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Abstract. This study investigates the relationship between lidar-measured intensive optical properties of Saharan dust and

simulated hematite content, using data collected during the Joint Aeolus Tropical Atlantic Campaign (JATAC) in 2021 and

2022. Measurements were taken in Mindelo, São Vicente, Cabo Verde. The study aims to determine how variations in hematite

content influence the intensive optical properties of dust particles, particularly in the ultraviolet-visible (UV-VIS) spectrum.

Given the well-documented impact of hematite on the extinction properties of dust, especially absorption in the UV-VIS range,5

our hypothesis is that these effects will be detectable in lidar measurements. Specifically, this study focuses on the lidar ratio,

particle depolarization ratio and backscatter- and extinction-related Ångström exponents at 355 nm and 532 nm wavelengths.

By analyzing dust plume cases separately regarding their size differences, the strongest positive correlation was identified

between the backscatter-related Ångström exponent and hematite fraction (r
::
R2

:
= 0.87, p=0.02

::::
0.63). These findings contribute

to improving the representation of dust in atmospheric models and refining calculations of its direct radiative effect, which10

often overlook the variability in mineralogical composition in their dust descriptions.

1 Introduction

Mineral dust aerosols are present all around the world. They contribute significantly to the global and regional aerosol loading

(Weinzierl et al., 2017), and correspond to a big part of the atmospheric aerosol burden by mass (Kok et al., 2017). Specifically,

the Sahara Desert and the Sahel contributes around 50% of the global dust emissions and mass loading (Kok et al., 2021).15

During transport, dust interacts with the atmosphere in a variety of ways. It modifies the energy balance of Earth through

multiple mechanisms, each producing a radiative effect. These impacts can be instantaneous, such as dust scattering and

absorption radiation, or may take time to adjust, such as dust altering cloud covers (Boucher et al., 2013). The immediate

radiation interactions are well studied; it is known that dust absorbs and scatters solar shortwave and terrestrial longwave

radiation depending on its composition (Kok et al., 2017). These interactions have the potential to modify the atmospheric20

radiation balance from meso- to macro-scale (Kok et al., 2023; Mahowald et al., 2010; Li et al., 2024). However, the magnitude
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and sign of this dust radiative effect is still uncertain (Highwood and Ryder, 2014; Kok et al., 2017), one of the major sources

of this uncertainty is insufficient knowledge regarding dust absorption properties (Balkanski et al., 2007; Di Biagio et al.,

2020; Go et al., 2022). Since dust aerosols are a complex assemblage of various minerals with their distinct physicochemical

properties (Formenti et al., 2011), differences in their atmospheric radiative impact will arise as a consequence of distinct25

mineralogical content.

In order to predict and model the direct radiative effect of mineral dust, vertical profiles of its optical properties are part

of the basic necessary input. Among these, the profile of the extinction-to-backscatter ratio, known as the lidar ratio (S),

is particularly critical (Veselovskii et al., 2020). The lidar ratio, being an intensive optical property (independent of aerosol

quantity), is commonly used to characterize mineral dust. However, it has a complex dependency to
::
on

:
three major parameters:30

size, shape and composition (Wandinger et al., 2023). Several studies have aligned differences in dust optical properties to

distinct mineralogical content according to source regions (Di Biagio et al., 2017, 2019; Lafon et al., 2004; Sokolik and Toon,

1999; Wagner et al., 2012). Some studies have specifically linked the changes in the
::
of S to different source regions (Esselborn

et al., 2009) and even further to the changes that these differences cause on the dust complex refractive index (CRI) (Go

et al., 2022; Schuster et al., 2012; Veselovskii et al., 2020). Specifically, when iron oxides are present in dust particles, the35

imaginary part of the CRI changes across the radiation spectrum, with an increase in the UV-VIS range. Consequently, they

are considered as effective absorbers of the shortwave radiation (Di Biagio et al., 2019; Moosmüller et al., 2012; Sokolik

et al., 1993; Sokolik and Toon, 1996; Wagner et al., 2012; Zhang et al., 2024). However,
::::::::
Moreover,

::::::::
variations

::
of

:::
the

:::::::::
imaginary

:::
part

:::
of

:::
the

::::
CRI

:::
are

::::::
linked

::
to

:::::::
changes

::
of
:::::::::::::

backscattering
::::::::
properties

:::
of

:::::::
aerosols

::
in
::::

the
:::::::
UV-VIS

::::
part

::
of

:::
the

:::::::
spectra,

:::::
even

:::
for

:::::
minor

::::::::
variations

:::
on

:::
the

:::::
order

:::
of

:::::
10−3

:::::::::::::::::::::::::::::::::::::::::
(De Leeuw and Lamberts, 1987; Miffre et al., 2020

::
).

:::::
These

:::::::::
variations

:::
are

:::::::::
consistent40

::::
with

:::
the

:::::::
changes

::
in

:::
the

:::::::::
imaginary

::::
part

::
of

:::
the

::::
CRI

::::::::
observed

:::
by

:::::::::::::::::::
Di Biagio et al. (2019),

::::::
which

::::
have

::::::
shown

:::
to

::::::::
influence

:::
the

:::::::::::::
single-scattering

::::::
albedo

::::::
(SSA)

::
of

::::
dust.

::::::::::
Specifically,

::
at
::
a
:::::::::
wavelength

:::
of

::::::
370 nm,

:::
an

:::::::
increase

::
of

:::
the

:::::::::
imaginary

:::
part

:::::
from

::::::
0.0016

::
to

::::::
0.0048

:::::
results

::
in

::
a

:::::::
decrease

::
in

::::
SSA

::::
from

::::
0.95

::
to
:::::
0.75.

