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Abstract. The dependable reporting of methane (CH.) emissions from point sources, such as fugitive leaks from oil
and gas infrastructure, is important for profit maximization (retaining more hydrocarbons), evaluating climate impacts,
assessing CHy fees for regulatory programs, and validating CH. intensity in differentiated gas programs. Currently,
there are disagreements between emissions reported by different quantification techniques for the same sources. It has
been suggested that downwind CH. quantification methods using CH4 measurements on the fence-line of production
facilities could be used to generate emission estimates from oil and gas operations at the site level, but it is currently
unclear how accurate the quantified emissions are. To investigate downwind methods’ accuracy, this study uses fence-
line simulated data collected during controlled release experiments as input for_a non-standard closed-path eddy

covariance_(EC), aerodynamic—flux—gradient—the Gaussian plume inverse method_(GPIM), and the backward

Lagrangian stochastic_(bLs) model in a range of atmospheric conditions. Generally, the closed-path EC system used

in this study proved generally unreliable and largely underestimated emissions, primarily due to non-stationarity and

study limitations associated with using a non-standard setup. In comparison, the Gaussian Plume Inverse Method

(GPIM) consistently outperformed the EC system for both single-release and multi-release single-point emissions.

The backward Lagrangian stochastic (bLs) model demonstrated the highest accuracy for single-release single-point

emissions, though it exhibited greater uncertainty than GPIM under multi-release conditions. Across GPIM and bLs

models, the most reliable guantification was achieved with 15-minute averaging and a narrow 5° wind-sector range.

Although EC was limited in this context, future studies should consider employing a standard EC system and further

optimizing GPIM and bLs approaches—particularly for complex multi-source scenarios—to enhance guantification

accuracy and reduce uncertainty.re
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1 Introduction

Reducing methane (CHa,) emissions from oil and gas systems is necessary for adhering to regulations and
voluntary reporting frameworks such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0) (UNEP, 2024). The
OGMP 2.0 provides a comprehensive measurement-based international reporting framework allowing companies to
stay ahead of regulatory compliance requirements, meet investor and market pressure, have an enhanced corporate
image, and prevent revenue loss by lowering their emissions. In the US, currently, the amount of CH4 emitted from
US oil and gas production are compiled by the US Environmental Protection Agency (EPA) under Subpart W.
Typically, companies use a bottom-up inventory approach where emission factors (CH4 emissions per equipment e.g.,
separator or emissions per event e.g., liquid unloading) are multiplied by activity factors (total number of pieces of
equipment or events-(US EPA, 2023) to generate emissions. This quantification approach has several shortcomings,
including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which practically are not
independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin (Riddick et al.
2024a); 2. Some emission factors used are outdated -(Riddick et al., 2024b) and others do not account for the temporal
and spatial variation in emissions-(Riddick and Mauzerall, 2023); and 3. Emission factors do not account for the long-

tail distributions (Riddick et al., 2024b); 4. Difficulty in obtaining a truly representative sample from a large diverse

population to generate emission factors (Allen, 2014); and possibly unreliable data reported by operators (Chan et al.,

2024). —Recently, mechanistic models, such as the Mechanistic Air Emissions Simulator (MAES), have been

developed to address shortcomings in bottom-up CH, reporting (Mollel et al., 2025), but these still depend on direct

measurements to inform emission factors.
Top-down methods, including using aircraft such as Bridger Photonics LIDAR (Light Detection and

Ranging; 90% detection limit of ~ 2 kg h*Y) (Johnson et al., 2021)-and satellites such as Carbon Mapper (predicted

90% detection limit of about 100 kg ht) -(Carbon Mapper - Science & Technology, 2025) can also be used to infer

emissions. However, these survey methods only quantify emissions over a very short period of time (< 10 s) and
observations are typically made during the day which can often coincide with maintenance activities that can bias

emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). Additionally, different top-down

technologies measuring the same source have disagreed in their reported emissions which has called into question the

credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, ensuring accuracy in models and

technologies used in CH4 emissions quantification has been a complex issue.
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Currently, fence-line methods are used to detect, localize and quantify emissions. This approach uses point
sensors fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds
a threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling

framework, usually based on a Gaussian plume inverse approach (Bell et al., 2023; Day et al., 2024; Riddick et al.,

2022a). Detection and localization of simulated fugitive emissions using this approach have been demonstrated

successfully in controlled release studies. For example, (llonze et al., 2024) reported a 90% probability of detection

for emissions between 3.9 and 18.2 ke CH4 h~" using multi-sensor and scanning/imaging systems. However, significant

uncertainty in quantification remains; their study reported emissions being misestimated by a factor of 0.2 to 42 for

releases between 0.1 and 1 kg CH4 h™', and by a factor of 0.08 to 18 for emissions above 1 kg CHs h™'. While

informative, the methods in (llonze et al., 2024) differ in key ways from those employed here—specifically, their use

of multiple sensors and a distributed monitoring configuration as opposed to the single-instrument, fence-line-based

framework used in our study—Iimiting direct comparison of guantification accuracy. Fhe-detection-and-localization

