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Abstract. The dependable reporting of methane (CH4) emissions from point sources, such as fugitive leaks from oil 8 

and gas infrastructure, is important for profit maximization (retaining more hydrocarbons), evaluating climate impacts, 9 

assessing CH4 fees for regulatory programs, and validating CH4 intensity in differentiated gas programs. Currently, 10 

there are disagreements between emissions reported by different quantification techniques for the same sources. It has 11 

been suggested that downwind CH4 quantification methods using CH4 measurements on the fence-line of production 12 

facilities could be used to generate emission estimates from oil and gas operations at the site level, but it is currently 13 

unclear how accurate the quantified emissions are. To investigate downwind methods’ accuracy, this study uses fence-14 

line simulated data collected during controlled release experiments as input for a non-standard closed-path eddy 15 

covariance (EC), the Gaussian plume inverse method (GPIM), and the backward Lagrangian stochastic (bLs) model 16 

in a range of atmospheric conditions. This study’s EC attempt was unsuccessful due to data collection and 17 

instrumentation issues, resulting in invalid results characterized by underestimated emissions, large negative fluxes, 18 

and cospectra/ogives that deviated from their ideal shapes. Consequently, the EC results could not be compared with 19 

the GPIM or the bLS models .Generally, the closed-path EC system used in this study proved generally unreliable and 20 

largely underestimated emissions, primarily due to non-stationarity and study limitations associated with using a non-21 

standard setup. In comparison, the Gaussian Plume Inverse Method (GPIM) consistently outperformed the EC system 22 

for both single-release and multi-release single-point emissions. The The bLsbackward Lagrangian stochastic (bLs) 23 

model demonstrated the highest accuracy for single-release single-point emissions, though it exhibited greater 24 

uncertainty than GPIM under multi-release conditions. Across GPIM and bLs models, the most reliable quantification 25 

was achieved with 15-minute averaging and a narrow 5° wind-sector range. Although EC was limited in this context, 26 

future studies should consider employing a standard EC system and further optimizing GPIM and bLs approaches—27 

particularly for complex multi-source scenarios—to enhance quantification accuracy and reduce uncertainty. 28 

Keywords: Continuous monitoring; oil and gas; point source; closed-path eddy covariance; Gaussian plume inverse 29 

method; backward Lagrangian stochastic model 30 

1 Introduction  31 

Reducing methane (CH4) emissions from oil and gas systems is necessary for adhering to regulations and 32 

voluntary reporting frameworks such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0) (UNEP, 2024). The 33 
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OGMP 2.0 provides a comprehensive measurement-based international reporting framework allowing companies to 34 

stay ahead of regulatory compliance requirements, meet investor and market pressure, have an enhanced corporate 35 

image, and prevent revenue loss by lowering their emissions. In the US, currently, the amount of CH4 emitted from 36 

US oil and gas production are compiled by the US Environmental Protection Agency (EPA) under Subpart W. 37 

Typically, companies use a bottom-up inventory approach where emission factors (CH4 emissions per equipment e.g., 38 

separator or emissions per event e.g., liquid unloading) are multiplied by activity factors (total number of pieces of 39 

equipment or events (US EPA, 2023) to generate emissions.  This quantification approach has several shortcomings, 40 

including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which practically are not 41 

independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin (Riddick et al., 42 

2024a); 2. Some emission factors used are outdated (Riddick et al., 2024b) and others do not account for the temporal 43 

and spatial variation in emissions (Riddick and Mauzerall, 2023); 3. Emission factors do not account for the long-tail 44 

distributions (Riddick et al., 2024b); 4. Difficulty in obtaining a truly representative sample from a large diverse 45 

population to generate emission factors (Allen, 2014); and 5. Possibly unreliable data reported by operators (Chan et 46 

al., 2024). Recently, mechanistic models, such as the Mechanistic Air Emissions Simulator (MAES), have been 47 

developed to address shortcomings in bottom-up CH4 reporting (Mollel et al., 2025), but these still depend on direct 48 

measurements to inform emission factors. 49 

Top-down methods, including using aircraft such as Bridger Photonics LiDAR (Light Detection and 50 

Ranging; 90% detection limit of ~ 2 kg h-1) (Johnson et al., 2021) and satellites such as Carbon Mapper (predicted 51 

90% detection limit of about 100 kg h-1) (Carbon Mapper - Science & Technology, 2025) can also be used to infer 52 

emissions. However, these survey methods only quantify emissions over a very short period of time (< 10 s) and 53 

observations are typically made during the day which can often coincide with maintenance activities that can bias 54 

emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). Additionally, different top-down 55 

technologies measuring the same source have disagreed in their reported emissions which has called into question the 56 

credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, ensuring accuracy in models and 57 

technologies used in CH4 emissions quantification has been a complex issue.   58 

 Currently, fence-line methods are used to detect, localize and quantify emissions. This approach uses point 59 

sensors fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds 60 

a threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling 61 

framework, usually based on a Gaussian plume inverse approach (Bell et al., 2023; Day et al., 2024; Riddick et al., 62 

2022a). Detection and localization of simulated fugitive emissions using this approach have been demonstrated 63 

successfully in controlled release studies. For example, (Ilonze et al., 2024) reported a 90% probability of detection 64 

for emissions between 3.9 and 18.2 kg CH₄ h⁻¹ using multi-sensor and scanning/imaging systems. However, significant 65 

uncertainty in quantification remains; their study reported emissions being misestimated by a factor of 0.2 to 42 for 66 

releases between 0.1 and 1 kg CH₄ h⁻¹, and by a factor of 0.08 to 18 for emissions above 1 kg CH₄ h⁻¹. While 67 

informative, the methods in  (Ilonze et al., 2024) differ in key ways from those employed here—specifically, their use 68 

of multiple sensors and a distributed monitoring configuration as opposed to the single-instrument, fence-line-based 69 

framework used in our study—limiting direct comparison of quantification accuracy. This study will evaluate the 70 
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quantification accuracy of the closed-path eddy covariance (EC), Gsingle instrumenterse model (GPIM), and the 71 

backward Lagrangian stochastic model (bLs) for oil and gas point source quantification using a single-instrument 72 

deployed at a fence line distance. 73 

Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the 74 

covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector 75 

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1; Morin, 2019). It is typically implemented over 76 

long homogeneous fetches where eddy mixing scale is a small fraction of the distance from the site providing more 77 

predictable vertical transport. Dumortier et al. (2019) used EC to estimate known point source emissions at a cow’s 78 

muzzle height and reported the model could estimate emissions between 90 and 113% of the true emission. Dumortier 79 

et al. (2019) stated the optimal controls for point source quantification and footprint modelling are using running 80 

mean, 15-minute averaging periods, no application of (Foken and Wichura, 1996) stationarity filter and use of the  81 

