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Abstract. The dependable reporting of methane (CH4) emissions from point sources, such as fugitive leaks from oil 8 

and gas infrastructure, is important for profit maximization (retaining more hydrocarbons), evaluating climate impacts, 9 

assessing CH4 fees for regulatory programs, and validating CH4 intensity in differentiated gas programs. Currently, 10 

there are disagreements between emissions reported by different quantification techniques for the same sources. It has 11 

been suggested that downwind CH4 quantification methods using CH4 measurements on the fence-line of production 12 

facilities could be used to generate emission estimates from oil and gas operations at the site level, but it is currently 13 

unclear how accurate the quantified emissions are. To investigate downwind methods’ accuracy, this study uses fence-14 

line simulated data collected during controlled release experiments as input for a non-standard closed-path eddy 15 

covariance (EC), the Gaussian plume inverse method (GPIM), and the backward Lagrangian stochastic (bLs) model 16 

in a range of atmospheric conditions. This study’s EC attempt was unsuccessful due to data collection and 17 

instrumentation issues, resulting in invalid results characterized by underestimated emissions, large negative fluxes, 18 

and cospectra/ogives that deviated from their ideal shapes. Consequently, the EC results could not be compared with 19 

the GPIM or the bLS models. The bLs model demonstrated the highest accuracy for single-release single-point 20 

emissions, though it exhibited greater uncertainty than GPIM under multi-release conditions. Across GPIM and bLs 21 

models, the most reliable quantification was achieved with 15-minute averaging and a narrow 5° wind-sector range. 22 

Although EC was limited in this context, future studies should consider employing a standard EC system and further 23 

optimizing GPIM and bLs approaches—particularly for complex multi-source scenarios—to enhance quantification 24 

accuracy and reduce uncertainty. 25 

Keywords: Continuous monitoring; oil and gas; point source; closed-path eddy covariance; Gaussian plume inverse 26 

method; backward Lagrangian stochastic model 27 

1 Introduction  28 

Reducing methane (CH4) emissions from oil and gas systems is necessary for adhering to regulations and 29 

voluntary reporting frameworks such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0) (UNEP, 2024). The 30 

OGMP 2.0 provides a comprehensive measurement-based international reporting framework allowing companies to 31 

stay ahead of regulatory compliance requirements, meet investor and market pressure, have an enhanced corporate 32 

image, and prevent revenue loss by lowering their emissions. In the US, currently, the amount of CH4 emitted from 33 
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US oil and gas production are compiled by the US Environmental Protection Agency (EPA) under Subpart W. 34 

Typically, companies use a bottom-up inventory approach where emission factors (CH4 emissions per equipment e.g., 35 

separator or emissions per event e.g., liquid unloading) are multiplied by activity factors (total number of pieces of 36 

equipment or events (US EPA, 2023) to generate emissions.  This quantification approach has several shortcomings, 37 

including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which practically are not 38 

independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin (Riddick et al., 39 

2024a); 2. Some emission factors used are outdated (Riddick et al., 2024b) and others do not account for the temporal 40 

and spatial variation in emissions (Riddick and Mauzerall, 2023); 3. Emission factors do not account for the long-tail 41 

distributions (Riddick et al., 2024b); 4. Difficulty in obtaining a truly representative sample from a large diverse 42 

population to generate emission factors (Allen, 2014); and 5. Possibly unreliable data reported by operators (Chan et 43 

al., 2024). Recently, mechanistic models, such as the Mechanistic Air Emissions Simulator (MAES), have been 44 

developed to address shortcomings in bottom-up CH4 reporting (Mollel et al., 2025), but these still depend on direct 45 

measurements to inform emission factors. 46 

Top-down methods, including using aircraft such as Bridger Photonics LiDAR (Light Detection and 47 

Ranging; 90% detection limit of ~ 2 kg h-1) (Johnson et al., 2021) and satellites such as Carbon Mapper (predicted 48 

90% detection limit of about 100 kg h-1) (Carbon Mapper - Science & Technology, 2025) can also be used to infer 49 

emissions. However, these survey methods only quantify emissions over a very short period of time (< 10 s) and 50 

observations are typically made during the day which can often coincide with maintenance activities that can bias 51 

emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). Additionally, different top-down 52 

technologies measuring the same source have disagreed in their reported emissions which has called into question the 53 

credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, ensuring accuracy in models and 54 

technologies used in CH4 emissions quantification has been a complex issue.   55 

 Currently, fence-line methods are used to detect, localize and quantify emissions. This approach uses point 56 

sensors fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds 57 

a threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling 58 

framework, usually based on a Gaussian plume inverse approach (Bell et al., 2023; Day et al., 2024; Riddick et al., 59 

2022a). Detection and localization of simulated fugitive emissions using this approach have been demonstrated 60 

successfully in controlled release studies. For example, (Ilonze et al., 2024) reported a 90% probability of detection 61 

for emissions between 3.9 and 18.2 kg CH₄ h⁻¹ using multiple point sensors and scanning/imaging systems. However, 62 

significant uncertainty in quantification remains; their study reported emissions being misestimated by a factor of 0.2 63 

to 42 for releases between 0.1 and 1 kg CH₄ h⁻¹, and by a factor of 0.08 to 18 for emissions above 1 kg CH₄ h⁻¹. While 64 

informative, the methods in  (Ilonze et al., 2024) differ in key ways from those employed here—specifically, their use 65 

of multiple sensors and a distributed monitoring configuration as opposed to the single-instrument, fence-line-based 66 

framework used in our study—limiting direct comparison of quantification accuracy. This study will evaluate the 67 

quantification accuracy of the closed-path eddy covariance (EC), Gaussian plume inverse model (GPIM), and the 68 

backward Lagrangian stochastic model (bLs) for oil and gas point source quantification using a single-instrument 69 

deployed at a fence line distance. 70 
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Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the 71 

covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector 72 

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1; Morin, 2019). It is typically implemented over 73 

long homogeneous fetches where eddy mixing scale is a small fraction of the distance from the site providing more 74 

predictable vertical transport. Dumortier et al. (2019) used EC to estimate known point source emissions at a cow’s 75 

muzzle height and reported the model could estimate emissions between 90 and 113% of the true emission. Dumortier 76 

et al. (2019) stated the optimal controls for point source quantification and footprint modelling are using running 77 

mean, 15-minute averaging periods, no application of (Foken and Wichura, 1996) stationarity filter and use of the  78 