:::::
These

:::::::
changes

:::
are

::::::
further

:::::
linked

::
to
:::::::::
variations

::
in

:::
the

:::::::
hematite

:::::::
fraction

::
of

::::
0.5%

:::::::::::::::::::
(Di Biagio et al., 2019

:
).

::::::::::
Nonetheless,

:
most characterizations of dust based on lidar measured optical properties treat it as homogeneous, giving way45

to unique wavelength dependent lidar ratio values that indicate Saharan "pure dust". (Haarig et al., 2017, 2022; Groß et al.,

2011, 2015; Müller et al., 2013; Schuster et al., 2012; Tesche et al., 2009a, 2011). These studies specifically suggests that

the lidar ratio of dust shows
:::::::
intensive

::::::
optical

:::::::::
properties

::
of

::::
dust

:::::
show no clear regional spectral dependency, despite observed

regional spectral variations have been linked to changes in the CRI
:::
CR,

::::::::
specially

:::
for

::
the

:::::
lidar

::::
ratio

:::
and

:::
the

::::::::::::::::
backscatter-related

::::::::
Ångström

::::::::
exponent (Schuster et al., 2012; Veselovskii et al., 2020). Furthermore, a

:::
The

:
sensitivity study by Veselovskii et al.50

(2020) demonstrates the impact of changes in
:
of

:
the imaginary part of the CRI, due to differences in iron oxide

:::::::
different

:::
iron

:::::
oxide

:::::::
contents

:
in Saharan dust, on the backscatter-related Ångström exponent in

::
for

:
the UV-VIS wavelengths. This rela-

tionship is further explored in the laboratory studies by Miffre et al. (2020, 2023), which included particle shape and reveal

:::::::
revealed the non-linearity of the three key physical parameters, size, shape, and composition, affecting the intensive optical

properties of dust.
:::::::::
Specifically

::::
they

:::::::::
measured

::::::::
significant

:::::::
impacts

::
of

:::
the

:::::::::
variations

::
in

:::
the

:::::::
complex

::::::::
refractive

:::::
index

:::
for

::::
both

:::
the55

:::::::::::::::
backscatter-related

:::::::::
Ångström

::::::::
exponents

::::
and

::
the

:::::::
particle

::::::::::::
depolarization

::::
ratio

:::
for

:::
the

:::::::
UV-VIS

::::::::::
wavelength

:::::
range.

:
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However, several limitations must be considered. Miffre et al. (2020, 2023) conducted their studies in a laboratory setting,

which findings may not directly translate to atmospheric conditions, as other atmospheric constituents can have an impact on

the measurements. In Veselovskii et al. (2020)’s study, measurements were taken near to an active dust-emitting area, making

the presence of larger particles highly likely. Since the lidar ratio is
:::
For

:::
the

:::::::
intensive

::::::
optical

:::::::::
properties

:::::
where

:::
an

::::::
impact

::
of

:::
the60

:::::::
complex

::::::::
refractive

:::::
index

:::
has

::::
been

:::::::::::
documented,

::::
both,

:::
the

::::::::::::::::
backscatter-related

::::::::
Ångström

:::::::::
exponents

:::
and

:::
the

::::
lidar

::::
ratio

:::
are

:
partic-

ularly sensitive to changes in particle sizeas .
::::::
Which

::::::
impact

:::
are

:
illustrated by Fig.

:
1
::
in

:::::::::::::::::
Miffre et al. (2020)

:::::::::::::::
backscatter-related

::::::::
Ångström

:::::::::
exponents

:::
and

:::
by

:::
the

::::
Fig. 5 in Wandinger et al. (2023) and Fig. 15 in Zhang et al. (2024) , both particle size

:::
for

:::
the

::::
lidar

::::
ratio.

:::::::
Particle

::::
size,

::::::
shape,

:
and composition influence the measurements, making it challenging to isolate the effects of

each factor. Additionally, the measurements were conducted
::::
lidar

::::::::::::
measurements

:::::::::
conducted

::
by

:::::::::::::::::::::
Veselovskii et al. (2020)

::::
were65

::::
taken

:
during a season well known for increased biomass burning activity, leading to frequent encounters with polluted dust

in the atmosphere. This pollution alters the measured optical properties, particularly in the UV-VIS spectrum (Heinold et al.,

2011; Müller et al., 2009; Tesche et al., 2011), adding another layer of complexity in disentangling compositional effects on

the
::::
both

:::
the

::::::::::::::::
backscatter-related

:::::::::
Ångström

::::::::
exponents

:::
and

:::
the

:
lidar ratio.

The transport of mineral dust from the Sahara Desert towards the Atlantic Ocean is well-documented (Schepanski et al.,70

2009, 2017; Tegen et al., 2013; Wagner et al., 2016). During the northern hemispheric (NH) winter months, polluted dust is

observed at near-surface layers, complicating the distinction between dust and other aerosols, such as biomass burning aerosols,

in
::::
lidar measurements. In contrast, during NH summer months, dust is elevated in the atmosphere (Schepanski et al., 2009).

::::
Dust

:::::::
transport

:::
for

:::
the

:::
NH

:::::::
summer

::::::
months

::
is
:::::
above

:::
the

::::::
marine

::::::::
boundary

:::::
layer,

:::
i.e.,

:::
on

:::
the

:::
free

::::::::::
troposphere

::::::
which

::
in

:::
turn

::::::
means

:::
that

::::
dust

::::::::
transport

::::
from

:::
the

::::::
Sahara

::::::
Desert

:::::::
towards

:::
the

:::::::
Atlantic

::::::
Ocean

::
is

:::::
more

:::::
direct.

