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Abstract. The dependableaccurate reporting of methane (CH4) emissions from point sources, such as fugitive leaks 8 

from oil and gas infrastructure, is important for profit maximization (retaining more hydrocarbons), evaluating climate 9 

change  impacts, assessing CH4 fees for regulatory programs, and validating CH4methane intensity in differentiated 10 

gas programs. Currently, there are disagreements between emissions reported by different quantification techniques 11 

for the same sources. It has been suggested that downwind CH4 quantification methods using CH4 measurements on 12 

the fence-line of production facilities could be used to generate emission estimates from oil and gas operations at the 13 

site level, but it is currently unclear how accurate the quantified emissions are. To investigate modeldownwind 14 

methods’ accuracy, this study uses fence-line simulated data collected during controlled release experiments as input 15 

for closed-path eddy covariance, aerodynamic flux gradient,  and the Gaussian plume inverse methods, and the 16 

backward Lagrangian stochastic model in a range of atmospheric conditions. The results show that both the eddy 17 

covariance and aerodynamic flux gradient methods underestimated emissions in all experiments.  Although calculated 18 

emissions had significant uncertainty, the Gaussian plume inversion method performed better.  The uncertainty was 19 

found to have no significant correlation with most measurement variables (i.e. downwind measurement distance, wind 20 

speed, atmospheric stability, or emission height), which indicates that the Gaussian method can randomly either 21 

underestimate or overestimate emissions. For eddy covariance, downwind measurement distance and percent error 22 

had negative correlation indicating that far away emissions sources were likely underestimated or be undetected. The 23 

study concludes that using fence-line measurement data as input to eddy covariance, aerodynamic flux gradient or 24 

Gaussian plume inverse method to quantify CH4 emissions from an oil and gas production site is unlikely to generate 25 

representative emission estimates. . Generally, results show that flux quantification methods provide more reasonable 26 

estimates compared to point-source specific models especially when multiple releases are happening at the facility 27 

level. The closed-path eddy covariance quantified emissions with a mean relative factor (estimated emission over 28 

actual emission) of 0.7 to 1 for single-release single-point emissions, and within a mean relative of 1 and 2.4 for multi-29 

release single-point emissions. The aerodynamic flux gradient method quantified emissions within a mean relative 30 

factor of 1.3 to 1.7 for single-release single-point emissions, and between 2.4 and 3.3 for multi-release single-point 31 

emissions. The Gaussian plume inverse model quantified emissions within a mean relative factor of between 2.4 and 32 

2.6 for single-release single-point emissions, but largely overestimated emissions when multiple releases were 33 

happening; mean relative factor between 16 and 25. Similarly to the Gaussian plume inverse method, the backward 34 
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Lagrangian stochastic model for point sources using WindTrax quantified within a mean relative factor of between 35 

0.8 to 1 for single-release single-point emissions, but largely overestimated emissions for multi-release single-point 36 

emissions; mean relative factor of 3.9 and 11958. As continuous monitoring of oil and gas sites can involve complex 37 

emissions where plumes are not defined due to multiple sources, this study shows that common downwind point 38 

source dispersion models could largely overestimate emissions. This study recommends more testing of flux 39 

quantification models for oil and gas continuous monitoring quantification. 40 

Keywords: Continuous monitoring; oil and gas; point source; closed-path eddy covariance; aerodynamic flux 41 

gradient; Gaussian plume inverse method; backward Lagrangian stochastic model 42 

1 Introduction 43 

Methane (CH4), the primary component of natural gas (NG), is a potent greenhouse gas with a global 44 

warming potential of 27 carbon dioxide (CO2) equivalent over 100 years (US EPA, 2016). Methane emissions 45 

reduction is a key part of global initiatives to reduce climate change (Chung, 2021). The 2021 Global Methane 46 

Assessment by the Climate and Clean Air Coalitions (CCAC, 2024) and the United Nations Environment Programme 47 

(UN Environment Programme, 2024) state that reducing CH4 emissions from anthropogenic sources by 45% in 2030 48 

would result in avoiding a global atmospheric temperature increase of 0.3°C in 2045 (Chung, 2021). Such measures 49 

would align with the Paris Agreement goal of limiting global temperature rise to 1.5˚C by 2030 (United Nations 50 

Climate Change, 2015). The US is one of the countries that reports its total greenhouse gas emissions to the 51 

Intergovernmental Panel on Climate Change as part of the Paris Agreement (United Nations Climate Change, 2015).  52 

Reducing methane (CH4) emissions from oil and gas systems is necessary for adhering to regulations and 53 

voluntary reporting frameworks such as the Oil & Gas Methane Partnership 2.0 (OGMP 2.0). The OGMP 2.0 provides 54 

a comprehensive measurement-based international reporting framework allowing companies to stay ahead of 55 

regulatory compliance requirements, meet investor and market pressure, have an enhanced corporate image, and 56 

prevent revenue loss by lowering their emissions.  57 

In the US, Ccurrently, the amount of CH4 emitted from US oil and gas production are compiled is calculated by the 58 

US Environmental Protection Agency (EPA) under Subpart W. Typically, companies use using a bottom-up inventory 59 

approach. The inventory approach multiplies  where emission factors (CH4 emissions per equipment e.g., separator or 60 

emissions per event e.g., liquid unloading) are multiplied by activity factors (total number of pieces of equipment or 61 

events (OAR US EPA, 2023)) to generate emissions.  This quantification approach has several shortcomings, 62 

including: 1. It separately calculates CH4 emissions from natural gas and petroleum systems, which practically are not 63 

independent systems, and can result in bias based on changes in gas to oil ratios throughout a basin (Riddick et al., 64 

2024a); 2. Some emission factors used are outdated (Riddick et al., 2024b) and others do not account for the temporal 65 

and spatial variation in emissions (Riddick and Mauzerall, 2023); and 3. Emission factors do not account for the long-66 

tail distributions in emissions distributions (Riddick et al., 2024b). Recently, mechanistic models, such as the Colorado 67 

State University’s Mechanistic Air Emissions Simulator (MAES), have been developed to address shortcomings in 68 

bottom-up CH4 reporting (Colorado State University, 2021), but these still depend on direct measurements to inform 69 

emission factors.  70 
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Top-down methods, including using aircraft such as Bridger Photonics LiDAR (Light Detection and 71 

Ranging; 90% detection limit of ~ 2 kg h-1) (Johnson et al., 2021) and satellites such as Carbon Mapper (predicted 72 

90% detection limit of about 100 kg h-1) (“Carbon Mapper - Science & Technology,” n.d.), can also be used to infer 73 

emissions. For example, Carbon Mapper satellites can locate and quantify CH4 emissions using absorption spectra 74 

taken from space (Carbon Mapper, 2024). However, these survey methods only quantify emissions over a very short 75 

period of time (< 10 s) and observations are typically made during the day which can often coincide with maintenance 76 

activities that can bias emissions and result in overestimation (Riddick et al., 2024a; Zimmerle et al., 2024). 77 

Additionally, different top-down technologies measuring the same source have disagreed in their reported emissions 78 

which has called into question the credibility of these methods (Brown et al., 2023; Conrad et al., 2023). As a result, 79 

ensuring accuracy in models and technologies used in CH4 emissions quantification has been a complex issue.  80 

The accurate reporting of CH4 from fugitive emissions at oil and gas production sites is important for evaluating 81 

potential effects on climate change, correctly assessing CH4 fees on companies as part of the Methane Emissions 82 

Reduction Program created under the 2022 Inflation Reduction Act (OA US EPA, 2023), and validating CH4 content 83 

of reported differentiated gas composition where NG companies differentiate their market products based on the 84 

environmental impact (CO2EFFICIENT, 2022). Direct measurements have been recommended to augment/update 85 

emissions factors used in bottom-up inventories and for better understanding temporal/spatial variability of emissions 86 

(Riddick et al., 2024).  87 

Downwind methods are widely used to directly measure CH4 emissions from area and point sources at 88 

site/basin levels due to their low cost and wide coverage within a short time (Caulton et al., 2018; Heimburger et al., 89 

2017; Riddick et al., 2020, 2022a; Sonderfeld et al., 2017). Commonly used downwind quantification methods include 90 

the Gaussian plume inversion method, eddy covariance, backward Lagrangian stochastic models, aerodynamic flux 91 

gradient, mass balance method, the EPA Other Test Method (OTM 33) and the Gaussian puff modelling approach 92 

(Denmead, 2008; Edie et al., 2020; Foster-Wittig et al., 2015; Jia et al., 2023; Kamp et al., 2020; Nemitz et al., 2018; 93 

Shaw et al., 2021).  94 

Currently, fence-line methods are used to detect, localize and quantify emissions. This approach uses point 95 

sensors fixed to the fence-line of the production site and emissions detected when the measured concentration exceeds 96 

a threshold, localized by triangulating multiple detections and quantified using a simple dispersion modelling 97 

framework, usually based on a Gaussian plume inverse approach (Bell et al., 2023; Day et al., 2024; Jia et al., 2023; 98 

Riddick et al., 2022a). The detection and localization of simulated fugitive emissions have been successful, with 99 

controlled release testing against point sensors and scanning/imaging solutions reporting a 90% probability of 100 

detection for emissions of between 3.9 and 18.2 kg CH4 h-1 (Ilonze et al., 2024). Major shortcomings have been 101 

identified using a fence-line approach with quantified emissions reported at between a factor of 0.2 to 42 times for 102 

emissions between 0.1 and 1 kg CH4 h-1, and between 0.08 and 18 times  for emissions greater than 1 kg CH4 h-1 103 

(Ilonze et al., 2024). As a result, questions have arisen if other approaches, such as the eddy covariance (EC) or 104 

aerodynamic flux gradient (AFG) would generate more accurate results.  These methods have been suggested as they 105 

have been used to quantify emissions from other sectors, i.e. agriculture (Denmead, 2008; Morin, 2019) and landfills 106 