(Kormann and Meixner, 2001) footprint function. The study tested the model using an artificial CH4 source at 0.8 m, 79 

programmed to emit when winds were coming from the source direction (± 45º), and when friction velocity (u*) was 80 

above 0.13 m s-1. In (Dumortier et al., 2019)’s point-source testing, they noted that amplitude resolution, skewness 81 

and kurtosis tests were disabled as they deleted almost all periods involving the artificial source in the footprint. Rey-82 

Sanchez et al. (2022) studied the accuracy of the Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015) 83 

and the K & M model (Kormann and Meixner, 2001) in calculating the footprint of point source hot spots using 84 

footprint-weighted flux maps. The study reported the K & M model to be the most accurate. Polonik et al. (2019) 85 

compared five gas analyzers, two open-paths, two enclosed-path and one closed-path analyzer for carbon dioxide EC 86 

measurements. The study noted that while open-path sensors minimize spectral attenuation and require smaller 87 

spectral correction factors compared to sensors with an inlet tube such as a closed-path sensor, open-path sensors risk 88 

data loss in non-ideal conditions like precipitation, fog, dust or dew. The main challenge of applying EC for continuous 89 

monitoring of oil and gas sites is instrument limitations (requires deployment of multiple sensors throughout a facility; 90 

sensor cost is a factor) and statistical tests as well as quality controls could filter out some of the data.  91 

 92 

93 
Figure 1: Illustrations of eddy covariance where CH4 is methane concentrations, and w is vertical wind speed. 94 

 95 
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The GPIM method calculates CH4 emission rate as a function of mole fraction at a point in space (x, y, z), 96 

downwind distance, perpendicular distance (crosswind), mean wind speed and atmospheric stability (Riddick et al., 97 

2022b).  This method has been used to quantify emissions from oil and gas production sites especially for survey 98 

solutions (Riddick et al., 2022b). For a single point-source (Riddick et al., 2022b) reported absolute uncertainties of 99 

between 40.7 and 60% in a controlled release experiment involving 10 replicate measurements of compressed natural 100 

gas (1.5 m release height), with concentrations measured using a mobile vehicle survey. While this differs from 101 

continuous fence-line deployment, it offers insight into the inherent uncertainty of the GPIM method in field 102 

conditions. Foster-Wittig et al. (2015) using controlled single point source tests reported average errors of between -103 

5 to 6%.  The limitations of the GPIM method are that it assumes a homogeneous emission source, steady-state flow, 104 

and uniform dispersion of gas in an open area free of obstructions (Hutchinson et al., 2017). 105 

The bLs model adapted in WindTrax can simulate the transport of gases from point sources that emit them 106 

(Figure 2B; Crenna, 2006). The model releases individual particles and follows them along their unique path in air by 107 

mimicking random, turbulent motion of the atmosphere. Tagliaferri et al. (2023) investigated the validity of WindTrax 108 

in quantifying emissions from complex sources and reported the model to be reliable under neutral conditions, 109 

underestimated emission rates during unstable stratification and overestimated emissions during stable conditions. 110 

Similarly to the GPIM method, the model assumes free flow of air in the absence of obstructions and uses time-111 

averaged data as input. 112 
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 113 

114 
Figure 2. A: An illustration of a plume that follows a Gaussian plume inverse model where emission rate can be 115 
inferred from concentrations at different downwind distances and crosswind distances. B: An illustration of how the 116 
backward Lagrangian stochastic model traces particles to the source. 117 
   118 

Continuous monitoring of CH4 emissions using fence line sensors requires proper quantification of 119 

intermittent and persistent releases from oil and gas during all release (complex emission profiles) and atmospheric 120 

conditions (unstable, neutral and stable). Oil and gas emissions are characterized by intermittent, non-uniform, single 121 

or multiple point source emissions, varying in leak size, location, height and distance between the source and sensor, 122 

and are typically in complex aerodynamic environments (i.e. not flat).  An ideal quantification model should always 123 

quantify emissions and should capture short and long-lasting emission events. Most models have been validated to 124 

work best during neutral conditions for single point sources. However, it is important to test and apply these models 125 

during non-neutral conditions as well as these are part of real-world conditions where continuous monitoring is 126 

applied. In this study, we evaluate if using a readily available CH4 cavity ring down analyzer for models’ quantification 127 

such as the closed-path EC is a feasible solution to quantify point source emissions.  128 

This study aims to inform the feasibility of downwind quantification models in oil and gas settings by 129 

investigating which models are likely to work most of the time with instrumentation that is typically available for 130 

fence-line deployment. Fence-line sensor deployments involve multiple sensors, continuously running in all 131 

conditions and providing emissions data.  Using robust releases and environmental conditions, this study aims to 132 

investigate the performance of these methods in quantifying emissions for known gas release rates and evaluating 133 

uncertainties that could result in incorrect CH4 reporting. Specifically, the study will evaluate the overall quantification 134 

accuracy (linear regression slope of estimated versus actual emissions, and R2) of closed-path EC, bLs model, and the 135 

GPIM method in quantifying single-release single-point and multi-release single-point emissions that simulate oil and 136 

gas emissions.  137 
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2 Methods 138 

2.1 Experimental Setup 139 

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions 140 

Technology Evaluation Center (METEC) in Fort Collins, CO (USA, 65 miles north of Denver) between February 8, 141 

and March 20, 2024. The METEC center is a simulated oil and gas facility that does controlled testing for emissions 142 

leak detection and quantification technology development, field demonstration, leak detection protocol and best 143 

practices development (METEC | Colorado State University, 2025). The weather conditions during the test period 144 

were mostly sunny but precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 7 cloudy and 1 foggy day; 145 

Supplementary Information S1). Wind speeds were between 0 and 25 m s-1 and temperatures ranged between -15 and 146 

+19 °C (Supplementary Information S1). A stationary mast holding the instrumentation was setup on the North-West 147 

corner of METEC to take advantage of the predominant wind direction, avoid the largest aerodynamic obstructions 148 

and to simulate the likely placement of a fence-line instrument (Figure 3A; Day et al., 2024; Riddick et al., 2022a). 149 

