Authors’ responds to Anonymous Referee 3:

We would like to thank the reviewer for the thorough review of our manuscript and insightful

feedback. These comments have significantly improved the quality of our work. In the following

sections, we present the reviewer's comments (in black), our responses (in red), and the changes

made in the revised manuscript (in blue). Please note that all line numbers in our responses

correspond to those in the revised manuscript.

Comments

1.

The computational requirements and training times for both CSSL and baseline models should
be discussed, as these are relevant for practical implementation. The community would highly
benefit if the code and data for the CSSL algorithm were made publicly available.

The data, code and models presented in this publication will be made available at:
https://zenodo.org/communities/eth _zurich iac_atmospheric_physics/

The DOI links will be activated for public access upon acceptance of publication.

In terms of the computational requirements, we stated the GPU information in Section. 4.1. We

now add more detailed information about the hardware environment

L273-1L274
Beyond the GPU requirements, the algorithm requires a minimum computing environment

consisting of a 4-core CPU and 16GB of system memory to operate.

In terms of the training times of our algorithm, the information is now concluded in the

Appendix B.

Appendix B

The training times of models studied in this paper are listed in Table B1. The unsupervised pre-
training phase required 66 minutes for the MoCo structure and 78 minutes for BYOL. For both
the 19-category and 4-category classification tasks, the supervised fine-tuning phase of our
models (Semisup-MoCo and Semisup-BYOL) consumed equivalent training time as their
respective baseline models when trained on equivalent dataset sizes, hence, they are not

displayed separately.



Network  Size of training set (n)  Time (min)

MoCo 33354 66
Unsupervised pre-training
BYOL 33354 8
128 5
256 8
512 13
1024 29
Supervised fine-tuning/Baseline  ResNet50 2048 38
4096 44
8192 66
16384 85
18864 96

Figure 1 would benefit from additional scale bars

The sample images shown in Figure 1 have been uniformly resized for demonstration purposes
and do not reflect the actual physical dimensions of the ice crystals as captured by the imaging
system. Therefore, it is hard to add scale bars while keeping the current figure unchanged. For
detailed dimension information, Zhang et al. (2024) shows some sample images for each
category with scale bars, which used the same dataset as this study.

L120-L121
A comprehensive collection of ice crystal examples can be found in the appendix of Zhang et
al. (2024), where images of each distinct category are presented with scale bars indicating their

actual dimensions.

Could you discuss the potential for transfer learning to other imaging systems that capture
lower quality crystal images (e.g., those with coarser resolution) such as: VIZZZ, PIP/2DVD.

It would be highly interesting to test ice crystal images with a coarser resolution, keeping in
mind that performance depends more on the number of pixels than on the actual size of the ice
crystal. There are two potential approaches to transfer learning in this context. There are two
potential approaches to transfer learning in this context. The first approach, as we mentioned
in the conclusion section, involves incorporating the new dataset into our existing dataset and
further training the pre-trained encoder within the upstream network, which can help us
develop a foundational model for ice crystals that can be effectively transferred to
downstream tasks. The second approach is also the main outcome of our research. It involves
fine-tuning the pre-trained encoder directly on new datasets of varying sizes and categories.
We now add some discussions about new imaging systems by following your comment.

L453-L456

...As the model has learnt the features of ice crystal in the upstream network, it can also adapt
to data collected using different imaging devices such as VIZZZ (Maahn et al., 2024) and
PIP&2DS (Jaffeux et al., 2022) with being fine-tuned on a small subset of new data, but the

performance on such devices is required to be further evaluated in future studies...



L476-1382

...Expanding the scale of unsupervised pretraining enables the integration of datasets
collected from different imaging probes, including (VIZZZ (Maahn et al., 2024) and
PIP&2DS (Jaffeux et al., 2022)) possible...

Minor comments:
Fixed, thanks

While rerunning the analysis with fewer convolutional layers would be beyond the scope of
this review, it would be valuable if you could elaborate on the choice of network architecture
and its implications. In particular, the use of 49 convolutional layers raises questions about
computational efficiency versus model performance. Could a shallower network potentially
achieve similar results with reduced computational overhead?

The choice of 49 convolutional layers was based on our adoption of the ResNet-50
architecture, which was the common backbone across various computer vision tasks. A
shallower encoder can improve computational efficiency while it may bring several concerns

in the context of our task.

In the upstream network, we require an encoder with sufficient capacity to extract the features
of'ice crystals to perform contrastive learning, especially for those complex shapes. A deep
encoder can extract a hierarchy of features, from basic edges and textures in the shallow
layers to complex shape patterns in deeper layers (Zeiler and Fergus, 2014). Therefore, a
shallower ResNet may not be sufficient for the upstream network to extract the detailed
information of ice crystals such as the complicated structures of aged particles or aggregates.
We now add the above argument as a background information in the introduction section.

L182-L185

...A deep network can extract a hierarchy of features, from basic edges and textures in the
shallow layers to complex shape patterns in deeper layers (Zeiler and Fergus, 2014). In our
task of learning the features of ice crystals, it is necessary to a sufficiently deep network to
extract the detailed information such as the complicated structures of aged particles or

aggregates. ..

Since the downstream network will directly use the encoder transferred from the upstream
network, the architecture should keep the same as the encoder in the upstream network.

In addition, as shown in the Appendix B, despite using the ResNet-50 architecture, the
computational overhead for unsupervised pre-training remains practical and efficient. The
supervised fine-tuning process also demonstrates reasonable computational demands,

particularly when working with smaller subsets of around 2048 samples

However, it is not necessary to conduct experiments with different depth of encoder. The
choice of 49 convolutional layers in our implementation builds upon extensive prior research



on different visual tasks, demonstrating the effectiveness of ResNet50. In fact, the ResNet
paper (He et al., 2016) had shown that ResNet-50, despite its greater depth, maintains
comparable computational efficiency to the shallower ResNet-34 architecture. Specifically,
ResNet-50 requires 3.8 GFLOPs compared to ResNet-34's 3.6 GFLOPs, while achieving a
significant 3% reduction in error rate on ImageNet classification. We add a description of the
effectiveness of ResNet50 in the manuscript.

L183-L185
...which was proved more efficient and effective than other variations of ResNet (He et al.,
2016)...
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