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Reviewer Comments

Review of revision 2 egusphere-2024-3161 “Evaluating the accuracy of downwind methods
for quantifying point source emissions”, Mbua et al. (Reviewer Comments by E. Thoma

and S. Ludwig)

The authors were responsive to reviewer comments, offering a significantly revised manuscript
with improved results visibility and supporting detail. The authors added critical QA/QC
information on eddy covariance (EC) and decided to remove the aerodynamic flux gradient
analysis. The authors modified the Gaussian plume inverse method (GPIM) approach, and
backwards Lagrangian stochastic (bLs) analysis (based on WindTrax). Additional details were

added for these emission calculation approaches.

Authors response

Thank you for reviewing our manuscript and for the constructive feedback, which has greatly

helped us improve its clarity and rigor.

There remains one major set of concerns with the revised manuscript relating to the EC analysis.
As a first point, the EC results changed significantly from manuscript version 2. The reason for
this is not clear and the authors are encouraged to double check the analysis and identify the root

cause for this difference.

Authors response

Thank you for the comment. Yes, the EC results changed from the previous version because we
initially used absolute flux rather than positive flux to calculate emissions. As a result, large

negative fluxes were incorrectly represented as large emissions in our earlier analysis.

Secondly, version 2 of the manuscript evaluated model performance using the bootstrapped mean,
whereas version 3 uses a linear function. The bootstrapped mean in version 2 was
disproportionately influenced by large fluxes (and thus large emissions), which gave a misleading
impression of strong EC performance. Switching to the linear function in version 3 provided a

more accurate and transparent assessment of the results.

We have carefully reviewed the analysis and confirm that the EC results presented in the current

manuscript are final.

Assuming the current version of the EC analysis is final, the major concern centers on the
strength of conclusions on the performance of the EC approach that can be drawn from this study.

The authors have progressed their EC footprint and QA/QC analysis significantly from the



original manuscript. However, new supporting information on ogive and cospectra departs
significantly from expected form. These results indicate that EC analysis is likely not possible
with these data and in fact illustrate “textbook examples” of issues illuminated by these QA/QC
checks. This general issue with the EC analysis is further evidenced by the presence of large

negative fluxes (which indicate issues in the EC data collection).

When examining both ogives and cospectra as a part of the QA/QC process, there is both a
qualitative shape expected and quantitative metrics of slopes (for portions of the cospectra) and
sigmoidal parameters (for the ogives) when good EC data are collected. Some deviations from
the ideal form are expected. For example, especially in closed-path eddy covariance, there is
often tube attenuation or increased lag that results in poorer performance with data at the highest
frequencies. This is seen as a slightly steeper slope than ideal in the cospectra shape at high
frequencies and is compensated for during the transfer function calculations when processing
data into fluxes. However, even in closed-path EC or EC sampled at 5 Hz rather than 10 Hz, the
cospectra still closely follow the ideal shape (especially when examining the cospectra of sonic
temperature, which should not suffer any of the issues of the closed path gas sampling system),
and slope changes at high frequencies are well modeled by the transfer functions. When the
shape of cospectra deviate significantly from the ideal curve (as is the case here), it is an
indication the data were not collected properly in a way that can be used for eddy covariance,
with causes that include obstructions, mis-aligned time series, too slow system response time,

among other issues with the instrumentation as seen here.

Similarly, the ogive analysis should follow a characteristic shape, a sigmoid curve plateauing at
the y-axis at 1 and also at 0. The ogive analysis is used to indicate if an appropriate averaging
interval was used, as those that are too short will not sufficiently plateau at 1. Furthermore, those
ogives which do not follow a sigmoid shape at all indicate issues in data collection. Even
accounting for the log-scale y-axis in the authors’ ogive figures, they do not follow an acceptable
shape, and all ogives here would indicate issues leading to removing the data during QA/QC. 1
am including examples of the appropriate expected shapes of cospectra and ogives as described
in the textbook “Eddy Covariance Method” by George Burba, section 5.1 “Quality Control of
Eddy Covariance Flux Data”. This chapter provides several examples of how the shapes of
cospectra can be used to diagnose issues with the instrumentation and data collection (such as is

the case here) that invalidate the EC method.
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Authors’ response

Thank you for your comment. We acknowledge there were issues with the data collection system
that invalidates EC analysis and conclusions. To clarify this to our readers, we have added the

section below to the manuscript.

Changes to the Manuscript

Section 3.6
3.6 Eddy Covariance Quality Assurance and Control

Evaluation of the EC data revealed quality assurance and control issues that compromised
both the analysis and the conclusions drawn from the EC results. The flux data were flagged as
“2” (low quality) according to the 0—1-2 quality classification system of Mauder and Foken
(2004), indicating that the data were not suitable for EC analysis. In EC quality assessment, both
the qualitative shape of the cospectra and the quantitative slopes of selected portions are
examined to determine if the data meet accepted standards. In this study, the cospectra deviated
significantly from the ideal shape, indicating problems in data collection and pre-processing.
Possible causes include obstructions in the testing area, misalignment between CHa4 and sonic
anemometer time series (due to the absence of a reliable method for alignment), slow response
time of the gas analyzer, increased lag from the 3 m inlet tubing, and inconsistent sampling
frequency. Similarly, ogive analysis—used to evaluate whether the averaging time is
sufficient—showed that the ogive curves did not follow the characteristic sigmoidal shape
(plateauing at the y-axis and at zero). Although the ogive shapes were similar across all
averaging intervals, none plateaued sufficiently, further indicating data collection issues that
invalidate the EC method for this study. For clarity and to guide future studies, Burba (2013)
provides examples of ideal cospectra and ogive shapes illustrating how these tools can be used to

diagnose instrumentation and data collection problems.