Tthis study will evaluate the quantification

accuracy of the closed-path EC, AFG,—Gaussian plume inverse model (GPIM), and the backward Lagrangian

stochastic model (bLs) for oil and gas point source quantification_using a single-instrument deployed at a fence line

distance.
Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the
covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1A; Morin, 2019). It is typically implemented over

long homogeneous fetches where eddy mixing scale is a small fraction of the distance from the site providing more

predictable vertical transport. (Dumortier et al., 2019) used EC to estimate known point source emissions at a cow’s

muzzle height and reported the model could estimate emissions between 90 and 113% of the true emission. (Dumortier
etal., 2019) stated the optimal controls for point source quantification and footprint modelling are using running mean,
15-minute averaging periods, no application of (Foken and Wichura, 1996) stationarity filter and use of the (Kormann

and Meixner, 2001) footprint function. The study tested the model using an artificial CH4source at 0.8 m, programmed

to emit when winds were coming from the source direction (x 45°), and when friction velocity (u~) was above 0.13 m

s’ In (Dumortier et al., 2019)’s point-source testing, they noted that amplitude resolution, skewness and kurtosis tests
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were disabled as they deleted almost all periods involving the artificial source in the footprint. (Rey-Sanchez et al.,
2022) studied the accuracy of Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015)-and the K & M

model (Kormann and Meixner, 2001) in calculating the footprint of point source hot spots using footprint-weighted

flux maps. The study reported the K & M model to be the most accurate. (Polonik et al., 2019) compared five gas

analyzers, two open-paths, two enclosed-path and one closed-path analyzer for carbon dioxide EC measurements. The
study noted that while open-path sensors minimize spectral attenuation and require smaller spectral correction factors
compared to sensors with an inlet tube such as a closed-path sensor, open-path sensors risk data loss in non-ideal
conditions like precipitation, fog, dust or dew. The main challenge of applying EC for continuous monitoring of oil
and gas sites is instrument limitations (requires deployment of multiple sensors throughout a facility; sensor cost is a

factor) and statistical tests as well as quality controls could filter out some of the data.
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Figure 1: Illustrations of eddy covariance—_
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The GPIM method calculates CH4 emission rate as a function of mole fraction at a point in space (X, v, z),

downwind distance, perpendicular distance (crosswind), mean wind speed and atmospheric stability (Riddick et al.
2022b){Figure-2A:—). This method has been used to quantify emissions from oil and gas production sites especially
for survey solutions-(Riddick et al., 2022b){}. For a single point-source (Riddick et al., 2022b);-reported absolute

uncertainties of between 40.7 and 60% in a controlled release experiment involving 10 replicate measurements of

compressed natural gas (1.5 m release height), with concentrations measured using a mobile vehicle survey. While

this differs from continuous fence-line deployment, it offers insight into the inherent uncertainty of the GPIM method

in field conditions. (Foster-Wittig et al., 2015) using controlled single point source tests reported average errors of

between -5 to 6%. The limitations of the GPIM method are that it assumes a homogeneous emission source, steady-

state flow, and uniform dispersion of gas in an open area free of obstructions (Hutchinson et al., 2017).

The bLs model adapted in WindTrax can simulate the transport of gases from point sources that emit them

(Figure 2B; Crenna, 2006). The model releases individual particles and follows them along their unique path in air by

mimicking random, turbulent motion of the atmosphere. (Tagliaferri et al., 2023) investigated the validity of WindTrax

in quantifying emissions from complex sources and reported the model to be reliable under neutral conditions,
underestimated emission rates during unstable stratification and overestimated emissions during stable conditions.
Similarly to the GPIM method, the model assumes free flow of air in the absence of obstructions and uses time-

averaged data as input.
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Figure 2. A: An illustration of a plume that follows a Gaussian plume inverse model where emission rate can be
inferred from concentrations at different downwind distances and crosswind distances. B: An illustration of how the
backward Lagrangian stochastic model traces particles to the source.

Continuous monitoring of CH. emissions using fence line sensors requires proper quantification of
intermittent and persistent releases from oil and gas during all release (complex emission profiles) and atmospheric
conditions (unstable, neutral and stable). Oil and gas emissions are characterized by intermittent, non-uniform, single
or multiple point source emissions, varying in leak size, location, height and distance between the source and sensor,
and are typically in complex aerodynamic environments (i.e. not flat). An ideal quantification model should always
quantify emissions and should capture short and long-lasting emission events. Most models have been validated to
work best during neutral conditions for single point sources. However, it is important to test and apply these models
during non-neutral conditions as well as these are part of real-world conditions where continuous monitoring is
applied. In this study, we evaluate if using a readily available CH4 cavity ring down analyzer for models’ quantification
such as the closed-path EC is a feasible solution to quantify point source emissions.

This study aims to inform the feasibility of downwind quantification models in oil and gas settings by
investigating which models are likely to work most of the time with instrumentation that is typically available for
fence-line deployment. Fence-line sensor deployments involve multiple sensors, continuously running in all
conditions and providing emissions data. Using robust releases and environmental conditions, this study aims to
investigate the performance of these methods in quantifying emissions for known gas release rates and evaluating

uncertainties that could result in incorrect CHa4 reporting. Specifically, the study will (1) evaluate the overall

quantification accuracy (linear regression slope of estimated versus actual emissions, and R?) of closed-path EC, AFG;
bLs model, and the GPIM method in quantifying single-release single-point and multi-release single-point emissions
that simulate oil and gas emissions. i i i jssi
forthese-medels:
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2 Methods

2.1 Experimental Setup

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions
Technology Evaluation Center (METEC) in Fort Collins, CO (USA, 65 miles north of Denver) between February 8,
and March 20, 2024. The METEC center is a simulated oil and gas facility that does controlled testing for emissions
leak detection and quantification technology development, field demonstration, leak detection protocol and best
practices development (METEC | Colorado State University, 2025). The weather conditions during the test period

were mostly sunny but precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 7 cloudy and 1 foggy day;
Supplementary Information Section 1). Wind speeds were between 0 and 25 m s™ and temperatures ranged between -
15 and +19 °C (Supplementary Information Section 1). Fwo-A stationary masts holding the instrumentation wasere
setup on the North-West corner of METEC to take advantage of the predominant wind direction, avoid the largest

aerodynamic obstructions and to simulate the likely placement of a fence-line instrument (Figure 3A; Day et al., 2024;

Riddick et al., 2022a). Fence-line sensors are typically placed within the oil and gas perimeter (~30 m)-. This study

collected data for what we considered as close and far away releases; distances between 9 and 94 m.