Fence-line sensors are typically placed within the oil and gas perimeter (~30 m). This study collected data for what 150 

we considered as close and far away releases; distances between 9 and 94 m.  151 

Methane concentration data for closed-path EC, GPIM and bLs methods were collected through an inlet 152 

tubing (3.275 mm inner diameter) at 3 m height, connected to the ABB (Zurich, Switzerland) GLA131 Series 153 

Microportable Greenhouse Gas Analyzer (MGGA) set to sample at 10 Hz. The MGGA is a closed-path greenhouse 154 

gas analyzer with a ~3.2 lpm pump flowrate, 10 cm cell length, 1 inch cell diameter (~0.23 standard cubic centimeters 155 

per minute (sccm) effective volume), and 0.4 s gas flow response time. The inlet tubing was collocated with an R. M. 156 

Young (Traverse City, MI, USA) 81000 sonic anemometer which measured micrometeorology at 10 Hz (Figure 3B). 157 

The northward, eastward and vertical separation of the inlet tubing from the sonic anemometer was 0, 0, -10 cm, 158 

respectively.  159 
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 161 
Figure 3: A: Map illustration of major pieces of equipment and the measurements points at Colorado State University’s 162 
Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  Equipment 4S denotes 163 
horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. B is the 164 
measurement point for the Microportable Greenhouse Gas Analyzer for closed-path eddy covariance, Gaussian plume 165 
inverse model and backward Lagrangian stochastic model quantification. The inlet tubing and the sonic anemometer 166 
are at 3 m height. The red dotted lines with yellow numbers show the average distances (meters) between emission 167 
equipment and measurement point. The orange numbers show the range of emission heights (meters) for each 168 
equipment. The analyzers were hosted in a temperature-controlled box.  169 

 170 

2.2 Controlled Methane Releases 171 

Controlled releases were part of the METEC Spring 2024 Advancing Development of Emissions Detection 172 

(ADED) Campaign conducted between February 6 and April 29, 2024 (Advancing Development of Emissions 173 

Detection (ADED)). Natural gas of known CH4 content was released from above-ground emission points attached to 174 

equipment typically present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged 175 

between 0.01 kg h-1 and 8.7 kg h-1, and the release durations ranged from 10 seconds to 8 hours, simulating both 176 

fugitive and large emission events. The releases were run both during the day and night. The distance from the release 177 

points to the measurement points ranged between 9 and 94 m, and emission heights were between 0.1 and 4.9 m 178 

(Figure 3A). Emission points simulate the realistic size and locations of typical emissions from components such as 179 

the thief hatches, pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The 180 

releases included both single-point emissions (single releases) and multi-point emission events (multiple simultaneous 181 

releases). 182 

2.3 Calculation of Roughness Length 183 

Surface roughness length (z0) was calculated from friction velocity (Supplementary Information S2.1: 184 

Equations 1 and 2) by splitting the high frequency sonic anemometer data into 15-minute tables and filtering for those 185 

in neutral conditions, |L| > 500 (Supplementary Information S2.1: Equation 3). The overall roughness length selected 186 

as the median of all the calculated z0 was 0.1 m (Rey-Sanchez et al., 2022).  187 
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2.4 Models Quantification 188 

2.4.1 Eddy Covariance 189 

2.4.1.1 Data pre-processing 190 

Evaluating the MGGA CH4 data showed that actual sampling was between 4 and 12 Hz (majority of the data 191 

collected at approximately 6 Hz), even though the analyzer had been configured to sample at 10 Hz (Supplementary 192 

Information S2.2). To account for this sampling variability, data were filtered to when sampling was equal to or greater 193 

than 8 Hz. Data sampled at frequencies above 8 Hz were down sampled to 8 Hz. The 8 Hz frequency threshold was 194 

selected to ensure uniform sampling, enough data for model evaluation as most sampling was at lower frequencies, 195 

and to preserve as much temporal resolution as possible given the system limitations. The sonic anemometer 196 

meteorological data (horizontal wind vectors (u, v), vertical wind vector (w), temperature (T), and pressure (P)) actual 197 

sampling varied between 7 and 9 Hz with the most frequent frequency at 8 Hz (Supplementary Information S2.2). As 198 

the MGGA gas analyzer and sonic anemometer were not designed to clock synchronously, using the MGGA CH4 199 

clock time as a reference, meteorological data from the sonic anemometer were matched to the MGGA CH4 data using 200 

linear interpolation to generate concentration-meteorological 8 Hz data. While in an ideal circumstance of a fast pump 201 

and short tube length a correct timeseries matching can be achieved through establishing a clear point of maximum 202 

covariance when determining the time lag, this is difficult for our system due to a 3 lpm pump flowrate and a 3 m 203 

tubing that caused both attenuation and time lag. 204 

The aggregated concentration-meteorological data were then merged with METEC’s release data and 205 

metadata, and release event tables created. Release event tables were aggregated tables of concentration, meteorology 206 

and release (emission source location, duration and rate) information for all defined release events at METEC. The 207 

concentration-meteorological-release event data were then separated into single-release and multi-release events. 208 

Single-release events were when there was a single emission point at the site level, while multi-release events were 209 

when there was more than one emission point at the site level. The concentration-meteorological-release event tables 210 

were split into 5, 15 and 30-minute release event tables (i.e. there was a continuous release in the duration). Based on 211 

the bearing of the emission point to the measurement point and the average wind direction in the duration, the data 212 

was further filtered to downwind data, ±10º, ±20º, and ±45º.  213 

2.4.1.2 Flux calculation 214 

Turbulent fluxes were calculated using the open software EddyPro® version 7 (EddyPro 7 | Software 215 

Downloads, 2025). Acquisition frequency was set at 8 Hz, while file duration and the flux interval were set at 5, 15, 216 

and 30 minutes, respectively, depending on the files being processed. Table 1 shows the instruments input to the 217 

software. 218 
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Table 1. Anemometer and Gas Analyzer Input into EddyPro 219 

Anemometer 

Information 

 Gas Analyzer 

Information 

 

Manufacturer Young Manufacturer Other 

Model 81000 Model Generic closed path 

Height 3 m Tube length 300 cm 

Wind data format u, v, w Tube inner diameter 3.275 mm 

North alignment  Nominal tube flow rate 3.2 l/m 

North off-set 0.0 Northward separation 0.00 cm 

Northward separation Reference Eastward separation 0.00 cm 

Eastward separation  Reference Vertical separation -10.00 cm 

Vertical separation Reference Longitudinal path length 10.00 cm 

Longitudinal path length  Transversal path length 2.54 cm 

Transversal path length  Time response 0.4 s 

 220 

In raw data processing, axis rotations for tilt correction under wind speed measurement offsets were selected. 221 