(Kormann and Meixner, 2001) footprint function. The study tested the model using an artificial CH4 source at 0.8 m, 82 

programmed to emit when winds were coming from the source direction (± 45º), and when friction velocity (u*) was 83 

above 0.13 m s-1. In (Dumortier et al., 2019)’s point-source testing, they noted that amplitude resolution, skewness 84 

and kurtosis tests were disabled as they deleted almost all periods involving the artificial source in the footprint. Rey-85 

Sanchez et al. (2022) studied the accuracy of the Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015) 86 

and the K & M model (Kormann and Meixner, 2001) in calculating the footprint of point source hot spots using 87 

footprint-weighted flux maps. The study reported the K & M model to be the most accurate. Polonik et al. (2019) 88 

compared five gas analyzers, two open-paths, two enclosed-path and one closed-path analyzer for carbon dioxide EC 89 

measurements. The study noted that while open-path sensors minimize spectral attenuation and require smaller 90 

spectral correction factors compared to sensors with an inlet tube such as a closed-path sensor, open-path sensors risk 91 

data loss in non-ideal conditions like precipitation, fog, dust or dew. The main challenge of applying EC for continuous 92 

monitoring of oil and gas sites is instrument limitations (requires deployment of multiple sensors throughout a facility; 93 

sensor cost is a factor) and statistical tests as well as quality controls could filter out some of the data.  94 
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96 
Figure 1: Illustrations of eddy covariance where CH4 is methane concentrations, and w is the vertical wind speed. 97 

 98 

The GPIM method calculates CH4 emission rate as a function of mole fraction at a point in space (x, y, z), 99 

downwind distance, perpendicular distance (crosswind), mean wind speed and atmospheric stability (Riddick et al., 100 

2022b).  This method has been used to quantify emissions from oil and gas production sites especially for survey 101 

solutions (Riddick et al., 2022b). For a single point-source (Riddick et al., 2022b) reported absolute uncertainties of 102 

between 40.7 and 60% in a controlled release experiment involving 10 replicate measurements of compressed natural 103 

gas (1.5 m release height), with concentrations measured using a mobile vehicle survey. While this differs from 104 

continuous fence-line deployment, it offers insight into the inherent uncertainty of the GPIM method in field 105 

conditions. Foster-Wittig et al. (2015) using controlled single point source tests reported average errors of between -106 

5 to 6%.  The limitations of the GPIM method are that it assumes a homogeneous emission source, steady-state flow, 107 

and uniform dispersion of gas in an open area free of obstructions (Hutchinson et al., 2017). 108 

The bLs model adapted in WindTrax can simulate the transport of gases from point sources that emit them 109 

(Figure 2B; Crenna, 2006). The model releases individual particles and follows them along their unique path in air by 110 

mimicking random, turbulent motion of the atmosphere. Tagliaferri et al. (2023) investigated the validity of WindTrax 111 

in quantifying emissions from complex sources and reported the model to be reliable under neutral conditions, 112 

underestimated emission rates during unstable stratification and overestimated emissions during stable conditions. 113 

Similarly to the GPIM method, the model assumes free flow of air in the absence of obstructions and uses time-114 

averaged data as input. 115 
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117 
Figure 2. A: An illustration of a plume that follows a Gaussian plume inverse model where emission rate can be 118 
inferred from concentrations at different downwind distances and crosswind distances. B: An illustration of how the 119 
backward Lagrangian stochastic model traces particles to the source. 120 
   121 

Continuous monitoring of CH4 emissions using fence line sensors requires proper quantification of 122 

intermittent and persistent releases from oil and gas during all release (complex emission profiles) and atmospheric 123 

conditions (unstable, neutral and stable). Oil and gas emissions are characterized by intermittent, non-uniform, single 124 

or multiple point source emissions, varying in leak size, location, height and distance between the source and sensor, 125 

and are typically in complex aerodynamic environments (i.e. not flat).  An ideal quantification model should always 126 

quantify emissions and should capture short and long-lasting emission events. Most models have been validated to 127 

work best during neutral conditions for single point sources. However, it is important to test and apply these models 128 

during non-neutral conditions as well as these are part of real-world conditions where continuous monitoring is 129 

applied. In this study, we evaluate if using a readily available CH4 cavity ring down analyzer for models’ quantification 130 

such as the closed-path EC is a feasible solution to quantify point source emissions.  131 

This study aims to inform the feasibility of downwind quantification models in oil and gas settings by 132 

investigating which models are likely to work most of the time with instrumentation that is typically available for 133 

fence-line deployment. Fence-line sensor deployments involve multiple sensors, continuously running in all 134 

conditions and providing emissions data.  Using robust releases and environmental conditions, this study aims to 135 

investigate the performance of these methods in quantifying emissions for known gas release rates and evaluating 136 

uncertainties that could result in incorrect CH4 reporting. Specifically, the study will evaluate the overall quantification 137 

accuracy (linear regression slope of estimated versus actual emissions, and R2) of closed-path EC, bLs model, and the 138 

GPIM method in quantifying single-release single-point and multi-release single-point emissions that simulate oil and 139 

gas emissions.  140 
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2 Methods 141 

2.1 Experimental Setup 142 

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions 143 

Technology Evaluation Center (METEC) in Fort Collins, CO (USA, 65 miles north of Denver) between February 8, 144 

and March 20, 2024. The METEC center is a simulated oil and gas facility that does controlled testing for emissions 145 

leak detection and quantification technology development, field demonstration, leak detection protocol and best 146 

practices development (METEC | Colorado State University, 2025). The weather conditions during the test period 147 

were mostly sunny but precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 7 cloudy and 1 foggy day; 148 

Supplementary Information Section 1). Wind speeds were between 0 and 25 m s-1 and temperatures ranged between -149 

15 and +19 °C (Supplementary Information Section 1). A stationary mast holding the instrumentation was setup on 150 

the North-West corner of METEC to take advantage of the predominant wind direction, avoid the largest aerodynamic 151 

obstructions and to simulate the likely placement of a fence-line instrument (Figure 3A; Day et al., 2024; Riddick et 152 

al., 2022a). Fence-line sensors are typically placed within the oil and gas perimeter (~30 m). This study collected data 153 

for what we considered as close and far away releases; distances between 9 and 94 m.  154 