(Xu et al., 2014), as well as have been used to quantify emissions in large downwind areas (Vogel et al., 2024). , and 107 
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Such quantification does not require assumptions made on downwind dispersion coefficients or micrometeorology 108 

that are often required for dispersion modelling (Denmead, 2008).    109 

Due to interest in using a subset of these methods to quantify emissions from oil and production sites, this study will 110 

evaluate the quantification accuracy of the closed-path ECeddy covariance, aerodynamic flux gradient, AFG, and 111 

Gaussian plume inverse model (GPIM), and the  backward Lagrangian stochastic model (bLs)methods for oil and gas 112 

point source quantification. 113 

 Eddy covariance is a vertical flux gradient measurement that measures CH4 emissions based on the 114 

covariance between CH4 concentrations measured using a fast-response analyzer (> 10 Hz) and vertical wind vector 115 

measured by a fast-response sonic anemometer (>10 Hz) (Figure 1A; Morin, 2019). It is typically implemented over 116 

long homogeneous fetches where eddy mixing scale is a small fraction of the distance from the site providing more 117 

predictable vertical transport. Dumortier et al., 2019 used EC to estimate known point source emissions at a cow’s 118 

muzzle height and reported the model could estimate emissions between 90 and 113% of the true emission. Dumortier 119 

et al., 2019 stated the optimal controls for point source quantification and footprint modelling are using running mean, 120 

15-minute averaging periods, no application of Foken and Wichura (1996) stationarity filter and use of the Kormann 121 

and Meixner (2001) footprint function. The study tested the model using an artificial CH4 source at 0.8 m, programmed 122 

to emit when winds were coming from the source direction (± 45º), and when friction velocity (u*) was above 0.13 m 123 

s-1. In Dumortier et al. (2019)’s point-source testing, they noted that amplitude resolution, skewness and kurtosis tests 124 

were disabled as they deleted almost all periods involving the artificial source in the footprint. Rey‐Sanchez et al. 125 

(2022) studied the accuracy of Hsieh model (Hsieh et al., 2000), the Kljun model (Kljun et al., 2015) and the K & M 126 

model (Kormann and Meixner, 2001b) in calculating the footprint of point source hot spots using footprint-weighted 127 

flux maps. The study reported the K & M model to be the most accurate. Polonik et al. (2019) compared five gas 128 

analyzers, two open-paths, two enclosed-path and one closed-path analyzer for carbon dioxide EC measurements. The 129 

study noted that while open-path sensors minimize spectral attenuation and require smaller spectral correction factors 130 

compared to sensors with an inlet tube such as a closed-path sensor, open-path sensors risk data loss in non-ideal 131 

conditions like precipitation, fog, dust or dew. The main challenge of applying EC for continuous monitoring of oil 132 

and gas sites is instrument limitations (requires deployment of multiple sensors throughout a facility; sensor cost is a 133 

factor) and statistical tests as well as quality controls could filter out some of the data. 134 
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135 
Figure 1: Illustrations of eddy covariance (A) and flux gradient measurements (B) where CH4 is methane 136 
concentrations, w is the vertical wind speed, L is the Monin-Obukhov length (measure of atmospheric stability), and 137 
z is the measurement height. 138 

 The aerodynamic flux gradientAFG method quantifies CH4 emissions from a source by comparing CH4 139 

concentrations at two heights (Figure 1B; Querino et al., 2011). Kamp et al. (2020) used the method to calculate 140 

ammonia fluxes over a grass field using a single analyzer by alternating two heights and reported 7% mean relative 141 

difference in flux in this approach compared to continuous measurements at two heights. Generally, the AFG approach 142 

is designed for homogeneous sources where footprints at different sensor heights would not affect quantification 143 

results, and its applicability to point source quantification, currently, is limited. 144 

The Gaussian Plume InverseGPIM method calculates CH4 emission rate as a function of mole fraction at a 145 

point in space (x, y, z), as a function of the  downwind distance, perpendicular distance (crosswind), mean wind speed 146 

and atmospheric stability (Figure 2A; Jia et al., 2023; Riddick et al., 2022b).  This method has been used to quantify 147 

emissions from oil and gas production sites especially for survey solutions (Riddick et al., 2022b). For a single point-148 

source, Riddick et al. (2022b) reported absolute uncertainties of between 40.7 and 60%. Foster-Wittig et al. (2015) 149 

using controlled single point source tests reported average errors of between -5 to 6%.  The limitations of tThe GPIM 150 

method has been used to quantify emissions from oil and gas production sites (Caulton et al., 2014; Riddick et al., 151 

2022b) buis thatt it assumes a homogeneous emission source, steady-state flow, and uniform dispersion of gas in an 152 

open area free of obstructions (Hutchinson et al., 2017) (Hutchinson et al., 2017). . 153 

The bLs model adapted in WindTrax can simulate the transport of gases from point sources that emit them 154 

(Figure 2B; Crenna, 2006). The model releases individual particles and follows them along their unique path in air by 155 

mimicking random, turbulent motion of the atmosphere. Tagliaferri et al. (2023) investigated the validity of WindTrax 156 

in quantifying emissions from complex sources and reported the model to be reliable under neutral conditions, 157 

underestimated emission rates during unstable stratification and overestimated emissions during stable conditions. 158 

Similarly to the GPIM method, the model assumes free flow of air in the absence of obstructions and uses time-159 

averaged data as input. 160 



6 

 

161 
Figure 2. A: An illustration of a plume that follows a Gaussian plume inverse model where emission rate can be 162 
inferred from concentrations at different downwind distances and crosswind distances. B: An illustration of how the 163 
backward Lagrangian stochastic model traces particles to the source. 164 
These approaches were developed to quantify emissions from single-point or area emission sources and have not been 165 

tested against a controlled release to evaluate their quantification performance. The aerodynamic flux gradient and 166 

eddy covariance, for example, have been used to measure trace gas, e.g., nitrogen oxide and carbon dioxide, fluxes 167 

from large croplands (Kamp et al., 2020).  168 

   169 

Figure 1: Illustrations of eddy covariance (A) and flux gradient measurements (B) where CH4 is methane 170 

concentrations, w is the vertical wind speed, L is the Monin-Obukhov length (measure of atmospheric stability), and 171 

z is the measurement height. 172 

The Gaussian plume inversion method has been used to quantify emissions from oil and gas production sites (Caulton 173 

et al., 2014; Riddick et al., 2022b) but it assumes a homogenous, steady state flow, uniform dispersion of gas in an 174 

open area free of obstructions (Hutchinson et al., 2017).  175 

Continuous monitoring of CH4 emissions using fence line sensors requires proper quantification of 176 

intermittent and persistent releases from oil and gas during all release (complex emission profiles) and atmospheric 177 

conditions (unstable, neutral and stable). Oil and gas emissions are characterized by intermittent, non-uniform, single 178 
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or multiple point source emissions, varying in leak size, location, height and distance between the source and sensor, 179 

and are typically in complex aerodynamic environments (i.e. not flat). .  An ideal quantification model should always 180 

quantify emissions and should capture short and long-lasting emission events. Most models have been validated to 181 

work best during neutral conditions for single point sources. However, it is important to test and apply these models 182 

during non-neutral conditions as well as these are part of real-world conditions where continuous monitoring is 183 

applied. In this study, we evaluate if using a readily available CH4 cavity ring down analyzer for models’ quantification 184 

such as the closed-path EC is a feasible solution to quantify point source emissions.  185 

This study aims to inform the feasibility of downwind quantification models in oil and gas settings by 186 

investigating which models are likely to work most of the time with instrumentation that is typically available for 187 

fence-line deployment. Fence-line sensor deployments involve multiple sensors, continuously running in all 188 

conditions and providing emissions data. The need for accurate CH4 quantification and reporting necessitates 189 

evaluating the performance of these downwind quantification approaches in different controlled release and 190 

characterized meteorological conditions, to ensure credibility. Using robust releases and environmental conditions, t 191 

This study aims to investigate the performance of these methods in quantifying emissions for known gas release rates 192 

and evaluating uncertainties that could result in incorrect CH4 reporting. Specifically, the study will (1) evaluate the 193 

overall quantification accuracy  of closed-path eddy covarianceEC, aerodynamic flux gradientAFG, bLs model, and 194 

the Gaussian plume inverseGPIM method in quantifying  single-release single-point and multi-release single-point 195 

emissions single-point and multi-point emissions that simulate oil and gas emissions, (2) evaluate the probability of 196 

these models quantifying within a defined range (i.e. ±30%), and (3) determine the mean relative factor (estimated 197 

emissions over actual emission) for these modelsinvestigate which variables have the largest effect on quantification 198 

uncertainty. 199 

2 Methods 200 

2.1 Experimental Setup 201 

Controlled release experiments were conducted at the Colorado State University’s Methane Emissions 202 

Technology Evaluation Center (METEC) in Fort Collins, CO, (USA, 65 miles north of Denver) between February 8, 203 

and March 207, 2024. The METEC center is a simulated oil and gas facility that does controlled testing for emissions 204 

leak detection and quantification technology development, field demonstration, leak detection protocol and best 205 

practices development (METEC, 2025). The weather conditions during the test period were mostly sunny but 206 

precipitation was also observed (32 sunny, 7 snowy, 12 rainy, 7 cloudy and 1 foggy day; Supplementary Information 207 

Section 1). Wind speeds were between 0 and 25 m s-1 and temperatures ranged between -15 and +19 °C 208 

(Supplementary Information Section 1). Two stationary masts holding the instrumentation were setup on the North-209 

West corner of METEC to take advantage of the predominant wind direction, avoid the largest aerodynamic 210 

obstructions and to simulate the likely placement of a fence- line instrument (Figure 23A; Day et al., 2024; Riddick et 211 

al., 2022a). Fence-line sensors are typically placed within the oil and gas perimeter (~30 m) (Riddick et al., 2022a). 212 