Under turbulent fluctuations, double rotation and block average detrend methods were used. Covariance maximization 222 

with default was used for time lag detection; time lags detection was enabled. Compensation for density fluctuations 223 

(Webb-Pearman-Leuning terms) (Webb et al., 1980) was disabled as the MGGA analyzer synchronously reported dry 224 

CH4 and water mole fractions, cell temperature and pressure. Mauder and Foken (2004) (0-1-2 system) were used for 225 

quality check. All statistical tests for raw data screening, (Vickers and Mahrt, 1997)– spike count/removal, amplitude 226 

resolution, drop-outs, absolute limits, skewness and kurtosis, discontinuities, time lags, angle of attack and steadiness 227 

of horizontal wind were selected. The default values for all these tests were used. Similarly, default settings for spectral 228 

analysis and corrections were used. Analytic correction of high-pass filtering effects (Moncrieff et al., 2005) for low 229 

frequency range; and correction of low-pass filtering effects (Fratini et al., 2012 - In situ analytic) and instruments 230 

separation ((Horst and Lenschow, 2009)- only crosswind and vertical) in the high frequency range were used. 231 

2.4.1.3 Post-processing 232 

Flux data were flagged “2”, low quality,  based on (Mauder and Foken, 2004) (0-1-2) quality system. 233 

Cospectral analysis revealed that the EC system in this study smoothed out low-frequency eddies, as the cospectra 234 

lacked the ideal shape characterized by a low-frequency rise, a peak region, and a high-frequency decay 235 

(Supplementary Information S2.3.1). While the slope in the high-frequency region varies around the theoretical −4/3 236 

slope, the cospectral data followed the 1:1 line, indicating consistent spectral shape across sampling periods. We also 237 

examined the relationship between CH₄ flux and friction velocity (u*) to identify a u* threshold below which flux 238 

estimates may be unreliable (Supplementary Information S2.3.2). However, no consistent relationship was observed 239 

across atmospheric stability classes (unstable, stable, and neutral). CH₄ fluxes varied widely—including both positive 240 

and negative values—across the full range of u* (~0 to 1 m s⁻¹), with no discernible threshold beyond which fluxes 241 

stabilized. This indicated that CH₄ fluxes were effectively independent of u*, and thus, data from all u* values were 242 
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retained. Ogive analysis was conducted to assess whether averaging durations of 5, 15, and 30 minutes were sufficient 243 

for capturing the full turbulent flux. The resulting ogive curves deviated from the ideal asymptotic shape, particularly 244 

at the highest and lowest frequencies (Supplementary Information S2.3.3). Notably, the curves did not exhibit a clear 245 

plateau near the low-frequency end, where cumulative flux should approach unity. This indicates incomplete flux 246 

capture. Furthermore, the similarity in ogive shapes across different frequencies—mirroring patterns seen in the 247 

cospectra—suggests a lack of significant turbulent contributions and the influence of non-turbulent, possibly 248 

advective, processes. These results imply that the EC system may not have fully resolved the flux due to either 249 

insufficient averaging time, non-stationarity, or instrument-related limitations (Supplementary Information S2.3.3). 250 

As positive fluxes are generally considered emissions, and negative fluxes depositions, data were further filtered for 251 

positive fluxes which were then quantified to emission rates. 252 

2.4.1.4 Footprints Calculation 253 

Eddy covariance footprints were calculated using the (Kljun et al., 2015) and the (Kormann and Meixner, 254 

2001) footprint models. For the  (Kljun et al., 2015), the freely online MATLAB code of the model was used, while 255 

the (Kormann and Meixner, 2001) was coded in MATLAB. To determine the point source footprint contribution, the 256 

study first calculated the area that contributed 90% of the vertical flux; and based on the location (x and y coordinates 257 

based on wind direction and distance from source) of the point source, the source was determined if it was within the 258 

90% footprint area. Point source emissions of sources within this region were then calculated based on the approach 259 

by (Dumortier et al., 2019).  This approach assumes all measured flux is equal to flux resulting from a single point 260 

source. In case of the mast being downwind of more than one source, more sonic anemometers are needed to solve 261 

the two unknown point source fluxes. 262 

2.4.2 Gaussian Plume Inverse Method 263 

2.4.2.1 Data pre-processing 264 

Methane concentration data from the MGGA analyzer and meteorology data from the sonic anemometer 265 

were averaged to 1 Hz and aggregated. The aggregated concentration-meteorological data were merged with 266 

METEC’s release data and metadata, and release event tables created. The concentration-meteorological-release event 267 

data were then separated into single-release and multi-release events. For single-release events, the concentration-268 

meteorological-release event tables were split into 5, 15 and 30-minute release event tables. Based on the bearing of 269 

the emission point to the measurement point and the average wind direction in the duration, the data was further 270 

filtered to downwind data, ±5º, ±10º and ±20º wind sector ranges. Multi-release events were further classified into 271 

multi-release single-point emissions (i.e., there were multiple emissions at the site level, but the mast was downwind 272 

of a single source) and multi-release multi-point emissions (i.e. there were multiple emissions at the site level and the 273 

mast was downwind of more than one source).  This study focuses on single-release single-point and multi-release 274 

single-point emissions. For continuous monitoring sensors, background concentration can be determined from CH4 275 

concentrations measured by a sensor upwind of the emission source, or by sampling when the wind is blowing away 276 

from the source. However, for continuous monitoring sensors, using an upwind sensor has the limitation of missing 277 

downwind background noise resulting from emissions in the preceding emission event where there is residual CH4 in 278 

air especially during stable conditions, and capturing sensors drift in the downwind sensor. In this study, background 279 
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CH4 was calculated as the average of the lowest 5th percentile, 5 minutes before each release started. In cases where 280 

this background was greater than the mean CH4 concentration in the quantifying duration, the minimum CH4 281 

concentration for that duration was used as the background.  Methane enhancement was then calculated as CH4 282 

concentration minus the background. 283 

2.4.2.2 Quantification 284 

The GPIM was evaluated under six scenarios (two equations and three different dispersion coefficients 285 

generations) using single-release single-point emissions to test when the model works best (Supplementary 286 