:
Lidar measurements taken during this75

time show that the elevated dust layers typically contain lower levels of pollution from other aerosols (Esselborn et al., 2009;

Freudenthaler et al., 2009; Haarig et al., 2017, 2019; Groß et al., 2015; Tesche et al., 2009b). Therefore, this study focuses on

lidar-measured cases from a remote site
:
in
:::::
Cabo

:::::
Verde, to avoid interference from freshly emitted large dust particles, along

the mineral dust transport pathway from the Sahara Desert to the Atlantic Ocean. The
:::::
These

:
lidar measurements were taken

in Mindelo, São Vicente, Cabo Verde (16°52’39.9"N, 24°59’42.3"W) during NH summer months, from June to September of80

2021 and 2022, as part of the Joint Aelous Tropical Atlantic Campaign(s) (JATAC).

In this study ,
:::
This

:::::
study

::::::::::
investigates

:::
the

:::::::
potential

::
to
:::::::

identify
::::
dust

::::::::::
mineralogy

:::::
within

:::::
lidar

::::::::
measured

::::::
optical

:::::::::
properties.

:::
By

::::::::
analyzing

::::
years

:::
of

:::::::::
continuous,

::::
24/7

:::::
lidar

::::::::::::
measurements

::
of

:::::::
multiple

::::::
vertical

::::
dust

:::::::
profiles

:::::
above

:::
the

::::::
marine

::::::::
boundary

:::::
layer, we

aim to explore the relationship between the lidar-measured dust particle’s
:::::::
correlate

:::::
lidar

::::::
derived

:
intensive optical properties

and the modelled
::
of

::::
dust

:::::::
particles

::::
with

::::::::
modeled iron oxide content obtained from an atmospheric model. Given that previous85

studies demonstrated the impact
::::::
ability of iron oxides on the extinction (absorption plus scattering)

::::::::
modifying

:::
the

:::::::::
imaginary

:::
part

::
of

:::
the

:::::
CRI,

:::
and

:::
the

::::::
impact

::
of

::::
that

:::::::
variation

:::
on

::::
dust

:::::::
intensive

::::::
optical

:
properties, particularly in

:::
for the UV-VIS specturm ,

this project
::::::::::::::::::::::::::::::::::::::
(Di Biagio et al., 2019; Miffre et al., 2020, 2023

:
),
::::
this

::::
work

:
hypothesizes that this effect will manifest in the lidar

measured intensive optical properties at 355 nm and 532 nm wavelengths. The aim is to investigate how the iron oxide content,

which varies significantly across the Sahara Desert (Formenti et al., 2011, 2014; Scheuvens et al., 2013), affects dust’s intensive90

optical properties. While mineralogical variations within the Sahara Desert are well-knownand could influence dust optical
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properties, just a few atmospheric models account for mineralogy in their mineral dust descriptions (Chatziparaschos et al.,

2023; Gonçalves Ageitos et al., 2023; Li et al., 2021; Menut et al., 2020; Pérez García-Pando et al., 2016; Perlwitz et al.,

2015a, b; Solomos et al., 2023).

On a previous study, Gómez Maqueo Anaya et al. (2024) introduced the global, GMINER (Nickovic et al., 2012), min-95

eralogical dataset into the emission code of the aerosol-atmosphere model COSMO-MUSCAT. The configuration presented

in that study is what will be used here. GMINER provides spatial distribution of minerals, including iron oxides minerals,

based on the methodology of Claquin et al. (1999). This considers an approximate relation of soil mineral fractions to different

soil types by taking into account the size distribution, the chemistry and the color of the soil according to the FAO74 classi-

fication (FAO-UNESCO, 1974). However, this approach incurs in a handful of misrepresentations when compared to in-situ100

measurements (Li et al., 2024; Gonçalves Ageitos et al., 2023). Despite the limitations, Gonçalves Ageitos et al. (2023) found

that GMINER dataset fairly reproduces iron oxide
::
the

::::::::
hematite

::::
mass

:
content for the Sahara Desert

:::::
region

:::
(see

::::::::
Fig.11(a)

:::::
from

:::::::::::::::::::::::::
Gonçalves Ageitos et al., 2023). In GMINER, iron oxide minerals are grouped under the name hematite, and so, we will use

hematite and iron oxide interchangeably in this paper. Even though, it is noteworthy that the goethite mineral also contains iron

oxide and interacts differently with radiation (Di Biagio et al., 2019; Formenti et al., 2014; Go et al., 2022; Wagner et al., 2012),105

and iron oxides may not always appear as externally mixed aerosols as assumed here (Lafon et al., 2004; Kandler et al., 2009).

This study combines the modelled
:::::::
modeled hematite content with the lidar retrieved

:::::::
intensive

:
optical properties to investigate

potential correlations between them.

This paper has the following structure: The methodology begins with a general description of the COSMO-MUSCAT model

(Sect. 2.1), followed by a general overview of the lidar system, PollyXT (Sect. 2.2). This is succeeded by an explanation of the110

data selection (Sect. 2.3) and a description of the comparisons between lidar and model dust layers (Sect. 2.4). The section

concludes with a brief outline of the POLIPHON method, which converts lidar measurements into dust mass concentrations

(Sect. 2.5). In the results section, a case example is shown in Sect. 3.1 where the vertically resolved optical properties are shown

in Sect. 3.1.1 followed by a comparison of the POLIPHON and COSMO-MUSCAT results in Sect. 3.1.2. All case studies are

then presented and discussed in Sect. 3.2, the intensive optical properties dependency with hematite is further explored in115

Sect. 3.2.1 and a separate analysis of the cases due to their size differences is shown in Sect. 3.2.2. Finally, Sect. 4 provides a

summary of the project
:::::
paper and findings and discusses implications for future work.

