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Abstract. The dependable reporting of methane (CH4) emissions from point sources, such as fugitive leaks from oil 8 

and gas infrastructure, is important for-profit maximization (retaining more hydrocarbons), evaluating climate 9 

impacts, assessing CH4 fees for regulatory programs, and validating CH4 intensity in differentiated gas programs. 10 

Currently, there are disagreements between emissions reported by different quantification techniques for the same 11 

sources. It has been suggested that downwind CH4 quantification methods using CH4 measurements on the fence-line 12 

of production facilities could be used to generate emission estimates from oil and gas operations at the site level, but 13 

it is currently unclear how accurate the quantified emissions are. To investigate downwind methods’ accuracy, this 14 

study uses fence-line simulated data collected during controlled release experiments as input for a non-standard closed-15 

path eddy covariance (EC), the Gaussian plume inverse method (GPIM), and the backward Lagrangian stochastic 16 

(bLs) model in a range of atmospheric conditions. Generally, the closed-path EC system used in this study proved 17 

generally unreliable and largely underestimated emissions, primarily due to non-stationarity and study limitations 18 

associated with using a non-standard setup. In comparison, the Gaussian Plume Inverse Method (GPIM) consistently 19 

outperformed the EC system for both single-release and multi-release single-point emissions. The backward 20 

Lagrangian stochastic (bLs) model demonstrated the highest accuracy for single-release single-point emissions, 21 

though it exhibited greater uncertainty than GPIM under multi-release conditions. Across GPIM and bLs models, the 22 

most reliable quantification was achieved with a 15-minute averaging and a narrow 5° wind-sector range. Although 23 

EC was limited in this context, future studies should consider employing a standard EC system and further optimizing 24 

GPIM and bLs approaches—particularly complex multi-source scenarios—to enhance quantification accuracy and 25 

reduce uncertainty. 26 
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1 Introduction  29 

Reducing methane (CH4) emissions from oil and gas systems is necessary for adhering to regulations and 30 

voluntary reporting frameworks such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0) (UNEP, 2024). The 31 

OGMP 2.0 provides a comprehensive measurement-based international reporting framework allowing companies to 32 

stay ahead of regulatory compliance requirements, meet investor and market pressure, have an enhanced corporate 33 
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image, and prevent revenue loss by lowering their emissions. In the US, currently, the amount of CH4 emitted from 34 

US oil and gas production are compiled by the US Environmental Protection Agency (EPA) under Subpart W. 35 

Typically, companies use a bottom-up inventory approach where emission factors (CH4 emissions per equipment e.g., 36 

separator or emissions per event e.g., liquid unloading) are multiplied by activity factors (total number of pieces of 37 

equipment or events (US EPA, 2023) to generate emissions.  This quantification approach has several shortcomings, 38 

including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which practically are not 39 

independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin (Riddick et al., 40 

2024a); 2. Some emission factors used are outdated (Riddick et al., 2024b) and others do not account for the temporal 41 

and spatial variation in emissions (Riddick and Mauzerall, 2023); and 3. Emission factors do not account for the long-42 

tail distributions (Riddick et al., 2024b); 4. Difficulty in obtaining a truly representative sample from a large diverse 43 

population to generate emission factors (Allen, 2014); and possibly unreliable data reported by operators (Chan et al., 44 

2024). Recently, mechanistic models, such as the Mechanistic Air Emissions Simulator (MAES), have been developed 45 

to address shortcomings in bottom-up CH4 reporting (Mollel et al., 2025), but these still depend on direct 46 

measurements to inform emission factors. 47 

Top-down methods, including using aircraft such as Bridger Photonics LiDAR (Light Detection and 48 

Ranging; 90% detection limit of ~ 2 kg h-1) (Johnson et al., 2021) and satellites such as Carbon Mapper (predicted 49 

90% detection limit of about 100 kg h-1) (Carbon Mapper - Science & Technology, 2025) can also be used to infer 50 

emissions. However, these survey methods only quantify emissions over a very short period of time (< 10 s) and 51 

observations are typically made during the day which can often coincide with maintenance activities that can bias 52 

emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). Additionally, different top-down 53 

technologies measuring the same source have disagreed in their reported emissions which has called into question the 54 

credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, ensuring accuracy in models and 55 

technologies used in CH4 emissions quantification has been a complex issue.   56 

 Currently, fence-line methods are used to detect, localize, and quantify emissions. This approach uses point 57 

sensors fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds 58 

a threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling 59 

framework, usually based on a Gaussian plume inverse approach (Bell et al., 2023; Day et al., 2024; Riddick et al., 60 

2022a). Detection and localization of simulated fugitive emissions using this approach have been demonstrated 61 

successfully in controlled release studies. For example, Ilonze et al. (2024) reported a 90% probability of detection 62 

for emissions between 3.9 and 18.2 kg CH₄ h⁻¹ using multi-sensor and scanning/imaging systems. However, significant 63 

uncertainty in quantification remains; their study reported emissions being misestimated by a factor of 0.2 to 42 for 64 

releases between 0.1 and 1 kg CH₄ h⁻¹, and by a factor of 0.08 to 18 for emissions above 1 kg CH₄ h⁻¹. While 65 

informative, the methods in Ilonze et al. (2024) differ in keyways from those employed here—specifically, their use 66 

of multiple sensors and a distributed monitoring configuration as opposed to the single-instrument, fence-line-based 67 

framework used in our study—limiting direct comparison of quantification accuracy. This study will evaluate the 68 

quantification accuracy of the closed-path EC, Gaussian plume inverse model (GPIM), and the backward Lagrangian 69 
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stochastic model (bLs) for oil and gas point source quantification using a single-instrument deployed at a fence line 70 

distance. 71 

Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the 72 

covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector 73 

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1; Morin, 2019). It is typically implemented over 74 

long homogeneous fetches where eddy mixing scale is a small fraction of the distance from the site providing more 75 

predictable vertical transport. Dumortier et al. (2019) used EC to estimate known point source emissions at a cow’s 76 

muzzle height and reported that the model could estimate emissions between 90 and 113% of the true emission. 77 