This study collected data for what we considered as both close and far away releases;, distances between 9 and 94 m.  213 
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Methane concentration data for closed-path EC, GPIM and bLs methods were collected through an inlet tubing (3.275 214 
mm inner diameter) at 3 m height, connected to the ABB (Zurich, Switzerland) GLA131 Series Microportable 215 
Greenhouse Gas Analyzer (MGGA) set to sample at 10 Hz. The MGGA is a closed-path greenhouse gas analyzer with 216 
a ~3.2 lpm pump flowrate, 10 cm cell length, 1 inch cell diameter (~0.23 standard cubic centimeters per minute (sccm) 217 
effective volume), and 0.4 s gas flow response time. The inlet tubing was collocated with an R. M. Young (Traverse 218 
City, MI, USA) 81000 sonic anemometer (R.M. Young Company, 2023) which measured micrometeorology at 10 Hz 219 
(Figure 3-1). The northward, eastward and vertical separation of the inlet tubing from the sonic anemometer was 0, 0, 220 
-10 cm, respectively. For AFG, CH4 concentration data was collected at 2 and 4 m using two Aeris (Hayward, CA, 221 
USA) MIRA Ultra Series analyzers connected to tubing with a 3.275 mm inner diameter (Figure 3-2). As we had only 222 
one sonic anemometer, data from the sonic anemometer collocated with the MGGA were used for the AFG 223 
quantification. The two sampling points are 9.4 m apart.    224 

 225 

 2 and 4 m To calculate emissions using thetwo sampling inlets were mounted at 2 and 4 m heights on mast 226 

2 and connected to the inlets ofAThe analyzers were housed in a temperature-controlled unit and sampled at 5 Hz. 227 

Data from the 2 m analyzer were also used as input for the Gaussian Plume Inverse method analysis. To collect CH4 228 

concentration data for the eddy covariance method, the inlet tubing of the ABB (Zurich, Switzerland) GLA131 Series 229 

Microportable Greenhouse Gas Analyzer (MGGA) sampling at 10 Hz was collocated with an R. M. Young (Traverse 230 

City, MI, USA) 81000 sonic anemometer (R.M. Young Company, 2023) which measured micrometeorology at 10 231 

Hz, 3 m height above ground level on mast 1 (Figure 3B).  232 
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233 

 234 
Figure 3: A: Map illustration of major pieces of equipment and the measurements points at Colorado State University’s 235 
Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  Equipment 4S denotes 236 
horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. The number 237 
1 is the measurement point for the Microportable Greenhouse Gas Analyzer for closed-path eddy covariance, Gaussian 238 
plume inverse and backward Lagrangian stochastic model quantification. The inlet tubing and the sonic anemometer 239 
are at 3 m height. The number 2 is the measurement point for the Aeris analyzers at 2 and 4 m heights for aerodynamic 240 
flux gradient sampling. The red dotted lines with yellow numbers show the average distances (meters) between 241 
emission equipment and measurement point. The orange number show the range of emission heights (meters) for each 242 
equipment. The analyzers were hosted in a temperature-controlled box. The two sampling points are 9.4 m apart.    243 
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244 
Figure 2:  Left pane: Map illustration of major pieces of equipment and the measurements points at Colorado State 245 
University’s Methane Emissions Technology Evaluation Center (METEC) in Fort Collins, CO, USA.  4S denotes the 246 
location of horizontal separators, 4W are well heads, 4T are tanks, 5S are vertical separators and 5W are well heads. 247 
1 is the measurement point for the Microportable Greenhouse Gas Analyzer and 2 is the measurement point for the 248 
Aeris analyzers. The red dotted lines with yellow numbers show the average distances (meters) between emission 249 
equipment and measurement points. Right pane: Image of METEC showing relative heights of equipment (“METEC 250 
| Colorado State University,” 2024).       251 
    252 
To calculate emissions using the aerodynamic flux gradient approach, two sampling inlets were mounted at 2 and 4 253 

m heights on mast 2 and connected to the inlets of two Aeris (Hayward, CA, USA) MIRA Ultra Series analyzers 254 

(Figure 3A). The analyzers were housed in a temperature-controlled unit and sampled at 5 Hz. Data from the 2 m 255 

analyzer were also used as input for the Gaussian Plume Inverse method analysis. To collect CH4 concentration data 256 

for the eddy covariance method, the inlet tubing of the ABB (Zurich, Switzerland) GLA131 Series Microportable 257 

Greenhouse Gas Analyzer (MGGA) sampling at 10 Hz was collocated with an R. M. Young (Traverse City, MI, USA) 258 

81000 sonic anemometer (R.M. Young Company, 2023) which measured micrometeorology at 10 Hz, 3 m height 259 

above ground level on mast 1 (Figure 3B).  260 
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 261 

 262 

Figure 3: A is the aerodynamic flux gradient and Gaussian plume inverse sampling points and B is the eddy covariance 263 
sampling point. The two sampling points are 9.4 m apart. 264 

2.2 Controlled Methane Releases 265 

Controlled releases were part of the METEC Spring 2024 Advancing Development of Emissions Detection 266 

(ADED) Campaign conducted between February 6 and April 29, 2024 (Colorado State University, 2024). At METEC, 267 

nNatural gas of known CH4 content was released from above-ground emission points attached to equipment typically 268 

present in an oil and gas facility (tanks, separators and well pads). The gas release rates ranged between 0.0105 kg h-269 

1 and 8.75 kg h-1, and the release durations ranged from 10 seconds to 8 hours, simulating both fugitive and large 270 

emission events. The releases were run both during the day and night. The distance from the release points to the 271 

measurement points ranged between 9 and 94 m, and emission heights were between 0.14 and 64.9 m (Figure 23A). 272 

Emission points simulate the realistic size and locations of typical emissions from components such as the thief 273 

hatches, pressure relief valves, flanges, bradenheads, pressure transducers, Kimray valves and vents. The releases 274 

included both single- point emissions (single releases) and multi-point emission events (multiple simultaneous 275 

releases). 276 

2.3 Calculation of Roughness Length 277 

Surface roughness length (z0) was calculated from friction velocity (Supplementary Information Section 2a: 278 

Equations 1 and 2) by splitting the high frequency sonic anemometer data into 15-minute tables and filtering for those 279 

in neutral conditions, |L| > 500 (Supplementary Information Section 2a: Equation 3). The overall roughness length 280 

selected as the median of all the calculated z0 was 0.1 m (Rey‐Sanchez et al., 2022).  281 
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2.4 Models Quantification 282 

2.4.1 Eddy Covariance 283 

2.4.1.1 Data pre-processing 284 

Evaluating the MGGA CH4 data showed that actual sampling was between 4 and 12 Hz frequency (highest 285 

sampling at 6 Hz), even though it had been set to sample at 10 Hz (Supplementary Information Section 2b). To account 286 

for this sampling variability, data were filtered to when sampling was equal/greater than 8 Hz. Data where the 287 

frequency were greater than 8 Hz were down sampled to 8 Hz. The sonic anemometer meteorological data (horizontal 288 

wind vectors (u, v), vertical wind vector (w), temperature (T), and pressure (P)) actual sampling varied between 7 and 289 

9 Hz with the most frequent frequency at 8 Hz (Supplementary Information Section 2b). As the MGGA gas analyzer 290 

and sonic anemometer were not designed to clock synchronously, using the MGGA CH4 clock time as a reference, 291 

meteorological data from the sonic anemometer were matched to the MGGA CH4 data using linear interpolation to 292 

generate concentration-meteorological 8 Hz data.  293 

The aggregated concentration-meteorological data were then merged with METEC’s release data and 294 

metadata, and release event tables created. Release event tables were aggregated tables of concentration, meteorology 295 

and release (emission source location, duration and rate) information for all defined release events at METEC. The 296 

concentration-meteorological -release event data were then separated into single-release and multi-release events. 297 

Single-release events were when there was a single emission point at the site level, while multi-release events were 298 

when there was more than one emission point at the site level. The concentration-meteorological-release event tables 299 

were split into 5, 10 and 15-minute release event tables (i.e. there was a continuous release in the duration). Based on 300 

the bearing of the emission point to the measurement point and the average wind direction in the duration, the data 301 

was further filtered to downwind data, ±5º, ±10º, ±20º, and ±45º.  302 

2.4.1.2 Flux calculation 303 

Turbulent fluxes were calculated using the open software EddyPro® version 7 (LI-COR, Nebraska, USA, 304 

n.d.). Acquisition frequency was set at 8 Hz, while file duration and the flux interval were set at 5, 10, and 15 minutes, 305 

respectively, depending on the file being processed. Table 1 shows the instruments input to the software. 306 
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Table 1. Anemometer and Gas Analyzer Input into EddyPro 307 

Anemometer 

Information 

 Gas Analyzer 

Information 

 

Manufacturer Young Manufacturer Other 

Model 81000 Model Generic closed path 

Height 3 m Tube length 300 cm 

Wind data format u, v, w Tube inner diameter 3.275 mm 

North alignment  Nominal tube flow rate 3.2 l/m 

North off-set 0.0 Northward separation 0.00 cm 

Northward separation Reference Eastward separation 0.00 cm 

Eastward separation  Reference Vertical separation -10.00 cm 

Vertical separation Reference Longitudinal path length 10.00 cm 

Longitudinal path length  Transversal path length 2.54 cm 

Transversal path length  Time response 0.4 s 

 308 

In raw data processing, axis rotations for tilt correction under wind speed measurement offsets was checked. 309 

Under turbulent fluctuations, double rotation and block average detrend methods were used. Covariance maximization 310 

with default was used for time lag detection; time lags detection was checked. Compensation for density fluctuations 311 

(Webb-Pearman-Leuning terms) was unchecked as the MGGA analyzer synchronously reported dry CH4 and water 312 

mole fractions, cell temperature and pressure. Mauder and Foken (2004) (0-1-2 system) were used for quality check. 313 

All statistical tests for raw data screening, Vickers and Mahrt (1997)– spike count/removal, amplitude resolution, 314 

drop-outs, absolute limits, skewness and kurtosis, discontinuities, time lags, angle of attack and steadiness of 315 

horizontal wind were checked. The default values for all these tests were used. Similarly, default settings for spectral 316 

analysis and corrections were used. Analytic correction of high-pass filtering effects (Moncrieff et al., 2005) for low 317 

frequency range; and correction of low-pass filtering effects (Fratini et al., 2012 - In situ analytic) and instruments 318 

separation (Horst and Lenschow, 2009 - only crosswind and vertical) in the high frequency range were used. 319 

