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Abstract. The dependable reporting of methane (CH4) emissions from point sources, such as fugitive leaks from oil 8 

and gas infrastructure, is important for profit maximization (retaining more hydrocarbons), evaluating climate impacts, 9 

assessing CH4 fees for regulatory programs, and validating CH4 intensity in differentiated gas programs. Currently, 10 

there are disagreements between emissions reported by different quantification techniques for the same sources. It has 11 

been suggested that downwind CH4 quantification methods using CH4 measurements on the fence-line of production 12 

facilities could be used to generate emission estimates from oil and gas operations at the site level, but it is currently 13 

unclear how accurate the quantified emissions are. To investigate downwind methods’ accuracy, this study uses fence-14 

line simulated data collected during controlled release experiments as input for a non-standard closed-path eddy 15 

covariance (EC), aerodynamic flux gradient, the Gaussian plume inverse method (GPIM), and the backward 16 

Lagrangian stochastic (bLs) model in a range of atmospheric conditions. Generally, the closed-path EC system used 17 

in this study proved generally unreliable and largely underestimated emissions, primarily due to non-stationarity and 18 

study limitations associated with using a non-standard setup. In comparison, the Gaussian Plume Inverse Method 19 

(GPIM) consistently outperformed the EC system for both single-release and multi-release single-point emissions. 20 

The backward Lagrangian stochastic (bLs) model demonstrated the highest accuracy for single-release single-point 21 

emissions, though it exhibited greater uncertainty than GPIM under multi-release conditions. Across GPIM and bLs 22 

models, the most reliable quantification was achieved with 15-minute averaging and a narrow 5° wind-sector range. 23 

Although EC was limited in this context, future studies should consider employing a standard EC system and further 24 

optimizing GPIM and bLs approaches—particularly for complex multi-source scenarios—to enhance quantification 25 

accuracy and reduce uncertainty.results show that flux quantification methods provide more reasonable estimates 26 

compared to point-source specific models especially when multiple releases are happening at the facility level. The 27 

closed-path eddy covariance quantified emissions with a mean relative factor (estimated emission over actual 28 

emission) of 0.7 to 1 for single-release single-point emissions, and within a mean relative of 1 and 2.4 for multi-release 29 

single-point emissions. The aerodynamic flux gradient method quantified emissions within a mean relative factor of 30 

1.3 to 1.7 for single-release single-point emissions, and between 2.4 and 3.3 for multi-release single-point emissions. 31 

The Gaussian plume inverse model quantified emissions within a mean relative factor of between 2.4 and 2.6 for 32 

single-release single-point emissions, but largely overestimated emissions when multiple releases were happening; 33 

mean relative factor between 16 and 25. Similarly to the Gaussian plume inverse method, the backward Lagrangian 34 
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stochastic model for point sources using WindTrax quantified within a mean relative factor of between 0.8 to 1 for 35 

single-release single-point emissions, but largely overestimated emissions for multi-release single-point emissions; 36 

mean relative factor of 3.9 and 11958. As continuous monitoring of oil and gas sites can involve complex emissions 37 

where plumes are not defined due to multiple sources, this study shows that common downwind point source 38 

dispersion models could largely overestimate emissions. This study recommends more testing of flux quantification 39 

models for oil and gas continuous monitoring quantification. 40 

Keywords: Continuous monitoring; oil and gas; point source; closed-path eddy covariance; aerodynamic flux 41 

gradient; Gaussian plume inverse method; backward Lagrangian stochastic model 42 

1 Introduction  43 

Reducing methane (CH4) emissions from oil and gas systems is necessary for adhering to regulations and 44 

voluntary reporting frameworks such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0) (UNEP, 2024). The 45 

OGMP 2.0 provides a comprehensive measurement-based international reporting framework allowing companies to 46 

stay ahead of regulatory compliance requirements, meet investor and market pressure, have an enhanced corporate 47 

image, and prevent revenue loss by lowering their emissions. In the US, currently, the amount of CH4 emitted from 48 

US oil and gas production are compiled by the US Environmental Protection Agency (EPA) under Subpart W. 49 

Typically, companies use a bottom-up inventory approach where emission factors (CH4 emissions per equipment e.g., 50 

separator or emissions per event e.g., liquid unloading) are multiplied by activity factors (total number of pieces of 51 

equipment or events (US EPA, 2023) to generate emissions.  This quantification approach has several shortcomings, 52 

including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which practically are not 53 

independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin (Riddick et al., 54 

2024a); 2. Some emission factors used are outdated  (Riddick et al., 2024b) and others do not account for the temporal 55 

and spatial variation in emissions (Riddick and Mauzerall, 2023); and 3. Emission factors do not account for the long-56 

tail distributions (Riddick et al., 2024b); 4. Difficulty in obtaining a truly representative sample from a large diverse 57 

population to generate emission factors (Allen, 2014); and possibly unreliable data reported by operators (Chan et al., 58 

2024). . Recently, mechanistic models, such as the Mechanistic Air Emissions Simulator (MAES), have been 59 

developed to address shortcomings in bottom-up CH4 reporting (Mollel et al., 2025), but these still depend on direct 60 

measurements to inform emission factors. 61 

Top-down methods, including using aircraft such as Bridger Photonics LiDAR (Light Detection and 62 

Ranging; 90% detection limit of ~ 2 kg h-1) (Johnson et al., 2021) and satellites such as Carbon Mapper (predicted 63 

90% detection limit of about 100 kg h-1)  (Carbon Mapper - Science & Technology, 2025) can also be used to infer 64 

emissions. However, these survey methods only quantify emissions over a very short period of time (< 10 s) and 65 

observations are typically made during the day which can often coincide with maintenance activities that can bias 66 

emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). Additionally, different top-down 67 

technologies measuring the same source have disagreed in their reported emissions which has called into question the 68 

credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, ensuring accuracy in models and 69 

technologies used in CH4 emissions quantification has been a complex issue.   70 
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 Currently, fence-line methods are used to detect, localize and quantify emissions. This approach uses point 71 

sensors fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds 72 

a threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling 73 

framework, usually based on a Gaussian plume inverse approach (Bell et al., 2023; Day et al., 2024; Riddick et al., 74 

2022a). Detection and localization of simulated fugitive emissions using this approach have been demonstrated 75 

successfully in controlled release studies. For example, (Ilonze et al., 2024) reported a 90% probability of detection 76 

for emissions between 3.9 and 18.2 kg CH₄ h⁻¹ using multi-sensor and scanning/imaging systems. However, significant 77 

uncertainty in quantification remains; their study reported emissions being misestimated by a factor of 0.2 to 42 for 78 

releases between 0.1 and 1 kg CH₄ h⁻¹, and by a factor of 0.08 to 18 for emissions above 1 kg CH₄ h⁻¹. While 79 

informative, the methods in  (Ilonze et al., 2024) differ in key ways from those employed here—specifically, their use 80 

of multiple sensors and a distributed monitoring configuration as opposed to the single-instrument, fence-line-based 81 

framework used in our study—limiting direct comparison of quantification accuracy. The detection and localization 82 

of simulated fugitive emissions have been successful, with controlled release testing against point sensors and 83 

scanning/imaging solutions reporting a 90% probability of detection for emissions between 3.9 and 18.2 kg CH4 h-1 84 

(Ilonze et al., 2024). Major shortcomings have been identified using a fence-line approach with quantified emissions 85 

reported at between a factor of 0.2 to 42 times for emissions between 0.1 and 1 kg CH4 h-1, and between 0.08 and 18 86 

times for emissions greater than 1 kg CH4 h-1 (Ilonze et al., 2024). As a result, questions have arisen if other approaches, 87 

such as the eddy covariance (EC) or aerodynamic flux gradient (AFG) would generate more accurate results.  These 88 

methods have been suggested as they have been used to quantify emissions from other sectors, i.e. agriculture 89 

(Denmead, 2008; Morin, 2019) and landfills (Xu et al., 2014), as well as to quantify emissions in large downwind 90 

areas (Vogel et al., 2024). Such quantification does not require assumptions made on downwind dispersion coefficients 91 

or micrometeorology that are often required for dispersion modelling (Denmead, 2008). Due to interest in using a 92 

subset of these methods to quantify emissions from oil and production sites, Tthis study will evaluate the quantification 93 

accuracy of the closed-path EC, AFG, Gaussian plume inverse model (GPIM), and the backward Lagrangian 94 

stochastic model (bLs) for oil and gas point source quantification using a single-instrument deployed at a fence line 95 

distance. 96 

Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the 97 

covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector 98 

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1A; Morin, 2019). It is typically implemented over 99 

long homogeneous fetches where eddy mixing scale is a small fraction of the distance from the site providing more 100 

predictable vertical transport. (Dumortier et al., 2019) used EC to estimate known point source emissions at a cow’s 101 

muzzle height and reported the model could estimate emissions between 90 and 113% of the true emission. (Dumortier 102 

et al., 2019) stated the optimal controls for point source quantification and footprint modelling are using running mean, 103 