Methane concentration data for closed-path EC, GPIM and bLs methods were collected through an inlet
tubing (3.275 mm inner diameter) at 3 m height, connected to the ABB (Zurich, Switzerland) GLA131 Series
Microportable Greenhouse Gas Analyzer (MGGA) set to sample at 10 Hz. The MGGA is a closed-path greenhouse
gas analyzer with a ~3.2 Ipm pump flowrate, 10 cm cell length, 1 inch cell diameter (~0.23 standard cubic centimeters
per minute (sccm) effective volume), and 0.4 s gas flow response time. The inlet tubing was collocated with an R. M.

Young (Traverse City, MI, USA) 81000 sonic anemometer which measured micrometeorology at 10 Hz (Figure 3B-

1). The northward, eastward and vertical separation of the inlet tubing from the sonic anemometer was 0, 0, -10 cm,
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Figure 3: A: Map illustration of major pieces of equipment and the measurements points at Colorado State University’s
Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA. Equipment 4S denotes
horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. The-rumber
1B is the measurement point for the Microportable Greenhouse Gas Analyzer for closed-path eddy covariance,
Gaussian plume inverse and backward Lagranglan stochastic model quantlflcatlon The inlet tubing and the sonlc
anemometer are at 3 m height. 2 a at-2-a
fepaemdynamreﬁk%g%&%ampm&we red dotted Imes with yeIIow numbers show the average dlstances (meters)
between emission equipment and measurement point. The orange numbers show the range of emission heights
(meters) for each equipment. The analyzers were hosted in a temperature-controlled box. Fhe-twe-sampling-points-are

9 4-m-apart:

2.2 Controlled Methane Releases

Controlled releases were part of the METEC Spring 2024 Advancing Development of Emissions Detection

(ADED) Campaign conducted between February 6 and April 29, 2024 (Advancing Development of Emissions

Detection (ADED)). Natural gas of known CH, content was released from above-ground emission points attached to
equipment typically present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged
between 0.01 kg h'* and 8.7 kg h%, and the release durations ranged from 10 seconds to 8 hours, simulating both
fugitive and large emission events. The releases were run both during the day and night. The distance from the release
points to the measurement points ranged between 9 and 94 m, and emission heights were between 0.1 and 4.9 m
(Figure 3A). Emission points simulate the realistic size and locations of typical emissions from components such as
the thief hatches, pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The
releases included both single-point emissions (single releases) and multi-point emission events (multiple simultaneous
releases).
2.3 Calculation of Roughness Length

Surface roughness length (z0) was calculated from friction velocity (Supplementary Information Section 2a:
Equations 1 and 2) by splitting the high frequency sonic anemometer data into 15-minute tables and filtering for those
in neutral conditions, |L| > 500 (Supplementary Information Section 2a: Equation 3). The overall roughness length

selected as the median of all the calculated z0 was 0.1 m (Rey-Sanchez et al., 2022).
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2.4 Models Quantification
2.4.1 Eddy Covariance
2.4.1.1 Data pre-processing
Evaluating the MGGA CH, data showed that actual sampling was between 4 and 12 Hz (majority of the data

collected at approximately highestsampling-at-6 Hz), even though the analyzerit had been setconfigured to sample at
10 Hz (Supplementary Information Section 2b). To account for this sampling variability, data were filtered to when

sampling was equal_to or /greater than 8 Hz. Data sampled at frequencies abovewhere-the-frequeney-was-greaterthan

8 Hz were down sampled to 8 Hz. The 8 Hz frequency threshold was selected to ensure uniform sampling, enough

data for model evaluation as most sampling was at lower frequencies, and to preserve as much temporal resolution as

possible given the system limitations. The sonic anemometer meteorological data (horizontal wind vectors (u, V),

vertical wind vector (w), temperature (T), and pressure (P)) actual sampling varied between 7 and 9 Hz with the most
frequent frequency at 8 Hz (Supplementary Information Section 2b). As the MGGA gas analyzer and sonic
anemometer were not designed to clock synchronously, using the MGGA CH, clock time as a reference,
meteorological data from the sonic anemometer were matched to the MGGA CH, data using linear interpolation to

generate concentration-meteorological 8 Hz data. While in an ideal circumstance of a fast pump and short tube length

a_correct timeseries matching can be achieved through establishing a clear point of maximum covariance when

determining the time lag, this is difficult for our system due to a 3 Ipm pump flowrate and a 3 m tubing that caused

both attenuation and time lag.

The aggregated concentration-meteorological data were then merged with METEC’s release data and
metadata, and release event tables created. Release event tables were aggregated tables of concentration, meteorology
and release (emission source location, duration and rate) information for all defined release events at METEC. The
concentration-meteorological--release event data were then separated into single-release and multi-release events.
Single-release events were when there was a single emission point at the site level, while multi-release events were
when there was more than one emission point at the site level. The concentration-meteorological-release event tables
were split into 5, 150 and 3015-minute release event tables (i.e. there was a continuous release in the duration). Based
on the bearing of the emission point to the measurement point and the average wind direction in the duration, the data
was further filtered to downwind data, +105°-=10° +20°, and +45°.

2.4.1.2 Flux calculation

Turbulent fluxes were calculated using the open software EddyPro® version 7 (EddyPro 7 | Software

Downloads, 2025). Acquisition frequency was set at 8 Hz, while file duration and the flux interval were set at 5, 158,

and 3045 minutes, respectively, depending on the file being processed. Table 1 shows the instruments input to the

software.

