absorptions (Kamp et al., 2020).  411 

Similar to eddy covariance, aerodynamic flux gradient methods at fence-line distances are unlikely to work because 412 

point sources typical of oil and gas emissions violate the following assumptions: 413 

• Obstacles at an oil and gas facility affects wind direction and speed, and these impacts may also vary 414 

substantially with small changes in wind direction.  Therefore, wind conditions are unlikely to attain 415 

steady state during the measurement period, as directed by assumption (1) above. 416 
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• The emission height of oil and gas sources in typical upstream field conditions can be as low as 0.4 m 417 

and as high as 6.9 m and measurements are unlikely to be made by fence-line sensor above the roughness 418 

sublayer (2 above), i.e. twice the height of the mean obstacle height for ~30 m downwind.  419 

• Oil and gas sources are heterogeneous (i.e. varying source distance and height) and can last a short time 420 

(e.g. a short maintenance event) or a long time (‘normal’ fugitive emissions) hence, achieving constant 421 

equilibrium, as stated in (3) above, is unlikely. 422 

• Footprint models used to generate the area of contribution between the source and the measurement 423 

location are designed for area sources with horizontal flow homogeneity (Kljun et al., 2015). Thus, the 424 

area of contribution generated for oil and gas point sources is likely inaccurate. 425 

4.3 Gaussian Plume Inverse Method 426 

In contrast to the other methods in this study, the Gaussian plume inverse model both underestimated and 427 

overestimated emissions in this study. Linear regression gradient and coefficient of correlation (m between 0.95 and 428 

1.49, and R2 between 0.21 and 0.65; Figure 6) was better than either eddy covariance or aerodynamic flux gradient. 429 

The main assumption of the Gaussian plume model is that CH4 emitted from a point source enters the air flow, 430 

disperses vertically and laterally, forming a conical plume (Riddick et al., 2022b; US EPA, 2013). However, the 431 

formation of a conical plume is hindered at oil and gas facilities by obstacles (equipment) and is affected by 432 

atmospheric stability. Atmospheric stability in the Gaussian plume inverse model is based on Pasquil-Gifford 433 

classification system which accounts for daytime solar insolation (slight, moderate and strong), nighttime cloud cover 434 

and surface wind speed at 10 m (Kahl and Chapman, 2018). Solar insolation and cloud cover are not typically 435 

measured, and if measured, dispersion parameter models currently available do not use this data, therefore, it is 436 

difficult to calculate for continuous fence-line measurements. The modified dispersion parameters developed by EPA 437 

(US EPA, 2013) only account for wind conditions i.e., speed and deviation in direction. As a result, plume dynamics 438 

during diverse atmospheric conditions such as during snow versus rain or sunny conditions are unaccounted for. 439 

In this study, despite the Gaussian model having been developed for point sources, the model did not show consistent 440 

correlation with the measurement and atmospheric variables. This showed that there are complexities in continuous 441 

monitoring quantification compared to survey solutions where the model is widely applied, that introduce significant 442 

uncertainties in quantification. It is suggested that one problem with the Gaussian plume model is that the dispersion 443 

coefficients are simply not representative as they were developed for longer distances, in different climatological 444 

conditions, and do not transfer well to current applications (Riddick et al., 2022a). We conclude that, while it is better 445 

suited than eddy covariance or aerodynamic flux gradient, a Gaussian plume inverse approach will likely have 446 

significant uncertainties when used to quantify emissions from oil and gas production sites using data collected at a 447 

fence line (~ 30 m away). 448 

4.4 Implications 449 

In the recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas sites. 450 

This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous 451 

monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to 452 

infer emission rate. For point sources, downwind methods such as the Gaussian plume inverse method have been 453 

https://doi.org/10.5194/egusphere-2024-3161
Preprint. Discussion started: 13 November 2024
c© Author(s) 2024. CC BY 4.0 License.



19 

 

widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This 454 

study’s design replicated a continuous monitoring setup.  455 

Oil and gas point sources could either be single emissions or multiple emissions occurring concurrently. In cases of 456 

multiple emissions with more than one release point being downwind, the Gaussian model is limited, as it can only 457 

quantify one source at a time (dispersion coefficients are generated as a function of emission height and source 458 

distance). As a result, models used in other applications such as eddy covariance and aerodynamic flux gradient have 459 

been proposed as the solution. However, as this study has shown, eddy covariance and flux gradient approaches are 460 

unlikely to quantify realistic emission estimates using fence-line measurements.  Here, we strongly advise that 461 

controlled tests under controlled environments are crucial to evaluate modelling approaches’ precision and accuracy, 462 

and associated uncertainties before applying them in the real world. Even though these modelling approaches have 463 

been reported to work elsewhere (e.g., agricultural and landfill emissions), it does not necessary mean it could work 464 

in the intended area of application. 465 
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