15-minute averaging periods, no application of (Foken and Wichura, 1996) stationarity filter and use of the  (Kormann 104 

and Meixner, 2001) footprint function. The study tested the model using an artificial CH4 source at 0.8 m, programmed 105 

to emit when winds were coming from the source direction (± 45º), and when friction velocity (u*) was above 0.13 m 106 

s-1. In (Dumortier et al., 2019)’s point-source testing, they noted that amplitude resolution, skewness and kurtosis tests 107 
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were disabled as they deleted almost all periods involving the artificial source in the footprint. (Rey-Sanchez et al., 108 

2022) studied the accuracy of Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015) and the K & M 109 

model (Kormann and Meixner, 2001) in calculating the footprint of point source hot spots using footprint-weighted 110 

flux maps. The study reported the K & M model to be the most accurate. (Polonik et al., 2019) compared five gas 111 

analyzers, two open-paths, two enclosed-path and one closed-path analyzer for carbon dioxide EC measurements. The 112 

study noted that while open-path sensors minimize spectral attenuation and require smaller spectral correction factors 113 

compared to sensors with an inlet tube such as a closed-path sensor, open-path sensors risk data loss in non-ideal 114 

conditions like precipitation, fog, dust or dew. The main challenge of applying EC for continuous monitoring of oil 115 

and gas sites is instrument limitations (requires deployment of multiple sensors throughout a facility; sensor cost is a 116 

factor) and statistical tests as well as quality controls could filter out some of the data.  117 

 118 

119 
Figure 1: Illustrations of eddy covariance  (A) and flux gradient measurements (B) where CH4 is methane 120 
concentrations, and w is the vertical wind speed., L is the Monin-Obukhov length (measure of atmospheric stability), 121 
and z is the measurement height. 122 

The AFG method quantifies CH4 emissions from a source by comparing CH4 concentrations at two heights 123 

(Figure 1B; Querino et al., 2011). Kamp et al. (2020) used the method to calculate ammonia fluxes over a grass field 124 

using a single analyzer by alternating two heights and reported 7% mean relative difference in flux in this approach 125 
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compared to continuous measurements at two heights. Generally, the AFG approach is designed for homogeneous 126 

sources where footprints at different sensor heights would not affect quantification results, and its applicability to 127 

point source quantification, currently, is limited. 128 

 129 

The GPIM method calculates CH4 emission rate as a function of mole fraction at a point in space (x, y, z), 130 

downwind distance, perpendicular distance (crosswind), mean wind speed and atmospheric stability (Riddick et al., 131 

2022b)(Figure 2A; ).  This method has been used to quantify emissions from oil and gas production sites especially 132 

for survey solutions (Riddick et al., 2022b)(). For a single point-source (Riddick et al., 2022b), reported absolute 133 

uncertainties of between 40.7 and 60% in a controlled release experiment involving 10 replicate measurements of 134 

compressed natural gas (1.5 m release height), with concentrations measured using a mobile vehicle survey. While 135 

this differs from continuous fence-line deployment, it offers insight into the inherent uncertainty of the GPIM method 136 

in field conditions. (Foster-Wittig et al., 2015) using controlled single point source tests reported average errors of 137 

between -5 to 6%.  The limitations of the GPIM method are that it assumes a homogeneous emission source, steady-138 

state flow, and uniform dispersion of gas in an open area free of obstructions (Hutchinson et al., 2017). 139 

The bLs model adapted in WindTrax can simulate the transport of gases from point sources that emit them 140 

(Figure 2B; Crenna, 2006). The model releases individual particles and follows them along their unique path in air by 141 

mimicking random, turbulent motion of the atmosphere. (Tagliaferri et al., 2023) investigated the validity of WindTrax 142 

in quantifying emissions from complex sources and reported the model to be reliable under neutral conditions, 143 

underestimated emission rates during unstable stratification and overestimated emissions during stable conditions. 144 

Similarly to the GPIM method, the model assumes free flow of air in the absence of obstructions and uses time-145 

averaged data as input. 146 
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 147 

148 
Figure 2. A: An illustration of a plume that follows a Gaussian plume inverse model where emission rate can be 149 
inferred from concentrations at different downwind distances and crosswind distances. B: An illustration of how the 150 
backward Lagrangian stochastic model traces particles to the source. 151 
   152 

Continuous monitoring of CH4 emissions using fence line sensors requires proper quantification of 153 

intermittent and persistent releases from oil and gas during all release (complex emission profiles) and atmospheric 154 

conditions (unstable, neutral and stable). Oil and gas emissions are characterized by intermittent, non-uniform, single 155 

or multiple point source emissions, varying in leak size, location, height and distance between the source and sensor, 156 

and are typically in complex aerodynamic environments (i.e. not flat).  An ideal quantification model should always 157 

quantify emissions and should capture short and long-lasting emission events. Most models have been validated to 158 

work best during neutral conditions for single point sources. However, it is important to test and apply these models 159 

during non-neutral conditions as well as these are part of real-world conditions where continuous monitoring is 160 

applied. In this study, we evaluate if using a readily available CH4 cavity ring down analyzer for models’ quantification 161 

such as the closed-path EC is a feasible solution to quantify point source emissions.  162 

This study aims to inform the feasibility of downwind quantification models in oil and gas settings by 163 

investigating which models are likely to work most of the time with instrumentation that is typically available for 164 

fence-line deployment. Fence-line sensor deployments involve multiple sensors, continuously running in all 165 

conditions and providing emissions data.  Using robust releases and environmental conditions, this study aims to 166 

investigate the performance of these methods in quantifying emissions for known gas release rates and evaluating 167 

uncertainties that could result in incorrect CH4 reporting. Specifically, the study will (1) evaluate the overall 168 

quantification accuracy (linear regression slope of estimated versus actual emissions, and R2) of closed-path EC, AFG, 169 

bLs model, and the GPIM method in quantifying single-release single-point and multi-release single-point emissions 170 

that simulate oil and gas emissions. , (2) determine the mean relative factor (estimated emissions over actual emission) 171 

for these models. 172 
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2 Methods 173 

2.1 Experimental Setup 174 

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions 175 

Technology Evaluation Center (METEC) in Fort Collins, CO (USA, 65 miles north of Denver) between February 8, 176 

and March 20, 2024. The METEC center is a simulated oil and gas facility that does controlled testing for emissions 177 

leak detection and quantification technology development, field demonstration, leak detection protocol and best 178 

practices development (METEC | Colorado State University, 2025). The weather conditions during the test period 179 

were mostly sunny but precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 7 cloudy and 1 foggy day; 180 

Supplementary Information Section 1). Wind speeds were between 0 and 25 m s-1 and temperatures ranged between -181 

15 and +19 °C (Supplementary Information Section 1). Two A stationary masts holding the instrumentation wasere 182 

setup on the North-West corner of METEC to take advantage of the predominant wind direction, avoid the largest 183 

aerodynamic obstructions and to simulate the likely placement of a fence-line instrument (Figure 3A; Day et al., 2024; 184 

Riddick et al., 2022a). Fence-line sensors are typically placed within the oil and gas perimeter (~30 m) . This study 185 

collected data for what we considered as close and far away releases; distances between 9 and 94 m.  186 

Methane concentration data for closed-path EC, GPIM and bLs methods were collected through an inlet 187 

tubing (3.275 mm inner diameter) at 3 m height, connected to the ABB (Zurich, Switzerland) GLA131 Series 188 

Microportable Greenhouse Gas Analyzer (MGGA) set to sample at 10 Hz. The MGGA is a closed-path greenhouse 189 

gas analyzer with a ~3.2 lpm pump flowrate, 10 cm cell length, 1 inch cell diameter (~0.23 standard cubic centimeters 190 

per minute (sccm) effective volume), and 0.4 s gas flow response time. The inlet tubing was collocated with an R. M. 191 

Young (Traverse City, MI, USA) 81000 sonic anemometer which measured micrometeorology at 10 Hz (Figure 3B-192 

1). The northward, eastward and vertical separation of the inlet tubing from the sonic anemometer was 0, 0, -10 cm, 193 

respectively. For AFG, CH4 concentration data was collected at 2 and 4 m using two Aeris (Hayward, CA, USA) 194 

MIRA Ultra Series analyzers connected to tubing with a 3.275 mm inner diameter (Figure 3-2). As we had only one 195 

sonic anemometer, data from the sonic anemometer collocated with the MGGA were used for the AFG quantification. 196 