Dumortier et al. (2019) stated the optimal controls for point source quantification and footprint modelling are using 78 

running mean, 15-minute averaging periods, no application of Foken and Wichura (1996) stationarity filter and use of 79 

the Kormann and Meixner (2001) footprint function. The study tested the model using an artificial CH4 source at 0.8 80 

m, programmed to emit when winds were coming from the source direction (± 45º), and when friction velocity (u*) 81 

was above 0.13 m s-1. In Dumortier et al. (2019)’s point-source testing, they noted that amplitude resolution, skewness 82 

and kurtosis tests were disabled as they deleted almost all periods involving the artificial source in the footprint. Rey-83 

Sanchez et al. (2022) studied the accuracy of Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015) 84 

and the K & M model (Kormann and Meixner, 2001) in calculating the footprint of point source hot spots using 85 

footprint-weighted flux maps. The study reported the K & M model to be the most accurate. Polonik et al. (2019) 86 

compared five gas analyzers, two open-paths, two enclosed-path and one closed-path analyzer for carbon dioxide EC 87 

measurements. The study noted that while open-path sensors minimize spectral attenuation and require smaller 88 

spectral correction factors compared to sensors with an inlet tube such as a closed-path sensor, open-path sensors risk 89 

data loss in non-ideal conditions like precipitation, fog, dust or dew. The main challenge of applying EC for continuous 90 

monitoring of oil and gas sites is instrument limitations (requires deployment of multiple sensors throughout a facility; 91 

sensor cost is a factor) and statistical tests as well as quality controls could filter out some of the data.  92 
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 93 

94 
Figure 1: Illustrations of eddy covariance where CH4 is methane concentration, and w is the vertical wind speed. 95 

 96 

The GPIM method calculates the CH4 emission rate as a function of mole fraction at a point in space (x, y, 97 

z), downwind distance, perpendicular distance (crosswind), mean wind speed, and atmospheric stability (Riddick et 98 

al., 2022b).  This method has been used to quantify emissions from oil and gas production sites, especially for survey 99 

solutions (Riddick et al., 2022b). For a single point-source, Riddick et al. (2022b) reported absolute uncertainties of 100 

between 40.7 and 60% in a controlled release experiment involving 10 replicate measurements of compressed natural 101 

gas (1.5 m release height), with concentrations measured using a mobile vehicle survey. While this differs from 102 

continuous fence-line deployment, it offers insight into the inherent uncertainty of the GPIM method in field 103 

conditions. Foster-Wittig et al. (2015), using controlled single point source tests, reported average errors of between -104 

5 to 6%.  The limitations of the GPIM method are that it assumes a homogeneous emission source, steady-state flow, 105 

and uniform dispersion of gas in an open area free of obstructions (Hutchinson et al., 2017). 106 

The bLs model adapted in WindTrax can simulate the transport of gases from point sources that emit them 107 

(Figure 2B; Crenna, 2006). The model releases individual particles and follows them along their unique path in air by 108 

mimicking random, turbulent motion of the atmosphere. Tagliaferri et al. (2023) investigated the validity of WindTrax 109 

in quantifying emissions from complex sources and reported the model to be reliable under neutral conditions, 110 

underestimated emission rates during unstable stratification and overestimated emissions during stable conditions. 111 

Similarly to the GPIM method, the model assumes free flow of air in the absence of obstructions and uses time-112 

averaged data as input. 113 
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115 
Figure 2. A: An illustration of a plume that follows a Gaussian plume inverse model where emission rate can be 116 
inferred from concentrations at different downwind distances and crosswind distances. B: An illustration of how the 117 
backward Lagrangian stochastic model traces particles to the source. 118 
   119 

Continuous monitoring of CH4 emissions using fence line sensors requires proper quantification of 120 

intermittent and persistent releases from oil and gas during all release (complex emission profiles) and atmospheric 121 

conditions (unstable, neutral and stable). Oil and gas emissions are characterized by intermittent, non-uniform, single 122 

or multiple point source emissions, varying in leak size, location, height and distance between the source and sensor, 123 

and are typically in complex aerodynamic environments (i.e. not flat).  An ideal quantification model should always 124 

quantify emissions and should capture short and long-lasting emission events. Most models have been validated to 125 

work best during neutral conditions for single point sources. However, it is important to test and apply these models 126 

during non-neutral conditions as well as these are part of real-world conditions where continuous monitoring is 127 

applied. In this study, we evaluate if using a readily available CH4 cavity ring down analyzer for models’ quantification 128 

such as the closed-path EC is a feasible solution to quantify point source emissions.  129 

This study aims to inform the feasibility of downwind quantification models in oil and gas settings by 130 

investigating which models are likely to work most of the time with instrumentation that is typically available for 131 

fence-line deployment. Fence-line sensor deployments involve multiple sensors, continuously running in all 132 

conditions and providing emissions data.  Using robust releases and environmental conditions, this study aims to 133 

investigate the performance of these methods in quantifying emissions for known gas release rates and evaluating 134 

uncertainties that could result in incorrect CH4 reporting. Specifically, the study will evaluate the overall quantification 135 

accuracy (linear regression slope of estimated versus actual emissions, and R2) of closed-path EC, bLs model, and the 136 

GPIM method in quantifying single-release single-point and multi-release single-point emissions that simulate oil and 137 

gas emissions.  138 
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2 Methods 139 

2.1 Experimental Setup 140 

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions 141 

Technology Evaluation Center (METEC) in Fort Collins, CO (USA, 65 miles north of Denver) between February 8, 142 

and March 20, 2024. The METEC center is a simulated oil and gas facility that does controlled testing for emissions 143 

leak detection and quantification technology development, field demonstration, leak detection protocol and best 144 

practices development (METEC | Colorado State University, 2025). The weather conditions during the test period 145 

were mostly sunny, but precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 7 cloudy and 1 foggy day; 146 

Supplementary Information Section 1). Wind speeds were between 0 and 25 m s-1 and temperatures ranged between -147 