2 Methodology

2.1 COSMO-MUSCAT

COSMO-MUSCAT is a mesoscale atmospheric model system integrated by two online coupled models. COSMO, developed120

by the German Weather Service (DWD) is a regional forecast model (Baldauf et al., 2011), while MUSCAT is a chemistry

transport model that calculates the atmospheric advective transport of aerosols driven by the forecast model (Heinold et al.,

2016; Wolke et al., 2012). The meteorological data are updated every 3 hours and the model runs are reinitialized in overlapping

cycles every 48 hours. The use of COSMO-MUSCAT regarding the simulation of mineral dust for the Sahara Desert region
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was been thoroughly validated (Gómez Maqueo Anaya et al., 2024; Heinold et al., 2011; Schepanski et al., 2009, 2016, 2017;125

Tegen et al., 2013). COSMO-MUSCAT is setup for simulating only the transport of Saharan mineral dust including mineralogy

within a domain constrained by the following coordinates: 30.75°W, 38.49°N – 39.32°E, 0.38°S. The horizontal grid spacing is

0.25° (28 km) and the vertical resolution contains 40 levels, with a layer thickness of 20 m
:::::
above

:::
sea

::::
level for the first (bottom)

layer. The thickness of the subsequent vertical layers varies according to pressure levels, varying from 200 m thickness at 1 km

height to 600 m thickness at 4 km height .
:::
and

:
a
:::::::::
maximum

::::::
altitude

:::
of

::::::::
21.75 km.

::::
The

:::::
output

::::::::
variables

:::
are

:::::
given

:::
for

:::::
every

::::
hour130

:::::
inside

::
of

:::
the

:::::::::
simulation

::::
time.

:::::
These

::::::::
temporal

:::
and

::::::
spatial

:::::::::
resolutions

:::::
imply

:
a
::::
very

:::
big

:::::::::
difference

:::::
when

::::::::
compared

::
to

:
a
:::::
fixed

::::
lidar

::::
point

:::::::::::
measurement

::::::
which

::
is

::::
able

::
to

::::::
retrieve

:::::::
aerosol

::::::
signals

::::
with

:
a
:::::::::::
significantly

::::::
higher

::::::
vertical

::::
and

:::::::
temporal

::::::::::
resolutions.

::::
The

::::::::
difference

::
of

:::::
these

:::::::::
resolutions

::::
has

::
to

::
be

:::::
taken

::::
into

:::::::
account

:::::
when

::::::::
analyzing

:::
the

:::::::
results,

:::::::
specially

::::::::::
considering

::::
that

:::
the

::::::
model

::::
gives

:::::::
average

::::
dust

::::
mass

::::::::::::
concentration

:::::
values

:::
for

:::
the

:::::
whole

::::
São

::::::
Vicente

::::::
island.

:

The mineralogy inclusion is done by incorporating the GMINER mineralogical dataset (Nickovic et al., 2012) in the135

parametrization of the mineral dust aerosol atmospheric life cycle which includes: (1) dust emission following Tegen et al.

(2002), (2) aerosol transport (Wolke and Knoth, 2000), and (3) aerosol removal, which includes both dry and wet deposition

(Seinfeld and Pandis, 2016; Zhang et al., 2001; Berge, 1997; Jakobsen et al., 1997). Mineral dust aerosols are transported in

MUSCAT in five size segregated bins
:::::
classes

:
and are considered as passive traces, meaning that there is not chemically aging

or chemical interaction considered in the simulation.140

GMINER follows the Claquin et al. (1999) procedure which extrapolates the mineralogical measurements done for soil

classes (following the FAO74 classification (FAO-UNESCO, 1974)) and combines them in order to establish world wide

mineral fractions with regards with its soil class in two size classes, namely, clay and silt. The approach is extended in order to

consider three new soil types and in particular it extends the hematite fraction to cover both clay and silt sizes. Both extensions

result in differences between -0.0007 to 0.08 in the hematite fraction for the studied domain, where the biggest increment of145

hematite fraction is found in the Sahel following the north-to-south gradient of hematite for the region (Formenti et al., 2014;

Scheuvens et al., 2013).

It is evident nonetheless that the uncertainties in the GMINER mineralogical dataset induce errors in calculating the hematite

fraction per dust layer. From Fig.1(d) in Li et al. (2024), a comparison between mineralogical datasets and measured iron

oxides shows that the Claquin et al. (1999) mineralogical dataset underrepresents
::::
under

:::::::::
represents

:
the mass fraction of iron150

oxides for Northern Africa. However, the GMINER dataset by Nickovic et al. (2012) is based on Claquin et al. (1999), but

specifically expands the distribution of the hematite content in such a way that agrees with measurements in both silt and

clay sizes (Kandler et al., 2009; Wagner et al., 2012). Additionally, the extra soil classifications introduced in GMINER lead

to more realistic results through modelling studies (Scanza et al., 2015; Perlwitz et al., 2015a, b). Furthermore, a modelling

::::::::
modeling study comparing mineralogical datasets with in-situ mineralogical aerosol measurements (Gonçalves Ageitos et al.,155

2023) found that the GMINER dataset better represents the regional variability of emitted iron oxides from North Africa to the

Sahel.

While the GMINER dataset does not distinguish between hematite and goethite content, despite both containing iron oxides,

their CRI differs between each other in the UV-VIS spectral range (Formenti et al., 2014; Go et al., 2022; Wagner et al., 2012).