The two sampling points are 9.4 m apart.      197 
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 201 
Figure 3: A: Map illustration of major pieces of equipment and the measurements points at Colorado State University’s 202 
Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  Equipment 4S denotes 203 
horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. The number 204 
1B is the measurement point for the Microportable Greenhouse Gas Analyzer for closed-path eddy covariance, 205 
Gaussian plume inverse and backward Lagrangian stochastic model quantification. The inlet tubing and the sonic 206 
anemometer are at 3 m height. The number 2 is the measurement point for the Aeris analyzers at 2 and 4 m heights 207 
for aerodynamic flux gradient sampling. The red dotted lines with yellow numbers show the average distances (meters) 208 
between emission equipment and measurement point. The orange numbers show the range of emission heights 209 
(meters) for each equipment. The analyzers were hosted in a temperature-controlled box. The two sampling points are 210 
9.4 m apart.    211 

2.2 Controlled Methane Releases 212 

Controlled releases were part of the METEC Spring 2024 Advancing Development of Emissions Detection 213 

(ADED) Campaign conducted between February 6 and April 29, 2024 (Advancing Development of Emissions 214 

Detection (ADED)). Natural gas of known CH4 content was released from above-ground emission points attached to 215 

equipment typically present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged 216 

between 0.01 kg h-1 and 8.7 kg h-1, and the release durations ranged from 10 seconds to 8 hours, simulating both 217 

fugitive and large emission events. The releases were run both during the day and night. The distance from the release 218 

points to the measurement points ranged between 9 and 94 m, and emission heights were between 0.1 and 4.9 m 219 

(Figure 3A). Emission points simulate the realistic size and locations of typical emissions from components such as 220 

the thief hatches, pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The 221 

releases included both single-point emissions (single releases) and multi-point emission events (multiple simultaneous 222 

releases). 223 

2.3 Calculation of Roughness Length 224 

Surface roughness length (z0) was calculated from friction velocity (Supplementary Information Section 2a: 225 

Equations 1 and 2) by splitting the high frequency sonic anemometer data into 15-minute tables and filtering for those 226 

in neutral conditions, |L| > 500 (Supplementary Information Section 2a: Equation 3). The overall roughness length 227 

selected as the median of all the calculated z0 was 0.1 m (Rey-Sanchez et al., 2022).  228 
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2.4 Models Quantification 229 

2.4.1 Eddy Covariance 230 

2.4.1.1 Data pre-processing 231 

Evaluating the MGGA CH4 data showed that actual sampling was between 4 and 12 Hz (majority of the data 232 

collected at approximately highest sampling at 6 Hz), even though the analyzerit had been setconfigured to sample at 233 

10 Hz (Supplementary Information Section 2b). To account for this sampling variability, data were filtered to when 234 

sampling was equal to or /greater than 8 Hz. Data sampled at frequencies abovewhere the frequency was greater than 235 

8 Hz were down sampled to 8 Hz. The 8 Hz frequency threshold was selected to ensure uniform sampling, enough 236 

data for model evaluation as most sampling was at lower frequencies, and to preserve as much temporal resolution as 237 

possible given the system limitations. The sonic anemometer meteorological data (horizontal wind vectors (u, v), 238 

vertical wind vector (w), temperature (T), and pressure (P)) actual sampling varied between 7 and 9 Hz with the most 239 

frequent frequency at 8 Hz (Supplementary Information Section 2b). As the MGGA gas analyzer and sonic 240 

anemometer were not designed to clock synchronously, using the MGGA CH4 clock time as a reference, 241 

meteorological data from the sonic anemometer were matched to the MGGA CH4 data using linear interpolation to 242 

generate concentration-meteorological 8 Hz data. While in an ideal circumstance of a fast pump and short tube length 243 

a correct timeseries matching can be achieved through establishing a clear point of maximum covariance when 244 

determining the time lag, this is difficult for our system due to a 3 lpm pump flowrate and a 3 m tubing that caused 245 

both attenuation and time lag. 246 

The aggregated concentration-meteorological data were then merged with METEC’s release data and 247 

metadata, and release event tables created. Release event tables were aggregated tables of concentration, meteorology 248 

and release (emission source location, duration and rate) information for all defined release events at METEC. The 249 

concentration-meteorological -release event data were then separated into single-release and multi-release events. 250 

Single-release events were when there was a single emission point at the site level, while multi-release events were 251 

when there was more than one emission point at the site level. The concentration-meteorological-release event tables 252 

were split into 5, 150 and 3015-minute release event tables (i.e. there was a continuous release in the duration). Based 253 

on the bearing of the emission point to the measurement point and the average wind direction in the duration, the data 254 

was further filtered to downwind data, ±105º, ±10º, ±20º, and ±45º.  255 

2.4.1.2 Flux calculation 256 

Turbulent fluxes were calculated using the open software EddyPro® version 7 (EddyPro 7 | Software 257 

Downloads, 2025). Acquisition frequency was set at 8 Hz, while file duration and the flux interval were set at 5, 150, 258 

and 3015 minutes, respectively, depending on the file being processed. Table 1 shows the instruments input to the 259 

software. 260 
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Table 1. Anemometer and Gas Analyzer Input into EddyPro 261 

Anemometer 

Information 

 Gas Analyzer 

Information 

 

Manufacturer Young Manufacturer Other 

Model 81000 Model Generic closed path 

Height 3 m Tube length 300 cm 

Wind data format u, v, w Tube inner diameter 3.275 mm 

North alignment  Nominal tube flow rate 3.2 l/m 

North off-set 0.0 Northward separation 0.00 cm 

Northward separation Reference Eastward separation 0.00 cm 

Eastward separation  Reference Vertical separation -10.00 cm 

Vertical separation Reference Longitudinal path length 10.00 cm 

Longitudinal path length  Transversal path length 2.54 cm 

Transversal path length  Time response 0.4 s 

In raw data processing, axis rotations for tilt correction under wind speed measurement offsets was 262 

selectedchecked. Under turbulent fluctuations, double rotation and block average detrend methods were used. 263 

Covariance maximization with default was used for time lag detection; time lags detection was checkedenabled. 264 

Compensation for density fluctuations (Webb-Pearman-Leuning terms) (Webb et al., 1980) was unchecked disabled 265 

as the MGGA analyzer synchronously reported dry CH4 and water mole fractions, cell temperature and pressure. 266 

(Mauder and Foken, 2004) (0-1-2 system) were used for quality check. All statistical tests for raw data screening, 267 

(Vickers and Mahrt, 1997)– spike count/removal, amplitude resolution, drop-outs, absolute limits, skewness and 268 

kurtosis, discontinuities, time lags, angle of attack and steadiness of horizontal wind were checkedselected. The default 269 

values for all these tests were used. Similarly, default settings for spectral analysis and corrections were used. Analytic 270 

correction of high-pass filtering effects (Moncrieff et al., 2005)  for low frequency range; and correction of low-pass 271 

filtering effects (Fratini et al., 2012 - In situ analytic) and instruments separation ((Horst and Lenschow, 2009)Horst 272 

and Lenschow, 2009 - only crosswind and vertical) in the high frequency range were used. 273 

2.4.1.3 Post-processing 274 

Flux data were flagged “2”, low quality, During post-processing, flux data were filtered based on (1) quality 275 

flags, based on (Mauder and Foken, 2004) (0-1-2 system) quality system., and (2) surface friction velocity (u* > 0.13 276 

m/s). Data that were flagged “2” were first filtered out as they were considered poor quality fluxes (LICOR, 2025), 277 

and the remaining dataset were filtered for high turbulence data. All data was filtered out as low quality and no further 278 

post-processing was done. Cospectral analysis revealed that the EC system in this study smoothed out low-frequency 279 

eddies, as the cospectra lack the ideal shape characterized by a low-frequency rise, a peak region, and a high-frequency 280 

decay (Supplementary Information Section 2c.i). While the slope in the high-frequency region varies around the 281 

theoretical −4/3 slope, the cospectral data followed the 1:1 line, indicating consistent spectral shape across sampling 282 

periods. We also examined the relationship between CH₄ flux and friction velocity (u*) to identify a u threshold below 283 

which flux estimates may be unreliable (Supplementary Information Section 2c. ii). However, no consistent 284 
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relationship was observed across atmospheric stability classes (unstable, stable, and neutral). CH₄ fluxes varied 285 

widely—including both positive and negative values—across the full range of u* (~0 to 1 m s⁻¹), with no discernible 286 

threshold beyond which fluxes stabilized. This indicated that CH₄ fluxes were effectively independent of u*, and thus, 287 

data from all u* values were retained. Ogive analysis was conducted to assess whether averaging durations of 5, 15, 288 

and 30 minutes were sufficient for capturing the full turbulent flux. The resulting ogive curves deviated from the ideal 289 

asymptotic shape, particularly at the highest and lowest frequencies. Notably, the curves did not exhibit a clear plateau 290 

near the low-frequency end, where cumulative flux should approach unity. This indicates incomplete flux capture. 291 