Methane concentration data for closed-path EC, GPIM and bLs methods were collected through an inlet 155 

tubing (3.275 mm inner diameter) at 3 m height, connected to the ABB (Zurich, Switzerland) GLA131 Series 156 

Microportable Greenhouse Gas Analyzer (MGGA) set to sample at 10 Hz. The MGGA is a closed-path greenhouse 157 

gas analyzer with a ~3.2 lpm pump flowrate, 10 cm cell length, 1 inch cell diameter (~0.23 standard cubic centimeters 158 

per minute (sccm) effective volume), and 0.4 s gas flow response time. The inlet tubing was collocated with an R. M. 159 

Young (Traverse City, MI, USA) 81000 sonic anemometer which measured micrometeorology at 10 Hz (Figure 3B). 160 

The northward, eastward and vertical separation of the inlet tubing from the sonic anemometer was 0, 0, -10 cm, 161 

respectively.  162 
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Figure 3: A: Map illustration of major pieces of equipment and the measurements points at Colorado State University’s 166 
Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  Equipment 4S denotes 167 
horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. B is the 168 
measurement point for the Microportable Greenhouse Gas Analyzer for closed-path eddy covariance, Gaussian plume 169 
inverse and backward Lagrangian stochastic model quantification. The inlet tubing and the sonic anemometer are at 170 
3 m height. The red dotted lines with yellow numbers show the average distances (meters) between emission 171 
equipment and measurement point. The orange numbers show the range of emission heights (meters) for each 172 
equipment. The analyzers were hosted in a temperature-controlled box.  173 

2.2 Controlled Methane Releases 174 

Controlled releases were part of the METEC Spring 2024 Advancing Development of Emissions Detection 175 

(ADED) Campaign conducted between February 6 and April 29, 2024 (Advancing Development of Emissions 176 

Detection (ADED)). Natural gas of known CH4 content was released from above-ground emission points attached to 177 

equipment typically present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged 178 

between 0.01 kg h-1 and 8.7 kg h-1, and the release durations ranged from 10 seconds to 8 hours, simulating both 179 

fugitive and large emission events. The releases were run both during the day and night. The distance from the release 180 

points to the measurement points ranged between 9 and 94 m, and emission heights were between 0.1 and 4.9 m 181 

(Figure 3A). Emission points simulate the realistic size and locations of typical emissions from components such as 182 

the thief hatches, pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The 183 

releases included both single-point emissions (single releases) and multi-point emission events (multiple simultaneous 184 

releases). 185 

2.3 Calculation of Roughness Length 186 

Surface roughness length (z0) was calculated from friction velocity (Supplementary Information Section 2a: 187 

Equations 1 and 2) by splitting the high frequency sonic anemometer data into 15-minute tables and filtering for those 188 

in neutral conditions, |L| > 500 (Supplementary Information Section 2a: Equation 3). The overall roughness length 189 

selected as the median of all the calculated z0 was 0.1 m (Rey-Sanchez et al., 2022).  190 
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2.4 Models Quantification 191 

2.4.1 Eddy Covariance 192 

2.4.1.1 Data pre-processing 193 

Evaluating the MGGA CH4 data showed that actual sampling was between 4 and 12 Hz (majority of the data 194 

collected at approximately 6 Hz), even though the analyzer had been configured to sample at 10 Hz (Supplementary 195 

Information Section 2b). To account for this sampling variability, data were filtered to when sampling was equal to or 196 

greater than 8 Hz. Data sampled at frequencies above 8 Hz were down sampled to 8 Hz. The 8 Hz frequency threshold 197 

was selected to ensure uniform sampling, enough data for model evaluation as most sampling was at lower frequencies, 198 

and to preserve as much temporal resolution as possible given the system limitations. The sonic anemometer 199 

meteorological data (horizontal wind vectors (u, v), vertical wind vector (w), temperature (T), and pressure (P)) actual 200 

sampling varied between 7 and 9 Hz with the most frequent frequency at 8 Hz (Supplementary Information Section 201 

2b). As the MGGA gas analyzer and sonic anemometer were not designed to clock synchronously, using the MGGA 202 

CH4 clock time as a reference, meteorological data from the sonic anemometer were matched to the MGGA CH4 data 203 

using linear interpolation to generate concentration-meteorological 8 Hz data. While in an ideal circumstance of a fast 204 

pump and short tube length a correct timeseries matching can be achieved through establishing a clear point of 205 

maximum covariance when determining the time lag, this is difficult for our system due to a 3 lpm pump flowrate and 206 

a 3 m tubing that caused both attenuation and time lag. 207 

The aggregated concentration-meteorological data were then merged with METEC’s release data and 208 

metadata, and release event tables created. Release event tables were aggregated tables of concentration, meteorology 209 

and release (emission source location, duration and rate) information for all defined release events at METEC. The 210 

concentration-meteorological-release event data were then separated into single-release and multi-release events. 211 

Single-release events were when there was a single emission point at the site level, while multi-release events were 212 

when there was more than one emission point at the site level. The concentration-meteorological-release event tables 213 

were split into 5, 15 and 30-minute release event tables (i.e. there was a continuous release in the duration). Based on 214 

the bearing of the emission point to the measurement point and the average wind direction in the duration, the data 215 

was further filtered to downwind data, ±10º, ±20º, and ±45º.  216 

2.4.1.2 Flux calculation 217 

Turbulent fluxes were calculated using the open software EddyPro® version 7 (EddyPro 7 | Software 218 

Downloads, 2025). Acquisition frequency was set at 8 Hz, while file duration and the flux interval were set at 5, 15, 219 

and 30 minutes, respectively, depending on the files being processed. Table 1 shows the instruments input to the 220 

software. 221 
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Table 1. Anemometer and Gas Analyzer Input into EddyPro 222 

Anemometer 

Information 

 Gas Analyzer 

Information 

 

Manufacturer Young Manufacturer Other 

Model 81000 Model Generic closed path 

Height 3 m Tube length 300 cm 

Wind data format u, v, w Tube inner diameter 3.275 mm 

North alignment  Nominal tube flow rate 3.2 l/m 

North off-set 0.0 Northward separation 0.00 cm 

Northward separation Reference Eastward separation 0.00 cm 

Eastward separation  Reference Vertical separation -10.00 cm 

Vertical separation Reference Longitudinal path length 10.00 cm 

Longitudinal path length  Transversal path length 2.54 cm 

Transversal path length  Time response 0.4 s 

In raw data processing, axis rotations for tilt correction under wind speed measurement offsets were selected. 223 