5



Chamber studies by Wagner et al. (2012) and Di Biagio et al. (2019) found that goethite has a lower absorption potential160

than hematite and is weakly correlated with the imaginary part of the dust CRI. Nonetheless, the modelling
::::::::
modeling study

by Li et al. (2024) found that considering the separation of dust iron oxide content between hematite and goethite does not

significantly alter the global shortwave direct radiative effect. However, since goethite is a big part of the iron oxide content in

West Africa (Formenti et al., 2014; Go et al., 2022) and due to the locality of our study region, the lack of distinction between

hematite and goethite in the GMINER dataset could impact our results, as the absorption capacity may vary depending on165

which iron oxide mineral is present in the atmosphere.

An additional source of error arises from the modelling
::::::::
modeling approach of mimicking the mineralogical soil size distri-

bution to the aerosol size distribution, disregarding that the emission process changes the dust size distribution (Marticorena

and Bergametti, 1995; Kok, 2011; Journet et al., 2014). This change in size distribution from soil to aerosol mineralogy was

specifically observed in the chamber study by Wagner et al. (2012), highlighting the need to incorporate these size distribution170

changes for upcoming modelling
::::::::
modeling efforts. Although some modelling

:::::::
modeling

:
approaches consider these size distri-

bution changes (Li et al., 2024, 2021; Pérez García-Pando et al., 2016; Perlwitz et al., 2015a, b; Scanza et al., 2015), they all

consider the emission parametrization based on Kok (2011)’s brittle fragmentation theory. At present, there is no parametriza-

tion that calculates the emission of specific minerals based on Marticorena and Bergametti (1995)’s emission scheme, which is

the scheme used in COSMO-MUSCAT.175

Additionally to
:::::
Along

::::
with the GMINER mineralogical dataset the following input files are used for dust’s atmospheric life

cycle simulation: dust activation frequency map derived from MSG-SEVIRI IR channels (Schepanski et al., 2007), soil vegeta-

tion from Copernicus Global Land Service (Fuster et al., 2020), soil moisture from the ERA5 land hourly data (Muñoz Sabater

and Copernicus Climate Change Service, 2019), aerodynamic roughness length data set (Prigent et al., 2005), and soil particle

size distribution obtained from the SoilGrids database (Poggio et al., 2021). More information regarding the model setup can180

be found at Gómez Maqueo Anaya et al. (2024).

For this study, the output used from the model are the vertical profiles of total and size segregated dust mass concentrations

and hematite mass concentrations, from which the hematite fraction is obtained by dividing the hematite mass concentration

by the total dust mass concentration. The model results are all from above the grid cell corresponding to São Vicente, Cabo

Verde for the simulation periods of 8 August - 30 September 2021 and 1
:
2
:
June - 31 July 2022.185

2.2 PollyXT

The lidar data for this study were obtained from an automated multiwavelength Raman polarization and water-vapor lidar,

called PollyXT (POrtabLe Lidar sYstem, the XT superscript refers to the updated version) (Althausen et al., 2009; Engelmann

et al., 2016). It is part of the PollyNET, which is a network of Polly systems around the world (Baars et al., 2016). This specific

PollyXT provides continuous measurements since June 2021 at the OSCM (Ocean Science Center Mindelo) located at Mindelo,190

São Vicente, Cabo Verde (16°52’39.9"N, 24°59’42.3"W). The produced data from this lidar system has been used for aerosol

characterization (Gebauer et al., 2024) and validation purposes (Baars et al., 2023; Gómez Maqueo Anaya et al., 2024). The

PollyXT systems emit linearly polarized light pulses at three wavelengths
::
the

:::::
three

:::::::::::
wavelengths

::
of

:
355, 532, and 1064 nm
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(covering the UV-IR part of the spectrum); the receiver of the system has fifteen channels, three are used for measuring the

backscatter light at the emitted wavelengths, three channels detect cross-polarized light at 355, 532, and 1064 nm wavelengths.195

The additional four receiver channels for the
::
at 387, 407, 607, and 1058 nm wavelengths are used to detect Raman scattering

at nighttime. Signals are measured with a vertical resolution of 7.5 m (1 bin) and a temporal resolution of 30 s. The lidar

observations presented here were manually analyzed, a vertical smoothing is necessary to reduce noise in the measurements

and facilitate their interpretation. However, the vertical smoothing has been always applied in such a manner that the retrieved

values are representing particle values inside the investigated aerosol layer and are not depending on values from outside the200

aerosol layer. A thorough system description can be found in Gebauer et al. (2024).

The vertical resolved aerosol optical measurements resulting from the lidar signals can be categorized in two general

groups
::::
into

:::
two

:::::
main

::::::::
categories: extensive properties (dependent on the aerosol amount) and intensive properties (independent

of the aerosol amount). The measured extensive optical propertiesare
::
and

::::::::
intensive

::::::
optical

:::::::::
properties.

::::::::
Extensive

::::::
optical

:::::::::
properties,

:::::
which

::::::
depend

:::
on

::::::
aerosol

::::::::::::
concentration,

::::::
include

:
the particle extinction coefficients (absorption plus scattering)

:::
and

:::
the

:::::::
particle205

::::::::::::
backscattering

:::::::::
coefficients

:
at 355, 532, and 1064 nm wavelengths (α355, α532) and backscattering coefficients at 355, 532,

and 1064 nm wavelengths (
:
,
:::::
α1064 :::

and
:
β355, β532, β1064). The lidar retrieved intensive optical propertiesare

::::::::
Intensive

::::::
optical

::::::::
properties,

::::::
which

:::
are

:::::::::::
independent

::
of

:::::::
aerosol

::::::::::::
concentration,

::::::
include

:
the particle linear depolarization ratios at 355, 532 nm

:::
and

:::::::
1064 nm

:
wavelengths (δ355, δ532, δ1064), the backscatter-related

::::::::::::::::::::::
extinction-to-backscattering

:::::
ratio,

:::
or

::::
lidar

:::::
ratio,

:::
for

:::
the

:::::::
UV-VIS

::::::::::
wavelengths

:::::
(S355,

:::::
S532)

::::
and

:
a
:::::::::
possibility

::
for

::::::::
obtaining

:::
the

:::
IR

::::
lidar

::::
ratio

:::::::
(S1064).