Furthermore, the similarity in ogive shapes across different frequencies—mirroring patterns seen in the cospectra—292 

suggests a lack of significant turbulent contributions and the influence of non-turbulent, possibly advective, processes. 293 

These results imply that the EC system may not have fully resolved the flux due to either insufficient averaging time, 294 

non-stationarity, or instrument-related limitations (Supplementary Information Section 2c.iii). As positive fluxes are 295 

generally considered emissions, and negative fluxes depositions, data were further filtered for positive fluxes which 296 

were then quantified to emission rates. 297 

2.4.2 Aerodynamic Flux Gradient 298 

Methane concentration data from the 2 and 4 m analyzers and meteorology data from the sonic anemometer 299 

were averaged to 1 Hz and then aggregated. Similarly to EC pre-processing, the aggregated concentration-300 

meteorological data were merged with METEC’s release data and metadata, and release event tables created. The 301 

concentration-meteorological-release event data were then separated into single-release and multi-release events. For 302 

single-release events, the concentration-meteorological-release event tables were split into 5, 10 and 15-minute release 303 

event tables. Based on the bearing of the emission point to the measurement point and the average wind direction in 304 

the duration, the data was further filtered to downwind data, ±5º, ±10º, ±20º and ±45º. Multi-release events were 305 

further classified into multi-release single-point emissions (i.e., there were multiple emissions at the site level, but the 306 

mast was downwind of a single source) and multi-release multi-point emissions (i.e. there were multiple emissions at 307 

the site level and the mast was downwind of more than one source). As we were limited to data from a single sonic 308 

anemometer for footprint calculation, we only calculated emissions when the mast was downwind of a single source 309 

in single-release single-point emission and multi-release single-point scenarios. Flux determination and measurement 310 

footprint calculation are discussed in section 2.4.3. Methane flux (F, kg m-2 s-1) were then calculated using the AFG 311 

equation (Supplementary Information Equation 6; Denmead, 2008; Kamp et al., 2020).  312 

2.4.1.43 Footprints Calculation 313 

Eddy covariance  and AFG footprints were calculated using the (Kljun et al., 2015)Kljun et al. (2015) and 314 

the (Kormann and Meixner, 2001) footprint models. Even though Rey-Sanchez et al. (2022) reported the Kljun et al. 315 

(2015) footprint model to be less accurate compared to the Kormann and Meixner (2001), Kormann and Meixner 316 

(2001) was too complex for our study because it required multiple sonic anemometers or tracer release experiments 317 

to calculate the exponential wind velocity power law, and the exponential eddy diffusivity power law for site specific 318 

data. Our study was limited to a single sonic anemometer, and this provided enough inputs for the Kljun et al. (2015) 319 

footprint model. The default pixel size 2 * 2 m was used in this study. For the  (Kljun et al., 2015), the freely online 320 

MATLAB code of the model was used, while the (Kormann and Meixner, 2001) was coded in MATLAB. To 321 
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determine the point source footprint contribution, Thisthe study first calculated the area that contributed 90% of the 322 

vertical flux; and based on the location (x and y coordinates based on wind direction and distance from source) of the 323 

point source, the source was determined if it was within the 90% footprint area. Point source emissions of sources 324 

within this region were then calculated based on the approach by (Dumortier et al., 2019).  This approach assumes all 325 

measured flux is equal to flux resulting from a single point source. In case of the mast being downwind of more than 326 

one source, more sonic anemometers are needed to solve the two unknown point source fluxes. 327 

2.4.24 Gaussian Plume Inverse Method 328 

2.4.24.1 Data pre-processing 329 

Methane concentration data from the MGGA analyzer and meteorology data from the sonic anemometer 330 

were averaged to 1 Hz and aggregated and pre-processed similarly to the AFG method. The aggregated concentration-331 

meteorological data were merged with METEC’s release data and metadata, and release event tables created. The 332 

concentration-meteorological-release event data were then separated into single-release and multi-release events. For 333 

single-release events, the concentration-meteorological-release event tables were split into 5, 15 and 30-minute release 334 

event tables. Based on the bearing of the emission point to the measurement point and the average wind direction in 335 

the duration, the data was further filtered to downwind data, ±5º, ±10º and ±20º wind sector ranges. Multi-release 336 

events were further classified into multi-release single-point emissions (i.e., there were multiple emissions at the site 337 

level, but the mast was downwind of a single source) and multi-release multi-point emissions (i.e. there were multiple 338 

emissions at the site level and the mast was downwind of more than one source).  This study focuses on single-release 339 

single-point and multi-release single-point emissions. For continuous monitoring sensors, background concentration 340 

can be determined from CH4 concentrations measured by a sensor upwind of the emission source, or by sampling 341 

when the wind is blowing away from the source. However, for continuous monitoring sensors, using an upwind sensor 342 

has the limitation of missing downwind background noise resulting from emissions in the preceding emission event 343 

where there is residual CH4 in air especially during stable conditions, and capturing sensors drift in the downwind 344 

sensor. In this study, background CH4 was calculated as the average of the lowest 5th percentile, 5 minutes before each 345 

release started. In cases where this background was greater than the mean CH4 concentration in the quantifying 346 

duration, the minimum CH4 concentration for that duration was used as the background.  Methane enhancement was 347 

then calculated as CH4 concentration minus the background. 348 

2.4.24.2 Quantification 349 

The GPIM was evaluated under six scenarios (two equations and three different dispersion coefficients 350 

generations) using single-release single-point emissions to test when the model works best (Supplementary 351 

Information Section 2a: Equation 7 and 8). Dispersion coefficients were generated based on (1) high frequency sonic 352 

anemometer data at ~ 10 Hz, (2) EPA point-source dispersion coefficients (US EPA, 2013), and (3) 1 Hz sonic 353 

anemometer data. The scenario with the slope closest to 1, and highest R2 across averaging durations, and wind sector 354 

ranges was selected and used for multi-release single-point emissions quantification. For single-release tables, the 355 

measurement point was downwind of a single source (single-release single-point emission), hence the tables were 356 

quantified as they were.  using the standard GPIM equation (Supplementary Information Section 2a: Equation 7). 357 

However, for multi-release events, the tables were further processed as the GPIM method is designed to quantify a 358 
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single point source at a time. For multi-release events, the number of emission points in the downwind tables were 359 

used to further classify the tables into multi-release single-point emissions (i.e. there were multiple emissions at the 360 

site level, but the mast was downwind of a single source), and multi-release multi-point emissions (i.e. there were 361 

multiple emissions at the site level and the mast was downwind of more than one emission source). The GPIM method 362 

was only used for multi-release single-point emissions. 363 

 2.4.35 Backward Lagrangian Sstochastic mModel 364 

Pre-processed data from the GPIM method was used for bLs quantification. Quantification was done using 365 

the open-source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0, n.d.). For every 5-, 150- and 3015-minute 366 

duration in the ±5º, ±10º, and ±20º, respectively, inputs included roughness length (z0), Monin-Obukhov length (L- 367 

Supplementary Information Equation 3), mean (wind speed, wind direction, concentration, pressure, temperature), 368 

background concentration, source height, and distance from the emission point to sensor. WindTrax is also designed 369 

to quantify a single point source at a time, and hence, was only used to quantify single-point single emissions and 370 

multi-point single emissions. 371 

3 Results 372 

3.1Eddy Covariance 373 

3.1.1 Single-Release Single-Point 374 

For single-release single-point (SRSP) emissions, the closed-path EC underestimated emissions. Using the 375 

(Kljun et al., 2015) footprint model, the slope of the estimated emissions versus actual emissions linear regression was 376 

between -0.04 and 0.54 at 5 minutes, -0.36 and -0.04 at 15 minutes, and 0.03 at 30 minutes, 45 degrees (10 and 20 377 

degrees had insufficient data points) (Figure 4). The adjusted R2 was between -0.04 and 0.12 indicating no linear 378 

relationship between the estimated and actual emission (Figure 4). Using the (Kormann and Meixner, 2001) footprint 379 

model, the slope was between -0.42 and 0.17 at 5 and 15 minutes, respectively, and -0.08 at 30 minutes, 45 degrees. 380 

(Supplementary Information Section 3.1.1). Similarly, the adjusted R2
 values were between -0.07 and 0.05. These 381 

results indicate that this study’s EC system using either the (Kljun et al., 2015) or the (Kormann and Meixner, 2001) 382 

footprint models did not reliably quantify emissions for SRSP cases. The low slopes and adjusted R² values suggest 383 

little to no linear relationship between estimated and actual emissions under the tested conditions (Figure 4; 384 