15 and +19 °C (Supplementary Information Section 1). A stationary mast holding the instrumentation was setup on 148 

the North-West corner of METEC to take advantage of the predominant wind direction, avoid the largest aerodynamic 149 

obstructions and to simulate the likely placement of a fence-line instrument (Figure 3A; Day et al., 2024; Riddick et 150 

al., 2022a). Fence-line sensors are typically placed within the oil and gas perimeter (~30 m). This study collected data 151 

for what we considered as close and far away releases; distances between 9 and 94 m.  152 

Methane concentration data for closed-path EC, GPIM and bLs methods were collected through an inlet 153 

tubing (3.275 mm inner diameter) at 3 m height, connected to the ABB (Zurich, Switzerland) GLA131 Series 154 

Microportable Greenhouse Gas Analyzer (MGGA) set to sample at 10 Hz. The MGGA is a closed-path greenhouse 155 

gas analyzer with a ~3.2 lpm pump flowrate, 10 cm cell length, 1 inch cell diameter (~0.23 standard cubic centimeters 156 

per minute (sccm) effective volume), and 0.4 s gas flow response time. The inlet tubing was collocated with an R. M. 157 

Young (Traverse City, MI, USA) 81000 sonic anemometer which measured micrometeorology at 10 Hz (Figure 3B). 158 

The northward, eastward, and vertical separations of the inlet tubing from the sonic anemometer were 0, 0, -10 cm, 159 

respectively.  160 
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Figure 3: A: Map illustration of major pieces of equipment and the measurements points at Colorado State University’s 164 
Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  Equipment 4S denotes 165 
horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators, and 5W are well heads. B is the 166 
measurement point for the Microportable Greenhouse Gas Analyzer for closed-path eddy covariance, Gaussian plume 167 
inverse and backward Lagrangian stochastic model quantification. The inlet tubing and the sonic anemometer are at 168 
3 m height. The red dotted lines with yellow numbers show the average distances (meters) between emission 169 
equipment and measurement point. The orange numbers show the range of emission heights (meters) for each 170 
equipment. The analyzer was hosted in a temperature-controlled box.  171 

2.2 Controlled Methane Releases 172 

Controlled releases were part of the METEC Spring 2024 Advancing Development of Emissions Detection 173 

(ADED) Campaign conducted between February 6 and April 29, 2024 (Advancing Development of Emissions 174 

Detection (ADED)). Natural gas of known CH4 content was released from above-ground emission points attached to 175 

equipment typically present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged 176 

between 0.01 kg h-1 and 8.7 kg h-1, and the release durations ranged from 10 seconds to 8 hours, simulating both 177 

fugitive and large emission events. The releases were run both during the day and at night. The distance from the 178 

release points to the measurement points ranged between 9 and 94 m, and emission heights were between 0.1 and 4.9 179 

m (Figure 3A). Emission points simulate the realistic size and locations of typical emissions from components such 180 

as thief hatches, pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The 181 

releases included both single-point emissions (single releases) and multi-point emission events (multiple simultaneous 182 

releases). 183 

2.3 Calculation of Roughness Length 184 

Surface roughness length (z0) was calculated from friction velocity (Supplementary Information Section 2a: 185 

Equations 1 and 2) by splitting the high frequency sonic anemometer data into 15-minute tables and filtering for those 186 

in neutral conditions, |L| > 500 (Supplementary Information Section 2a: Equation 3). The overall roughness length 187 

selected as the median of all the calculated z0 was 0.1 m (Rey-Sanchez et al., 2022).  188 
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2.4 Models Quantification 189 

2.4.1 Eddy Covariance 190 

2.4.1.1 Data pre-processing 191 

Evaluating the MGGA CH4 data showed that actual sampling was between 4 and 12 Hz (majority of the data 192 

collected at approximately 6 Hz), even though the analyzer had been configured to sample at 10 Hz (Supplementary 193 

Information Section 2b). To account for this sampling variability, data were filtered to when sampling was equal to or 194 

greater than 8 Hz. Data sampled at frequencies above 8 Hz were down sampled to 8 Hz. The 8 Hz frequency threshold 195 

was selected to ensure uniform sampling, enough data for model evaluation as most sampling was at lower frequencies, 196 

and to preserve as much temporal resolution as possible given the system limitations. The sonic anemometer 197 

meteorological data (horizontal wind vectors (u, v), vertical wind vector (w), temperature (T), and pressure (P)) actual 198 

sampling varied between 7 and 9 Hz with the most frequent frequency at 8 Hz (Supplementary Information Section 199 

2b). As the MGGA gas analyzer and sonic anemometer were not designed to clock synchronously, using the MGGA 200 

CH4 clock time as a reference, meteorological data from the sonic anemometer were matched to the MGGA CH4 data 201 

using linear interpolation to generate concentration-meteorological 8 Hz data. While in an ideal circumstance of a fast 202 

pump and short tube length a correct timeseries matching can be achieved through establishing a clear point of 203 

maximum covariance when determining the time lag, this is difficult for our system due to a 3 lpm pump flowrate and 204 

a 3 m tubing that caused both attenuation and time lag. 205 

The aggregated concentration-meteorological data were then merged with METEC’s release data and 206 

metadata, and release event tables were created. Release event tables were aggregated tables of concentration, 207 

meteorology and release (emission source location, duration and rate) information for all defined release events at 208 

METEC. The concentration-meteorological-release event data were then separated into single-release and multi-209 

release events. Single-release events were when there was a single emission point at the site level, while multi-release 210 

events were when there was more than one emission point at the site level. The concentration-meteorological-release 211 

event tables were split into 5, 15 and 30-minute release event tables (i.e. there was a continuous release in the duration). 212 

Based on the bearing of the emission point to the measurement point and the average wind direction in the duration, 213 

the data was further filtered to downwind data, ±10º, ±20º, and ±45º.  214 

2.4.1.2 Flux calculation 215 

Turbulent fluxes were calculated using the open software EddyPro® version 7 (EddyPro 7 | Software 216 

