
Authors’ responds to Anonymous Referee 3: 
We would like to thank the reviewer for the thorough review of our manuscript and insightful 
feedback. These comments have significantly improved the quality of our work. In the following 
sections, we present the reviewer's comments (in black), our responses (in red), and the changes 
made in the revised manuscript (in blue). Please note that all line numbers in our responses 
correspond to those in the revised manuscript. 
 

 
Comments 
1. The computational requirements and training times for both CSSL and baseline models should 

be discussed, as these are relevant for practical implementation. The community would highly 
benefit if the code and data for the CSSL algorithm were made publicly available. 
 
The data, code and models presented in this publication will be made available at: 
https://zenodo.org/communities/eth_zurich_iac_atmospheric_physics/  
 
The DOI links will be activated for public access upon acceptance of publication. 
 
In terms of the computational requirements, we stated the GPU information in Section. 4.1. We 
now add more detailed information about the hardware environment 
 
L273-L274 
Beyond the GPU requirements, the algorithm requires a minimum computing environment 
consisting of a 4-core CPU and 16GB of system memory to operate. 
 
In terms of the training times of our algorithm, the information is now concluded in the 
Appendix B. 
 
Appendix B 
The training times of models studied in this paper are listed in Table B1. The unsupervised pre-
training phase required 66 minutes for the MoCo structure and 78 minutes for BYOL. For both 
the 19-category and 4-category classification tasks, the supervised fine-tuning phase of our 
models (Semisup-MoCo and Semisup-BYOL) consumed equivalent training time as their 
respective baseline models when trained on equivalent dataset sizes, hence, they are not 
displayed separately. 



 
Table 1: The training times of models. 

2. Figure 1 would benefit from additional scale bars 
 
The sample images shown in Figure 1 have been uniformly resized for demonstration purposes 
and do not reflect the actual physical dimensions of the ice crystals as captured by the imaging 
system. Therefore, it is hard to add scale bars while keeping the current figure unchanged. For 
detailed dimension information, Zhang et al. (2024) shows some sample images for each 
category with scale bars, which used the same dataset as this study. 
 
L120-L121 
A comprehensive collection of ice crystal examples can be found in the appendix of Zhang et 
al. (2024), where images of each distinct category are presented with scale bars indicating their 
actual dimensions. 
 

3. Could you discuss the potential for transfer learning to other imaging systems that capture 
lower quality crystal images (e.g., those with coarser resolution) such as: VIZZZ, PIP/2DVD. 

 
It would be highly interesting to test ice crystal images with a coarser resolution, keeping in 
mind that performance depends more on the number of pixels than on the actual size of the ice 
crystal. There are two potential approaches to transfer learning in this context. There are two 
potential approaches to transfer learning in this context. The first approach, as we mentioned 
in the conclusion section, involves incorporating the new dataset into our existing dataset and 
further training the pre-trained encoder within the upstream network, which can help us 
develop a foundational model for ice crystals that can be effectively transferred to 
downstream tasks. The second approach is also the main outcome of our research. It involves 
fine-tuning the pre-trained encoder directly on new datasets of varying sizes and categories. 
We now add some discussions about new imaging systems by following your comment.  
 
L453-L456 
…As the model has learnt the features of ice crystal in the upstream network, it can also adapt 
to data collected using different imaging devices such as VIZZZ (Maahn et al., 2024) and 
PIP&2DS (Jaffeux et al., 2022) with being fine-tuned on a small subset of new data, but the 
performance on such devices is required to be further evaluated in future studies… 
 



L476-L382 
…Expanding the scale of unsupervised pretraining enables the integration of datasets 
collected from different imaging probes, including (VIZZZ (Maahn et al., 2024) and 
PIP&2DS (Jaffeux et al., 2022)) possible… 
 

4. Minor comments: 
Fixed, thanks 
 

5. While rerunning the analysis with fewer convolutional layers would be beyond the scope of 
this review, it would be valuable if you could elaborate on the choice of network architecture 
and its implications. In particular, the use of 49 convolutional layers raises questions about 
computational efficiency versus model performance. Could a shallower network potentially 
achieve similar results with reduced computational overhead? 

 
The choice of 49 convolutional layers was based on our adoption of the ResNet-50 
architecture, which was the common backbone across various computer vision tasks. A 
shallower encoder can improve computational efficiency while it may bring several concerns 
in the context of our task.  
 
In the upstream network, we require an encoder with sufficient capacity to extract the features 
of ice crystals to perform contrastive learning, especially for those complex shapes. A deep 
encoder can extract a hierarchy of features, from basic edges and textures in the shallow 
layers to complex shape patterns in deeper layers (Zeiler and Fergus, 2014). Therefore, a 
shallower ResNet may not be sufficient for the upstream network to extract the detailed 
information of ice crystals such as the complicated structures of aged particles or aggregates. 
We now add the above argument as a background information in the introduction section.  
 
L182-L185 
…A deep network can extract a hierarchy of features, from basic edges and textures in the 
shallow layers to complex shape patterns in deeper layers (Zeiler and Fergus, 2014). In our 
task of learning the features of ice crystals, it is necessary to a sufficiently deep network to 
extract the detailed information such as the complicated structures of aged particles or 
aggregates… 

  
Since the downstream network will directly use the encoder transferred from the upstream 
network, the architecture should keep the same as the encoder in the upstream network.  
 
In addition, as shown in the Appendix B, despite using the ResNet-50 architecture, the 
computational overhead for unsupervised pre-training remains practical and efficient. The 
supervised fine-tuning process also demonstrates reasonable computational demands, 
particularly when working with smaller subsets of around 2048 samples 
 
However, it is not necessary to conduct experiments with different depth of encoder. The 
choice of 49 convolutional layers in our implementation builds upon extensive prior research 



on different visual tasks, demonstrating the effectiveness of ResNet50. In fact, the ResNet 
paper (He et al., 2016) had shown that ResNet-50, despite its greater depth, maintains 
comparable computational efficiency to the shallower ResNet-34 architecture. Specifically, 
ResNet-50 requires 3.8 GFLOPs compared to ResNet-34's 3.6 GFLOPs, while achieving a 
significant 3% reduction in error rate on ImageNet classification. We add a description of the 
effectiveness of ResNet50 in the manuscript. 
 
L183-L185 
…which was proved more efficient and effective than other variations of ResNet (He et al., 
2016)… 
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