Information S2.1: Equation 7 and 8). Dispersion coefficients were generated based on (1) high frequency sonic 287 

anemometer data at ~ 10 Hz, (2) EPA point-source dispersion coefficients (US EPA, 2013), and (3) 1 Hz sonic 288 

anemometer data. The scenario with the slope closest to 1, and highest R2 across averaging durations, and wind sector 289 

ranges was selected and used for multi-release single-point emissions quantification. For single-release tables, the 290 

measurement point was downwind of a single source (single-release single-point emission), hence the tables were 291 

quantified as they were. However, for multi-release events, the tables were further processed as the GPIM method is 292 

designed to quantify a single point source at a time. For multi-release events, the number of emission points in the 293 

downwind tables were used to further classify the tables into multi-release single-point emissions (i.e. there were 294 

multiple emissions at the site level, but the mast was downwind of a single source), and multi-release multi-point 295 

emissions (i.e. there were multiple emissions at the site level and the mast was downwind of more than one emission 296 

source). The GPIM method was only used for multi-release single-point emissions. 297 

 2.4.3 Backward Lagrangian Stochastic Model 298 

Pre-processed data from the GPIM method was used for bLs quantification. Quantification was done using 299 

the open-source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0, n.d.). For every 5-, 15- and 30-minute duration 300 

in the ±5º, ±10º, and ±20º, respectively, inputs included roughness length (z0), Monin-Obukhov length (L- 301 

Supplementary Information S2.1: Equation 3), mean (wind speed, wind direction, concentration, pressure, 302 

temperature), background concentration, source height, and distance from the emission point to sensor. WindTrax is 303 

also designed to quantify a single point source at a time, and hence, was only used to quantify single-point single 304 

emissions and multi-point single emissions. 305 

3 Results 306 

3.1Eddy Covariance 307 

3.1.1 Single-Release Single-Point 308 

For single-release single-point (SRSP) emissions, the closed-path EC underestimated emissions. Using the 309 

(Kljun et al., 2015) footprint model, the slope of the estimated emissions versus actual emissions linear regression was 310 

between -0.03 and 0.54 at 5 minutes, -0.36 and -0.04 at 15 minutes, and 0.03 at 30 minutes, 45 degrees (10 and 20 311 

degrees had insufficient data points) (Figure 4). The adjusted R2 was between -0.06 and 0.12, indicating no linear 312 

relationship between the estimated and actual emission (Figure 4). Using the (Kormann and Meixner, 2001) footprint 313 

model, the slope was between -0.42 and 0.17 at 5 and 15 minutes, respectively, and -0.08 at 30 minutes, 45 degrees. 314 

(Supplementary Information S3.1.1). Similarly, the adjusted R2
 values were between -0.07 and 0.05. These results 315 
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indicate that this study’s EC system using either the (Kljun et al., 2015) or the (Kormann and Meixner, 2001) footprint 316 

models did not reliably quantify emissions for SRSP cases. The low slopes and adjusted R² values suggest little to no 317 

linear relationship between estimated and actual emissions under the tested conditions (Figure 4; Supplementary 318 

S3.1.1).   319 

 320 

 321 

Figure 4. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 322 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 323 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 324 
 325 

3.1.2 Multi-Release Single-Point 326 

For multi-release single-point (MRSP) emissions, the closed-path EC largely underestimated emissions and 327 

did not show good agreement between estimated and actual emissions (Figure 5). Using the (Kljun et al., 2015) 328 

footprint model, the slope was between -0.51 and 0.18, except for the 5 minutes 45 degrees category that had a slope 329 

of 0.61. The adjusted R2 did not show a linear relationship between estimated and actual emissions with values ranging 330 

between -0.02 and 0.00 (Figure 5). Using (Kormann and Meixner, 2001) footprint model, the slope was between -0.03 331 

and 1.06, the good agreement of 1.06 was at 30 minutes 45 degrees with an adjusted R2 of 0.12 (Supplementary 332 

Information S3.1.2). The rest of the categories had an R2 of between -0.02 and 0.06. These results suggest that the EC 333 

system did not reliably quantify emissions for MRSP cases under most conditions. Only one category (30 minutes, 45 334 

degrees using the (Kormann and Meixner, 2001) footprint model showed moderate agreement (slope = 1.06, adjusted 335 

R² = 0.12), but even this explains only a small portion of the variability in actual emissions. Overall, the adjusted R² 336 

values across scenarios (−0.02 to 0.12) indicate a weak or no linear relationship.  337 
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 338 
Figure 5. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 339 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 340 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 341 

 342 

3.2 Gaussian Plume Inverse Method 343 

3.2.1 Single-Release Single-Point 344 

The GPIM sensitivity analysis comparing different equations and dispersion coefficients showed no 345 

difference in quantified emissions between Equation 7 and Equation 8. Among the dispersion coefficient sets tested, 346 

the (US EPA, 2013) coefficients resulted in the most consistent performance, with the least variability in slope and 347 

the highest overall adjusted R² values (Supplementary Information S3.2). For this scenario, the slope ranged from 1.65 348 

to 3.92 (excluding the 30-minute, 5-degree case due to insufficient data), and adjusted R² values ranged from 0.40 to 349 

0.64 (Figure 6). The 15-minute, 5-degree case had the slope closest to 1 (slope = 1.65, R² = 0.40), while the 5-minute, 350 

5-degree case showed the strongest linear relationship overall (slope = 2.42, R² = 0.64) (Figure 6). These results 351 

suggest that while the GPIM model tends to overestimate emissions (slopes > 1), it provides relatively consistent and 352 

stronger linear agreement with actual emissions compared to the closed-path EC system tested above (Section 3.1). 353 
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 354 
Figure 6. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. Sce.3 refers to 355 
scenario 3 of the sensitivity analysis in Supplementary Information S3.2. The red dotted line is a 1:1 line based on 356 
actual emissions i.e. points below the line are underestimated and above are overestimated emissions. The gray region 357 
represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n.  358 

 359 

3.2.2 Multi-Release Single-Point 360 

For MRSP emissions, the GPIM model produced a wide range of slopes, from –43.05 to 1.60 (Figure 7). 361 