2.4.1.3 Post-processing 320 

During post-processing, flux data were filtered based on (1) quality flags, Mauder and Foken (2004) (0-1-2 321 

system), and (2) surface friction velocity (u* > 0.13 m/s). Data that were flagged “2” were first filtered out as they 322 

were considered poor quality fluxes (LICOR, 2025), and the remaining dataset were filtered for high turbulence data. 323 

All data were filtered out as low quality and no further post-processing weas done. 324 

2.3 Data Processing 325 

Methane concentrations data from the analyzers were aggregated with the meteorological data from the sonic 326 

anemometer. For aerodynamic flux gradient and Gaussian plume inverse method data were averaged to 1 Hz, for the 327 

eddy covariance the raw CH4 10 Hz data was used. The aggregated meteorological-concentration data were then 328 

merged with METEC’s release data and metadata, and event tables created. The meteorological-concentration-release 329 

event data were then separated into single-point and multi-point events. The event tables were split into 20-minute 330 
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emission events for aerodynamic flux gradient and Gaussian plume inverse method as they are dependent on 331 

atmospheric stability that is typically determined in time durations of 15 to 30 minutes. Shorter duration measurements 332 

(i.e. <15 minutes) may not represent the mean atmospheric state, while longer periods (> 30 minutes) may cause errors 333 

especially during rapid transitions in weather conditions (Crenna, 2006). 30-minute events were used for eddy 334 

covariance processing following published typical averaging times of eddy covariance measurements (Nemitz et al., 335 

2018), and its quantification is assumed to be independent of atmospheric stability (Denmead, 2008).  336 

For eddy covariance and aerodynamic flux gradient, Monin-Obukhov length (L) was calculated as the measure of 337 

atmospheric stability for every 20 or 30-minute time period, depending on the method, using output from the sonic 338 

anemometer. L was calculated from the surface friction velocity (u*, m s-1), mean potential temperature (Θ, K), von 339 

Kármán's constant (k, 0.41), gravitational acceleration (g, 9.8 m s-1) and the surface (kinematic) turbulent flux of 340 

sensible heat w’Θ’ (Eq. 1 and 2) (Kljun et al., 2015; Stull, 1988).  341 

𝐿 = −
𝑢∗

3𝛩

𝑘𝑣𝑔𝑤′𝛩′ 
 

(1) 

 342 

𝑢∗ = [(𝑢′𝑤′)
2

+ (𝑣′𝑤′)
2

]
1/4

 (2) 

  

For the Gaussian method, atmospheric stability was calculated based on the EPA standard operating procedure for 343 

point source Gaussian method (US EPA, 2013). The average local wind stability class (pgi) was calculated as the 344 

average of atmospheric stability determined using the standard deviation of the wind direction, and the stability 345 

calculated from turbulent intensity (ratio of the standard deviation of the wind speed to the average wind speed). The 346 

dispersion coefficients used for Gaussian quantification were extracted from the EPA operating procedure that 347 

provided coefficients for distances ranging from 1 to 200 m from source (US EPA, 2013).  348 

The wind direction (WD) and speed (WS) were calculated from the wind vectors u and v, based on the manufacturer’s 349 

configuration: +u values = wind from the east, +v values = wind from the north, and +w = updraft (Eq. 3 and 4).  350 

 351 

𝑾𝑫 = 𝐦𝐨𝐝(𝟗𝟎 − 𝐚𝐭𝐚𝐧𝟐𝐝(𝒗, 𝒖), 𝟑𝟔𝟎) (3) 

  

𝑾𝑺 =  √𝒖𝟐 + 𝒗𝟐  (4) 

  

The bearing of each release point to the masts' location was calculated using the latitudes and longitudes of the release 352 

points provided in the METEC metadata. This bearing was used to determine when the masts were downwind of the 353 

release points during the 20/30-minute period. The models' quantification accuracies were tested in three downwind 354 

ranges: ±10°, ±20°, and ±30°. A mast was considered downwind when the wind direction was within the specified 355 

range for 30% of the 20/30-minute duration. Results for the 20-degree range are presented in the Results section, while 356 

the 10- and 30-degree results are included in the Supplementary Material. The 30% threshold was chosen to ensure 357 

sufficient data points for evaluating the models. The data were categorized into single release single emission (single 358 

emission at the site and the mast was downwind of the release point), multi release single emission (multiple emissions 359 
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at the site level, but the mast was downwind of a single release point), and multi release multi emission (multiple 360 

emissions at the site level, but the mast was downwind of more than one release point).  361 

2.4 Methane Emissions Quantification 362 

2.4.1 Background Concentration 363 

Background concentration was determined for each of the sensors to calculate CH4 enhancement. Due to inherent 364 

variation in sensors that were used in this study, CH4 background was calculated for each sensor separately. CH4 365 

background was calculated as the average of the lowest 5th percentile of all continuous concentration readings (US 366 

EPA, 2013). Methane enhancement was determined as CH4 concentration measurement minus the background 367 

concentration measurement. 368 

2.4.2 Eddy Covariance 369 

Emissions were quantified using the eddy covariance method for all three emissions scenarios (single release single 370 

emission, multi release single emission and multi release multi emission). Methane flux (F, kg m-2 s-1) was calculated 371 

as the covariance between the vertical wind speed (w, m s-1) and CH4 enhancement (c, g m-3) over 30 minutes (Eq. 5; 372 

Denmead, 2008).  373 

𝑭 = 𝒘′𝒄′  (5) 

2.4.23 Aerodynamic Flux Gradient 374 

Methane concentration data from the 2 and 4 m analyzers and meteorology data from the sonic anemometer 375 

were averaged to 1 Hz and then aggregated. Similarly to EC pre-processing, the aggregated concentration-376 

meteorological data were merged with METEC’s release data and metadata, and release event tables created. The 377 

concentration-meteorological-release event data were then separated into single-release and multi-release events. For 378 

single-release events, the concentration-meteorological-release event tables were split into 5, 10 and 15-minute release 379 

event tables. Based on the bearing of the emission point to the measurement point and the average wind direction in 380 

the duration, the data was further filtered to downwind data, ±5º, ±10º, ±20º and ±45º. Multi-release events were 381 

further classified into multi-release single-point emissions (i.e., there were multiple emissions at the site level, but the 382 

mast was downwind of a single source) and multi-release multi-point emissions (i.e. there were multiple emissions at 383 

the site level and the mast was downwind of more than one source). As we were limited to data from a single sonic 384 

anemometer for footprint calculation, we only calculated emissions when the mast was downwind of a single source 385 

in single-release single-point emission and multi-release single-point scenarios. Flux determination and measurement 386 

footprint calculation are discussed in section 2.4.3.  387 

Aerodynamic flux gradient quantification was also tested in all three cases. Methane flux (F, kg m-2 s-1)  were thenwas 388 

calculated using the AFG equation based on surface friction velocity (u*, m s-1), von Kármán's constant (kv, 0.41), the 389 

difference in the average CH4 enhancement between the higher and lower height (g, m-3), natural log of the higher and 390 

lower height, and stability correction factors Ψ ( Supplementary Information EquationEq. 6; Denmead, 2008; Kamp 391 

et al., 2020).  392 
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 (6) 

2.4.4 Determining the Area of Vertical Flux Contribution 393 

Eddy covariance and aerodynamic flux gradient measurements at a point (0, 0, z) generate vertical fluxes in kg m-2 s-394 

1. In this study, these fluxes represent emissions from single-point or multi-point sources distributed over an area (m2). 395 

2.4.3 Footprints Calculation 396 

Eddy covariance and AFG footprints were calculated usingThe the Kljun et al. (2015) footprint model., was used to 397 

calculate footprint,. Even though Rey-Sanchez et al. (2022) reported the Kljun et al. (2015) footprint model to be less 398 

accurate compared to the Kormann and Meixner (2001), Kormann and Meixner (2001) was too complex for our study 399 

because it required multiple sonic anemometers or tracer release experiments to calculate the exponential wind 400 

velocity power law, and the exponential eddy diffusivity power law for site specific data.  401 

Our study was limited to a single sonic anemometer, and this provided enough inputs for the Kljun et al. 402 

(2015) footprint model. The default pixel size 2 * 2 m was used in this study. and determine the area that contributed 403 

80% (r = 80, 10 ≤ r ≤ 90) of the vertical flux measured by the eddy covariance and aerodynamic flux gradient systems. 404 

In previous studies, 80% footprints have been used due to the difficulty of reproducing 90% of the sources under 405 

neutral and stable conditions, where footprints tend to be long. The difference between the 80% and 90% contours is 406 

typically excessively large, despite minimal flux contributions in that area (Rey-Sanchez et al., 2022). The Kljun et 407 

al. (2015) model calculates footprint as a function of effective height (zm = sensor height (z) – displacement height  408 

(m)), roughness length (zo, m) / mean wind speed (umean, m s-1 - used in this study), height of the boundary layer (h, 409 

m), Obukhov length (L, m), standard deviation of the lateral velocity (σv, m s-1), and friction velocity (u*, m s-1) (Kljun 410 

et al., 2015). The roughness sublayer in the model was set to 1 (footprint is calculated even if zm is within the roughness 411 

layer).  The area of vertical flux contribution was calculated as the polygon area covered by the contour. Due to the 412 

limitations of the flux footprint model for the measurement height and stability (Kljun et al., 2015), 20/30-minute files 413 

flagged by the footprint model when zm/L < -15.5, were excluded from further analysis. This study first calculated the 414 

area that contributed 90% of the vertical flux; and based on the location of the point source, the source was determined 415 

if it was within the 90% footprint area. Point source emissions of sources within this region were then calculated based 416 

on the approach by Dumortier et al. (2019).  This approach assumes all measured flux is equal to flux resulting from 417 

a single point source. In case of the mast being downwind of more than one source, more sonic anemometers are 418 

needed to solve the two unknown point source fluxes. 419 

2.4.45 Gaussian Plume Inverse Method 420 

2.4.4.1 Data pre-processing 421 

Methane concentration data from the MGGA analyzer and meteorology data from the sonic anemometer 422 

were averaged to 1 Hz and pre-processed similarly to the AFG method. For continuous monitoring sensors, 423 

background concentration can be determined from CH4 concentrations measured by a sensor upwind of the emission 424 

source, or by sampling when the wind is blowing away from the source. However, for continuous monitoring sensors, 425 

using an upwind sensor has the limitation of missing downwind background noise resulting from emissions in the 426 
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preceding emission event where there is residual CH4 in air especially during stable conditions, and capturing sensor 427 

drift in the downwind sensor. In this study, background CH4 was calculated as the average of the lowest 5th percentile, 428 