Downloads, 2025). Acquisition frequency was set at 8 Hz, while file duration and the flux interval were set at 5, 15, 217 

and 30 minutes, respectively, depending on the file being processed. Table 1 shows the instruments input to the 218 

software. 219 
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Table 1. Anemometer and Gas Analyzer Input into EddyPro 220 

Anemometer 

Information 

 Gas Analyzer 

Information 

 

Manufacturer Young Manufacturer Other 

Model 81000 Model Generic closed path 

Height 3 m Tube length 300 cm 

Wind data format u, v, w Tube inner diameter 3.275 mm 

North alignment  Nominal tube flow rate 3.2 l/m 

North off-set 0.0 Northward separation 0.00 cm 

Northward separation Reference Eastward separation 0.00 cm 

Eastward separation  Reference Vertical separation -10.00 cm 

Vertical separation Reference Longitudinal path length 10.00 cm 

Longitudinal path length  Transversal path length 2.54 cm 

Transversal path length  Time response 0.4 s 

In raw data processing, axis rotations for tilt correction under wind speed measurement offsets were selected. 221 

Under turbulent fluctuations, double rotation and block average detrend methods were used. Covariance maximization 222 

with default was used for time lag detection; time lags detection was enabled. Compensation for density fluctuations 223 

(Webb-Pearman-Leuning terms) (Webb et al., 1980) was disabled as the MGGA analyzer synchronously reported dry 224 

CH4 and water mole fractions, cell temperature and pressure. Mauder and Foken (2004) (0-1-2 system) were used for 225 

quality checks. All statistical tests for raw data screening, (Vickers and Mahrt, 1997)– spike count/removal, amplitude 226 

resolution, drop-outs, absolute limits, skewness and kurtosis, discontinuities, time lags, angle of attack and steadiness 227 

of horizontal wind were selected. The default values for all these tests were used. Similarly, default settings for spectral 228 

analysis and corrections were used. Analytic correction of high-pass filtering effects (Moncrieff et al., 2005) for low 229 

frequency range; and correction of low-pass filtering effects (Fratini et al., 2012 - In situ analytic) and instruments 230 

separation ((Horst and Lenschow, 2009)- only crosswind and vertical) in the high frequency range were used. 231 

2.4.1.3 Post-processing 232 

Flux data were flagged “2”, low quality, based on (Mauder and Foken, 2004) (0-1-2) quality system. 233 

Cospectral analysis revealed that the EC system in this study smoothed out low-frequency eddies, as the cospectra 234 

lack the ideal shape characterized by a low-frequency rise, a peak region, and a high-frequency decay (Supplementary 235 

Information Section 2c.i). While the slope in the high-frequency region varies around the theoretical −4/3 slope, the 236 

cospectral data followed the 1:1 line, indicating consistent spectral shape across sampling periods. We also examined 237 

the relationship between CH₄ flux and friction velocity (u*) to identify a u threshold below which flux estimates may 238 

be unreliable (Supplementary Information Section 2c. ii). However, no consistent relationship was observed across 239 

atmospheric stability classes (unstable, stable, and neutral). CH₄ fluxes varied widely—including both positive and 240 

negative values—across the full range of u* (~0 to 1 m s⁻¹), with no discernible threshold beyond which fluxes 241 

stabilized. This indicated that CH₄ fluxes were effectively independent of u*, and thus, data from all u* values were 242 

retained. Ogive analysis was conducted to assess whether averaging durations of 5, 15, and 30 minutes were sufficient 243 
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for capturing the full turbulent flux. The resulting ogive curves deviated from the ideal asymptotic shape, particularly 244 

at the highest and lowest frequencies. Notably, the curves did not exhibit a clear plateau near the low-frequency end, 245 

where cumulative flux should approach unity. This indicates incomplete flux capture. Furthermore, the similarity in 246 

ogive shapes across different frequencies—mirroring patterns seen in the cospectra—suggests a lack of significant 247 

turbulent contributions and the influence of non-turbulent, possibly advective, processes. These results imply that the 248 

EC system may not have fully resolved the flux due to either insufficient averaging time, non-stationarity, or 249 

instrument-related limitations (Supplementary Information Section 2c.iii). As positive fluxes are generally considered 250 

emissions, and negative fluxes depositions, data were further filtered for positive fluxes which were then quantified 251 

to emission rates. 252 

2.4.1.4 Footprints Calculation 253 

Eddy covariance footprints were calculated using the Kljun et al. (2015) and the Kormann and Meixner 254 

(2001) footprint models. For the Kljun et al. (2015), the freely online MATLAB code of the model was used, while 255 

the Kormann and Meixner (2001) was coded in MATLAB. To determine the point source footprint contribution, the 256 

study first calculated the area that contributed 90% of the vertical flux; and based on the location (x and y coordinates 257 

based on wind direction and distance from source) of the point source, the source was determined if it was within the 258 

90% footprint area. Point source emissions of sources within this region were then calculated based on the approach 259 

by Dumortier et al. (2019).  This approach assumes all measured flux is equal to flux resulting from a single point 260 

source. In case of the mast being downwind of more than one source, more sonic anemometers are needed to solve 261 

the two unknown point source fluxes. 262 

2.4.2 Gaussian Plume Inverse Method 263 

2.4.2.1 Data pre-processing 264 

Methane concentration data from the MGGA analyzer and meteorology data from the sonic anemometer 265 

were averaged to 1 Hz and aggregated. The aggregated concentration-meteorological data were merged with 266 