Excluding the 5-minute 5- and 10 degrees categories, and the 30-minute 10 degrees category, most other cases reported 362 

slopes between 0.76 and 1.22, suggesting potential quantification within ~25% of actual emissions. However, the 363 

adjusted R² values in these cases were close to zero, indicating no consistent linear relationship between estimated 364 

and actual emissions (Figure 7). This lack of correlation is likely due to the high variability in GPIM estimates, which 365 

reached up to 200 kg h⁻¹ for the selected categories, despite actual emissions being only around ~6 kg h⁻¹. These 366 

results indicate that while the GPIM model sometimes produced slope values suggesting close agreement with actual 367 

emissions, the lack of linear correlation and large overestimations highlight its limited reliability in quantifying MRSP 368 

emissions accurately. 369 



15 

 

 370 
Figure 7. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 371 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 372 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 373 

 374 

3.3 Backward Lagrangian Stochastic Model 375 

3.3.1 Single-Release Single-Point 376 

For SRSP emissions, the bLS method generally produced the most accurate slopes (i.e., closest to 1) 377 

compared to the EC and GPIM methods (Figure 8). The 15-minute 5- and 10-degrees categories yielded the most 378 

accurate estimates, with slopes of 1.05 and 1.10, respectively. The adjusted R² ranged from 0.48 to 0.66 for the 5-379 

minute averaging duration, and from 0.40 to 0.48 for the 15-minute duration. At the 30-minute averaging duration, 380 

performance improved in the 10- and 20-degrees categories, likely due to increased sample sizes (Figure 8). These 381 

results show that bLs is more suitable for quantifying single-release single point emissions.  382 
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 383 
Figure 8. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 384 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 385 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 386 

 387 

3.3.2 Multi-Release Single-Point 388 

The bLs method had wide uncertainties for MSRP emissions especially in the 5 minutes, 5- and 10-degrees 389 

categories (Figure 9). In the other categories, the slopes were between -0.03 and 0.45, and R2 ~0. Even though the 390 

estimated emissions spanned up to >20 kg h-1 mostly for actual emissions of up to 6 kg h-1, lots of points were 391 

concentrated close to 0. Compared to the GPIM MSRP results, even though both models have an R2 of ~0, the GPIM 392 

had a slope closer to 1 in the 15-munites category than the bLs showing better performance. These results show that 393 

the bLs is more suitable for quantifying SRSP emissions than MSRP emissions. 394 
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395 
Figure 9. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 396 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 397 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 398 

 399 

3.4 Models Comparison – Subset Data 400 

 Using a subset of the data (SRSP), filtered by 15-minute intervals within a 10-degree wind sector range where 401 

each model provided an emission estimate, the bLs model exhibited the best performance, with its linear regression 402 

closely aligned with the 1:1 line (Figure 10). The slope of the regression line for the GPIM was 1.6, indicating an 403 

overestimation, while the bLs had a slope of 0.95, suggesting high accuracy. In contrast, the EC model produced 404 

slopes of 0.08 and 0.10 when using the (Kormann and Meixner, 2001) and (Kljun et al., 2015) footprint 405 

parameterizations, respectively, indicating significant underestimation. When emission estimates were categorized by 406 

emission point, the GPIM notably overestimated emissions at locations 4W-22 and 4W-51 (identified in Figure 3), 407 

both situated approximately 10 m from the measurement location. The EC model consistently underestimated 408 

emissions across all sources, while the bLs (WindTrax) model provided estimates closest to the expected values. The 409 

EC model produced negative emission rates associated with negative fluxes during periods of high non-stationarity 410 

(Supplementary Information, S2.3.4). These deviations from stationarity reflect intermittent plume capture, where the 411 

EC system alternated between sampling emitting and non-emitting regions. Overall, these findings indicate that for 412 

source-receptor distances ranging from approximately 10 to 90 meters, the bLs model demonstrated the highest 413 

accuracy in quantifying emissions. 414 
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 415 
 416 

Figure 10. Top plot: Estimated emission vs actual emission (kg h-1) for each model. GPIM is the Gaussian Plume 417 
Inverse Method, bLs is the backward Lagrangian stochastic model, EC-KM is eddy covariance with (Kormann and 418 
Meixner, 2001) footprint, and EC-Klujn is the eddy covariance estimate using the (Kljun et al., 2015) footprint. The 419 
black dotted line is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are 420 
overestimated emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The 421 
sample size is n. Bottom plot: Estimated emission vs actual emission categorized by Emission Point as illustrated in 422 
Figure 3.  423 

 424 
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3.5 Traceability Example 425 

To illustrate how raw data were converted into model-based emission estimates, we present one representative 426 

15-minute interval used in Figure 10. During a controlled release at point 4W-22 (wellhead), located approximately 427 

10.5 m from the mast, the ground-truth release rate was 3 kg CH4 h-1. Over this interval, the average CH₄ concentration 428 

enhancement was 8.3 ppm above the background (determined using the 5th percentile method, see Section 2.4.2.1). 429 

The wind direction was 153° (0.3 m crosswind distance), with an average wind speed of 5.8 m s-1. The same interval 430 

was processed through the three modeling frameworks: 431 

• The bLs model (WindTrax), using measured concentration, geometry, and meteorological data, estimated 432 

3.5 kg h-1. 433 

• The GPIM model, using Equation 7 and 8 (Supplementary Information S2.1) and US EPA (2013) dispersion 434 

coefficients, estimated 10.3 kg h-1. 435 

• The EC method (using the (Kormann and Meixner, 2001) footprint) estimated –0.004 kg h-1 due to a negative 436 

flux under high non-stationarity conditions. 437 

This example illustrates how the bLs model reproduced the true emission most closely, GPIM overestimated, and EC 438 

underestimated the emission. More examples of data presented in Figure 10 are available under supplementary data 439 

“MATLAB Code & Software Configuration – Validation.xlsx”.  440 

 441 

3.6 Eddy Covariance Quality Assurance and Control 442 

Evaluation of the EC data revealed quality assurance and control issues that compromised both the analysis 443 

and the conclusions drawn from the EC results. The flux data were flagged as “2” (low quality) according to the 0–1–444 

2 quality classification system of Mauder and Foken (2004), indicating that the data were not suitable for EC analysis. 445 