10
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Table 1. Anemometer and Gas Analyzer Input into EddyPro

Anemometer Gas Analyzer

Information Information

Manufacturer Young Manufacturer Other
Model 81000 Model Generic closed path
Height 3m Tube length 300 cm
Wind data format u, v, w Tube inner diameter 3.275mm
North alignment Nominal tube flow rate 3.21/m
North off-set 0.0 Northward separation 0.00 cm
Northward separation Reference Eastward separation 0.00 cm
Eastward separation Reference Vertical separation -10.00 cm
Vertical separation Reference Longitudinal path length 10.00 cm
Longitudinal path length Transversal path length 2.54 cm
Transversal path length Time response 04s

In raw data processing, axis rotations for tilt correction under wind speed measurement offsets was
selectedehecked. Under turbulent fluctuations, double rotation and block average detrend methods were used.
Covariance maximization with default was used for time lag detection; time lags detection was checkedenabled.
Compensation for density fluctuations (Webb-Pearman-Leuning terms) (Webb et al., 1980) was unchecked-disabled

as the MGGA analyzer synchronously reported dry CH4 and water mole fractions, cell temperature and pressure.

(Mauder and Foken, 2004) (0-1-2 system) were used for quality check. All statistical tests for raw data screening,

(Vickers and Mahrt, 1997)— spike count/removal, amplitude resolution, drop-outs, absolute limits, skewness and

kurtosis, discontinuities, time lags, angle of attack and steadiness of horizontal wind were eheckedselected. The default
values for all these tests were used. Similarly, default settings for spectral analysis and corrections were used. Analytic

correction of high-pass filtering effects (Moncrieff et al., 2005) -for low frequency range; and correction of low-pass

filtering effects (Fratini et al., 2012 - In situ analytic) and instruments separation ((Horst and Lenschow, 2009)Herst

and-Lensehow,—2009-- only crosswind and vertical) in the high frequency range were used.
2.4.1.3 Post-processing

Flux data were flagged “2”, low quality

post-processing-was-done. Cospectral analysis revealed that the EC system in this study smoothed out low-frequency

eddies, as the cospectra lack the ideal shape characterized by a low-frequency rise, a peak region, and a high-frequency

decay (Supplementary Information Section 2c.i). While the slope in the high-frequency region varies around the

theoretical —4/3 slope, the cospectral data followed the 1:1 line, indicating consistent spectral shape across sampling

periods. We also examined the relationship between CHa flux and friction velocity (u-) to identify a u threshold below

which flux estimates may be unreliable (Supplementary Information Section 2c. ii). However, no consistent

11
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relationship was observed across atmospheric stability classes (unstable, stable, and neutral). CH4 fluxes varied

widely—including both positive and negative values—across the full range of u= (~0 to 1 m s '), with no discernible

threshold beyond which fluxes stabilized. This indicated that CHa fluxes were effectively independent of ux, and thus,

data from all u~ values were retained. Ogive analysis was conducted to assess whether averaging durations of 5, 15,

and 30 minutes were sufficient for capturing the full turbulent flux. The resulting ogive curves deviated from the ideal

asymptotic shape, particularly at the highest and lowest frequencies. Notably, the curves did not exhibit a clear plateau

near the low-frequency end, where cumulative flux should approach unity. This indicates incomplete flux capture.

Furthermore, the similarity in ogive shapes across different frequencies—mirroring patterns seen in the cospectra—

suggests a lack of significant turbulent contributions and the influence of non-turbulent, possibly advective, processes.

These results imply that the EC system may not have fully resolved the flux due to either insufficient averaging time,

non-stationarity, or instrument-related limitations (Supplementary Information Section 2c.iii). As positive fluxes are

generally considered emissions, and negative fluxes depositions, data were further filtered for positive fluxes which

were then guantified to emission rates.

2.4.1.43 Footprints Calculation
Eddy covariance -and-AFG-footprints were calculated using the (Kljun et al., 2015)Khun-et-ak—(2045)-and

the (Kormann and Meixner, 2001) footprint models.-Even-theugh-Rey-Sanchez-et-al{2022) reported-the Kljun-etal

footprint-model—The-default-pixel size 2> 2 m-was-used-in-thisstudy- For the (Kljun et al., 2015), the freely online
MATLAB code of the model was used, while the (Kormann and Meixner, 2001) was coded in MATLAB. To

12



22

23
324
|325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356
|357
358

determine the point source footprint contribution, Fhisthe study first calculated the area that contributed 90% of the

vertical flux; and based on the location (x and y coordinates based on wind direction and distance from source) of the

point source, the source was determined if it was within the 90% footprint area. Point source emissions of sources

within this region were then calculated based on the approach by (Dumortier et al., 2019). This approach assumes all

measured flux is equal to flux resulting from a single point source. In case of the mast being downwind of more than

one source, more sonic anemometers are needed to solve the two unknown point source fluxes.
2.4.24 Gaussian Plume Inverse Method

2.4.24.1 Data pre-processing

Methane concentration data from the MGGA analyzer and meteorology data from the sonic anemometer

were averaged to 1 Hz and aggregated-and-pre-processed-similarhyto-the- AFG-method. The aggregated concentration-

meteorological data were merged with METEC’s release data and metadata, and release event tables created. The

concentration-meteorological-release event data were then separated into single-release and multi-release events. For

single-release events, the concentration-meteorological-release event tables were split into 5, 15 and 30-minute release

event tables. Based on the bearing of the emission point to the measurement point and the average wind direction in

the duration, the data was further filtered to downwind data, +5°, +10° and +20° wind sector ranges. Multi-release

events were further classified into multi-release single-point emissions (i.e., there were multiple emissions at the site

level, but the mast was downwind of a single source) and multi-release multi-point emissions (i.e. there were multiple

emissions at the site level and the mast was downwind of more than one source). This study focuses on single-release

single-point and multi-release single-point emissions. For continuous monitoring sensors, background concentration

can be determined from CH, concentrations measured by a sensor upwind of the emission source, or by sampling
when the wind is blowing away from the source. However, for continuous monitoring sensors, using an upwind sensor
has the limitation of missing downwind background noise resulting from emissions in the preceding emission event
where there is residual CH, in air especially during stable conditions, and capturing sensors drift in the downwind
sensor. In this study, background CH4was calculated as the average of the lowest 5" percentile, 5 minutes before each
release started. In cases where this background was greater than the mean CH4 concentration in the quantifying
duration, the minimum CH, concentration for that duration was used as the background. Methane enhancement was

then calculated as CH4 concentration minus the background.