::::
The

::::::::
following Ångström exponents210

::
are

:::::::::
available,

::::::::::::::::
backscatter-related,

::::::::::::::
extinction-related

::::
and

::::
lidar

::::::::::
ratio-related

:
for the 355 to 532 nm wavelengths and for the 532

to 1064 nm wavelengths
:::::::::
wavelength

:::::
ranges

:
(ÅE(β)355/532, ÅE(β)532/1064), the extinction-related Ångström exponents for the

355 to 532 nm wavelengths (
:
, ÅE(α)355/532), and the extinction to backscattering ratio, or lidar ratio, for the 355 and 532 nm

wavelengths (S355, S532). The uncertainties related to
:
,
:::::::::::::
ÅE(α)532/1064,

::::
and

::::::::::::
ÅE(S)355/532,

::::::::::::::
ÅE(S)532/1064).

::::::::::::
Uncertainties

::::::::
associated

::::
with

:::::
most

::
of these measurements can be found in Table 1 in Hofer et al. (2017), while detailed discussions regarding215

them can be found
:::
and

::::::
further

::::::::
discussed

:
in Freudenthaler et al. (2009); Baars et al. (2012, 2016) and Engelmann et al. (2016).

:::::::
Intensive

::::::
optical

:::::::::
properties

:::::::::
commonly

:::::
used

:::
for

::::
dust

:::::::::::::
characterization

::
as

::::
the

:::::
single

::::::::
scattering

::::::
albedo

:::
or

:::
the

:::::
mass

:::::::::
absorption

::::::::
coefficient

::::::::::::::::::::::::::::::::::
(Di Biagio et al., 2019; Zhang et al., 2024

:
)
::::::
cannot

::
be

:::::::
directly

:::::::
obtained

:::::
from

::::
lidar

::::::::::::
measurements.

:

The conversion of received signals into optical measurements can generally be done by following one of two methods: the

Klett method (Klett, 1985) or a combined Raman elastic-backscatter approach. The Klett method requires an initial estimate of220

the lidar ratio for the retrievals. In contrast, the Raman method does not require this initial guess, as it allows the independent

determinations of the extinction and the backscatter coefficients (Ansmann et al., 1992). Since our focus is on independent

lidar ratio measurements, we use only the Raman methodology. However, Raman lidar applications are limited to nighttime

measurements because of the necessary inelastic-backscattering signal that can only be detected when the strong daylight

background is not there (Ansmann et al., 1992).225

Intensive optical properties are used
::::::::
employed

:
for aerosol characterization. Lidar ratios and particle linear depolarization

ratios are dependent on particle size, shape, and composition (Hofer et al., 2020; Huang et al., 2023; Miffre et al., 2023; Saito

and Yang, 2021; Schuster et al., 2012; Wandinger et al., 2023; Veselovskii et al., 2020), while
:
.
:::::
While the Ångström exponent is

7



mostly
::::::::
exponents

:::
are

::::::
initially

:::::::
believed

::
to
:::
be

:::::::
primarly related to the particle size (Ångström, 1929)

:
,
::::::::
laboratory

::::
and

:::::::::::
observational

::::::
studies

::::::
suggest

::
a
::::::::::

substantial
::::::::::
dependence

::
of

::::
the

::::::::::::::::
backscatter-related

::::::::
Ångström

:::::::::
exponent

::
on

::::::::::::
composition,

:::::::::
especially

:::::
when230

::::::
changes

::
in
:::::::::::
composition

:::
lead

::
to

:::::::::
variations

:
in
:::
the

:::::::::
imaginary

:::
part

::
of

:::
the

::::
CRI

::
at

:::::::
UV-VIS

::::::::::
wavelengths

:::::::::::::::::::::::::::::::::::
(Miffre et al., 2020; Veselovskii et al., 2020

:
). Under varying conditions, changes in these dependencies affect the optical properties differently, portraying nonlinear rela-

tionships between particle physical characteristics and their optical properties.

2.3 Data selection

The selection of aerosol layers intended to study the relation of lidar-measured properties and modelled
:::::::
modeled

:
hematite235

content focuses on identifying cases where mineral dust was the dominant aerosol. This selection process involves three main,

consecutive steps: (1) utilizing AERONET (Aerosol Robotic Network; Holben et al., 1998) measurements to identify potential

dust layers, (2) analyzing available PollyXT measurements to confirm these dust layers, and (3) reviewing COSMO-MUSCAT

simulation output for the identified cases. An overview of this selection process is illustrated by Fig. 1.

The selection process is constrained by two specific time periods from NH summer measurements campaigns centered240

around Cabo Verde. The JATAC campaigns, which took place from June to September in both 2021 and 2022, used ground-

based, including the PollyXT, aircraft, and balloon measurements to validate data provided by ESA’s Aeolous satellite. We

decided to focus on these campaigns periods for two main reasons: First, in the spirit of the campaigns’ objectives, the data

was constantly quality controlled and cross-checked between measurement devices. Second, the summer months are ideal due

to the seasonality of Saharan dust transport towards the Atlantic Ocean. During these months, dust travels the highest in the245

atmosphere (Schepanski et al., 2009) with less interference from other aerosols. Given the data availability of the PollyXT lidar,

we narrowed our focus to the following periods for identifying dust-laden aerosol layers: August - September 2021 and June -

July 2022.