Under turbulent fluctuations, double rotation and block average detrend methods were used. Covariance maximization 224 

with default was used for time lag detection; time lags detection was enabled. Compensation for density fluctuations 225 

(Webb-Pearman-Leuning terms) (Webb et al., 1980) was disabled as the MGGA analyzer synchronously reported dry 226 

CH4 and water mole fractions, cell temperature and pressure. Mauder and Foken (2004) (0-1-2 system) were used for 227 

quality check. All statistical tests for raw data screening, (Vickers and Mahrt, 1997)– spike count/removal, amplitude 228 

resolution, drop-outs, absolute limits, skewness and kurtosis, discontinuities, time lags, angle of attack and steadiness 229 

of horizontal wind were selected. The default values for all these tests were used. Similarly, default settings for spectral 230 

analysis and corrections were used. Analytic correction of high-pass filtering effects (Moncrieff et al., 2005) for low 231 

frequency range; and correction of low-pass filtering effects (Fratini et al., 2012 - In situ analytic) and instruments 232 

separation ((Horst and Lenschow, 2009)- only crosswind and vertical) in the high frequency range were used. 233 

2.4.1.3 Post-processing 234 

Flux data were flagged “2”, low quality,  based on (Mauder and Foken, 2004) (0-1-2) quality system. 235 

Cospectral analysis revealed that the EC system in this study smoothed out low-frequency eddies, as the cospectra 236 

lack the ideal shape characterized by a low-frequency rise, a peak region, and a high-frequency decay (Supplementary 237 

Information Section 2c.i). While the slope in the high-frequency region varies around the theoretical −4/3 slope, the 238 

cospectral data followed the 1:1 line, indicating consistent spectral shape across sampling periods. We also examined 239 

the relationship between CH₄ flux and friction velocity (u*) to identify a u* threshold below which flux estimates may 240 

be unreliable (Supplementary Information Section 2c. ii). However, no consistent relationship was observed across 241 

atmospheric stability classes (unstable, stable, and neutral). CH₄ fluxes varied widely—including both positive and 242 

negative values—across the full range of u* (~0 to 1 m s⁻¹), with no discernible threshold beyond which fluxes 243 

stabilized. This indicated that CH₄ fluxes were effectively independent of u*, and thus, data from all u* values were 244 

retained. Ogive analysis was conducted to assess whether averaging durations of 5, 15, and 30 minutes were sufficient 245 
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for capturing the full turbulent flux. The resulting ogive curves deviated from the ideal asymptotic shape, particularly 246 

at the highest and lowest frequencies (Supplementary Information Section 2c.iii). Notably, the curves did not exhibit 247 

a clear plateau near the low-frequency end, where cumulative flux should approach unity. This indicates incomplete 248 

flux capture. Furthermore, the similarity in ogive shapes across different frequencies—mirroring patterns seen in the 249 

cospectra—suggests a lack of significant turbulent contributions and the influence of non-turbulent, possibly 250 

advective, processes. These results imply that the EC system may not have fully resolved the flux due to either 251 

insufficient averaging time, non-stationarity, or instrument-related limitations (Supplementary Information Section 252 

2c.iii). As positive fluxes are generally considered emissions, and negative fluxes depositions, data were further 253 

filtered for positive fluxes which were then quantified to emission rates. 254 

2.4.1.4 Footprints Calculation 255 

Eddy covariance footprints were calculated using the (Kljun et al., 2015) and the (Kormann and Meixner, 256 

2001) footprint models. For the  (Kljun et al., 2015), the freely online MATLAB code of the model was used, while 257 

the (Kormann and Meixner, 2001) was coded in MATLAB. To determine the point source footprint contribution, the 258 

study first calculated the area that contributed 90% of the vertical flux; and based on the location (x and y coordinates 259 

based on wind direction and distance from source) of the point source, the source was determined if it was within the 260 

90% footprint area. Point source emissions of sources within this region were then calculated based on the approach 261 

by (Dumortier et al., 2019).  This approach assumes all measured flux is equal to flux resulting from a single point 262 

source. In case of the mast being downwind of more than one source, more sonic anemometers are needed to solve 263 

the two unknown point source fluxes. 264 

2.4.2 Gaussian Plume Inverse Method 265 

2.4.2.1 Data pre-processing 266 

Methane concentration data from the MGGA analyzer and meteorology data from the sonic anemometer 267 

were averaged to 1 Hz and aggregated. The aggregated concentration-meteorological data were merged with 268 

METEC’s release data and metadata, and release event tables created. The concentration-meteorological-release event 269 

data were then separated into single-release and multi-release events. For single-release events, the concentration-270 

meteorological-release event tables were split into 5, 15 and 30-minute release event tables. Based on the bearing of 271 

the emission point to the measurement point and the average wind direction in the duration, the data was further 272 

filtered to downwind data, ±5º, ±10º and ±20º wind sector ranges. Multi-release events were further classified into 273 

multi-release single-point emissions (i.e., there were multiple emissions at the site level, but the mast was downwind 274 

of a single source) and multi-release multi-point emissions (i.e. there were multiple emissions at the site level and the 275 

mast was downwind of more than one source).  This study focuses on single-release single-point and multi-release 276 

single-point emissions. For continuous monitoring sensors, background concentration can be determined from CH4 277 

concentrations measured by a sensor upwind of the emission source, or by sampling when the wind is blowing away 278 

from the source. However, for continuous monitoring sensors, using an upwind sensor has the limitation of missing 279 

downwind background noise resulting from emissions in the preceding emission event where there is residual CH4 in 280 

air especially during stable conditions, and capturing sensors drift in the downwind sensor. In this study, background 281 

CH4 was calculated as the average of the lowest 5th percentile, 5 minutes before each release started. In cases where 282 



11 

 

this background was greater than the mean CH4 concentration in the quantifying duration, the minimum CH4 283 

concentration for that duration was used as the background.  Methane enhancement was then calculated as CH4 284 

concentration minus the background. 285 

2.4.2.2 Quantification 286 

The GPIM was evaluated under six scenarios (two equations and three different dispersion coefficients 287 

generations) using single-release single-point emissions to test when the model works best (Supplementary 288 