METEC’s release data and metadata, and release event tables were created. The concentration-meteorological-release 267 

event data were then separated into single-release and multi-release events. For single-release events, the 268 

concentration-meteorological-release event tables were split into 5, 15, and 30-minute release event tables. Based on 269 

the bearing of the emission point to the measurement point and the average wind direction in the duration, the data 270 

was further filtered to downwind data, ±5º, ±10º and ±20º wind sector ranges. Multi-release events were further 271 

classified into multi-release single-point emissions (i.e., there were multiple emissions at the site level, but the mast 272 

was downwind of a single source) and multi-release multi-point emissions (i.e. there were multiple emissions at the 273 

site level and the mast was downwind of more than one source).  This study focuses on single-release single-point and 274 

multi-release single-point emissions. For continuous monitoring sensors, background concentration can be determined 275 

from CH4 concentrations measured by a sensor upwind of the emission source, or by sampling when the wind is 276 

blowing away from the source. However, for continuous monitoring sensors, using an upwind sensor has the limitation 277 

of missing downwind background noise resulting from emissions in the preceding emission event where there is 278 

residual CH4 in air especially during stable conditions, and capturing sensors drift in the downwind sensor. In this 279 

study, background CH4 was calculated as the average of the lowest 5th percentile, 5 minutes before each release started. 280 
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In cases where this background was greater than the mean CH4 concentration in the quantifying duration, the minimum 281 

CH4 concentration for that duration was used as the background.  Methane enhancement was then calculated as CH4 282 

concentration minus the background. 283 

2.4.2.2 Quantification 284 

The GPIM was evaluated under six scenarios (two equations and three different dispersion coefficients 285 

generations) using single-release single-point emissions to test when the model works best (Supplementary 286 

Information Section 2a: Equation 7 and 8). Dispersion coefficients were generated based on (1) high frequency sonic 287 

anemometer data at ~ 10 Hz, (2) EPA point-source dispersion coefficients (US EPA, 2013), and (3) 1 Hz sonic 288 

anemometer data. The scenario with the slope closest to 1, and highest R2 across averaging durations, and wind sector 289 

ranges were selected and used for multi-release single-point emissions quantification. For single-release tables, the 290 

measurement point was downwind of a single source (single-release single-point emission), hence the tables were 291 

quantified as they were. However, for multi-release events, the tables were further processed as the GPIM method is 292 

designed to quantify a single point source at a time. For multi-release events, the number of emission points in the 293 

downwind tables were used to further classify the tables into multi-release single-point emissions (i.e. there were 294 

multiple emissions at the site level, but the mast was downwind of a single source), and multi-release multi-point 295 

emissions (i.e. there were multiple emissions at the site level and the mast was downwind of more than one emission 296 

source). The GPIM method was only used for multi-release single-point emissions. 297 

 2.4.3 Backward Lagrangian Stochastic Model 298 

Pre-processed data from the GPIM method was used for bLs quantification. Quantification was done using 299 

the open-source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0, n.d.). For every 5-, 15- and 30-minute duration 300 

in the ±5º, ±10º, and ±20º, respectively, inputs included roughness length (z0), Monin-Obukhov length (L- 301 

Supplementary Information Equation 3), mean (wind speed, wind direction, concentration, pressure, temperature), 302 

background concentration, source height, and distance from the emission point to sensor. WindTrax is also designed 303 

to quantify a single point source at a time, and hence, was only used to quantify single-point single emissions and 304 

multi-point single emissions. 305 

3 Results 306 

3.1Eddy Covariance 307 

3.1.1 Single-Release Single-Point 308 

For single-release single-point (SRSP) emissions, the closed-path EC underestimated emissions. Using the 309 

Kljun et al. (2015) footprint model, the slope of the estimated emissions versus actual emissions linear regression was 310 

between -0.04 and 0.54 at 5 minutes, -0.36 and -0.04 at 15 minutes, and 0.03 at 30 minutes, 45 degrees (10 and 20 311 

degrees had insufficient data points) (Figure 4). The adjusted R2 was between -0.04 and 0.12 indicating no linear 312 

relationship between the estimated and actual emission (Figure 4). Using the Kormann and Meixner (2001) footprint 313 

model, the slope was between -0.42 and 0.17 at 5 and 15 minutes, respectively, and -0.08 at 30 minutes, 45 degrees 314 

(Supplementary Information Section 3.1.1). Similarly, the adjusted R2
 values were between -0.07 and 0.05. These 315 

results indicate that this study’s EC system using either the Kljun et al. (2015) or the Kormann and Meixner (2001) 316 
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footprint models did not reliably quantify emissions for SRSP cases. The low slopes and adjusted R² values suggest 317 

little to no linear relationship between estimated and actual emissions under the tested conditions (Figure 4; 318 

Supplementary Section 3.1.1).   319 

 320 

 321 
Figure 4. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 322 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 323 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 324 
 325 
3.1.2 Multi-Release Single-Point 326 

For multi-release single-point (MRSP) emissions, the closed-path EC largely underestimated emissions and 327 

did not show good agreement between estimated and actual emissions (Figure 5). Using the Kljun et al. (2015) 328 

footprint model, the slope was between -0.51 and 0.18, except for the 5 minutes 45 degrees category that had a slope 329 

of 0.61. The adjusted R2 did not show a linear relationship between estimated and actual emissions with values ranging 330 

between -0.02 and 0.00 (Figure 5). Using Kormann and Meixner (2001) footprint model, the slope was between -0.03 331 

and 1.06. The good agreement of 1.06 was at 30 minutes 45 degrees with an adjusted R2 of 0.12 (Supplementary 332 

Information Section 3.1.2). The rest of the categories had an R2 of between -0.02 and 0.06. These results suggest that 333 

the EC system did not reliably quantify emissions for MRSP cases under most conditions. Only one category (30 334 

minutes, 45 degrees using the Kormann and Meixner (2001) footprint model showed moderate agreement (slope = 335 

1.06, adjusted R² = 0.12), but even this explains only a small portion of the variability in actual emissions. Overall, 336 

the adjusted R² values across scenarios (−0.02 to 0.12) indicate a weak or no linear relationship.  337 



13 

 

 338 

Figure 5. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 339 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 340 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 341 