Supplementary Section 3.1.1).  quantified emissions correctly within a mean relative factor (MRF) of between 0.67 385 

and 0.97 at ±45° wind sector range (Figure 4). The MRF was 0.97, 0.67 and 0.77 for a 97, 41 and 28 sample size at 386 

an averaging period of 5, 10 and 15 minutes, respectively (Figure 4). At ±5° wind sector range, the sample size was 387 

1, 2 and 3 at 5, 10 and 15-minutes averaging periods, hence, no reasonable quantification results (Supplementary 388 

Information Section 3.1.1). At ±10° wind sector range, the MRF was 0.60, 0.95, and 1.71 for a 15, 6 and 6 sample 389 

size, at averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.1.1). At ±20° 390 

wind sector range, the MRF was 0.53, 0.86, and 1.10 for a 40, 16 and 14 sample size, at averaging periods of 5, 10 391 

and 15-minutes, respectively (Supplementary Information Section 3.1.1). 392 



15 

 

 393 

 394 



16 

 

Figure 4. Top plot: Estimated emission vs actual emission (kg h-1) for a single-release single-point emissions at site 395 
level, ±45° wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 396 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. Adj. 397 
R2 is the adjusted R2. The sample size is n. 398 
 Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual controlled emission) 399 
for a single-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall underestimation of 400 
emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The dotted blue lines are the 401 
lower confidence intervals (CI) and upper CI, 95% confidence intervals. 402 
3.1.2 Multi-Release Single-Point 403 

For multi-release single-point (MRSP) emissions, the closed-path EC largely underestimated emissions and 404 

did not show good agreement between estimated and actual emissions (Figure 5). Using the (Kljun et al., 2015) 405 

footprint model, the slope was between -0.51 and 0.18, except for the 5 minutes 45 degrees category that had a slope 406 

of 0.61. The adjusted R2 did not show a linear relationship between estimated and actual emissions with values ranging 407 

between -0.02 and 0.00 (Figure 5). Using (Kormann and Meixner, 2001) footprint model, the slope was between -0.03 408 

and 1.06, the good agreement of 1.06 was at 30 minutes 45 degrees with an adjusted R2 of 0.12 (Supplementary 409 

Information Section 3.1.2). The rest of the categories had an R2 of between -0.02 and 0.06. These results suggest that 410 

the EC system did not reliably quantify emissions for MRSP cases under most conditions. Only one category (30 411 

minutes, 45 degrees using the (Kormann and Meixner, 2001) footprint model showed moderate agreement (slope = 412 

1.06, adjusted R² = 0.12), but even this explains only a small portion of the variability in actual emissions. Overall, 413 

the adjusted R² values across scenarios (−0.02 to 0.12) indicate a weak or no linear relationship. quantified emissions 414 

correctly within an MRF of between 1.02 and 2.43 at ±45° wind sector range (Figure 5). The MRF was 1.02, 2.43 and 415 

1.88, for a 355, 183, and 110 sample size at an averaging period of 5, 10 and 15 minutes, respectively (Figure 5). At 416 

±5° wind sector range, the MRF was 1.68, 5.21 and 5.16 for a 61, 34 and 23 sample size, at averaging periods of 5, 417 

10 and 15-minutes, respectively (Supplementary Information Section 3.1.2). At ±10° wind sector range, the MRF was 418 

2.75, 3.32, and 4.11 for a 124, 70 and 44 sample size, averaging periods of 5, 10 and 15-minutes, respectively 419 

(Supplementary Information Section 3.1.2). At ±20° wind sector range, the MRF 2.08, 2.89 and 2.70 for a 284, 143 420 

and 80 sample size, at averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 421 

3.1.2). 422 
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 423 

Figure 5. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 424 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 425 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 426 
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 427 
Figure 5. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 428 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 429 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 430 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 431 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 432 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 433 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 434 

3.2 Aerodynamic Flux Gradient 435 

3.2.1 Single-Release Single-Point 436 

For SRSP emissions, the MRF for AFG was 1.41, 1.67 and 1.30 at ±45° wind sector range, for a 112, 56 and 437 

34 sample size at an averaging period of 5, 10 and 15 minutes (Figure 6). At ±5° wind sector range, the sample size 438 

was 3 at 5-minutes and 0 at 10 and 15-minutes averaging periods, hence, no reasonable quantification results 439 

(Supplementary Information Section 3.2.1). Similarly, at ±10° wind sector range, the sample size was 7, 1 and 2, at 440 

averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.2.1). For the ±20° wind 441 

sector range, the MRF was 0.75, 0.48 and 1.58 for a sample size of 26, 8 and 4, at averaging periods of 5, 10 and 15-442 

minutes, respectively (Supplementary Information Section 3.2.1). These results show that close-to-stable MRF for 443 

ARF is achieved over a wide sector range, ±45°. 444 

 445 
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 446 
Figure 6. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 447 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 448 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 449 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 450 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 451 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 452 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 453 

3.2.2 Multi-Release Single-Point 454 

For MRSP emissions, generally, the MRF for AFG was between 2 and 9 for all wind sector ranges and 455 

averaging periods. The MRF was 3.32, 2.40 and 2.48 at ±45° wind sector range, for a 278, 146 and 94 sample size at 456 

an averaging period of 5, 10 and 15 minutes (Figure 7). At ±5° wind sector range, the MRF was 8.84, 2.51 and 2.93 457 

for a 36, 20 and 13 sample size at 5, 10 and 15-minutes averaging periods, respectively (Supplementary Information 458 

Section 3.2.2). At ±10° wind sector range, the MRF was 6.12, 2.29 and 2.61 for a 76, 40 and 26 sample size, at 459 

averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.2.2). For the ±20° wind 460 

sector range, the MRF was 5.16, 2.24 and 4.69 for a 142, 74, and 42 sample size, at averaging periods of 5, 10 and 461 

15-minutes, respectively (Supplementary Information Section 3.2.2). These results show that close-to-stable MRF for 462 

ARF is achieved for longer-averaging (10 to 15 minutes) and wide sector ranges of ±45°. 463 
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 464 
Figure 7. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 465 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 466 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 467 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 468 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 469 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 470 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 471 

3.24 Gaussian Plume Inverse Method 472 

3.24.1 Single-Release Single-Point 473 

The GPIM sensitivity analysis comparing different equations and dispersion coefficients showed no 474 

difference in quantified emissions between Equation 7 and Equation 8. Among the dispersion coefficient sets tested, 475 

the (US EPA, 2013) coefficients resulted in the most consistent performance, with the least variability in slope and 476 

the highest overall adjusted R² values (Supplementary Information Section 3.2). For this scenario, the slope ranged 477 

from 1.65 to 3.92 (excluding the 30-minute, 5-degree case due to insufficient data), and adjusted R² values ranged 478 

from 0.40 to 0.64 (Figure 6). The 15-minute, 5-degree case had the slope closest to 1 (slope = 1.65, R² = 0.40), while 479 

the 5-minute, 5-degree case showed the strongest linear relationship overall (slope = 2.42, R² = 0.64) (Figure 6). These 480 

results suggest that while the GPIM model tends to overestimate emissions (slopes > 1), it provides relatively 481 

consistent and stronger linear agreement with actual emissions compared to the closed-path EC system tested above 482 

(Section 3.1). 483 

Generally, the GPIM quantified SRSP emissions between an MRF of 1.85 and 443.54 for all wind sector 484 

ranges and averaging periods. The MRF was 2.58, 2.37 and 2.63 for a 79, 41, and 27 sample size, at 5, 10 and 15-485 

minutes averaging period, respectively at ±10° wind sector range (Figure 8). At ±5° wind sector range, the MRF was 486 
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2.26, 1.85 and 3.04 for a sample size of 31, 22 and 17 at 5, 10 and 15-minutes averaging period; and at ±20° wind 487 

sector range, the MRF was 443.54, 3.36 and 3.14 for 165, 88, and 57 sample size, at averaging periods of 5, 10 and 488 

15-minutes, respectively (Supplementary Information Section 3.3.1). The GPIM MRF is more stable at narrow wind-489 

sector ranges, and over a long averaging period, 10 to 15 minutes.  490 

 491 

Figure 6. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. Sce.3 refers to 492 
scenario 3 of the sensitivity analysis in Supplementary Information Section 3.2). The red dotted line is a 1:1 line based 493 
on actual emissions i.e. points below the line are underestimated and above are overestimated emissions. The gray 494 
region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n.  495 
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 497 

Figure 8. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 498 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 499 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 500 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 501 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 502 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 503 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 504 

3.24.2 Multi-Release Single-Point 505 

The MRF GPIM results for MRSP emissions were between 15.72 and 29.01 for all wind sector ranges and 506 

averaging periods. The MRF was 15.72, 24.95 and 16.97 for an 827, 430, and 256 sample size, at 5, 10 and 15-minutes 507 

averaging period, respectively at ±10° wind sector range (Figure 9). At ±5° wind sector range, the MRF was 26.77, 508 