In EC quality assessment, both the qualitative shape of the cospectra and the quantitative slopes of selected portions 446 

are examined to determine if the data meet accepted standards. In this study, the cospectra deviated significantly from 447 

the ideal shape, indicating problems in data collection and pre-processing. Possible causes include obstructions in the 448 

testing area, misalignment between CH₄ and sonic anemometer time series (due to the absence of a reliable method 449 

for alignment), slow response time of the gas analyzer, increased lag from the 3 m inlet tubing, and inconsistent 450 

sampling frequency. Similarly, ogive analysis—used to evaluate whether the averaging time is sufficient—showed 451 

that the ogive curves did not follow the characteristic sigmoidal shape (plateauing at the y-axis and at zero). The ogive 452 

shapes were similar across all averaging intervals, none plateaued sufficiently, further indicating data collection issues 453 

that invalidate the EC method for this study. For clarity and to guide future studies, Burba (2013) provides examples 454 

of ideal cospectra and ogive shapes illustrating how these tools can be used to diagnose instrumentation and data 455 

collection problems. 456 

4 Discussion 457 

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from 458 

different heights, different locations, encountering aerodynamic obstacles of different sizes, and of varying emissions 459 

duration, amongst others. The ability to precisely quantify emissions using data collected by a point sensor, downwind 460 

of a source is directly influenced by plume dynamics. The CH4 plume downwind of a source will change in size and 461 
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shape in different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in different seasons 462 

(Casal, 2008). In this study, we evaluated the ability of downwind methods—including a non-standard closed-path 463 

EC system, the GPIM, and the bLs model—to quantify emissions from single-release and multi-release point sources. 464 

While the field measurements took place under naturally varying meteorological conditions, these were not explicitly 465 

stratified or analyzed as experimental factors. Additionally, although on-site infrastructure such as storage tanks was 466 

present, their distance from the sampling instruments (~50 m) likely rendered their aerodynamic influence negligible. 467 

As such, the analysis focuses on quantification performance under realistic but uncontrolled field scenarios, without 468 

attributing model behavior to specific atmospheric or obstacle-related conditions.  469 

4.1 Eddy Covariance 470 

Eddy covariance was tested using a closed-path analyzer, cavity ring-down spectroscopy, with a 3.2 lpm 471 

pump flowrate and a 0.4 s gas flow response time. The closed path EC underestimated emissions with a linear 472 

regression slope for estimated emissions versus actual emissions of between -0.42 and 0.54 using the (Kljun et al., 473 

2015) and (Kormann and Meixner, 2001) footprint models, and adjusted R2 was ~0.   (Section 3.1). This was a wider 474 

uncertainty in estimated emissions than one reported by (Dumortier et al., 2019), who estimated emissions at between 475 

90 and 113% of true emission (~1.5 kg day-1) with concentrations between 2 and 3 ppm. Our study tested closed-path 476 

EC at emission rates between 0.005 and 8.5 kg h-1. Notably, the results for the non-standard EC system tested this 477 

study may not be representative of EC performance in oil and gas as ogive and cospectra analysis indicated that the 478 

flux may not have been fully resolved due to non-stationarity, and instrument-related limitations. 479 

Our results were derived from data filtered to include only periods with sampling frequencies ≥8 Hz, which 480 

significantly reduced the number of usable emission measurements. Although the instrument was configured to sample 481 

at 10 Hz, it did not consistently achieve this rate. This discrepancy may be attributed to instrument-related factors such 482 

as the 0.4-second gas flow response time, which could delay analysis of the drawn air sample in the cavity, or the use 483 

of a 3 lpm pump with 3 meters of tubing, which reduced the effective turnover rate. The dataset used for eddy 484 

covariance evaluation was predominantly flagged as low quality (flag 2) according to the (Mauder and Foken, 2004) 485 

quality control test, which classifies flux data based on steady-state conditions and the presence of well-developed 486 

turbulence (flags 0 = high, 1 = intermediate, 2 = low quality). Many of the low-quality flags were likely driven by 487 

wide deviation in w/CH4 stationarity reflecting intermittent plume capture, where the EC system alternated between 488 

sampling emitting and non-emitting regions. The EC model produced negative emission rates associated with negative 489 

fluxes during periods of high non-stationarity (Supplementary Information, S2.3.4). 490 

Despite high non-stationarity that resulted in low data quality issues resulting in EC inaccuracies, this study 491 

acknowledges our design limitations. Our study did not have a reliable method for aligning the asynchronous CH₄ and 492 

sonic anemometer data streams, which likely introduced substantial timing errors and contributed to uncertainty in the 493 

flux calculations. The intake for the closed-path system was positioned approximately 10 cm below the sonic 494 

anemometer to protect the inlet tubing from debris and precipitation by mounting it on an aluminum shield facing 495 

downward. We recognize that even this small vertical separation can introduce additional errors in flux measurements 496 

when using short towers. This design choice was a compromise to ensure instrument protection while maintaining 497 

data collection in field conditions. We acknowledge that the system used in this study was not designed or configured 498 
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for standard eddy covariance analysis, and that this limitation impacts the interpretation of our results in the context 499 

of EC-based flux quantification.  500 

In this study, continuous monitoring was conducted using a single sensor with an inlet deployed at a fence-501 

line distance. This system requires instrumentation capable of measuring a wide concentration range, as emissions 502 

from oil and gas sites can vary between 0 and 250 ppm (Supplementary Information S1). While continuous monitoring 503 

systems, comprising multiple sensors, can offer enhanced spatial coverage and source localization, they also introduce 504 

higher costs. The limitations and findings reported here therefore apply specifically to this single-sensor fence-line 505 

continuous monitoring approach and may not be representative of all continuous monitoring frameworks. This study 506 

acknowledges the limitations of the eddy covariance (EC) setup used, particularly that the ABB MGGA GLA131 507 