5 minutes before each release started. In cases where this background was greater than the mean CH4 concentration 429 

in the quantifying duration, the minimum CH4 concentration for that duration was used as the background.  Methane 430 

enhancement was then calculated as CH4 concentration minus the background. 431 

2.4.4.2 Quantification 432 

For single-release tables, the measurement point was downwind of a single source (single-release single-433 

point emission), hence the tables were quantified as they were using the standard GPIM equation (Supplementary 434 

Information Section 2a: Equation 7). However, for multi-release events, the tables were further processed as the GPIM 435 

method is designed to quantify a single point source at a time. For multi-release events, the number of emission points 436 

in the downwind tables were used to further classify the tables into multi-release single-point emissions (i.e. there 437 

were multiple emissions at the site level, but the mast was downwind of a single source), and multi-release multi-point 438 

emissions (i.e. there were multiple emissions at the site level and the mast was downwind of more than one emission 439 

source). The GPIM method was only used for the multi-release single-point emissions.  440 

The Gaussian plume inverse method was used to quantify single release single emission and multi release single 441 

emission. The quantified emission (Q, kg h-1) was calculated from the CH4 enhancement (X, g m-3), wind speed (u, m 442 

s-1), horizontal dispersion coefficient (σy, m), vertical dispersion coefficient (σz, m), crosswind distance (y, m), 443 

sampling height (z, m), emission height (hs, m), and the height of the boundary layer (Equation 7; Riddick et al., 444 

2022b). 445 

𝑿(𝒙, 𝒚, 𝒛) =
𝑸

𝟐𝝅𝒖𝝈𝒚𝝈𝒛
𝒆

−
𝒚𝟐

𝟐𝝈𝒚
𝟐
 (𝒆

−(𝒛−𝒉𝒔)𝟐

𝟐𝝈𝒛
𝟐

+𝒆
−(𝒛+𝒉𝒔)𝟐

𝟐𝝈𝒛
𝟐  

+ 𝒆
−(𝒛−𝟐𝒉+𝒉𝒔)𝟐

𝟐𝝈𝒛
𝟐  

+ 𝒆
−(𝒛+𝟐𝒉−𝒉𝒔)𝟐

𝟐𝝈𝒛
𝟐  

+ 𝒆
−(𝒛−𝟐𝒉−𝒉𝒔)𝟐

𝟐𝝈𝒛
𝟐  

) 

(7) 

2.4.5 Backward Lagrangian stochastic model 446 

Pre-processed data from the GPIM method was used for bLs quantification. Quantification was done using 447 

the open-source software WindTrax 2.0 (Crenna, 2006; WindTrax 2.0, n.d.). For every 5-, 10- and 15-minute duration 448 

in the ±5º, ±10º, and ±20º, respectively, inputs included roughness length (z0), Monin-Obukhov length (L), mean 449 

(wind speed, wind direction, concentration, pressure, temperature), background concentration, source height, and 450 

distance from the emission point to sensor. WindTrax is also designed to quantify a single point source at a time, and 451 

hence, was only used to quantify single-point single emissions and multi-point single emissions. 452 

3 Results 453 

3.1 Methane Emission Quantification  454 

3.1.1 Eddy Covariance 455 

3.1.1 Single-Release Single-Point 456 

For single-release single-point (SRSP) emissions, the closed-path EC quantified emissions correctly within 457 

a mean relative factor (MRF) of between 0.67 and 0.97 at ±45° wind sector range (Figure 4). The MRF was 0.97, 0.67 458 

and 0.77 for a 97, 41 and 28 sample size at an averaging period of 5, 10 and 15 minutes, respectively (Figure 4). At 459 



18 

 

±5° wind sector range, the sample size was 1, 2 and 3 at 5, 10 and 15-minutes averaging periods, hence, no reasonable 460 

quantification results (Supplementary Information Section 3.1.1). At ±10° wind sector range, the MRF was 0.60, 0.95, 461 

and 1.71 for a 15, 6 and 6 sample size, at averaging periods of 5, 10 and 15-minutes, respectively (Supplementary 462 

Information Section 3.1.1). At ±20° wind sector range, the MRF was 0.53, 0.86, and 1.10 for a 40, 16 and 14 sample 463 

size, at averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.1.1). 464 

 465 
Figure 4. Top plot: Estimated emission vs actual emission (kg h-1) for a single-release single-point at site level, ±45° 466 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 467 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 468 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 469 
controlled emission) for a single-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 470 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 471 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 472 
3.1.2 Multi-Release Single-Point 473 

For multi-release single-point (MRSP) emissions, the closed-path EC quantified emissions correctly within 474 

an MRF of between 1.02 and 2.43 at ±45° wind sector range (Figure 5). The MRF was 1.02, 2.43 and 1.88, for a 355, 475 

183, and 110 sample size at an averaging period of 5, 10 and 15 minutes, respectively (Figure 5). At ±5° wind sector 476 

range, the MRF was 1.68, 5.21 and 5.16 for a 61, 34 and 23 sample size, at averaging periods of 5, 10 and 15-minutes, 477 

respectively (Supplementary Information Section 3.1.2). At ±10° wind sector range, the MRF was 2.75, 3.32, and 4.11 478 

for a 124, 70 and 44 sample size, averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information 479 

Section 3.1.2). At ±20° wind sector range, the MRF 2.08, 2.89 and 2.70 for a 284, 143 and 80 sample size, at averaging 480 

periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.1.2). 481 
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 482 
Figure 5. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 483 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 484 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 485 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 486 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 487 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 488 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 489 

 490 
For stable, continuous 30-minute release events, emissions calculated using the eddy covariance method were an 491 

underestimate for single release single emission, multi release single emission and multi release multi emission events 492 

(Figure 4). All data points were below the 1:1 line. A plot of the quantified emission versus controlled release (kg h-493 

1) did not show a linear correlation (R2 between 0.03 and 0.36), as all emissions were largely underestimated. The 494 

eddy covariance method reported emissions of between 0 and 0.5 kg h-1 overall, despite actual emissions being 495 

between 0 and about 7 kg h-1 (Figure 4). The underestimation was consistent across all downwind ranges, 10, 20 and 496 

30 degrees (Supplementary Material Section 2.1).  497 
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 498 

Figure 4: Quantified emission calculated using the eddy covariance method. Left pane shows a scatter plot of 499 
quantified emission versus total controlled release for a single release at the site level and the mast was downwind of 500 
the release point. Center pane shows a scatter plot of quantified emission versus total controlled release for multiple 501 
releases at the site level, but the mast was downwind of a single release point. Right pane shows a scatter plot of 502 
quantified emission versus total controlled release for multiple releases at the site level and the mast was downwind 503 
of more than one release point. The dashed line represents the 1:1 line (points below the line were underestimated), 504 
the red line is the linear regression fit of the data, and n is the number of data points.  505 

3.1.2 Aerodynamic Flux Gradient 506 

3.2.1 Single-Release Single-Point 507 

For SRSP emissions, the MRF for AFG was 1.41, 1.67 and 1.30 at ±45° wind sector range, for a 112, 56 and 508 

34 sample size at an averaging period of 5, 10 and 15 minutes (Figure 6). At ±5° wind sector range, the sample size 509 

was 3 at 5-minutes and 0 at 10 and 15-minutes averaging periods, hence, no reasonable quantification results 510 

(Supplementary Information Section 3.2.1). Similarly, at ±10° wind sector range, the sample size was 7, 1 and 2, at 511 

averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.2.1). For the ±20° wind 512 

sector range, the MRF was 0.75, 0.48 and 1.58 for a sample size of 26, 8 and 4, at averaging periods of 5, 10 and 15-513 

minutes, respectively (Supplementary Information Section 3.2.1). These results show that close-to-stable MRF for 514 

ARF is achieved over a wide sector range, ±45°. 515 

 516 
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 517 
Figure 6. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 518 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 519 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 520 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 521 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 522 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 523 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 524 

3.2.2 Multi-Release Single-Point 525 

For MRSP emissions, generally, the MRF for AFG was between 2 and 9 for all wind sector ranges and 526 

averaging periods. The MRF was 3.32, 2.40 and 2.48 at ±45° wind sector range, for a 278, 146 and 94 sample size at 527 

an averaging period of 5, 10 and 15 minutes (Figure 7). At ±5° wind sector range, the MRF was 8.84, 2.51 and 2.93 528 

for a 36, 20 and 13 sample size at 5, 10 and 15-minutes averaging periods, respectively (Supplementary Information 529 

Section 3.2.2). At ±10° wind sector range, the MRF was 6.12, 2.29 and 2.61 for a 76, 40 and 26 sample size, at 530 

averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.2.2). For the ±20° wind 531 

sector range, the MRF was 5.16, 2.24 and 4.69 for a 142, 74, and 42 sample size, at averaging periods of 5, 10 and 532 

15-minutes, respectively (Supplementary Information Section 3.2.2). These results show that close-to-stable MRF for 533 

ARF is achieved for longer-averaging (10 to 15 minutes) and wide sector ranges of ±45°. 534 
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 535 

Figure 7. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 536 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 537 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 538 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 539 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 540 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 541 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 542 

3.4 Gaussian Plume Inverse Method 543 

3.4.1 Single-Release Single-Point 544 

Generally, the GPIM quantified SRSP emissions between an MRF of 1.85 and 443.54 for all wind sector 545 

ranges and averaging periods. The MRF was 2.58, 2.37 and 2.63 for a 79, 41, and 27 sample size, at 5, 10 and 15-546 

minutes averaging period, respectively at ±10° wind sector range (Figure 8). At ±5° wind sector range, the MRF was 547 