Information Section 2a: Equation 7 and 8). Dispersion coefficients were generated based on (1) high frequency sonic 289 

anemometer data at ~ 10 Hz, (2) EPA point-source dispersion coefficients (US EPA, 2013), and (3) 1 Hz sonic 290 

anemometer data. The scenario with the slope closest to 1, and highest R2 across averaging durations, and wind sector 291 

ranges was selected and used for multi-release single-point emissions quantification. For single-release tables, the 292 

measurement point was downwind of a single source (single-release single-point emission), hence the tables were 293 

quantified as they were. However, for multi-release events, the tables were further processed as the GPIM method is 294 

designed to quantify a single point source at a time. For multi-release events, the number of emission points in the 295 

downwind tables were used to further classify the tables into multi-release single-point emissions (i.e. there were 296 

multiple emissions at the site level, but the mast was downwind of a single source), and multi-release multi-point 297 

emissions (i.e. there were multiple emissions at the site level and the mast was downwind of more than one emission 298 

source). The GPIM method was only used for multi-release single-point emissions. 299 

 2.4.3 Backward Lagrangian Stochastic Model 300 

Pre-processed data from the GPIM method was used for bLs quantification. Quantification was done using 301 

the open-source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0, n.d.). For every 5-, 15- and 30-minute duration 302 

in the ±5º, ±10º, and ±20º, respectively, inputs included roughness length (z0), Monin-Obukhov length (L- 303 

Supplementary Information Equation 3), mean (wind speed, wind direction, concentration, pressure, temperature), 304 

background concentration, source height, and distance from the emission point to sensor. WindTrax is also designed 305 

to quantify a single point source at a time, and hence, was only used to quantify single-point single emissions and 306 

multi-point single emissions. 307 

3 Results 308 

3.1Eddy Covariance 309 

3.1.1 Single-Release Single-Point 310 

For single-release single-point (SRSP) emissions, the closed-path EC underestimated emissions. Using the 311 

(Kljun et al., 2015) footprint model, the slope of the estimated emissions versus actual emissions linear regression was 312 

between -0.04 and 0.54 at 5 minutes, -0.36 and -0.04 at 15 minutes, and 0.03 at 30 minutes, 45 degrees (10 and 20 313 

degrees had insufficient data points) (Figure 4). The adjusted R2 was between -0.04 and 0.12, indicating no linear 314 

relationship between the estimated and actual emission (Figure 4). Using the (Kormann and Meixner, 2001) footprint 315 

model, the slope was between -0.42 and 0.17 at 5 and 15 minutes, respectively, and -0.08 at 30 minutes, 45 degrees. 316 

(Supplementary Information Section 3.1.1). Similarly, the adjusted R2
 values were between -0.07 and 0.05. These 317 

results indicate that this study’s EC system using either the (Kljun et al., 2015) or the (Kormann and Meixner, 2001) 318 
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footprint models did not reliably quantify emissions for SRSP cases. The low slopes and adjusted R² values suggest 319 

little to no linear relationship between estimated and actual emissions under the tested conditions (Figure 4; 320 

Supplementary Section 3.1.1).   321 

 322 

 323 
Figure 4. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 324 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 325 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 326 
 327 
3.1.2 Multi-Release Single-Point 328 

For multi-release single-point (MRSP) emissions, the closed-path EC largely underestimated emissions and 329 

did not show good agreement between estimated and actual emissions (Figure 5). Using the (Kljun et al., 2015) 330 

footprint model, the slope was between -0.51 and 0.18, except for the 5 minutes 45 degrees category that had a slope 331 

of 0.61. The adjusted R2 did not show a linear relationship between estimated and actual emissions with values ranging 332 

between -0.02 and 0.00 (Figure 5). Using (Kormann and Meixner, 2001) footprint model, the slope was between -0.03 333 

and 1.06, the good agreement of 1.06 was at 30 minutes 45 degrees with an adjusted R2 of 0.12 (Supplementary 334 

Information Section 3.1.2). The rest of the categories had an R2 of between -0.02 and 0.06. These results suggest that 335 

the EC system did not reliably quantify emissions for MRSP cases under most conditions. Only one category (30 336 

minutes, 45 degrees using the (Kormann and Meixner, 2001) footprint model showed moderate agreement (slope = 337 

1.06, adjusted R² = 0.12), but even this explains only a small portion of the variability in actual emissions. Overall, 338 

the adjusted R² values across scenarios (−0.02 to 0.12) indicate a weak or no linear relationship.  339 
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 340 

Figure 5. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 341 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 342 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 343 

 344 
3.2 Gaussian Plume Inverse Method 345 

3.2.1 Single-Release Single-Point 346 

The GPIM sensitivity analysis comparing different equations and dispersion coefficients showed no 347 

difference in quantified emissions between Equation 7 and Equation 8. Among the dispersion coefficient sets tested, 348 

the (US EPA, 2013) coefficients resulted in the most consistent performance, with the least variability in slope and 349 

the highest overall adjusted R² values (Supplementary Information Section 3.2). For this scenario, the slope ranged 350 

from 1.65 to 3.92 (excluding the 30-minute, 5-degree case due to insufficient data), and adjusted R² values ranged 351 

from 0.40 to 0.64 (Figure 6). The 15-minute, 5-degree case had the slope closest to 1 (slope = 1.65, R² = 0.40), while 352 

the 5-minute, 5-degree case showed the strongest linear relationship overall (slope = 2.42, R² = 0.64) (Figure 6). These 353 

results suggest that while the GPIM model tends to overestimate emissions (slopes > 1), it provides relatively 354 

consistent and stronger linear agreement with actual emissions compared to the closed-path EC system tested above 355 

(Section 3.1). 356 
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 357 

Figure 6. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. Sce.3 refers to 358 
scenario 3 of the sensitivity analysis in Supplementary Information Section 3.2. The red dotted line is a 1:1 line based 359 
on actual emissions i.e. points below the line are underestimated and above are overestimated emissions. The gray 360 
region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n.  361 

 362 

3.2.2 Multi-Release Single-Point 363 

For MRSP emissions, the GPIM model produced a wide range of slopes, from –43.05 to 1.60 (Figure 7). 364 