Series analyzer is not designed specifically for EC applications. As a result, the conclusions drawn from the EC data 508 

are invalid and not comparable to the other tested models.  509 

This study identified data collection and instrumentation issues that future work can address to enable 510 

successful EC application. Based on flagged low-quality data, non-ideal cospectra and ogive shapes, and the presence 511 

of large negative fluxes, the dataset was deemed unsuitable for EC analysis. The primary causes of the unsuccessful 512 

application were: (1) the CH₄ analyzer was not designed for EC measurements, exhibiting slow response time, low 513 

pump flow rate, and inconsistent sampling frequency; (2) the 3 m inlet tubing length for the closed-path analyzer 514 

caused signal attenuation and increased lag; (3) the sonic anemometer and CH₄ analyzer data were not synchronously 515 

logged, preventing accurate time-series alignment; (4) the EC system was installed near obstacles that disrupted 516 

smooth eddy formation; and (5) ogive plots suggested that the maximum 30-minute averaging interval used in this 517 

study may have been insufficient. We recommend further EC testing with these issues corrected to properly evaluate 518 

its application in continuous oil and gas monitoring. 519 

4.2 Gaussian Plume Inverse Method 520 

The GPIM method quantified emissions within a slope of 1.65 to 3.92 and adjusted R2 of between 0.4 and 521 

0.64 with highest performance at 15-minutes 5-degrees wind sector (slope = 1.65, R2 =0.4), and 5 minutes 5-degrees 522 

(slope = 2.42, R2 = 0.64) for SRSP emissions (Section 3.2). For MSRP emissions, the GPIM showed wide uncertainties 523 

even though the slopes for other categories excluding 5-minutes 5-and 10-degrees, and 30-minutes 10-degrees 524 

categories, were between 0.74 and 1.60, with R2 ~0 (Section 3.2). The R2 close to zero showed that there was no linear 525 

relationship between the estimated and actual emissions for MSRP conditions. Overall, the GPIM performed well 526 

under 15-minutes averaging duration, and 5-degree wind-sector ranges in both SRSP and MSRP categories. The 527 

MSRP emission profiles tested in this study were complex challenging the GPIM application as the method is a point-528 

source specific quantification approach and works best in open areas, free of obstacles, and when the background 529 

concentration is well defined. For multiple emissions, even when the sensor is nominally downwind of a single source 530 

based on the average wind direction, quantification can be complicated by interference from neighboring sources. 531 

However, it is important to emphasize that such complexity is not a fundamental limitation of quantification itself, but 532 

rather a function of the experimental design and study objectives. For example, plume interference can often be 533 

minimized through strategic localization and optimization using multiple sensors—an approach that differs from the 534 

single-instrument setup used in this study. This study’s design involves defining plumes based on wind sector ranges, 535 
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as opposed to using multiple sensors to localize sources, and therefore does not replicate how various continuous 536 

monitoring solutions typically operate. The GPIM has previously been reported to quantify emissions within 40.7 and 537 

60% error for a single point-source using controlled release experiments (Riddick et al., 2022b). However, GPIM 538 

correct quantification has been suggested to be better for longer distances where the plume is well mixed as seen in 539 

Figure 10. This is typically a challenge for fence-line sensors that have to be deployed within the facility boundaries 540 

where large downwind distances may not be practical.  541 

4.3 Backward Lagrangian Stochastic Model 542 

 The bLs method was the most accurate in quantifying emissions for the SRSP release profiles but had wider 543 

uncertainties than the GPIM for MRSP scenarios (Sections 3.2.2 and 3.3.2). For SRSP emissions, the slopes closest 544 

to 1 were during the 15-minutes 5-degrees (slope = 1.05, R2 = 0.4) and 10-degrees (slope = 1.10, R2 =0.37). The best 545 

R2 was 5 minutes 5-degrees (slope = 1.64, R2 = 0.66). However, for MSRP emissions, the slopes were between -0.03 546 

and 0.45 in the best categories with R2 of ~0.  Similarly to the GPIM method, the bLs method used in this study is a 547 

point-source specific quantification method that simulates transport of molecules in open area and where the 548 

background concentration is defined. In this case, as with the SRSP test scenario, the bLs approach was generally 549 

more accurate than the GPIM.  However, for MRSP emissions, quantification accuracy was low. This discrepancy 550 

may be due to design-related challenges—specifically, interference from neighboring sources and the lack of distinct 551 

plume separation in complex flow conditions. Although the measurement point was nominally downwind of a single 552 

source, the real-world plume structure may not align with model assumptions. Additionally, the bLs implementation 553 

in WindTrax is designed for single-source scenarios and applying it in multi-source environments without adaptation 554 

can lead to inaccuracies. The GPIM and bLs methods are sensitive to background correction, which in this study was 555 

complicated by temporal overlap between release events and residual CH₄ accumulation, particularly under stable 556 

atmospheric conditions. Although this is a controlled-release study, residual methane from prior emissions and the 557 

presence of multiple plumes can affect the CH₄ concentration during a candidate event, challenging the assumptions 558 

used to define background and isolate a single-source plume using wind-sector-based criteria. These findings highlight 559 

the importance of aligning modeling assumptions with the experimental context rather than pointing to a fundamental 560 

limitation of the method itself. 561 

4.4 Implications 562 

In recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas 563 

sites. This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous 564 

monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to 565 

infer emission rates. For point sources, downwind methods such as the Gaussian plume inverse method have been 566 

widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This 567 

study’s design replicated a continuous monitoring setup’s downwind deployment distance, range of typical emission 568 

rates, emissions heights, and meteorological data acquisition.  569 

Oil and gas point sources could either be single emissions or multiple emissions occurring concurrently. In 570 

this study’s design, cases involving multiple emissions with more than one release point located upwind posed 571 

challenges for the specific Gaussian and backward Lagrangian stochastic (bLs) model implementations, which were 572 
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applied assuming a single active source at a time. While these models can be extended to handle multi-source 573 

scenarios, the assumptions used here limited their ability to distinguish individual contributions when plumes 574 

overlapped. As a result, interference from neighboring emissions introduced ambiguity in model-observation 575 

alignment, particularly under complex wind conditions. Closed-path eddy covariance was generally unreliable in this 576 

study due to data-collection and instrumentation issues associated with using a non-standard EC system. This resulted 577 

in invalid EC results that could not be compared with the GPIM and the bLs models. The bLs method was the most 578 

accurate for single-release single-point emissions but was less accurate than the GPIM under multi-release conditions. 579 

For both GPIM and bLs, 15-minute averaging with a narrow wind-sector (5°) yielded the best performance. While EC 580 

results in this study were limited by system constraints, future work is recommended using standard EC instruments 581 

and further optimizing GPIM and bLs models—particularly for complex multi-release scenarios—to improve 582 

accuracy and reduce uncertainties. 583 
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