2.26, 1.85 and 3.04 for a sample size of 31, 22 and 17 at 5, 10 and 15-minutes averaging period; and at ±20° wind 548 

sector range, the MRF was 443.54, 3.36 and 3.14 for 165, 88, and 57 sample size, at averaging periods of 5, 10 and 549 

15-minutes, respectively (Supplementary Information Section 3.3.1). The GPIM MRF is more stable at narrow wind-550 

sector ranges, and over a long averaging period, 10 to 15 minutes.  551 
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 552 

Figure 8. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 553 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 554 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 555 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 556 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 557 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 558 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 559 

3.4.2 Multi-Release Single-Point 560 

The MRF GPIM results for MRSP emissions were between 15.72 and 29.01 for all wind sector ranges and 561 

averaging periods. The MRF was 15.72, 24.95 and 16.97 for an 827, 430, and 256 sample size, at 5, 10 and 15-minutes 562 

averaging period, respectively at ±10° wind sector range (Figure 9). At ±5° wind sector range, the MRF was 26.77, 563 

25.04 and 29.01 for a sample size of 398, 189 and 132 sample size at 5, 10 and 15-minutes averaging period; and at 564 

±20° wind sector range, the MRF was 18.15, 23.07 and 19.96 for a 1273, 656, and 407 sample size, at averaging 565 

periods of 5, 10 and 15-minutes, respectively (Supplementary Information Section 3.3.2). Generally, the GPIM 566 

overestimated MSRP emissions by up to a magnitude of 20. 567 



24 

 

  568 
Figure 9. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 569 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 570 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 571 
sample size is n. Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual 572 
controlled emission) for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall 573 
underestimation of emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The 574 
dotted blue lines are the lower confidence intervals (CI) and upper CI, 95% confidence intervals. 575 

3.4 Backward Lagrangian Stochastic Model 576 

3.4.1 Single-Release Single-Point 577 

For SRSP emissions, the bLs method estimated emissions between 0.68 and 1.34 MRF. At ±10° wind sector 578 

range, the MRF was 1.05, 0.80 and 0.86 for 78, 40 and 26 sample size, at 5, 10 and 15-minutes averaging period, 579 

respectively (Figure 10). At ±5° wind sector range, the MRF was 0.72, 0.68 and 0.82 for a sample size of 31, 22 and 580 

17 at 5, 10 and 15-minutes averaging period; and at ±20° wind sector range, the MRF was 1.34, 1.34 and 1.33 for a 581 

131, 70 and 49 sample size, at averaging periods of 5, 10 and 15-minutes, respectively (Supplementary Information 582 

Section 3.4.1). Comparing bLs method to GPIM for SRSP emissions as they are both point-source methods, the MRF 583 

for bLs was closer 1 indicating higher possibility of correct quantification. 584 
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585 
Figure 10. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 586 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 587 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 588 
sample size is n, and “n unquantified” is the number of points WindTrax reported -9999 (i.e. could not quantify). 589 
Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual controlled emission) 590 
for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall underestimation of 591 
emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The dotted blue lines are the 592 
lower confidence intervals (CI) and upper CI, 95% confidence intervals. 593 

3.4.2 Multi-Release Single-Point 594 

For MRSP emissions, the bLs method largely overestimated emissions at between an MRF of 3.85 and 595 

12239.20. At ±10° wind sector range, the MRF was 411.98, 11958.83 and 3.85 for a 706, 362 and 214 sample size, at 596 

5, 10 and 15-minutes averaging period, respectively (Figure 11). At ±5° wind sector range, the MRF was 7.04 and 597 

6.81 and 10 and 15-minutes averaging periods, 186 and 126 sample sizes; and 12239.20 and 5.08 for a 458 and 286 598 

sample size, 10 and 15-minutes averaging period, at ±20° wind sector range (Supplementary Information Section 599 

3.4.2). These results show that the bLs model largely overestimated emissions when there were multiple releases at 600 

the site level.  601 
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 602 
Figure 11. Top plot: Estimated emission vs actual emission (kg h-1) for a multi-release single-point at site level, ±45° 603 
wind sector range. The red dotted line is a 1:1 line based on actual emissions i.e. points below the line are 604 
underestimated and above are overestimated emissions. The gray region represents ±30% of the actual emission. The 605 
sample size is n, and “n unquantified” is the number of points WindTrax reported -9999 (i.e. could not quantify). 606 
Bottom plot: A bootstrap of mean relative factor (MRF: estimated emissions divided by actual controlled emission) 607 
for a multi-release single-point, ±45° wind sector range. An MRF of less than 1 shows an overall underestimation of 608 
emissions while an MRF of greater than 1 shows an overall overestimation of emissions. The dotted blue lines are the 609 
lower confidence intervals (CI) and upper CI, 95% confidence intervals. 610 

The aerodynamic flux gradient method also largely underestimated emissions for single release single emission, multi 611 

release single emission and multi release multi emission (Figure 5). A plot of quantified emission versus actual release 612 

did not show a linear relationship (R2 between 0.01 and 0.39), and most data points were below the 1:1 line (Figure 613 

5). The aerodynamic flux gradient quantified emissions were between 0 and about 1.6 kg h-1 despite actual emissions 614 

being between 0 and about 7 kg h -1 (Figure 5). The underestimation was also consistent across all downwind ranges, 615 

10, 20 and 30 degrees (Supplementary Material Section 2.2). 616 
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 617 

Figure 5: Quantified emission calculated using the aerodynamic flux gradient method. Left pane shows a scatter plot 618 
of quantified emission versus total controlled release for a single release at the site level and the mast was downwind 619 
of the release point. Center pane shows a scatter plot of quantified emission versus total controlled release for 620 
multiple releases at the site level, but the mast was downwind of a single release point. Right pane shows a scatter 621 
plot of quantified emission versus total controlled release for multiple releases at the site level and the mast was 622 
downwind of more than one release point. The dashed line represents the 1:1 line (points below the line were 623 
underestimated), the red line is the linear regression fit of the data, and n is the number of data points. 624 

3.1.3 Gaussian Plume Inverse Method 625 

The Gaussian plume inverse method was tested for single release single emission and multi release single emission as 626 

the method is only used for single-point sources and preliminary results showed the method provided reasonable 627 

results within 20 degrees downwind range (Figure 6; Supplementary Material Section 1.3). For single release single 628 

emission, the method quantified emissions within a factor of 1.5 (Figure 6) and showed reasonably linear relationship 629 

(R2 of 0.65) (Figure 6). For multi release single emission, the gradient (m) of the linear regression was 0.95 and R2 of 630 

0.21.  This suggests that the linear relationship cannot be well explained due to a random scatter of calculated 631 

emissions. 632 
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 633 

Figure 6: Quantified emission calculated using the Gaussian plume inverse method. Left pane shows a scatter plot of 634 
quantified emission versus total controlled release for a single release at the site level and the mast was downwind of 635 
the release point. Right pane shows a scatter plot of quantified emission versus total controlled release for multiple 636 
releases at the site level, but the mast was downwind of a single release point. The dashed line represents the 1:1 line 637 
(points below the line were underestimated), the red line is the linear regression fit of the data, and n is the number 638 
of data points. 639 

3.2 Quantification within 30% Uncertainty 640 

3.2.1 Eddy Covariance 641 

The eddy covariance method showed a very low probability of quantifying emissions within 30% uncertainty (± 30%) 642 

(Figure 7). Only a single measurement in the multi release multi emission category showed an approximately 0.01 643 

probability of quantifying within 30% (Figure 7). The errors for eddy covariance were between -100 and -86% for 644 

single release single emission, between -100 and -82% for multi release single emission, and between -100 and about 645 

+30% for multi release multi emission (Figure 7). This shows that using eddy covariance to quantify single-point and 646 

multi-point emissions will largely underestimate emissions.  647 
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 648 

Figure 7: Cumulative distribution function (cdf) of percent errors for eddy covariance. Left pane shows a cdf plot for 649 
a single release at the site level and the mast was downwind of the release point. Center pane shows a cdf for 650 
multiple releases at the site level, but the mast was downwind of a single release point. Right pane shows a cdf for 651 
multiple releases at the site level and the mast was downwind of more than one release point. The area bounded by 652 
the red dotted line shows the region within ±30 uncertainty. 653 

3.2.2 Aerodynamic Flux Gradient 654 

The aerodynamic flux gradient also showed a very low probability of quantifying within 30% uncertainty (Figure 8). 655 

In the multi release single emission category results indicate a 0.02 probability of quantifying within 30% (Figure 8) 656 

of the true value. The errors for aerodynamic flux gradient were between -100 and -60% for single release single 657 

emission, between -100 and 0% for multi release single emission, and between -100 and -70% for multi release multi 658 

emission (Figure 8). These data show that the aerodynamic flux gradient will underestimate a point emission. Similar 659 

to eddy covariance, quantifying an emission within 30% uncertainty using aerodynamic flux gradient for point sources 660 

is highly unlikely. 661 

 662 

Figure 8: Cumulative distribution function (cdf) of percent errors for aerodynamic flux gradient method. Left pane 663 
shows a cdf plot for a single release at the site level and the mast was downwind of the release point. Center pane 664 
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shows a cdf for multiple releases at the site level, but the mast was downwind of a single release point. Right pane 665 
shows a cdf for multiple releases at the site level and the mast was downwind of more than one release point. The 666 
area bounded by the red dotted line shows the region within ±30 uncertainty. 667 