Within the selected time frame, the next step involved identifying days with dust-dominated aerosol layers. As a first ap-

proximation, the total column optical measurements recorded by the AERONET sun-photometer in Mindelo, Cabo Verde,250

were used. The AERONET level 2.0 (quality-assured and cloud-screened) dataset was then filtered based on the following

"pure dust" criteria: Aerosol Optical Thickness (AOT) for the 550 nm wavelength
::::::::
(AOT550)

:
> 0.1 and

::
the

::::::::::::::::
exctinction-related

Ångström exponent (ÅE) for the 440-870 nm wavelengths
:::::::::::::
(ÅE(α)440/870) < 0.3 (Ansmann et al., 2019). As a result of the

filtering process, only the dates meeting the "pure dust" criteria remained for the subsequent steps of the selection process.

The second step of the selection process involves
:::::::
involved analyzing PollyXT data. The initial task is

:::
was to verify whether the255

dates that passed the AERONET related filters include
::::::
included

:
nighttime lidar measurements. The next step is

:::
was

:
the manual

cloud-screening procedure, as the presence of clouds can influence all particle optical propertiesretrievals. If retrievals can be

done without clouds interferenceor if there are specific retrieval times where the clouds impact can be minimized
::::::::
conducted

::::::
without

:::::
cloud

::::::::::
interference,

:::
or

:
if
:::::::
specific

::::
time

::::::
periods

::::::::
minimize

:::
the

::::::
impact

::
of

::::::
clouds, the selection process continues

::::::::
proceeded

with those suitable times for dust retrievals.
:::::
When

:::::
clouds

:::
are

::::::
located

::::::
below

:::
the

::::::
aerosol

:::::
layer,

::::
they

:::::::
interfere

::::
with

::::
lidar

::::::::
retrievals260

:::::::
targeting

:::
the

:::::::
aerosol

:::::
plume

::::::
above.

:::::
This

::
is

:::::::
because

:::::::
multiple

::::::::
scattering

::::::
within

::::::
clouds

::::::::
prevents

:::::::
accurate

:::::::::::
measurement

:::
of

:::
the

::::::
aerosol

::::::
plume.

::::::::::
Conversely,

:
if
::::::
clouds

:::
are

:::::
above

:::
the

::::::
aerosol

:::::
layer,

::::
they

:::
do

:::
not

:::::::::
necessarily

::::::::::
contaminate

:::::::
aerosol

::::::
signals,

::::::::
provided

8



Figure 1. Flow chart of the case selection process. Dust layers are selected through three main steps, the first step is depicted with green

colors and relates to date filtering through AERONET measurements and the so-called "pure dust" optical measurements values (Ansmann

et al., 2019). The second step is through PollyXT measurements, shown in the figure in orange colors. The first two filters surround the data

availability and if clouds are interfering with the measurements while the last filter regards the lidar retrieved optical measurements (Tesche

et al., 2011). The third step is pictured in violet colors and it is related to the simulation results from COSMO-MUSCAT, the questions to

answer in this section are related to if the dust layer is simulated in a similar way to the lidar vertical structure. Acronyms: Aerosol Optical

Thickness
:
at

::::::
550 nm

::::::::
wavelength

:
(AOT

::550),
::::::::::::
extinction-related

:
Ångström exponent

:::
for

::
the

:::::::::
440-870 nm

::::::::::
wavelengths (ÅE

::::::::
(α)440/870), particle

linear depolarization ratio at the 355 nm wavelength (δ355), particle linear depolarization ratio at the 532 nm wavelength (δ532), backscattering

related
::::::::::::::
backscatter-related Ångström exponent

:::::::
exponents

:
for the 355-532 nm wavelengths (ÅE(β)355/532), and extinction-related Ångström

exponent for the 355-532 nm wavelengths (ÅE(α)355/532).
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::::
there

::
is

::::::::
sufficient

::::::::
separation

::::::::
between

:::
the

:::::
clouds

::::
and

:::
the

::::::
aerosol

:::::
layer.

::::
This

::::::::
separation

::::::
needs

::
to

::
be

:::::::::
sufficiently

:::::::
distinct

::
to

:::::
allow

::
for

::::::
Raman

::::::::::::::::
elastic-backscatter

::::::::
retrievals

::::
using

::
a
::::::::
reference

:::::
height

::
in

::::
that

::::::::::
intermediate

::::::
space.

From this point forward, the selection of "pure dust" days and the nighttime hours from which the
::::::
vertical

:
optical properties265

of dust are vertically retrieved from the PollyXT measurements has been made. Some "pure dust" days were found to have

two distinct dust aerosol layers. Each layer is considered as an individual case study because such layering could be due to

atmospheric inversions or to dust originating from different source regions with their own wind pattern, potentially affecting

the modelled
:::::::
modeled hematite content between layers. The subsequent step involves selecting dust layers that meet the "pure

dust" criteria based on lidar optical measurements, excluding considerations for lidar ratios. The criteria, based on Tesche et al.270

(2011), are as follows: δ355 ≃ 0.26 ± 0.06, δ532 ≃ 0.31 ± 0.1, ÅE((β)355/532 ⩽ 0.16 ± 0.45, ÅE((α)355/532 ⩽ 0.22 ± 0.27 .

As illustrated in step 5 of
:
as

:::::::::
illustrated

::
in

:::
the

:::
last

:::::::::
subsection

::
of

:::
the

:::::::
PollyXT

::::
step

::
in Fig. 1.