2.4.24.2 Quantification

The GPIM was evaluated under six scenarios (two equations and three different dispersion coefficients

generations) using single-release single-point emissions to test when the model works best (Supplementary

Information Section 2a: Equation 7 and 8). Dispersion coefficients were generated based on (1) high frequency sonic
anemometer data at ~ 10 Hz, (2) EPA point-source dispersion coefficients (US EPA, 2013), and (3) 1 Hz sonic

anemometer data. The scenario with the slope closest to 1, and highest R? across averaging durations, and wind sector

ranges was selected and used for multi-release single-point emissions guantification. For single-release tables, the

measurement point was downwind of a single source (single-release single-point emission), hence the tables were

quantified as they were. .

However, for multi-release events, the tables were further processed as the GPIM method is designed to quantify a

13
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single point source at a time. For multi-release events, the number of emission points in the downwind tables were
used to further classify the tables into multi-release single-point emissions (i.e. there were multiple emissions at the
site level, but the mast was downwind of a single source), and multi-release multi-point emissions (i.e. there were
multiple emissions at the site level and the mast was downwind of more than one emission source). The GPIM method
was only used for multi-release single-point emissions.
2.4.35 Backward Lagrangian Sstochastic mModel

Pre-processed data from the GPIM method was used for bLs quantification. Quantification was done using
the open-source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0, n.d.). For every 5-, 158- and 3015-minute

duration in the £5°, £10°, and £20°, respectively, inputs included roughness length (z0), Monin-Obukhov length (L-

Supplementary Information Equation 3), mean (wind speed, wind direction, concentration, pressure, temperature),

background concentration, source height, and distance from the emission point to sensor. WindTrax is also designed
to quantify a single point source at a time, and hence, was only used to quantify single-point single emissions and

multi-point single emissions.

3 Results
3.1Eddy Covariance
3.1.1 Single-Release Single-Point

For single-release single-point (SRSP) emissions, the closed-path EC underestimated emissions. Using the
(Kljun et al., 2015) footprint model, the slope of the estimated emissions versus actual emissions linear regression was
between -0.04 and 0.54 at 5 minutes, -0.36 and -0.04 at 15 minutes, and 0.03 at 30 minutes, 45 degrees (10 and 20

degrees had insufficient data points) (Figure 4). The adjusted R? was between -0.04 and 0.12 indicating no linear

relationship between the estimated and actual emission (Figure 4). Using the (Kormann and Meixner, 2001) footprint

model, the slope was between -0.42 and 0.17 at 5 and 15 minutes, respectively, and -0.08 at 30 minutes, 45 degrees.

(Supplementary Information Section 3.1.1). Similarly, the adjusted R? values were between -0.07 and 0.05. These

results indicate that this study’s EC system using either the (Kljun et al., 2015) or the (Kormann and Meixner, 2001)

footprint models did not reliably guantify emissions for SRSP cases. The low slopes and adjusted R2 values suggest

little to no linear relationship between estimated and actual emissions under the tested conditions (Figure 4;

Supplementary Section 3.1.1).
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Figure 4. Top-plot—Estimated emission vs actual emission (kg h'1) for a-single-release single-point emissions-at-site
level+45° wind-sectorrange. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are
underestimated and above are overestimated emissions. The gray region represents +£30% of the actual emission. Adj.

For multi-release single-point (MRSP) emissions, the closed-path EC largely underestimated emissions and

did not show good agreement between estimated and actual emissions (Figure 5). Using the (Kljun et al., 2015)

footprint model, the slope was between -0.51 and 0.18, except for the 5 minutes 45 degrees category that had a slope

of 0.61. The adjusted R? did not show a linear relationship between estimated and actual emissions with values ranging

between -0.02 and 0.00 (Figure 5). Using (Kormann and Meixner, 2001) footprint model, the slope was between -0.03

and 1.06, the good agreement of 1.06 was at 30 minutes 45 degrees with an adjusted R? of 0.12 (Supplementary

Information Section 3.1.2). The rest of the categories had an R? of between -0.02 and 0.06. These results suggest that

the EC system did not reliably quantify emissions for MRSP cases under most conditions. Only one category (30

minutes, 45 degrees using the (Kormann and Meixner, 2001) footprint model showed moderate agreement (slope =

1.06, adjusted R? = 0.12), but even this explains only a small portion of the variability in actual emissions. Overall,
the adjusted R? values across scenarios (—0.02 to 0.12) indicate a weak or no linear relationship. guantified-emissions

orre within an MRFE of between1.02 and 2 43 3 45° wind-sectorranae aure he MIRE wa 0 / nd
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3.24 Gaussian Plume Inverse Method

3.24.1 Single-Release Single-Point

The GPIM sensitivity analysis comparing different equations and dispersion coefficients showed no

difference in guantified emissions between Equation 7 and Equation 8. Among the dispersion coefficient sets tested,

the (US EPA, 2013) coefficients resulted in the most consistent performance, with the least variability in slope and

the highest overall adjusted R? values (Supplementary Information Section 3.2). For this scenario, the slope ranged

from 1.65 to 3.92 (excluding the 30-minute, 5-degree case due to insufficient data), and adjusted R? values ranged

from 0.40 to 0.64 (Figure 6). The 15-minute, 5-degree case had the slope closest to 1 (slope = 1.65, R2 = 0.40), while

the 5-minute, 5-degree case showed the strongest linear relationship overall (slope = 2.42, R2 = 0.64) (Figure 6). These

results suggest that while the GPIM model tends to overestimate emissions (slopes > 1), it provides relatively

consistent and stronger linear agreement with actual emissions compared to the closed-path EC system tested above

(Section 3.1).
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Figure 6. Estimated emission vs actual emission (kg h™) for single-release single-point emissions. Sce.3 refers to

scenario 3 of the sensitivity analysis in Supplementary Information Section 3.2). The red dotted line is a 1:1 line based

on actual emissions i.e. points below the line are underestimated and above are overestimated emissions. The gray

region represents +30% of the actual emission. Adj. R? is the adjusted R%. The sample size is n.
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For MRSP emissions, the GPIM model produced a wide range of slopes, from —43.05 to 1.60 (Figure 7).