25.04 and 29.01 for a sample size of 398, 189 and 132 sample size at 5, 10 and 15-minutes averaging period; and at 509 

±20° wind sector range, the MRF was 18.15, 23.07 and 19.96 for a 1273, 656, and 407 sample size, at averaging 510 

periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.3.2). Generally, the GPIM 511 

overestimated MSRP emissions by up to a magnitude of 20. 512 

For MRSP emissions, the GPIM model produced a wide range of slopes, from –43.05 to 1.60 (Figure 7). 513 

Excluding the 5-minute 5- and 10 degrees categories, and the 30-minute 10 degrees category, most other cases reported 514 

slopes between 0.76 and 1.22, suggesting potential quantification within ~25% of actual emissions. However, the 515 
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adjusted R² values in these cases were close to zero, indicating no consistent linear relationship between estimated 516 

and actual emissions (Figure 7). This lack of correlation is likely due to the high variability in GPIM estimates, which 517 

reached up to 200 kg h⁻¹ for the selected categories, despite actual emissions being only around ~6 kg h⁻¹. These 518 

results indicate that while the GPIM model sometimes produced slope values suggesting close agreement with actual 519 

emissions, the lack of linear correlation and large overestimations highlight its limited reliability in quantifying MRSP 520 

emissions accurately. 521 

 522 

Figure 7. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 523 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 524 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 525 

 526 
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  527 
Figure 9. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 528 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 529 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 530 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 531 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 532 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 533 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 534 

3.34 Backward Lagrangian Stochastic Model 535 

3.34.1 Single-Release Single-Point 536 

For SRSP emissions, the bLS method generally produced the most accurate slopes (i.e., closest to 1) 537 

compared to the EC and GPIM methods (Figure 8). The 15-minute 5- and 10-degrees categories yielded the most 538 

accurate estimates, with slopes of 1.05 and 1.10, respectively. The adjusted R² ranged from 0.48 to 0.66 for the 5-539 

minute averaging duration, and from 0.40 to 0.48 for the 15-minute duration. At the 30-minute averaging duration, 540 

performance improved in the 10- and 20-degrees categories, likely due to increased sample sizes (Figure 8). These 541 

results show that the bLs is more suitable for quantifying single-release single point emissions. For SRSP emissions, 542 

the bLs method estimated emissions between 0.68 and 1.34 MRF. At ±10° wind sector range, the MRF was 1.05, 0.80 543 

and 0.86 for 78, 40 and 26 sample size, at 5, 10 and 15-minutes averaging period, respectively (Figure 10). At ±5° 544 

wind sector range, the MRF was 0.72, 0.68 and 0.82 for a sample size of 31, 22 and 17 at 5, 10 and 15-minutes 545 

averaging period; and at ±20° wind sector range, the MRF was 1.34, 1.34 and 1.33 for a 131, 70 and 49 sample size, 546 

at averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.4.1). Comparing 547 
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bLs method to GPIM for SRSP emissions as they are both point-source methods, the MRF for bLs was closer 1 548 

indicating higher possibility of correct quantification.549 

 550 

Figure 8. Estimated emission vs actual emission (kg h-1) for single-release single-point emissions. The red dotted line 551 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 552 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 553 

 554 
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555 
Figure 10. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 556 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 557 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 558 
sample size is n, and “n unquantified” is the number of points WindTrax reported -9999 (i.e. could not quantify). 559 
Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual controlled emission) 560 
for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall underestimation of 561 
emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The dotted blue lines are the 562 
lower confidence intervals (CI) and upper CI, 95% confidence intervals. 563 

3.34.2 Multi-Release Single-Point 564 

The bLs method had wide uncertainties for MSRP emissions especially in the 5 minutes, 5- and 10-degrees 565 

categories (Figure 9). In the other categories, the slopes were between -0.03 and 0.45, and R2 ~0. Even though the 566 

estimated emissions spanned up to >20 kg h-1 mostly for actual emissions of up to 6 kg h-1, lots of points were 567 

concentrated close to 0. Compared to the GPIM MSRP results, even though both models have an R2 of ~0, the GPIM 568 

had a slope closer to 1 in the 15-munites category than the bLs showing better performance. These results show that 569 

the bLs is more suitable for quantifying SRSP emissions than MSRP emissions. 570 

For MRSP emissions, the bLs method largely overestimated emissions at between an MRF of 3.85 and 12239.20. At 571 

±10° wind sector range, the MRF was 411.98, 11958.83 and 3.85 for a 706, 362 and 214 sample size, at 5, 10 and 15-572 

minutes averaging period, respectively (Figure 11). At ±5° wind sector range, the MRF was 7.04 and 6.81 and 10 and 573 

15-minutes averaging periods, 186 and 126 sample sizes; and 12239.20 and 5.08 for a 458 and 286 sample size, 10 574 
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and 15-minutes averaging period, at ±20° wind sector range (Supplementary Information Section 3.4.2). These results 575 

show that the bLs model largely overestimated emissions when there were multiple releases at the site level. 576 

 577 

Figure 9. Estimated emission vs actual emission (kg h-1) for multi-release single-point emissions. The red dotted line 578 
is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are overestimated 579 
emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The sample size is n. 580 

 581 
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 582 
Figure 11. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 583 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 584 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 585 
sample size is n, and “n unquantified” is the number of points WindTrax reported -9999 (i.e. could not quantify). 586 
Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual controlled emission) 587 
for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall underestimation of 588 
emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The dotted blue lines are the 589 
lower confidence intervals (CI) and upper CI, 95% confidence intervals. 590 
3.4 Models Comparison – Subset Data 591 

 Using a subset of the data (SRSP), filtered by 15-minute intervals within a 10-degree wind sector range where 592 

each model provided an emission estimate, the bLs model exhibited the best performance, with its linear regression 593 

closely aligned with the 1:1 line (Figure 10). The slope of the regression line for the GPIM was 1.6, indicating an 594 

overestimation, while the bLs had a slope of 0.95, suggesting high accuracy. In contrast, the EC model produced 595 

slopes of 0.08 and 0.10 when using the (Kormann and Meixner, 2001) and (Kljun et al., 2015) footprint 596 

parameterizations, respectively, indicating significant underestimation. When emission estimates were categorized by 597 

emission point, the GPIM notably overestimated emissions at locations 4W-22 and 4W-51 (identified in Figure 3), 598 

both situated approximately 10 m from the measurement location. The EC model consistently underestimated 599 

emissions across all sites, while the bLs model provided estimates closest to the expected values. The EC model 600 

produced negative emission rates associated with negative fluxes during periods of high non-stationarity 601 

(Supplementary Information, Section 2c. iv). These deviations from stationarity reflect intermittent plume capture, 602 
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where the EC system alternated between sampling emitting and non-emitting regions. Overall, these findings indicate 603 

that for source-receptor distances ranging from approximately 10 to 90 meters, the bLs model demonstrated the highest 604 

accuracy in quantifying emissions. 605 

 606 

 607 

 608 

Figure 10. Top plot: Estimated emission vs actual emission (kg h-1) for each model. GPIM is the Gaussian Plume 609 
Inverse Method, bLs is the backward Lagrangian stochastic model, EC-KM is eddy covariance with (Kormann and 610 
Meixner, 2001) footprint, and EC-Klujn is the eddy covariance estimate using the (Kljun et al., 2015) footprint. The 611 
black dotted line is a 1:1 line based on actual emissions i.e. points below the line are underestimated and above are 612 
overestimated emissions. The gray region represents ±30% of the actual emission. Adj. R2 is the adjusted R2. The 613 
sample size is n. Bottom plot: Estimated emission vs actual emission categorized by Emission Point as illustrated in 614 
Figure 3.  615 
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3.5 Traceability Example 616 

To illustrate how raw data were converted into model-based emission estimates, we present one representative 617 

15-minute interval used in Figure 10. During a controlled release at point 4W-22 (wellhead), located approximately 618 

10.5 m from the mast, the ground-truth release rate was 3 kg CH4 h-1. Over this interval, the average CH₄ concentration 619 

enhancement was 8.3 ppm above the background (determined using the 5th percentile method, see Section 2.4.2.1). 620 

The cross wiwind direction was 153° (0.3 m crosswind distance), with an average wind speed of 5.8 m s-1. The same 621 

interval was processed through the three modeling frameworks: 622 

• The bLs model (WindTrax), using measured concentration, geometry, and meteorological data, estimated 623 