3.2.3 Gaussian Plume Inverse Method 668 

The Gaussian plume inverse method showed a higher probability of quantifying an emission correctly within 30% 669 

uncertainty than eddy covariance and aerodynamic flux gradient methods (Figure 9); ≈0.12 for the single release single 670 

emission and ≈0.25 for the multi release single emission categories (Figure 9). Percent errors of the Gaussian method 671 

calculated emissions are between -100 and +250% for single release single emission and between -100 and +800% 672 

for multi release single emission (Figure 9). This shows that even though the Gaussian method is designed for point 673 

sources, it is highly likely to miss, underestimate or overestimate an emission. Similar to eddy covariance and 674 

aerodynamic flux gradient, it is a challenge to correctly quantify a single emission event (single release or multiple 675 

release) using the Gaussian plume inverse method. 676 

 677 

Figure 9: Cumulative distribution function (cdf) of percent errors for the Gaussian plume inverse method. Left pane 678 
shows a cdf for a single release at the site level and the mast was downwind of the release point. Right pane shows a 679 
cdf for multiple releases at the site level, but the mast was downwind of a single release point. The area bounded by 680 
the red dotted line shows the region within ±30 uncertainty. 681 

3.3 Variables Affecting Quantification 682 

3.3.1 Eddy Covariance 683 

A Spearman’s rank correlation analysis of measurement and environmental variables (distance, controlled release, 684 

emission height, mean wind speed (WS), Monin-Obukhov length (L) and contribution area) to percent error in 685 

quantification as calculated by the eddy covariance method, showed that downwind distance had significant impact 686 

on quantification for the single release single emission (p = 4.73e-6), multi release single emission (p = 2.66e-4), and 687 

multi release multi emission (p=2.00e-3) categories for p < 0.01 significance level (Figure 10). The correlation 688 

coefficients were -0.74 for single release single emission, -0.31 for multi release single emission, and -0.30 for multi 689 

release multi emission. The negative correlation in all three categories suggests that the percent error became more 690 

negative as distance increased i.e., far away emission sources were likely underestimated or undetected. Also, 691 
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controlled release and emission height had significant impact on quantification only in the multi release single 692 

emission category, p = 2.00e-3 and 9.42e-3 respectively, (Figure 10) but this correlation was inconsistent across the 693 

three categories. Due to inconsistent correlation, and the errors being close to -100%, the results show that generally, 694 

quantifying emissions using an eddy covariance approach will not work for emissions typically observed at oil and 695 

gas production sites. 696 

 697 

Figure 10: Correlation analysis for eddy covariance in the three release categories. The area bounded by the red 698 
dotted line shows the region within ±30 uncertainty. 699 

3.3.2 Aerodynamic Flux Gradient 700 

A Spearman’s rank correlation analysis between the environmental and measurement variables and emissions 701 

calculated using the aerodynamic flux gradient method showed that only emission height in the single release single 702 

emission category had significant impact on model quantification (p = 1.79e-3) (Figure 11). The correlation between 703 

emission height and percent error in this category was -0.59 suggesting percent error became more negative as 704 

emission height increased. However, the correlation between emission height and percent error in the multi release 705 

single emission and multi release multi emission categories is approximately zero, meaning no correlation. Similar to 706 

eddy covariance, there is inconsistent correlation, and most errors are close to -100% (Figure 11). The results show 707 

that generally, quantifying emissions using an aerodynamic flux gradient approach will not work for emissions 708 

typically observed at oil and gas production sites. 709 



32 

 

 710 

Figure 11: Correlation analysis for aerodynamic flux gradient in the three release categories. The area bounded by 711 
the red dotted line shows the region within ±30 uncertainty. 712 

3.3.3 Gaussian Plume Inverse Method 713 

The Spearman’s rank correlation analysis between the emissions calculated using the Gaussian plume inverse method 714 

and measurement/environmental variables showed that only the mean wind speed and atmospheric stability had 715 

significant impact on the model quantification (Figure 12). In the single release single emission category, mean wind 716 

speed and percent error had a positive correlation (0.44, p = 2.74e-4) indicating that an increase in WS increased the 717 

model’s positive error. However, in the multi release single emission category, the correlation is opposite (a negative 718 

correlation of -0.21, p = 3.71e-3) (Figure 12).  Atmospheric stability had significant impact on model quantification 719 

in the multi release single emission category (p = 9.15e-5) but not in the single release single emission category (Figure 720 

12). The correlation analysis for the Gaussian plume inverse model was inconsistent suggesting random errors in 721 

quantification. This shows that the model could either underestimate or overestimate an oil and gas emission at 722 

random.  723 
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 724 

Figure 12: Correlation analysis for the Gaussian plume inverse method in the three release categories. The area 725 
bounded by the red dotted line shows the region within ±30 uncertainty. 726 

4 Discussion 727 

Methane emissions quantification from oil and gas is a complex system comprising of gas emissions from 728 

different heights, different locations, encountering aerodynamic obstacles of different sizes, and of varying emissions 729 

duration, amongst others. The ability to precisely quantify an emissions using data collected by a point sensor, 730 

downwind of a source is directly influenced by plume dynamics. The CH4 plume downwind of a source will change 731 

in size and shape in different atmospheric conditions, in open areas versus areas with obstacles, diurnally, and in 732 

different seasons (Casal, 2008). In this study, the precision to which downwind methodsmodels (closed-path EC, AFG, 733 

GPIM and bLs)eddy covariance, aerodynamic flux gradient and Gaussian plume-based) could quantify the emission 734 

rate of point source(s) were tested in different atmospheric conditions (rain, sunny, snow, windy, calm etc.), and 735 

aerodynamic scenarios (emissions sources in open areas, behind obstacles, changing atmospheric stability, and 736 

day/night). As a result, testing the models’ predicted emission rates to controlled release rates in different conditions 737 

introduced real-world scenarios that have not previously been tested, hence better understanding model uncertainty in 738 

the application of quantifying emissions from oil and gas production infrastructure. 739 

4.1 Eddy Covariance 740 

Eddy covariance was tested using a closed-path analyzer, cavity ring-down spectroscopy, with a 3.2 lpm 741 

pump flowrate and a 0.4 s gas flow response time. The closed-path EC estimated emissions between a factor of 0.67 742 
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and 0.97 for SRSP emissions, and between 1.02 and 2.43 for MRSP emissions at ±45° wind sector range (Section 743 

3.1). This was a wider uncertainty in estimated emissions than one reported by Dumortier et al. (2019), who estimated 744 

emissions at between 90 and 113% of true emission (~1.5 kg day-1) with concentrations between 2 and 3 ppm. Our 745 

study tested closed-path EC at emission rates between 0.005 and 8.5 kg h-1.  746 

Our study’s results were when the data was filtered for frequencies greater than 8 Hz, hence, largely reducing 747 

the sampled emissions. The 10 Hz sampling frequency set for this instrument was not a true 10 Hz and this could have 748 

been due to the 0.4 gas flow response time that delayed analysis of the drawn air sample in the cavity, or the 3 lpm 749 

pump flow rate for a 3 m tubing that might have varied the effective sample turnover rate. The rest of the data were 750 

flagged as low quality by Mauder and Foken (2004) (0-1-2 system), which flags based on steady state and well-751 

developed turbulence. This could have been due to low turbulence as experiments were carried out in winter, and 752 

instrumentation limitations (low pump flow rate and asynchronous configuration of the gas analyzer and 753 

meteorological instrument).   754 

Continuous monitoring requires deployment of multiple sensors which create limitations of cost and requires 755 

instrumentation with a wide measurement range as concentrations for oil and gas emissions can range between 0 to 756 

250 ppm, as in this study (Supplementary Information Section 2c). The currently available EC instruments have a 757 

narrow measurement range (LI-COR LI-7700 open path CH4 analyzer has a measurement range of 0 to 25 ppm at -25 758 

ºC and 0 to 40 ppm at 25ºC; PICARRO G2311-f, a closed-path analyzer has an operating range of 0 to 20 ppm).  Also, 759 

the instrumentation should be environmentally robust and not lab-grade (be able to run smoothly in adverse weather 760 

conditions). Given these parameters, market available EC instruments that can currently be deployed in oil and gas 761 

are limited. The instrument used in this study is a field instrument (ABB MGGA GLA131 Series has a measurement 762 

range of 0 to 100 ppm for CH4 but can be extended to 0 to 1%).   763 

Eddy covariance underestimated or failed to observe almost all emissions released during this study (linear regression 764 

m between 0 and 0.07, and R2 between 0.03 and 0.36) (Figure 4). The method measures CH4 atmospheric fluxes for 765 

area sources transferred as eddies of different sizes as caused by turbulence within the atmospheric boundary layer 766 

(Babaeian and Tuller, 2023). Assumptions governing eddy covariance include: (1) the terrain is homogenous and 767 

horizontal, (2) CH4 fluxes are turbulent, (3) measurements at a point are from an upwind area, (4) measurements are 768 

within the boundary layer and in the constant flux layer, (5) instruments can capture small fluctuations at high 769 

frequency, (6) fluctuations in air density are negligible (Babaeian and Tuller, 2023), and (7) upward fluxes represent 770 

emissions and downward fluxes represent depositions (Zinke et al., 2024). Nemitz et al., (2018) adds that eddy 771 

covariance is frequently deployed to target large fluxes in high-emission ecosystems, which is not typical in oil and 772 

gas, and that data where wind direction includes obstructed wind sectors should be flagged (Nemitz et al., 2018). 773 

For oil and gas point sources, the measured gas concentration is dependent on plume dynamics as opposed to mass 774 

transfer and eddy covariance methods using fence-line measurements are unlikely to work because: 775 

• Oil and gas point sources violate assumptions (1), (2), and (4) as these sources are heterogenous and 776 

emissions are collimated plumes instead of turbulent fluxes.  777 
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• As the measurement by a point sensor is dependent on being inside the plume, which changes in different 778 

atmospheric conditions, placing the sensor high enough, and/or far enough downwind, to where the flux 779 

layer is constant, is impractical.  780 

• Even though current eddy covariance application assumes the vertical flux at a point is independent of 781 

atmospheric stability (Denmead, 2008), atmospheric stability has impact on point source gas dispersion 782 

at fence line distances and hence needs to be accounted for even for eddy measurements.  783 

• Footprint models are designed for area sources that require horizontal homogeneity of the flow (Kljun 784 

et al., 2015). As a result, the area of contribution generated by the models do not accurately represent 785 

the area between the point sources and the measurement location at fence line distances. 786 