Excluding the 5-minute 5- and 10 degrees categories, and the 30-minute 10 degrees category, most other cases reported 365 

slopes between 0.76 and 1.22, suggesting potential quantification within ~25% of actual emissions. However, the 366 

adjusted R² values in these cases were close to zero, indicating no consistent linear relationship between estimated 367 

and actual emissions (Figure 7). This lack of correlation is likely due to the high variability in GPIM estimates, which 368 

reached up to 200 kg h⁻¹ for the selected categories, despite actual emissions being only around ~6 kg h⁻¹. These 369 

results indicate that while the GPIM model sometimes produced slope values suggesting close agreement with actual 370 

emissions, the lack of linear correlation and large overestimations highlight its limited reliability in quantifying MRSP 371 

emissions accurately. 372 
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 373 

Figure 7. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 374 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 375 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 376 

 377 

3.3 Backward Lagrangian Stochastic Model 378 

3.3.1 Single-Release Single-Point 379 

For SRSP emissions, the bLS method generally produced the most accurate slopes (i.e., closest to 1) 380 

compared to the EC and GPIM methods (Figure 8). The 15-minute 5- and 10-degrees categories yielded the most 381 

accurate estimates, with slopes of 1.05 and 1.10, respectively. The adjusted R² ranged from 0.48 to 0.66 for the 5-382 

minute averaging duration, and from 0.40 to 0.48 for the 15-minute duration. At the 30-minute averaging duration, 383 

performance improved in the 10- and 20-degrees categories, likely due to increased sample sizes (Figure 8). These 384 
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results show that bLs is more suitable for quantifying single-release single point emissions. 385 

 386 

Figure 8. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 387 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 388 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 389 

 390 

3.3.2 Multi-Release Single-Point 391 

The bLs method had wide uncertainties for MSRP emissions especially in the 5 minutes, 5- and 10-degrees 392 

categories (Figure 9). In the other categories, the slopes were between -0.03 and 0.45, and R2 ~0. Even though the 393 

estimated emissions spanned up to >20 kg h-1 mostly for actual emissions of up to 6 kg h-1, lots of points were 394 

concentrated close to 0. Compared to the GPIM MSRP results, even though both models have an R2 of ~0, the GPIM 395 

had a slope closer to 1 in the 15-munites category than the bLs showing better performance. These results show that 396 

the bLs is more suitable for quantifying SRSP emissions than MSRP emissions. 397 
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398 
Figure 9. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 399 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 400 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 401 

 402 

3.4 Models Comparison – Subset Data 403 

 Using a subset of the data (SRSP), filtered by 15-minute intervals within a 10-degree wind sector range where 404 

each model provided an emission estimate, the bLs model exhibited the best performance, with its linear regression 405 

closely aligned with the 1:1 line (Figure 10). The slope of the regression line for the GPIM was 1.6, indicating an 406 

overestimation, while the bLs had a slope of 0.95, suggesting high accuracy. In contrast, the EC model produced 407 

slopes of 0.08 and 0.10 when using the (Kormann and Meixner, 2001) and (Kljun et al., 2015) footprint 408 

parameterizations, respectively, indicating significant underestimation. When emission estimates were categorized by 409 

emission point, the GPIM notably overestimated emissions at locations 4W-22 and 4W-51 (identified in Figure 3), 410 

both situated approximately 10 m from the measurement location. The EC model consistently underestimated 411 

emissions across all sources, while the bLs model provided estimates closest to the expected values. The EC model 412 

produced negative emission rates associated with negative fluxes during periods of high non-stationarity 413 

(Supplementary Information, Section 2c. iv). These deviations from stationarity reflect intermittent plume capture, 414 

where the EC system alternated between sampling emitting and non-emitting regions. Overall, these findings indicate 415 

that for source-receptor distances ranging from approximately 10 to 90 meters, the bLs model demonstrated the highest 416 

accuracy in quantifying emissions. 417 

 418 
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 419 

 420 

Figure 10. Top plot: Estimated emission vs actual emission (kg h-1) for each model. GPIM is the Gaussian Plume 421 
Inverse Method, bLs is the backward Lagrangian stochastic model, EC-KM is eddy covariance with (Kormann and 422 
Meixner, 2001) footprint, and EC-Klujn is the eddy covariance estimate using the (Kljun et al., 2015) footprint. The 423 
black dotted line is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are 424 
overestimated emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The 425 
sample size is n. Bottom plot: Estimated emission vs actual emission categorized by Emission Point as illustrated in 426 
Figure 3.  427 
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3.5 Traceability Example 428 

To illustrate how raw data were converted into model-based emission estimates, we present one representative 429 

15-minute interval used in Figure 10. During a controlled release at point 4W-22 (wellhead), located approximately 430 

10.5 m from the mast, the ground-truth release rate was 3 kg CH4 h-1. Over this interval, the average CH₄ concentration 431 

enhancement was 8.3 ppm above the background (determined using the 5th percentile method, see Section 2.4.2.1). 432 

The wind direction was 153° (0.3 m crosswind distance), with an average wind speed of 5.8 m s-1. The same interval 433 

was processed through the three modeling frameworks: 434 

• The bLs model (WindTrax), using measured concentration, geometry, and meteorological data, estimated 435 

3.5 kg h-1. 436 

• The GPIM model, using Equation 7 and 8 (Supplementary Information) and dispersion coefficients, 437 

estimated 10.3 kg h-1. 438 

• The EC method (using the (Kormann and Meixner, 2001) footprint) estimated –0.004 kg h-1 due to a negative 439 

flux under high non-stationarity conditions. 440 

This example illustrates how the bLs model reproduced the true emission most closely, GPIM overestimated, and EC 441 

underestimated the emission. More examples of data presented in Figure 10 are available under supplementary data 442 

“MATLAB Code & Software Configuration – Validation.xlsx”.  443 

3.6 Eddy Covariance Quality Assurance and Control 444 

Evaluation of the EC data revealed quality assurance and control issues that compromised both the analysis 445 

and the conclusions drawn from the EC results. The flux data were flagged as “2” (low quality) according to the 0–1–446 

2 quality classification system of Mauder and Foken (2004), indicating that the data were not suitable for EC analysis. 447 