Excluding the 5-minute 5- and 10 degrees categories, and the 30-minute 10 degrees category, most other cases reported

slopes between 0.76 and 1.22, suggesting potential quantification within ~25% of actual emissions. However, the
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adjusted R2 values in these cases were close to zero, indicating no consistent linear relationship between estimated

and actual emissions (Figure 7). This lack of correlation is likely due to the high variability in GPIM estimates, which

reached up to 200 kg h™' for the selected categories, despite actual emissions being only around ~6 kg h™'. These

results indicate that while the GPIM model sometimes produced slope values suggesting close agreement with actual

emissions, the lack of linear correlation and large overestimations highlight its limited reliability in quantifying MRSP

emissions accurately.
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Figure 7. Estimated emission vs actual emission (kg h™t) for multi-release single-point emissions. The red dotted line

is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated

emissions. The gray region represents +30% of the actual emission. Adj. R? is the adjusted R2. The sample size is n.
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3.34 Backward Lagrangian Stochastic Model

3.34.1 Single-Release Single-Point

For SRSP emissions, the bLS method generally produced the most accurate slopes (i.e., closest to 1)

compared to the EC and GPIM methods (Figure 8). The 15-minute 5- and 10-degrees categories vielded the most

accurate estimates, with slopes of 1.05 and 1.10, respectively. The adjusted R? ranged from 0.48 to 0.66 for the 5-

minute averaging duration, and from 0.40 to 0.48 for the 15-minute duration. At the 30-minute averaging duration,

performance improved in the 10- and 20-degrees categories, likely due to increased sample sizes (Figure 8). These

results show that the bLs is more suitable for guantifying single-release single point emissions. FerSRSP-emissions;
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The bLs method had wide uncertainties for MSRP emissions especially in the 5 minutes, 5- and 10-degrees

categories (Figure 9). In the other categories, the slopes were between -0.03 and 0.45, and R?> ~0. Even though the

estimated emissions spanned up to >20 kg h* mostly for actual emissions of up to 6 kg h, lots of points were

concentrated close to 0. Compared to the GPIM MSRP results, even though both models have an R2 of ~0, the GPIM

had a slope closer to 1 in the 15-munites category than the bLs showing better performance. These results show that

the bLs is more suitable for quantifying SRSP emissions than MSRP emissions.
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Figure 9. Estimated emission vs actual emission (kg h™) for multi-release single-point emissions. The red dotted line

is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated

emissions. The gray region represents +30% of the actual emission. Adj. R? is the adjusted R?. The sample size is n.
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3.4 Models Comparison — Subset Data

Using a subset of the data (SRSP), filtered by 15-minute intervals within a 10-degree wind sector range where

each model provided an emission estimate, the bLs model exhibited the best performance, with its linear regression

closely aligned with the 1:1 line (Figure 10). The slope of the regression line for the GPIM was 1.6, indicating an

overestimation, while the bLs had a slope of 0.95, suggesting high accuracy. In contrast, the EC model produced

slopes of 0.08 and 0.10 when using the (Kormann and Meixner, 2001) and (Kljun et al., 2015) footprint

parameterizations, respectively, indicating significant underestimation. WWhen emission estimates were categorized by

emission point, the GPIM notably overestimated emissions at locations 4W-22 and 4W-51 (identified in Figure 3),

both situated approximately 10 m from the measurement location. The EC model consistently underestimated

emissions across all sites, while the bLs model provided estimates closest to the expected values. The EC model

produced negative emission rates associated with negative fluxes during periods of high non-stationarity

(Supplementary Information, Section 2c. iv). These deviations from stationarity reflect intermittent plume capture,
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where the EC system alternated between sampling emitting and non-emitting regions. Overall, these findings indicate

that for source-receptor distances ranging from approximately 10 to 90 meters, the bLs model demonstrated the highest

accuracy in guantifying emissions.
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Figure 10. Top plot: Estimated emission vs actual emission (kg h™*) for each model. GPIM is the Gaussian Plume
Inverse Method, bLs is the backward Lagrangian stochastic model, EC-KM is eddy covariance with (Kormann and
Meixner, 2001) footprint, and EC-Klujn is the eddy covariance estimate using the (Kljun et al., 2015) footprint. The
black dotted line is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are
overestimated emissions. The gray region represents +30% of the actual emission. Adj. R? is the adjusted R The
sample size is n. Bottom plot: Estimated emission vs actual emission categorized by Emission Point as illustrated in

Figure 3.
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3.5 Traceability Example

To illustrate how raw data were converted into model-based emission estimates, we present one representative

15-minute interval used in Figure 10. During a controlled release at point 4W-22 (wellhead), located approximately

10.5 m from the mast, the ground-truth release rate was 3 kg CH4 h™!. Over this interval, the average CH4 concentration

enhancement was 8.3 ppm above the background (determined using the 5th percentile method, see Section 2.4.2.1).