3.5 kg h-1. 624 

• The GPIM model, using Equation 7 and 8 (Supplementary Information) and dispersion coefficients, 625 

estimated 10.3 kg h-1. 626 

• The EC method (using the (Kormann and Meixner, 2001) footprint) estimated –0.004 kg h-1 due to a negative 627 

flux under high non-stationarity conditions. 628 

This example illustrates how the bLs model reproduced the true emission most closely, GPIM overestimated, and EC 629 

underestimated the emission. More examples of data presented in Figure 10 are available under supplementary data 630 

“MATLAB Code & Software Configuration – Validation.xlsx”.  631 

4 Discussion 632 

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from 633 

different heights, different locations, encountering aerodynamic obstacles of different sizes, and of varying emissions 634 

duration, amongst others. The ability to precisely quantify emissions using data collected by a point sensor, downwind 635 

of a source is directly influenced by plume dynamics. The CH4 plume downwind of a source will change in size and 636 

shape in different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in different seasons 637 

(Casal, 2008). In this study, we evaluated the ability of downwind methods—including a non-standard closed-path 638 

EC system, the GPIM, and the bLs model—to quantify emissions from single-release and multi-release point sources. 639 

While the field measurements took place under naturally varying meteorological conditions, these were not explicitly 640 

stratified or analyzed as experimental factors. Additionally, although on-site infrastructure such as storage tanks was 641 

present, their distance from the sampling instruments (~50 m) likely rendered their aerodynamic influence negligible. 642 

As such, the analysis focuses on quantification performance under realistic but uncontrolled field scenarios, without 643 

attributing model behavior to specific atmospheric or obstacle-related conditions. In this study, the precision to which 644 

downwind methods (closed-path EC, AFG, GPIM and bLs) could quantify the emission rate of point source(s) were 645 

tested in different atmospheric conditions (rain, sunny, snow, windy, calm etc.), and aerodynamic scenarios (emissions 646 

sources in open areas, behind obstacles, changing atmospheric stability, and day/night). As a result, testing the 647 

predicted emission rates to controlled release rates in different conditions introduced real-world scenarios that have 648 

not previously been tested, hence better understanding model uncertainty in the application of quantifying emissions 649 

from oil and gas production infrastructure. 650 
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4.1 Eddy Covariance 651 

Eddy covariance was tested using a closed-path analyzer, cavity ring-down spectroscopy, with a 3.2 lpm 652 

pump flowrate and a 0.4 s gas flow response time. The closed path EC underestimated emissions with a linear 653 

regression slope for estimated emissions versus actual emissions of between -0.42 and 0.54 using the (Kljun et al., 654 

2015) and (Kormann and Meixner, 2001) footprint models, and adjusted R2 was ~0.   closed-path EC estimated 655 

emissions between a factor of 0.67 and 0.97 for SRSP emissions, and between 1.02 and 2.43 for MRSP emissions at 656 

±45° wind sector range (Section 3.1). This was a wider uncertainty in estimated emissions than one reported by 657 

(Dumortier et al., 2019), who estimated emissions at between 90 and 113% of true emission (~1.5 kg day-1) with 658 

concentrations between 2 and 3 ppm. Our study tested closed-path EC at emission rates between 0.005 and 8.5 kg h-659 

1. Notably, the results for the non-standard EC system tested this study may not be representative of EC performance 660 

in oil and gas as ogive and cospectra analysis indicated that the flux may not have been fully resolved due to non-661 

stationarity, and instrument-related limitations. 662 

Our results were derived from data filtered to include only periods with sampling frequencies ≥8 Hz, which 663 

significantly reduced the number of usable emission measurements. Although the instrument was configured to sample 664 

at 10 Hz, it did not consistently achieve this rate. This discrepancy may be attributed to instrument-related factors such 665 

as the 0.4-second gas flow response time, which could delay analysis of the drawn air sample in the cavity, or the use 666 

of a 3 lpm pump with 3 meters of tubing, which reduced the effective turnover rate. The dataset used for eddy 667 

covariance evaluation was predominantly flagged as low quality (flag 2) according to the (Mauder and Foken, 2004) 668 

quality control test, which classifies flux data based on steady-state conditions and the presence of well-developed 669 

turbulence (flags 0 = high, 1 = intermediate, 2 = low quality). Many of the low-quality flags were likely driven by 670 

wide deviation in w/CH4 stationarity reflecting intermittent plume capture, where the EC system alternated between 671 

sampling emitting and non-emitting regions. The EC model produced negative emission rates associated with negative 672 

fluxes during periods of high non-stationarity (Supplementary Information, Section 2c. iv). 673 

Despite high non-stationarity that resulted in low data quality issues resulting in EC inaccuracies, this study 674 

acknowledges our design limitations. Our study did not have a reliable method for aligning the asynchronous CH₄ and 675 

sonic anemometer data streams, which likely introduced substantial timing errors and contributed to uncertainty in the 676 

flux calculations. The intake for the closed-path system was positioned approximately 10 cm below the sonic 677 

anemometer to protect the inlet tubing from debris and precipitation by mounting it on an aluminum shield facing 678 

downward. We recognize that even this small vertical separation can introduce additional errors in flux measurements 679 

when using short towers. This design choice was a compromise to ensure instrument protection while maintaining 680 

data collection in field conditions. We acknowledge that the system used in this study was not designed or configured 681 

for standard eddy covariance analysis, and that this limitation impacts the interpretation of our results in the context 682 

of EC-based flux quantification.  683 

Our study’s results were when the data was filtered for frequencies greater than 8 Hz, hence, largely reducing 684 

the sampled emissions. The 10 Hz sampling frequency set for this instrument was not a true 10 Hz and this could have 685 

been due to the 0.4 gas flow response time that delayed analysis of the drawn air sample in the cavity, or the 3 lpm 686 

pump flow rate for a 3 m tubing that might have varied the effective sample turnover rate. The rest of the data were 687 
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flagged as low quality by Mauder and Foken (2004) (0-1-2 system), which flags based on steady state and well-688 

developed turbulence. This could have been due to low turbulence as experiments were carried out in winter, and 689 

instrumentation limitations (low pump flow rate and asynchronous configuration of the gas analyzer and 690 

meteorological instrument).   691 

In this study, continuous monitoring was conducted using a single sensor with an inlet deployed at a fence-692 

line distance. This system requires instrumentation capable of measuring a wide concentration range, as emissions 693 

from oil and gas sites can vary between 0 and 250 ppm (Supplementary Information Section 1). While continuous 694 

monitoring systems, comprising multiple sensors can offer enhanced spatial coverage and source localization, they 695 

also introduce higher costs. The limitations and findings reported here therefore apply specifically to this single-sensor 696 

fence-line continuous monitoring approach and may not be representative of all continuous monitoring frameworks. 697 

Continuous monitoring requires deployment of multiple sensors which create limitations of cost and requires 698 

instrumentation with a wide measurement range as concentrations for oil and gas emissions can range between 0 to 699 

250 ppm, as in this study (Supplementary Information Section 1). This study acknowledges the limitations of the eddy 700 

covariance (EC) setup used, particularly that the ABB MGGA GLA131 Series analyzer is not designed specifically 701 

for EC applications. As a result, the conclusions drawn from the EC data are constrained. The study recommends 702 

further EC testing with instruments specifically designed for EC, ideally featuring a wide measurement range (0 to 703 

~500 ppm), faster pump speeds, shorter tubing, synchronized data logging, sampling frequencies above 10 Hz, and 704 

rugged designs suitable for field deployment. Additionally, the study recognizes that environmental factors—such as 705 

obstructions, intermittent emissions, and variable wind directions causing plume meandering—can degrade EC data 706 

quality and complicate its application in oil and gas field studies.The currently available EC instruments have a narrow 707 

measurement range (LI-COR LI-7700 open path CH4 analyzer has a measurement range of 0 to 25 ppm at -25 ºC and 708 

0 to 40 ppm at 25ºC; PICARRO G2311-f, a closed-path analyzer has an operating range of 0 to 20 ppm).  Also, the 709 

instrumentation should be environmentally robust and not lab-grade (be able to run smoothly in adverse weather 710 

conditions). Given these parameters, market available EC instruments that can currently be deployed in oil and gas 711 

are limited. The instrument used in this study is a field instrument (ABB MGGA GLA131 Series has a measurement 712 

range of 0 to 100 ppm for CH4 but can be extended to 0 to 1%).   713 

4.2 Aerodynamic Flux Gradient 714 

Overall, the AFG method quantified emissions within an MRF of 1.3 to 1.7 for SRSP emissions and between 715 

an MRF of 2.4 and 3.3 for MRSP emissions (Section 3.2). The uncertainties in AFG were higher than EC especially 716 

for MRSP emissions but lower than the GPIM and bLs methods. The differences between AFG and EC could have 717 

been due to different instrumentation and analytical approaches that limited the exact comparison of the methods i.e. 718 