 342 
3.2 Gaussian Plume Inverse Method 343 

3.2.1 Single-Release Single-Point 344 

The GPIM sensitivity analysis comparing different equations and dispersion coefficients showed no 345 

difference in quantified emissions between Equation 7 and Equation 8. Among the dispersion coefficient sets tested, 346 

the (US EPA, 2013) coefficients resulted in the most consistent performance, with the least variability in slope and 347 

the highest overall adjusted R² values (Supplementary Information Section 3.2). For this scenario, the slope ranged 348 

from 1.65 to 3.92 (excluding the 30-minute, 5-degree case due to insufficient data), and adjusted R² values ranged 349 

from 0.40 to 0.64 (Figure 6). The 15-minute, 5-degree case had the slope closest to 1 (slope = 1.65, R² = 0.40), while 350 

the 5-minute, 5-degree case showed the strongest linear relationship overall (slope = 2.42, R² = 0.64) (Figure 6). These 351 

results suggest that while the GPIM model tends to overestimate emissions (slopes > 1), it provides relatively 352 

consistent and stronger linear agreement with actual emissions compared to the closed-path EC system tested above 353 

(Section 3.1). 354 
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 355 

Figure 6. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. Sce.3 refers to 356 
scenario 3 of the sensitivity analysis in Supplementary Information Section 3.2). The red dotted line is a 1:1 line based 357 
on actual emissions i.e. points below the line are underestimated and above are overestimated emissions. The gray 358 
region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n.  359 

 360 

3.2.2 Multi-Release Single-Point 361 

For MRSP emissions, the GPIM model produced a wide range of slopes, from –43.05 to 1.60 (Figure 7). 362 

Excluding the 5-minute 5- and 10 degrees categories, and the 30-minute 10 degrees category, most other cases reported 363 

slopes between 0.76 and 1.22, suggesting potential quantification within ~25% of actual emissions. However, the 364 

adjusted R² values in these cases were close to zero, indicating no consistent linear relationship between estimated 365 

and actual emissions (Figure 7). This lack of correlation is likely due to the high variability in GPIM estimates, which 366 

reached up to 200 kg h⁻¹ for the selected categories, despite actual emissions being only around ~6 kg h⁻¹. These 367 

results indicate that while the GPIM model sometimes produced slope values suggesting close agreement with actual 368 

emissions, the lack of linear correlation and large overestimations highlight its limited reliability in quantifying MRSP 369 

emissions accurately. 370 
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 371 

Figure 7. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 372 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 373 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 374 

 375 

3.3 Backward Lagrangian Stochastic Model 376 
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3.3.1 Single-Release Single-Point 377 

For SRSP emissions, the bLS method generally produced the most accurate slopes (i.e., closest to 1) 378 

compared to the EC and GPIM methods (Figure 8). The 15-minute 5- and 10-degrees categories yielded the most 379 

accurate estimates, with slopes of 1.05 and 1.10, respectively. The adjusted R² ranged from 0.48 to 0.66 for the 5-380 

minute averaging duration, and from 0.40 to 0.48 for the 15-minute duration. At the 30-minute averaging duration, 381 

performance improved in the 10- and 20-degrees categories, likely due to increased sample sizes (Figure 8). These 382 

results show that the bLs is more suitable for quantifying single-release single point emissions. 383 

 384 

Figure 8. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 385 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 386 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 387 

 388 

3.3.2 Multi-Release Single-Point 389 

The bLs method had wide uncertainties for MSRP emissions especially in the 5 minutes, 5- and 10-degrees 390 

categories (Figure 9). In the other categories, the slopes were between -0.03 and 0.45, and R2 ~0. Even though the 391 

estimated emissions spanned up to >20 kg h-1 mostly for actual emissions of up to 6 kg h-1, lots of points were 392 

concentrated close to 0. Compared to the GPIM MSRP results, even though both models have an R2 of ~0, the GPIM 393 

had a slope closer to 1 in the 15-munites category than the bLs showing better performance. These results show that 394 

the bLs is more suitable for quantifying SRSP emissions than MSRP emissions. 395 
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396 
Figure 9. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 397 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 398 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 399 

 400 

3.4 Models Comparison – Subset Data 401 

 Using a subset of the data (SRSP), filtered by 15-minute intervals within a 10-degree wind sector range where 402 

each model provided an emission estimate, the bLs model exhibited the best performance, with its linear regression 403 

closely aligned with the 1:1 line (Figure 10). The slope of the regression line for the GPIM was 1.6, indicating an 404 

overestimation, while the bLs had a slope of 0.95, suggesting high accuracy. In contrast, the EC model produced 405 

slopes of 0.08 and 0.10 when using the Kormann and Meixner (2001) and Kljun et al. (2015) footprint 406 

parameterizations, respectively, indicating significant underestimation. When emission estimates were categorized by 407 

emission point, the GPIM notably overestimated emissions at locations 4W-22 and 4W-51 (identified in Figure 3), 408 

both situated approximately 10 m from the measurement location. The EC model consistently underestimated 409 

emissions across all sites, while the bLs model provided estimates closest to the expected values. The EC model 410 

produced negative emission rates associated with negative fluxes during periods of high non-stationarity 411 

(Supplementary Information, Section 2c. iv). These deviations from stationarity reflect intermittent plume capture, 412 

where the EC system alternated between sampling emitting and non-emitting regions. Overall, these findings indicate 413 

that for source-receptor distances ranging from approximately 10 to 90 meters, the bLs model demonstrated the highest 414 

accuracy in quantifying emissions. 415 

 416 
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 417 

 418 

Figure 10. Top plot: Estimated emission vs actual emission (kg h-1) for each model. GPIM is the Gaussian Plume 419 
Inverse Method, bLs is the backward Lagrangian stochastic model, EC-KM is eddy covariance with (Kormann and 420 
Meixner, 2001) footprint, and EC-Klujn is the eddy covariance estimate using the (Kljun et al., 2015) footprint. The 421 
black dotted line is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are 422 
overestimated emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The 423 
sample size is n. Bottom plot: Estimated emission vs actual emission categorized by Emission Point as illustrated in 424 
Figure 3.  425 

3.5 Traceability Example 426 
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To illustrate how raw data were converted into model-based emission estimates, we present one representative 427 

15-minute interval used in Figure 10. During a controlled release at point 4W-22 (wellhead), located approximately 428 

10.5 m from the mast, the ground-truth release rate was 3 kg CH4 h-1. Over this interval, the average CH₄ concentration 429 

enhancement was 8.3 ppm above the background (determined using the 5th percentile method, see Section 2.4.2.1). 430 