The cross wiwind direction was 153° (0.3 m crosswind distance), with an average wind speed of 5.8 m s™'. The same

interval was processed through the three modeling frameworks:

e  The bLs model (WindTrax), using measured concentration, geometry, and meteorological data, estimated

3.5kghl.
e The GPIM model, using Equation 7 and 8 (Supplementary Information) and dispersion coefficients,

estimated 10.3 kg h'l.

e The EC method (using the (Kormann and Meixner, 2001) footprint) estimated —0.004 kg h™! due to a negative

flux under high non-stationarity conditions.

This example illustrates how the bLs model reproduced the true emission most closely, GPIM overestimated, and EC

underestimated the emission. More examples of data presented in Figure 10 are available under supplementary data

“MATLAB Code & Software Configuration — Validation.xlsx”.

4 Discussion

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from
different heights, different locations, encountering aerodynamic obstacles of different sizes, and of varying emissions
duration, amongst others. The ability to precisely quantify emissions using data collected by a point sensor, downwind
of a source is directly influenced by plume dynamics. The CH4 plume downwind of a source will change in size and
shape in different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in different seasons

(Casal, 2008). In this study, we evaluated the ability of downwind methods—including a non-standard closed-path

EC system, the GPIM, and the bLs model—to quantify emissions from single-release and multi-release point sources.

While the field measurements took place under naturally varying meteorological conditions, these were not explicitly

stratified or analyzed as experimental factors. Additionally, although on-site infrastructure such as storage tanks was

present, their distance from the sampling instruments (=50 m) likely rendered their aerodynamic influence negligible.

As such, the analysis focuses on quantification performance under realistic but uncontrolled field scenarios, without
attributing model behavior to specific atmospheric or obstacle-related conditions. H-this-study,the-precision-to-which
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4.1 Eddy Covariance
Eddy covariance was tested using a closed-path analyzer, cavity ring-down spectroscopy, with a 3.2 Ipm

pump flowrate and a 0.4 s gas flow response time. The closed path EC underestimated emissions with a linear

regression slope for estimated emissions versus actual emissions of between -0.42 and 0.54 using the (Kljun et al.,

2015) and (Kormann and Meixner, 2001) footprint models, and adjusted R? was ~0. elesed-path-EC-estimated

+45° wind-sectorrange—(Section 3.1). This was a wider uncertainty in estimated emissions than one reported by
(Dumortier et al., 2019), who estimated emissions at between 90 and 113% of true emission (~1.5 kg day) with

concentrations between 2 and 3 ppm. Our study tested closed-path EC at emission rates between 0.005 and 8.5 kg h-

1 Notably, the results for the non-standard EC system tested this study may not be representative of EC performance

in oil and gas as ogive and cospectra analysis indicated that the flux may not have been fully resolved due to non-

stationarity, and instrument-related limitations.

Our results were derived from data filtered to include only periods with sampling frequencies >8 Hz, which

significantly reduced the number of usable emission measurements. Although the instrument was configured to sample

at 10 Hz, it did not consistently achieve this rate. This discrepancy may be attributed to instrument-related factors such

as the 0.4-second gas flow response time, which could delay analysis of the drawn air sample in the cavity, or the use

of a 3 Ipm pump with 3 meters of tubing, which reduced the effective turnover rate. The dataset used for eddy

covariance evaluation was predominantly flagged as low quality (flag 2) according to the (Mauder and Foken, 2004)

guality control test, which classifies flux data based on steady-state conditions and the presence of well-developed

turbulence (flags 0 = high, 1 = intermediate, 2 = low gquality). Many of the low-quality flags were likely driven by

wide deviation in w/CHy, stationarity reflecting intermittent plume capture, where the EC system alternated between

sampling emitting and non-emitting regions. The EC model produced negative emission rates associated with negative

fluxes during periods of high non-stationarity (Supplementary Information, Section 2c. iv).

Despite high non-stationarity that resulted in low data quality issues resulting in EC inaccuracies, this study

acknowledges our design limitations. Our study did not have a reliable method for aligning the asynchronous CHs and

sonic anemometer data streams, which likely introduced substantial timing errors and contributed to uncertainty in the

flux_calculations. The intake for the closed-path system was positioned approximately 10 cm below the sonic

anemometer to protect the inlet tubing from debris and precipitation by mounting it on an aluminum shield facing

downward. We recognize that even this small vertical separation can introduce additional errors in flux measurements

when using short towers. This design choice was a compromise to ensure instrument protection while maintaining

data collection in field conditions. We acknowledge that the system used in this study was not designed or configured

for standard eddy covariance analysis, and that this limitation impacts the interpretation of our results in the context

of EC-based flux quantification.
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In this study, continuous monitoring was conducted using a single sensor with an inlet deployed at a fence-

line distance. This system requires instrumentation capable of measuring a wide concentration range, as emissions

from oil and gas sites can vary between 0 and 250 ppm (Supplementary Information Section 1). While continuous

monitoring systems, comprising multiple sensors can offer enhanced spatial coverage and source localization, they

also introduce higher costs. The limitations and findings reported here therefore apply specifically to this single-sensor

fence-line continuous monitoring approach and may not be representative of all continuous monitoring frameworks.

nstrumentation with-a wide measurement ranae-as-concen onsfor oil and-gas-em on nranae-bebween-0-to

250-ppm-asia-thisstudy-(Supplementary-nformation-Section-b--This study acknowledges the limitations of the eddy
covariance (EC) setup used, particularly that the ABB MGGA GLA131 Series analyzer is not designed specifically

for EC applications. As a result, the conclusions drawn from the EC data are constrained. The study recommends

further EC testing with instruments specifically designed for EC, ideally featuring a wide measurement range (0 to

~500 ppm), faster pump speeds, shorter tubing, synchronized data logging, sampling frequencies above 10 Hz, and

rugged designs suitable for field deployment. Additionally, the study recognizes that environmental factors—such as

obstructions, intermittent emissions, and variable wind directions causing plume meandering—can degrade EC data

quality and complicate its application in oil and gas field studies.Fhe-currently-avaHable EC-instruments-have-a-narrow
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4.23 Gaussian Plume Inverse Method