In EC quality assessment, both the qualitative shape of the cospectra and the quantitative slopes of selected portions 448 

are examined to determine if the data meet accepted standards. In this study, the cospectra deviated significantly from 449 

the ideal shape, indicating problems in data collection and pre-processing. Possible causes include obstructions in the 450 

testing area, misalignment between CH₄ and sonic anemometer time series (due to the absence of a reliable method 451 

for alignment), slow response time of the gas analyzer, increased lag from the 3 m inlet tubing, and inconsistent 452 

sampling frequency. Similarly, ogive analysis—used to evaluate whether the averaging time is sufficient—showed 453 

that the ogive curves did not follow the characteristic sigmoidal shape (plateauing at the y-axis and at zero). Although 454 

the ogive shapes were similar across all averaging intervals, none plateaued sufficiently, further indicating data 455 

collection issues that invalidate the EC method for this study. For clarity and to guide future studies, Burba (2013) 456 

provides examples of ideal cospectra and ogive shapes illustrating how these tools can be used to diagnose 457 

instrumentation and data collection problems. 458 

4 Discussion 459 

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from 460 

different heights, different locations, encountering aerodynamic obstacles of different sizes, and of varying emissions 461 

duration, amongst others. The ability to precisely quantify emissions using data collected by a point sensor, downwind 462 

of a source is directly influenced by plume dynamics. The CH4 plume downwind of a source will change in size and 463 
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shape in different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in different seasons 464 

(Casal, 2008). In this study, we evaluated the ability of downwind methods—including a non-standard closed-path 465 

EC system, the GPIM, and the bLs model—to quantify emissions from single-release and multi-release point sources. 466 

While the field measurements took place under naturally varying meteorological conditions, these were not explicitly 467 

stratified or analyzed as experimental factors. Additionally, although on-site infrastructure such as storage tanks was 468 

present, their distance from the sampling instruments (~50 m) likely rendered their aerodynamic influence negligible. 469 

As such, the analysis focuses on quantification performance under realistic but uncontrolled field scenarios, without 470 

attributing model behavior to specific atmospheric or obstacle-related conditions.  471 

4.1 Eddy Covariance 472 

Eddy covariance was tested using a closed-path analyzer, cavity ring-down spectroscopy, with a 3.2 lpm 473 

pump flowrate and a 0.4 s gas flow response time. The closed path EC underestimated emissions with a linear 474 

regression slope for estimated emissions versus actual emissions of between -0.42 and 0.54 using the (Kljun et al., 475 

2015) and (Kormann and Meixner, 2001) footprint models, and adjusted R2 was ~0.   (Section 3.1). This was a wider 476 

uncertainty in estimated emissions than one reported by (Dumortier et al., 2019), who estimated emissions at between 477 

90 and 113% of true emission (~1.5 kg day-1) with concentrations between 2 and 3 ppm. Our study tested closed-path 478 

EC at emission rates between 0.005 and 8.5 kg h-1. Notably, the results for the non-standard EC system tested this 479 

study may not be representative of EC performance in oil and gas as ogive and cospectra analysis indicated that the 480 

flux may not have been fully resolved due to non-stationarity, and instrument-related limitations. 481 

Our results were derived from data filtered to include only periods with sampling frequencies ≥8 Hz, which 482 

significantly reduced the number of usable emission measurements. Although the instrument was configured to sample 483 

at 10 Hz, it did not consistently achieve this rate. This discrepancy may be attributed to instrument-related factors such 484 

as the 0.4-second gas flow response time, which could delay analysis of the drawn air sample in the cavity, or the use 485 

of a 3 lpm pump with 3 meters of tubing, which reduced the effective turnover rate. The dataset used for eddy 486 

covariance evaluation was predominantly flagged as low quality (flag 2) according to the (Mauder and Foken, 2004) 487 

quality control test, which classifies flux data based on steady-state conditions and the presence of well-developed 488 

turbulence (flags 0 = high, 1 = intermediate, 2 = low quality). Many of the low-quality flags were likely driven by 489 

wide deviation in w/CH4 stationarity reflecting intermittent plume capture, where the EC system alternated between 490 

sampling emitting and non-emitting regions. The EC model produced negative emission rates associated with negative 491 

fluxes during periods of high non-stationarity (Supplementary Information, Section 2c. iv). 492 

Despite high non-stationarity that resulted in low data quality issues resulting in EC inaccuracies, this study 493 

acknowledges our design limitations. Our study did not have a reliable method for aligning the asynchronous CH₄ and 494 

sonic anemometer data streams, which likely introduced substantial timing errors and contributed to uncertainty in the 495 

flux calculations. The intake for the closed-path system was positioned approximately 10 cm below the sonic 496 

anemometer to protect the inlet tubing from debris and precipitation by mounting it on an aluminum shield facing 497 

downward. We recognize that even this small vertical separation can introduce additional errors in flux measurements 498 

when using short towers. This design choice was a compromise to ensure instrument protection while maintaining 499 

data collection in field conditions. We acknowledge that the system used in this study was not designed or configured 500 
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for standard eddy covariance analysis, and that this limitation impacts the interpretation of our results in the context 501 

of EC-based flux quantification.  502 

In this study, continuous monitoring was conducted using a single sensor with an inlet deployed at a fence-503 

line distance. This system requires instrumentation capable of measuring a wide concentration range, as emissions 504 

from oil and gas sites can vary between 0 and 250 ppm (Supplementary Information Section 1). While continuous 505 

monitoring systems, comprising multiple sensors, can offer enhanced spatial coverage and source localization, they 506 

also introduce higher costs. The limitations and findings reported here therefore apply specifically to this single-sensor 507 

fence-line continuous monitoring approach and may not be representative of all continuous monitoring frameworks. 508 

This study acknowledges the limitations of the eddy covariance (EC) setup used, particularly that the ABB MGGA 509 

GLA131 Series analyzer is not designed specifically for EC applications. As a result, the conclusions drawn from the 510 

EC data are invalid and not comparable to the other tested models are constrained.   511 

This study identified data collection and instrumentation issues that future work can address to enable 512 

successful EC application. Based on flagged low-quality data, non-ideal cospectra and ogive shapes, and the presence 513 

of large negative fluxes, the dataset was deemed unsuitable for EC analysis. The primary causes of the unsuccessful 514 

application were: (1) the CH₄ analyzer was not designed for EC measurements, exhibiting slow response time, low 515 

pump flow rate, and inconsistent sampling frequency; (2) the 3 m inlet tubing length for the closed-path analyzer 516 

caused signal attenuation and increased lag; (3) the sonic anemometer and CH₄ analyzer data were not synchronously 517 

logged, preventing accurate time-series alignment; (4) the EC system was installed near obstacles that disrupted 518 

smooth eddy formation; and (5) ogive plots suggested that the maximum 30-minute averaging interval used in this 519 

study may have been insufficient. We recommend further EC testing with these issues corrected to properly evaluate 520 

its application in continuous oil and gas monitoring.The study recommends further EC testing with instruments 521 

specifically designed for EC, ideally featuring a wide measurement range (0 to ~500 ppm), faster pump speeds, shorter 522 

tubing, synchronized data logging, sampling frequencies above 10 Hz, and rugged designs suitable for field 523 

deployment. Additionally, the study recognizes that environmental factors—such as obstructions, intermittent 524 

emissions, and variable wind directions causing plume meandering—can degrade EC data quality and complicate its 525 

application in oil and gas field studies. 526 

4.2 Gaussian Plume Inverse Method 527 

The GPIM method quantified emissions within a slope of 1.65 to 3.92 and adjusted R2 of between 0.4 and 528 