The cross wiwind direction was 153° (0.3 m crosswind distance), with an average wind speed of 5.8 m s-1. The same 431 

interval was processed through the three modeling frameworks: 432 

• The bLs model (WindTrax), using measured concentration, geometry, and meteorological data, estimated 433 

3.5 kg h-1. 434 

• The GPIM model, using Equation 7 and 8 (Supplementary Information) and dispersion coefficients, 435 

estimated 10.3 kg h-1. 436 

• The EC method (using the (Kormann and Meixner, 2001) footprint) estimated –0.004 kg h-1 due to a negative 437 

flux under high non-stationarity conditions. 438 

This example illustrates how the bLs model reproduced the true emission most closely, GPIM overestimated, and EC 439 

underestimated the emission. More examples of data presented in Figure 10 are available under supplementary data 440 

“MATLAB Code & Software Configuration – Validation.xlsx”.  441 

4 Discussion 442 

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from 443 

different heights, different locations, encountering aerodynamic obstacles of different sizes, and varying emissions 444 

duration, amongst others. The ability to precisely quantify emissions using data collected by a point sensor, downwind 445 

of a source is directly influenced by plume dynamics. The CH4 plume downwind of a source will change in size and 446 

shape in different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in different seasons 447 

(Casal, 2008). In this study, we evaluated the ability of downwind methods—including a non-standard closed-path 448 

EC system, the GPIM, and the bLs model—to quantify emissions from single-release and multi-release point sources. 449 

While the field measurements took place under naturally varying meteorological conditions, these were not explicitly 450 

stratified or analyzed as experimental factors. Additionally, although on-site infrastructure such as storage tanks were 451 

present, their distance from the sampling instruments (~50 m) likely rendered their aerodynamic influence negligible. 452 

As such, the analysis focuses on quantification of performance under realistic but uncontrolled field scenarios, without 453 

attributing model behavior to specific atmospheric or obstacle-related conditions.  454 

4.1 Eddy Covariance 455 

Eddy covariance was tested using a closed-path analyzer, cavity ring-down spectroscopy, with a 3.2 lpm 456 

pump flowrate and a 0.4 s gas flow response time. The closed path EC underestimated emissions with a linear 457 

regression slope for estimated emissions versus actual emissions of between -0.42 and 0.54 using the Kljun et al. 458 

(2015) and the Kormann and Meixner (2001) footprint models, and adjusted R2 was ~0 (Section 3.1). This was a wider 459 

uncertainty in estimated emissions than one reported by Dumortier et al. (2019) who estimated emissions at between 460 

90 and 113% of true emission (~1.5 kg day-1) with concentrations between 2 and 3 ppm. Our study tested closed-path 461 

EC at emission rates between 0.005 and 8.5 kg h-1. Notably, the results for the non-standard EC system tested this 462 
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study may not be representative of EC performance in oil and gas as ogive and cospectra analysis indicated that the 463 

flux may not have been fully resolved due to non-stationarity, and instrument-related limitations. 464 

Our results were derived from data filtered to include only periods with sampling frequencies ≥8 Hz, which 465 

significantly reduced the number of usable emission measurements. Although the instrument was configured to sample 466 

at 10 Hz, it did not consistently achieve this rate. This discrepancy may be attributed to instrument-related factors such 467 

as the 0.4-second gas flow response time, which could delay analysis of the drawn air sample in the cavity, or the use 468 

of a 3 lpm pump with 3 meters of tubing, which reduced the effective turnover rate. The dataset used for eddy 469 

covariance evaluation was predominantly flagged as low quality (flag 2) according to the (Mauder and Foken, 2004) 470 

quality control test, which classifies flux data based on steady-state conditions and the presence of well-developed 471 

turbulence (flags 0 = high, 1 = intermediate, 2 = low quality). Many of the low-quality flags were likely driven by 472 

wide deviation in w/CH4 stationarity reflecting intermittent plume capture, where the EC system alternated between 473 

sampling emitting and non-emitting regions. The EC model produced negative emission rates associated with negative 474 

fluxes during periods of high non-stationarity (Supplementary Information, Section 2c. iv). 475 

Despite high non-stationarity that resulted in low data quality issues resulting in EC inaccuracies, this study 476 

acknowledges our design limitations. Our study did not have a reliable method for aligning the asynchronous CH₄ and 477 

sonic anemometer data streams, which likely introduced substantial timing errors and contributed to uncertainty in the 478 

flux calculations. The intake for the closed-path system was positioned approximately 10 cm below the sonic 479 

anemometer to protect the inlet tubing from debris and precipitation by mounting it on an aluminum shield facing 480 

downward. We recognize that even this small vertical separation can introduce additional errors in flux measurements 481 

when using short towers. This design choice was a compromise to ensure instrument protection while maintaining 482 

data collection in field conditions. We acknowledge that the system used in this study was not designed or configured 483 

for standard eddy covariance analysis, and that this limitation impacts the interpretation of our results in the context 484 

of EC-based flux quantification.  485 

In this study, continuous monitoring was conducted using a single sensor with an inlet deployed at a fence-486 

line distance. This system requires instrumentation capable of measuring a wide concentration range, as emissions 487 

from oil and gas sites can vary between 0 and 250 ppm (Supplementary Information Section 1). While continuous 488 

monitoring systems, comprising multiple sensors, can offer enhanced spatial coverage and source localization, they 489 

also introduce higher costs. The limitations and findings reported here therefore apply specifically to this single-sensor 490 

fence-line continuous monitoring approach and may not be representative of all continuous monitoring frameworks. 491 

This study acknowledges the limitations of the eddy covariance (EC) setup used, particularly that the ABB MGGA 492 

GLA131 Series analyzer is not designed specifically for EC applications. As a result, the conclusions drawn from the 493 