The GPIM method quantified emissions within a slope of 1.65 to 3.92 and adjusted R? of between 0.4 and

0.64 with highest performance at 15-minutes 5-degrees wind sector (slope = 1.65, R? =0.4), and 5 minutes 5-degrees
(slope = 2.42, R?=0.64) for SRSP emissions (Section 3.2). For MSRP emissions, the GPIM showed wide uncertainties

even though the slopes for other categories excluding 5-minutes 5-and 10-degrees, and 30-minutes 10-degrees

categories, were between 0.74 and 1.60, with R2 ~0 (Section 3.2). The R? close to zero showed that there was no linear

relationship between the estimated and actual emissions for MSRP_conditions. Overall, the GPIM performed well

under 15-minutes averaging duration, and 5-degree wind-sector ranges in both SRSP and MSRP categories. The

MSRP emission profiles tested in this study were complex challenging the GPIM application as the methodan-MRE

PHM-method is a point-
source specific quantification approach and works best in open areas, free of obstacles, and when the background

concentration is well defined. For multiple emissions, even when the sensor is nominally downwind of a single source

based on the average wind direction, quantification can be complicated by interference from neighboring sources.

However, it is important to emphasize that such complexity is not a fundamental limitation of quantification itself, but

rather a function of the experimental design and study objectives. For example, plume interference can often be

minimized through strategic localization and optimization using multiple sensors—an approach that differs from the

single-instrument setup used in this study. This study’s design involves defining plumes based on wind sector ranges,
as opposed to using multiple sensors to localize sources, and therefore does not replicate how various continuous

monitoring solutions typically operate.

hough-the-senso downwind-o ngle-source-based-on-average-wind-direction,—guan on omplexed-b

interferencefrom-otherneighbering-sources—The GPIM has previously been reported to quantify emissions within

40.7 and 60% error for a single point-source; using controlled release experiments (Riddick et al., 2022b)--However,

GPIM correct quantification has been suggested to be better for longer distances where the plume is well mixed_as
seen in Figure 10. This is typically a challenge for fence-line sensors that have to be deployed within the facility
boundaries where large downwind distances may not be practical.

4.3 Backward Lagrangian Stochastic Model

The bLs method was the most accurate in quantifying emissions for the SRSP release profiles but had wider

uncertainties than the GPIM for MRSP scenarios (Section 3.1). For SRSP emissions, the slopes closest to 1 were
during the 15-minutes 5-degrees (slope = 1.05, R? = 0.4) and 10-degrees (slope = 1.10, R? =0.37). The best R? was 5-

minutes 5-degrees (slope = 1.64, R% = 0.66). However, for MSRP emissions, the slopes were between -0.03 and 0.45
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~Similarly to the GPIM method, the bLs method
used in this study is a point-source specific quantification method that simulates transport of molecules in open area
and where the background concentration is defined. In this case, as with the SRSP test scenario, the bLs approach was
generally more accurate than the EC and GPIM. guantified-within-20%-uncertainty. However, for MRSP emissions,
the-bLslargely—overestimated—emissionsquantification accuracy was low. —and-this—could-have-been—due—to-the

related challenges—specifically, interference from neighboring sources and the lack of distinct plume separation in

complex flow conditions. Although the measurement point was nominally downwind of a single source, the real-world

plume structure may not align with model assumptions. Additionally, the bLs implementation in WindTrax is designed

for single-source scenarios and applying it in multi-source environments without adaptation can lead to inaccuracies.

The GPIM and bLs methods are sensitive to background correction, which in this study was complicated by temporal

overlap between release events and residual CH4 accumulation, particularly under stable atmospheric conditions.

Although this is a controlled-release study, residual methane from prior emissions and the presence of multiple plumes

can affect the CHa4 concentration during a candidate event, challenging the assumptions used to define background

and isolate a single-source plume using wind-sector-based criteria. These findings highlight the importance of aligning

modeling assumptions with the experimental context rather than pointing to a fundamental limitation of the method

itself.

4.4 Implications

In recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas
sites. This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous
monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to
infer emission rates. For point sources, downwind methods such as the Gaussian plume inverse method have been
widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This
study’s design replicated a continuous monitoring setup’s downwind deployment distance, range of typical emission
rates, emissions heights, and meteorological data acquisition.

Oil and gas point sources could either be single emissions or multiple emissions occurring concurrently. In

this study’s design, cases involving multiple emissions with more than one release point located upwind posed

challenges for the specific Gaussian and backward Lagrangian stochastic (bLs) model implementations, which were

applied assuming a single active source at a time. While these models can be extended to handle multi-source

scenarios, the assumptions used here limited their ability to distinquish individual contributions when plumes

overlapped. As a result, interference from neighboring emissions introduced ambiquity in model-observation

alignment, particularly under complex wind conditions. —ta-cases-of-multiple-emissions-with-more-than-onerelease




covariance was generally unreliable in this study due to non-stationarity and limitations associated with using a non-

standard EC system. In contrast, the Gaussian Plume Inverse Method (GPIM) outperformed the non-standard EC

system for both single-release and multi-release single-point emissions. The backward Lagrangian stochastic (bLs)

method was the most accurate for single-release single-point emissions but was less accurate than the GPIM under

multi-release conditions. For both GPIM and bLs, 15-minute averaging with a narrow wind-sector (5°) vielded the

best performance. While EC results in this study were limited by system constraints, future work is recommended

using standard EC instruments and further optimizing GPIM and bLs models—particularly for complex multi-release

scenarios—to improve accuracy and reduce uncertainties. Fhis—study’s—results—show—that—generally—reasonable
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