0.64 with highest performance at 15-minutes 5-degrees wind sector (slope = 1.65, R2 =0.4), and 5 minutes 5-degrees 529 

(slope = 2.42, R2 = 0.64) for SRSP emissions (Section 3.2). For MSRP emissions, the GPIM showed wide uncertainties 530 

even though the slopes for other categories excluding 5-minutes 5-and 10-degrees, and 30-minutes 10-degrees 531 

categories, were between 0.74 and 1.60, with R2 ~0 (Section 3.2). The R2 close to zero showed that there was no linear 532 

relationship between the estimated and actual emissions for MSRP conditions. Overall, the GPIM performed well 533 

under 15-minutes averaging duration, and 5-degree wind-sector ranges in both SRSP and MSRP categories. The 534 

MSRP emission profiles tested in this study were complex challenging the GPIM application as the method is a point-535 

source specific quantification approach and works best in open areas, free of obstacles, and when the background 536 

concentration is well defined. For multiple emissions, even when the sensor is nominally downwind of a single source 537 
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based on the average wind direction, quantification can be complicated by interference from neighboring sources. 538 

However, it is important to emphasize that such complexity is not a fundamental limitation of quantification itself, but 539 

rather a function of the experimental design and study objectives. For example, plume interference can often be 540 

minimized through strategic localization and optimization using multiple sensors—an approach that differs from the 541 

single-instrument setup used in this study. This study’s design involves defining plumes based on wind sector ranges, 542 

as opposed to using multiple sensors to localize sources, and therefore does not replicate how various continuous 543 

monitoring solutions typically operate. The GPIM has previously been reported to quantify emissions within 40.7 and 544 

60% error for a single point-source using controlled release experiments (Riddick et al., 2022b). However, GPIM 545 

correct quantification has been suggested to be better for longer distances where the plume is well mixed as seen in 546 

Figure 10. This is typically a challenge for fence-line sensors that have to be deployed within the facility boundaries 547 

where large downwind distances may not be practical.  548 

4.3 Backward Lagrangian Stochastic Model 549 

 The bLs method was the most accurate in quantifying emissions for the SRSP release profiles but had wider 550 

uncertainties than the GPIM for MRSP scenarios (Sections 3.2.2 and 3.3.2). For SRSP emissions, the slopes closest 551 

to 1 were during the 15-minutes 5-degrees (slope = 1.05, R2 = 0.4) and 10-degrees (slope = 1.10, R2 =0.37). The best 552 

R2 was 5 minutes 5-degrees (slope = 1.64, R2 = 0.66). However, for MSRP emissions, the slopes were between -0.03 553 

and 0.45 in the best categories with R2 of ~0.  Similarly to the GPIM method, the bLs method used in this study is a 554 

point-source specific quantification method that simulates transport of molecules in open area and where the 555 

background concentration is defined. In this case, as with the SRSP test scenario, the bLs approach was generally 556 

more accurate than the EC and GPIM.  However, for MRSP emissions, quantification accuracy was low. This 557 

discrepancy may be due to design-related challenges—specifically, interference from neighboring sources and the 558 

lack of distinct plume separation in complex flow conditions. Although the measurement point was nominally 559 

downwind of a single source, the real-world plume structure may not align with model assumptions. Additionally, the 560 

bLs implementation in WindTrax is designed for single-source scenarios and applying it in multi-source environments 561 

without adaptation can lead to inaccuracies. The GPIM and bLs methods are sensitive to background correction, which 562 

in this study was complicated by temporal overlap between release events and residual CH₄ accumulation, particularly 563 

under stable atmospheric conditions. Although this is a controlled-release study, residual methane from prior 564 

emissions and the presence of multiple plumes can affect the CH₄ concentration during a candidate event, challenging 565 

the assumptions used to define background and isolate a single-source plume using wind-sector-based criteria. These 566 

findings highlight the importance of aligning modeling assumptions with the experimental context rather than pointing 567 

to a fundamental limitation of the method itself. 568 

4.4 Implications 569 

In recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas 570 

sites. This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous 571 

monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to 572 

infer emission rates. For point sources, downwind methods such as the Gaussian plume inverse method have been 573 

widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This 574 
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study’s design replicated a continuous monitoring setup’s downwind deployment distance, range of typical emission 575 

rates, emissions heights, and meteorological data acquisition.  576 

Oil and gas point sources could either be single emissions or multiple emissions occurring concurrently. In 577 

this study’s design, cases involving multiple emissions with more than one release point located upwind posed 578 

challenges for the specific Gaussian and backward Lagrangian stochastic (bLs) model implementations, which were 579 

applied assuming a single active source at a time. While these models can be extended to handle multi-source 580 

scenarios, the assumptions used here limited their ability to distinguish individual contributions when plumes 581 

overlapped. As a result, interference from neighboring emissions introduced ambiguity in model-observation 582 

alignment, particularly under complex wind conditions. Closed-path eddy covariance was generally unreliable in this 583 

study due to data-collection and instrumentation issues non-stationarity and limitations associated with using a non-584 

standard EC system. This resulted in invalid EC results that could not be compared with the GPIM and the bLs models. 585 

In contrast, the Gaussian Plume Inverse Method (GPIM) outperformed the non-standard EC system for both single-586 

release and multi-release single-point emissions. The backward Lagrangian stochastic (bLs) method was the most 587 

accurate for single-release single-point emissions but was less accurate than the GPIM under multi-release conditions. 588 

For both GPIM and bLs, 15-minute averaging with a narrow wind-sector (5°) yielded the best performance. While EC 589 

results in this study were limited by system constraints, future work is recommended using standard EC instruments 590 

and further optimizing GPIM and bLs models—particularly for complex multi-release scenarios—to improve 591 

accuracy and reduce uncertainties. 592 
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