EC data are constrained. The study recommends further EC testing with instruments specifically designed for EC, 494 

ideally featuring a wide measurement range (0 to ~500 ppm), faster pump speeds, shorter tubing, synchronized data 495 

logging, sampling frequencies above 10 Hz, and rugged designs suitable for field deployment. Additionally, the study 496 

recognizes that environmental factors—such as obstructions, intermittent emissions, and variable wind directions 497 

causing plume meandering—can degrade EC data quality and complicate its application in oil and gas field studies. 498 
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4.2 Gaussian Plume Inverse Method 499 

The GPIM method quantified emissions within a slope of 1.65 to 3.92 and adjusted R2 of between 0.4 and 500 

0.64 with highest performance at 15-minutes 5-degrees wind sector (slope = 1.65, R2 =0.4), and 5 minutes 5-degrees 501 

(slope = 2.42, R2 = 0.64) for SRSP emissions (Section 3.2). For MSRP emissions, the GPIM showed wide uncertainties 502 

even though the slopes for other categories excluding 5-minutes 5-and 10-degrees, and 30-minutes 10-degrees 503 

categories, were between 0.74 and 1.60, with R2 ~0 (Section 3.2). The R2 close to zero showed that there was no linear 504 

relationship between the estimated and actual emissions for MSRP conditions. Overall, the GPIM performed well 505 

under 15-minutes averaging duration, and 5-degree wind-sector ranges in both SRSP and MSRP categories. The 506 

MSRP emission profiles tested in this study were complex challenging the GPIM application as the method is a point-507 

source specific quantification approach and works best in open areas, free of obstacles, and when the background 508 

concentration is well defined. For multiple emissions, even when the sensor is nominally downwind of a single source 509 

based on the average wind direction, quantification can be complicated by interference from neighboring sources. 510 

However, it is important to emphasize that such complexity is not a fundamental limitation of quantification itself, but 511 

rather a function of the experimental design and study objectives. For example, plume interference can often be 512 

minimized through strategic localization and optimization using multiple sensors—an approach that differs from the 513 

single-instrument setup used in this study. This study’s design involves defining plumes based on wind sector ranges, 514 

as opposed to using multiple sensors to localize sources, and therefore does not replicate how various continuous 515 

monitoring solutions typically operate. The GPIM has previously been reported to quantify emissions within 40.7 and 516 

60% error for a single point-source using controlled release experiments (Riddick et al., 2022b). However, GPIM 517 

correct quantification has been suggested to be better for longer distances where the plume is well mixed as seen in 518 

Figure 10. This is typically a challenge for fence-line sensors that have to be deployed within the facility boundaries 519 

where large downwind distances may not be practical.  520 

4.3 Backward Lagrangian Stochastic Model 521 

 The bLs method was the most accurate in quantifying emissions for the SRSP release profiles but had wider 522 

uncertainties than the GPIM for MRSP scenarios (Section 3.1). For SRSP emissions, the slopes closest to 1 were 523 

during the 15-minute 5-degrees (slope = 1.05, R2 = 0.4) and 10-degrees (slope = 1.10, R2 =0.37). The best R2 was in 524 

the 5-minute 5-degrees category (slope = 1.64, R2 = 0.66). However, for MSRP emissions, the slopes were between -525 

0.03 and 0.45 in the best categories with R2 of ~0.  Similarly to the GPIM method, the bLs method used in this study 526 

is a point-source specific quantification method that simulates transport of molecules in open area and where the 527 

background concentration is defined. In this case, as with the SRSP test scenario, the bLs approach was generally 528 

more accurate than the EC and GPIM.  However, for MRSP emissions, quantification accuracy was low. This 529 

discrepancy may be due to design-related challenges—specifically, interference from neighboring sources and the 530 

lack of distinct plume separation in complex flow conditions. Although the measurement point was nominally 531 

downwind of a single source, the real-world plume structure may not align with model assumptions. Additionally, the 532 

bLs implementation in WindTrax is designed for single-source scenarios and applying it in multi-source environments 533 

without adaptation can lead to inaccuracies. The GPIM and bLs methods are sensitive to background correction, which 534 

in this study was complicated by temporal overlap between release events and residual CH₄ accumulation, particularly 535 
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under stable atmospheric conditions. Although this is a controlled-release study, residual methane from prior 536 

emissions and the presence of multiple plumes can affect the CH₄ concentration during a candidate event, challenging 537 

the assumptions used to define background and isolate a single-source plume using wind-sector-based criteria. These 538 

findings highlight the importance of aligning modeling assumptions with the experimental context rather than pointing 539 

to a fundamental limitation of the method itself. 540 

4.4 Implications 541 

In recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas 542 

sites. This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous 543 

monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to 544 

infer emission rates. For point sources, downwind methods such as the Gaussian plume inverse method have been 545 

widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This 546 

study’s design replicated a continuous monitoring setup’s downwind deployment distance, range of typical emission 547 

rates, emissions heights, and meteorological data acquisition.  548 

Oil and gas point sources could either be single emissions, or multiple emissions occurring concurrently. In 549 

this study’s design, cases involving multiple emissions with more than one release point located upwind posed 550 

challenges for the specific Gaussian and backward Lagrangian stochastic (bLs) model implementations, which were 551 

applied assuming a single active source at a time. While these models can be extended to handle multi-source 552 

scenarios, the assumptions used here limit their ability to distinguish individual contributions when plumes overlap. 553 

As a result, interference from neighboring emissions introduced ambiguity in model-observation alignment, 554 

particularly under complex wind conditions. Closed-path eddy covariance was generally unreliable in this study due 555 

to non-stationarity and limitations associated with using a non-standard EC system. In contrast, the Gaussian Plume 556 

Inverse Method (GPIM) outperformed the non-standard EC system for both single-release and multi-release single-557 

point emissions. The backward Lagrangian stochastic (bLs) method was the most accurate for single-release single-558 

point emissions but was less accurate than the GPIM under multi-release conditions. For both GPIM and bLs, 15-559 

minute averaging with a narrow wind-sector (5°) yielded the best performance. While EC results in this study were 560 

limited by system constraints, future work is recommended using standard EC instruments and further optimizing 561 

GPIM and bLs models—particularly for complex multi-release scenarios—to improve accuracy and reduce 562 

uncertainties. 563 
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