 In summary, this study shows that eddy covariance is not applicable for oil and gas point source quantification.  787 

4.2 Aerodynamic Flux Gradient 788 

Overall, the AFG method quantified emissions within an MRF of 1.3 to 1.7 for SRSP emissions and between 789 

an MRF of 2.4 and 3.3 for MRSP emissions (Section 3.2). The uncertainties in AFG were higher than EC especially 790 

for MRSP emissions but lower than the GPIM and bLs methods. The differences between AFG and EC could have 791 

been due to different instrumentation and analytical approaches that limited the exact comparison of the methods i.e. 792 

EC data was filtered for frequencies less than 8 Hz, and AFG instrumentations required both analyzers to be running, 793 

periods when one analyzer was down, were not tested. To our knowledge, this is the first study to test AFG for point 794 

source quantification and results are promising.  795 

Compared to the EC method that requires a very fast analyzer which may be difficult to deploy in oil and 796 

gas, the AFG requires at least 2 analyzers sampling at 1 Hz frequency, which is currently possible with the range of 797 

sensors available in the market. The main advantage of flux gradient methods (EC and AFG) tested in this study is 798 

that they do not require background control as background CH4 concentration is a highly variable parameter that 799 

cannot be controlled in open air especially when multiple emissions are happening. The AFG method relies on 800 

differences in CH4 concentrations between two heights and this study shows that in complex sites where there are 801 

multiple sources, the method quantifies better than the point-source GPIM and bLs methods. The main limitation of 802 

the AFG and EC methods for point-source quantification is that when the measurement point is downwind of more 803 

than one source in a wind sector range, more than sonic anemometers are required to estimate the flux of each source 804 

for footprint calculation based on Dumortier et al. (2019)’s calculations. 805 

Overall, aerodynamic flux gradient method underestimated the emission rate of all controlled releases during this 806 

experiment with high variability. The slope of the linear regression and R2 were both very small (linear regression m 807 

between 0 and 0.22, and R2 between 0.01 and 0.39) (Figure 5). The aerodynamic flux gradient model quantification 808 

is used to quantify emissions from area sources and relies on differences in CH4 concentrations between the higher 809 

and lower height, and stability correction factors. Assumptions of flux-gradient approach using Monin-Obukhov 810 

similarity theory include: (1) measurements require steady state conditions of wind direction and speed, (2) 811 

measurements should be done above the roughness sub-layer, (3) sufficiently large homogenous area for development 812 

of an adequately equilibrated layer of air, and for constant equilibrium during measurement (Prueger and Kustas, 813 

2015), and (4) positive fluxes represent emissions and downward fluxes represent absorptions (Kamp et al., 2020).  814 
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Similar to eddy covariance, aerodynamic flux gradient methods at fence-line distances are unlikely to work because 815 

point sources typical of oil and gas emissions violate the following assumptions: 816 

• Obstacles at an oil and gas facility affects wind direction and speed, and these impacts may also vary 817 

substantially with small changes in wind direction.  Therefore, wind conditions are unlikely to attain 818 

steady state during the measurement period, as directed by assumption (1) above. 819 

• The emission height of oil and gas sources in typical upstream field conditions can be as low as 0.4 m 820 

and as high as 6.9 m and measurements are unlikely to be made by fence-line sensor above the roughness 821 

sublayer (2 above), i.e. twice the height of the mean obstacle height for ~30 m downwind.  822 

• Oil and gas sources are heterogeneous (i.e. varying source distance and height) and can last a short time 823 

(e.g. a short maintenance event) or a long time (‘normal’ fugitive emissions) hence, achieving constant 824 

equilibrium, as stated in (3) above, is unlikely. 825 

• Footprint models used to generate the area of contribution between the source and the measurement 826 

location are designed for area sources with horizontal flow homogeneity (Kljun et al., 2015). Thus, the 827 

area of contribution generated for oil and gas point sources is likely inaccurate. 828 

4.3 Gaussian Plume Inverse Method 829 

The GPIM method quantified emissions within an MRF of 2.4 and 2.6 for SRSP and between 15.7 and 25 830 

for MRSP emissions (Section 3.3). The GPIM method is a point-source specific quantification approach and works 831 

best in open areas, free of obstacles, and when the background concentration is well defined. For multiple emissions, 832 

in aerodynamically complex environments, even though the sensor is downwind of a single source based on average 833 

wind direction, quantification is complexed by interference from other neighboring sources. The GPIM has previously 834 

been reported to quantify emissions within 40.7 and 60% error for a single point-source, (Riddick et al., 2022b). 835 

However, GPIM correct quantification has been suggested to be possible for longer distances where the plume is well 836 

mixed. This is typically a challenge for fence-line sensors that have to be deployed within the facility boundaries 837 

where large downwind distances may not be practical.  838 

4.3 Backward Lagrangian Stochastic Model 839 

 The bLs method quantified emissions within an MRF of 0.8 to 1.05 for SRSP emissions and between 3.85 840 

and 11958.8 MRF for MRSP emissions (Section 3.4). Similarly to the GPIM method, the bLs method used in this 841 

study is a point-source specific quantification method that simulates transport of molecules in open area and where 842 

the background concentration is defined. In this case, as with the SRSP test scenario, the bLs approach quantified 843 

within 20% uncertainty. However, for MRSP emissions, the bLs largely overestimated emissions and this could have 844 

been due to the interference of neighboring sources, that even though the measurement point is downwind of a single 845 

source, actual plumes are not distinct and model-simulated plumes may not be representative. The point-source bLs 846 

approach in WindTrax is also not designed for more than one downwind source. 847 

In contrast to the other methods in this study, the Gaussian plume inverse model both underestimated and 848 

overestimated emissions in this study. Linear regression gradient and coefficient of correlation (m between 0.95 and 849 

1.49, and R2 between 0.21 and 0.65; Figure 6) was better than either eddy covariance or aerodynamic flux gradient. 850 

The main assumption of the Gaussian plume model is that CH4 emitted from a point source enters the air flow, 851 
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disperses vertically and laterally, forming a conical plume (Riddick et al., 2022b; US EPA, 2013). However, the 852 

formation of a conical plume is hindered at oil and gas facilities by obstacles (equipment) and is affected by 853 

atmospheric stability. Atmospheric stability in the Gaussian plume inverse model is based on Pasquil-Gifford 854 

classification system which accounts for daytime solar insolation (slight, moderate and strong), nighttime cloud cover 855 

and surface wind speed at 10 m (Kahl and Chapman, 2018). Solar insolation and cloud cover are not typically 856 

measured, and if measured, dispersion parameter models currently available do not use this data, therefore, it is 857 

difficult to calculate for continuous fence-line measurements. The modified dispersion parameters developed by EPA 858 

(US EPA, 2013) only account for wind conditions i.e., speed and deviation in direction. As a result, plume dynamics 859 

during diverse atmospheric conditions such as during snow versus rain or sunny conditions are unaccounted for. 860 

In this study, despite the Gaussian model having been developed for point sources, the model did not show consistent 861 

correlation with the measurement and atmospheric variables. This showed that there are complexities in continuous 862 

monitoring quantification compared to survey solutions where the model is widely applied, that introduce significant 863 

uncertainties in quantification. It is suggested that one problem with the Gaussian plume model is that the dispersion 864 

coefficients are simply not representative as they were developed for longer distances, in different climatological 865 

conditions, and do not transfer well to current applications (Riddick et al., 2022a). We conclude that, while it is better 866 

suited than eddy covariance or aerodynamic flux gradient, a Gaussian plume inverse approach will likely have 867 

significant uncertainties when used to quantify emissions from oil and gas production sites using data collected at a 868 

fence line (~ 30 m away). 869 

4.4 Implications 870 

In the recent years, there has been growing interest and need for accurate CH4 quantification from oil and gas 871 

sites. This is generally done through survey methods and continuous monitoring using fence-line sensors. Continuous 872 

monitoring involves having stationary sensors measuring meteorology and CH4 mixing ratios, which are then used to 873 

infer emission rates. For point sources, downwind methods such as the Gaussian plume inverse method have been 874 

widely used, especially for survey quantification. Continuous monitoring is relatively new but fast growing. This 875 

study’s design replicated a continuous monitoring setup’s downwind deployment distance, range of typical emission 876 

rates, emissions heights, and meteorological data acquisition.  877 

Oil and gas point sources could either be single emissions or multiple emissions occurring concurrently. In 878 

cases of multiple emissions with more than one release point being downupwind, the Gaussian model and the 879 

backward Lagrangian stochastic models iares limited, as theyit can only quantify one source at a time (dispersion 880 

coefficients are generated as a function of emission height and source distance); and interference from neighboring 881 

emissions affects the underlying principles of dispersion on which these models were developed. As a result, flux 882 

quantification models used in other applications such as eddy covariance and aerodynamic flux gradient have been 883 

proposed as the solution. This study’s results show that generally reasonable quantification estimates are achieved 884 

with flux approaches (eddy covariance and aerodynamic flux gradient), but these methods require more 885 

instrumentation effort (fast sampling analyzer for eddy covariance, and multiple collocated sensors for aerodynamic 886 

flux gradient). Even though the widely applied Gaussian plume inverse method and the backward Lagrangian 887 

stochastic models are widely used for single-point emissions, this study shows aerodynamic complexities, the 888 
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difficulty in defining the background, and interference from neighboring sources challenge the application of these 889 

models for fence-line continuous monitoring. This study recommends more testing of flux quantification models for 890 

oil and gas quantification as they could improve emissions quantification for leak repair prioritization and methane 891 

reporting. 892 

However, as this study has shown, eddy covariance and flux gradient approaches are unlikely to quantify realistic 893 

emission estimates using fence-line measurements.  Here, we strongly advise that controlled tests under controlled 894 

environments are crucial to evaluate modelling approaches’ precision and accuracy, and associated uncertainties 895 

before applying them in the real world. Even though these modelling approaches have been reported to work elsewhere 896 

(e.g., agricultural and landfill emissions), it does not necessary mean it could work in the intended area of application. 897 
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