EC data was filtered for frequencies less than 8 Hz, and AFG instrumentations required both analyzers to be running, 719 

periods when one analyzer was down, were not tested. To our knowledge, this is the first study to test AFG for point 720 

source quantification and results are promising.  721 

Compared to the EC method that requires a very fast analyzer which may be difficult to deploy in oil and 722 

gas, the AFG requires at least 2 analyzers sampling at 1 Hz frequency, which is currently possible with the range of 723 

sensors available in the market. The main advantage of flux gradient methods (EC and AFG) tested in this study is 724 
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that they do not require background control as background CH4 concentration is a highly variable parameter that 725 

cannot be controlled in open air especially when multiple emissions are happening. The AFG method relies on 726 

differences in CH4 concentrations between two heights and this study shows that in complex sites where there are 727 

multiple sources, the method quantifies better than the point-source GPIM and bLs methods. The main limitation of 728 

the AFG and EC methods for point-source quantification is that when the measurement point is downwind of more 729 

than one source in a wind sector range, more than one sonic anemometers are required to estimate the flux of each 730 

source for footprint calculation based on Dumortier et al. (2019)’s calculations. 731 

4.23 Gaussian Plume Inverse Method 732 

The GPIM method quantified emissions within a slope of 1.65 to 3.92 and adjusted R2 of between 0.4 and 733 

0.64 with highest performance at 15-minutes 5-degrees wind sector (slope = 1.65, R2 =0.4), and 5 minutes 5-degrees 734 

(slope = 2.42, R2 = 0.64) for SRSP emissions (Section 3.2). For MSRP emissions, the GPIM showed wide uncertainties 735 

even though the slopes for other categories excluding 5-minutes 5-and 10-degrees, and 30-minutes 10-degrees 736 

categories, were between 0.74 and 1.60, with R2 ~0 (Section 3.2). The R2 close to zero showed that there was no linear 737 

relationship between the estimated and actual emissions for MSRP conditions. Overall, the GPIM performed well 738 

under 15-minutes averaging duration, and 5-degree wind-sector ranges in both SRSP and MSRP categories. The 739 

MSRP emission profiles tested in this study were complex challenging the GPIM application as the methodan MRF 740 

of 2.4 and 2.6 for SRSP and between 15.7 and 25 for MRSP emissions (Section 3.3). The GPIM method is a point-741 

source specific quantification approach and works best in open areas, free of obstacles, and when the background 742 

concentration is well defined. For multiple emissions, even when the sensor is nominally downwind of a single source 743 

based on the average wind direction, quantification can be complicated by interference from neighboring sources. 744 

However, it is important to emphasize that such complexity is not a fundamental limitation of quantification itself, but 745 

rather a function of the experimental design and study objectives. For example, plume interference can often be 746 

minimized through strategic localization and optimization using multiple sensors—an approach that differs from the 747 

single-instrument setup used in this study. This study’s design involves defining plumes based on wind sector ranges, 748 

as opposed to using multiple sensors to localize sources, and therefore does not replicate how various continuous 749 

monitoring solutions typically operate. For multiple emissions, in aerodynamically complex environments, even 750 

though the sensor is downwind of a single source based on average wind direction, quantification is complexed by 751 

interference from other neighboring sources. The GPIM has previously been reported to quantify emissions within 752 

40.7 and 60% error for a single point-source, using controlled release experiments (Riddick et al., 2022b). However, 753 

GPIM correct quantification has been suggested to be better for longer distances where the plume is well mixed as 754 

seen in Figure 10. This is typically a challenge for fence-line sensors that have to be deployed within the facility 755 

boundaries where large downwind distances may not be practical.  756 

4.3 Backward Lagrangian Stochastic Model 757 

 The bLs method was the most accurate in quantifying emissions for the SRSP release profiles but had wider 758 

uncertainties than the GPIM for MRSP scenarios (Section 3.1). For SRSP emissions, the slopes closest to 1 were 759 

during the 15-minutes 5-degrees (slope = 1.05, R2 = 0.4) and 10-degrees (slope = 1.10, R2 =0.37). The best R2 was 5-760 

minutes 5-degrees (slope = 1.64, R2 = 0.66). However, for MSRP emissions, the slopes were between -0.03 and 0.45 761 
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in the best categories with R2 of ~0.  quantified emissions within an MRF of 0.8 to 1.05 for SRSP emissions and 762 

between 3.85 and 11958.8 MRF for MRSP emissions (Section 3.4). Similarly to the GPIM method, the bLs method 763 

used in this study is a point-source specific quantification method that simulates transport of molecules in open area 764 

and where the background concentration is defined. In this case, as with the SRSP test scenario, the bLs approach was 765 

generally more accurate than the EC and GPIM. quantified within 20% uncertainty. However, for MRSP emissions, 766 

the bLs largely overestimated emissionsquantification accuracy was low.  and this could have been due to the 767 

interference of neighboring sources, that even though the measurement point is downwind of a single source, actual 768 

plumes are not distinct and model-simulated plumes may not be representative. This discrepancy may be due to design-769 

related challenges—specifically, interference from neighboring sources and the lack of distinct plume separation in 770 

complex flow conditions. Although the measurement point was nominally downwind of a single source, the real-world 771 

plume structure may not align with model assumptions. Additionally, the bLs implementation in WindTrax is designed 772 

for single-source scenarios and applying it in multi-source environments without adaptation can lead to inaccuracies. 773 

The GPIM and bLs methods are sensitive to background correction, which in this study was complicated by temporal 774 

overlap between release events and residual CH₄ accumulation, particularly under stable atmospheric conditions. 775 

Although this is a controlled-release study, residual methane from prior emissions and the presence of multiple plumes 776 

can affect the CH₄ concentration during a candidate event, challenging the assumptions used to define background 777 

and isolate a single-source plume using wind-sector-based criteria. These findings highlight the importance of aligning 778 

modeling assumptions with the experimental context rather than pointing to a fundamental limitation of the method 779 

itself. 780 

The point-source bLs approach in WindTrax is also not designed for more than one downwind source. 781 

4.4 Implications 782 

In recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas 783 

sites. This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous 784 

monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to 785 

infer emission rates. For point sources, downwind methods such as the Gaussian plume inverse method have been 786 

widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This 787 

study’s design replicated a continuous monitoring setup’s downwind deployment distance, range of typical emission 788 

rates, emissions heights, and meteorological data acquisition.  789 

Oil and gas point sources could either be single emissions or multiple emissions occurring concurrently. In 790 

this study’s design, cases involving multiple emissions with more than one release point located upwind posed 791 

challenges for the specific Gaussian and backward Lagrangian stochastic (bLs) model implementations, which were 792 

applied assuming a single active source at a time. While these models can be extended to handle multi-source 793 

scenarios, the assumptions used here limited their ability to distinguish individual contributions when plumes 794 

overlapped. As a result, interference from neighboring emissions introduced ambiguity in model-observation 795 

alignment, particularly under complex wind conditions. . In cases of multiple emissions with more than one release 796 

point being upwind, the Gaussian model and the backward Lagrangian stochastic models are limited, as they can only 797 

quantify one source at a time; and interference from neighboring emissions affects the underlying principles of 798 
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dispersion on which these models were developed. As a result, flux quantification models used in other applications 799 

such as eddy covariance and aerodynamic flux gradient have been proposed as the solution. Closed-path eddy 800 

covariance was generally unreliable in this study due to non-stationarity and limitations associated with using a non-801 

standard EC system. In contrast, the Gaussian Plume Inverse Method (GPIM) outperformed the non-standard EC 802 

system for both single-release and multi-release single-point emissions. The backward Lagrangian stochastic (bLs) 803 

method was the most accurate for single-release single-point emissions but was less accurate than the GPIM under 804 

multi-release conditions. For both GPIM and bLs, 15-minute averaging with a narrow wind-sector (5°) yielded the 805 

best performance. While EC results in this study were limited by system constraints, future work is recommended 806 

using standard EC instruments and further optimizing GPIM and bLs models—particularly for complex multi-release 807 

scenarios—to improve accuracy and reduce uncertainties.This study’s results show that generally reasonable 808 

quantification estimates are achieved with flux approaches (eddy covariance and aerodynamic flux gradient), but these 809 

methods require more instrumentation effort (fast sampling analyzer for eddy covariance, and multiple collocated 810 

sensors for aerodynamic flux gradient). Even though the widely applied Gaussian plume inverse method and the 811 

backward Lagrangian stochastic models are widely used for single-point emissions, this study shows aerodynamic 812 

complexities, the difficulty in defining the background, and interference from neighboring sources challenge the 813 

application of these models for fence-line continuous monitoring. This study recommends more testing of flux 814 

quantification models for oil and gas quantification as they could improve emissions quantification for leak repair 815 

prioritization and methane reporting. 816 
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