The authors now acknowledge the limitations in design of the EC data acquisition system for this
study and attempt caveat in numerous places. They also point to non-stationarity in the data as

part of the issue with the EC measurement.

However, if the EC results are deemed invalid, then these caveats are insufficient and conclusions
around EC performance are not supported. The authors should either remove the EC analysis or
suitably modify description to further clarify the severity of the issues for the reader. With little
further work, the authors may choose to take this opportunity to illustrate some basic aspects of
QA/QC assessment of EC data for this application. The information would be beneficial to the

oil and gas/leak detection community (that largely consists of non-EC experts) and would assist



future efforts to assess EC for this application.
Here is one example of unsupported conclusions from the abstract.

Ln 17 “Generally, the closed-path EC system used in this study proved generally unreliable and
largely underestimated emissions, primarily due to non-stationarity and study limitations
associated with using a non-standard setup. In comparison, the Gaussian Plume Inverse
Method (GPIM) consistently outperformed the EC system for both single-release and multi-

release single-point emissions.”

This is an inappropriate indictment of the EC methodology. If your primary QA/QC data indicate
that the attempt at the application of the EC method was not successful (for whatever reason),
then it is not possible to draw this conclusion. If the EC analysis is to remain in this manuscript,
the description needs to be recast as an attempt at EC that failed. This would render the
presented comparisons to other methods invalid. The issues with the method application were
detected and reasons for these issues are presented here as lessons learned. Future attempts at

exploring EC for this application will benefit from the information in this paper.

Authors’ response

Thank you for your comment. We acknowledge that issues with the EC data collection system
invalidate the results and the conclusions previously drawn. However, we have chosen to retain
the EC analysis in the manuscript, reframing it as a “lessons learned” case study. We believe this
provides valuable guidance for future studies by documenting the challenges encountered, the

diagnostic tools applied, and the indicators of compromised data quality.

Changes to the Manuscript

Abstract
Lines 17-20

This study’s EC attempt was unsuccessful due to data collection and instrumentation issues,
resulting in invalid outputs characterized by underestimated emissions, large negative fluxes, and
cospectra/ogives that deviated from their ideal shapes. Consequently, the EC results could not be

compared with the GPIM or the bLS models.



Section 4.1
Lines 507-518

As a result, the conclusions drawn from the EC data are invalid and not comparable to the other

tested models are constrained.

This study identified data collection and instrumentation issues that future work can address to
enable successful EC application. Based on flagged low-quality data, non-ideal cospectra and
ogive shapes, and the presence of large negative fluxes, the dataset was deemed unsuitable for
EC analysis. The primary causes of the unsuccessful application were: (1) the CH4 analyzer was
not designed for EC measurements, exhibiting slow response time, low pump flow rate, and
inconsistent sampling frequency; (2) the 3 m inlet tubing length for the closed-path analyzer
caused signal attenuation and increased lag; (3) the sonic anemometer and CHa analyzer data
were not synchronously logged, preventing accurate time-series alignment; (4) the EC system
was installed near obstacles that disrupted smooth eddy formation; and (5) ogive plots suggested
that the maximum 30-minute averaging interval used in this study may have been insufficient.
We recommend further EC testing with these issues corrected to properly evaluate its application

in continuous oil and gas monitoring.
Lines 569-582

Oil and gas point sources could either be single emissions or multiple emissions occurring
concurrently. In this study’s design, cases involving multiple emissions with more than one
release point located upwind posed challenges for the specific Gaussian and backward
Lagrangian stochastic (bLs) model implementations, which were applied assuming a single
active source at a time. While these models can be extended to handle multi-source scenarios,
the assumptions used here limited their ability to distinguish individual contributions when
plumes overlapped. As a result, interference from neighboring emissions introduced ambiguity
in model-observation alignment, particularly under complex wind conditions. Closed-path eddy
covariance was generally unreliable in this study due to data-collection and instrumentation
issues non-stationarity and limitations associated with using a non-standard EC system. This
resulted in invalid EC results that could not be compared with the GPIM and the bLs models. In
contrast, the Gaussian Plume Inverse Method (GPIM) outperformed the non-standard EC system
for both single-release and multi-release single-point emissions. The backward Lagrangian
stochastic (bLs) method was the most accurate for single-release single-point emissions but was
less accurate than the GPIM under multi-release conditions. For both GPIM and bLs, 15-minute

averaging with a narrow wind-sector (5°) yielded the best performance. While EC results in this



study were limited by system constraints, future work is recommended using standard EC
instruments and further optimizing GPIM and bLs models—particularly for complex multi-

release scenarios—to improve accuracy and reduce uncertainties.