The third step of the selection process takes into account the COSMO-MUSCAT modelling results. The first criterion is

whether the model simulates the dust layer(s) for the same date and time where the dust layer(s) were measured
:::::::
observed

:
by

the PollyXT. If this criterion is met, the next step is to assess if the model reproduces a similar vertical structure. A dust layer275

is selected for the
::
this

:
study if the model both simulates the dust layer(s) at the corresponding dates and times and simulates a

comparable vertical structure. Between 19-08-2021 and 08-07-2022, 22 dust layer (s) cases passed the data selection filters.

2.4 Layer comparison

The comparison between the vertically resolved optical property, the lidar ratio, at both 355 nm and 532 nm wavelengths and

the modelled
:::::::
modeled hematite fraction is shown

::::::::
illustrated

:
in Fig. 2 for a hypothetical case based on lidar and model data. This280

comparison is done for each dust layer, where a mean value is calculated based on their own vertical structure. Specifically,

the optical properties means are calculated by taking into account the thicknesses of each dust layer as retrieved by PollyXT,

while the hematite fraction means are calculated based on the thickness of each COSMO-MUSCAT simulated dust layer.

For instance, for the two dust layers sketched in the Fig. 2, one mean lidar ratio value at 355 nm and another at 532 nm are

calculated for the dust layer in between 1.5 and 2.8
:::
1.4

:::
and

::
3 km. These values are then compared to the mean hematite fraction285

(hematite mass concentration divided by the total dust mass concentration) for the simulated dust layer in between 1 and 3
:::
0.9

:::
and

:::
2.8 km. For the lofted layer, the lidar ratio means are computed for the range between 3.6

:::
3.7 and 5.2 km and are compared

with the modelled
:::::::
modeled mean hematite fraction in the range of 3 to 5.3 km.

2.5 POLIPHON

The two-step POLIPHON method (Mamouri and Ansmann, 2014, 2017) translates lidar-retrieved optical properties into mass290

concentrations of coarse dust (particle diameter (D) > 1 µm), fine dust (D < 1 µm), and non-dust
::::::::::::
concentrations. This sepa-

ration is achieved using the measured particle linear depolarization ratio and involves three main steps, considering the
::
by

:::::::
utilizing

:::
the

::::
lidar

::::::::
retrieved

:
δ values for the separations

:::
and

::
β

:::::
values, AERONET-derived conversion factors, and assumed

:::::
values

:::
for S and densities are based on both Ansmann et al. (2019) and Mamouri and Ansmann (2017): Separation of particle

backscatter coefficient: The initial step involves separating the particle backscatter coefficient based on
::::::
density.

::::
The

:::::::
method295
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Figure 2. Sketch illustrating how the dust layers are compared between the PollyXT results and the COSMO-MUSCAT simulated dust layers.

On the left hand side the lidar ratio vertical structure is sketched for the 355 nm (blue) and 532 nm (green) wavelengths. On the right hand side,

the vertical structure of the modelled
::::::
modeled

:
total dust mass concentration (brown) and hematite mass concentration (purple) are sketched.

The boxes represent the domain of one dust layer and the arrows represent relation between the measurements. The sketch represents dust

related vertically distributed properties above Mindelo, São Vicente, Cabo Verde.

:::::::
involves the particle linear depolarization ratio. This step

::::::::
separation

::
of

:::
the

::::::::
measured

::
β
::::::
values

:::::
using

:::
the

:::::::
retrieved

::
δ
::::::
values

::
to

:::::::
estimate

::
α

:::::
values

::::::
based

::
on

::::::::
assumed

::
S

::::::
values,

:::
and

::::::::::
afterwards,

:::::::::
converting

:::
the

:::::::::
calculated

:::::::
particle

::::::::
extinction

::::::::::
coefficients

::::
into

::::
mass

::::::::::::
concentrations

:::
by

:::::::
applying

:::
the

::::::::::::::::
AERONET-derived

::::::::::
conversion

::::::
factors

:::
and

::
an

::::::::
assumed

:::::::
densities

::::
(ρ).

:::
The

:::::::
specific

::::::
values

::::
used

:::
for

:::
the

::::
dust

:::::
layers

::::::::
analyzed

::
in

:::
this

:::::
study

:::
are

::::::::
provided

::
in

:::::
Table

::
1.

::::
The

:::::::
two-step

:::::::::::
POLIPHON

::::::::
processes

:::
are

:::::::::
described

::
in

::::
detail

::::::
below.

:
300

:::::::::
Separation

:::
of

:::::::
particle

::::::::::
backscatter

::::::::::
coefficient:

:::
this

:::::::::
procedure consists of two processes: first.

:::::::
Initially, a broad separation

between coarse dust and
::
the

:::::::
mixture

:::
of

:::
fine

::::
dust

::::
and

::::::::
non-dust

:::::::
aerosols

::
is

:::::::::
performed

:::::
based

:::
on

::
δ

:::::
values

:::::
(Fig.

::::
3b).

:::::::
Defined

:::::::
threshold

::::::
values

::
of

::
δ

:::
are

::::::::
compared

::
to

:::
the

::::
lidar

::::::::
retrieved

:
δ
::::::
values

::
to

:::::::
achieve

:::
this

:::::::::
separation.

::::
For

:::
this

::::
first

::::
step,

:::
the

:
δ
::::::
values

:::
for

:::::
coarse

:::::
dust,

::
as

:::::
listed

::
in

:::::
Table

::
1,

::
is

:::::::
applied,

:::::::
together

::::
with

:::
the

:
fine dust is performed, and then the fine dustfraction is further

divided into fine dust and non-dust fractions. Calculation of particle extinction coefficient: In the second step, an extinction305

coefficient is derived from the separated particle backscatter coefficients. This requires estimating the lidar ratio
::::::
mixture

::
δ

11



:::::
value.

::
In

:::
this

::::::
study,

:
a
::
δ

::::
value

:::
of

::::
0.12

::
is

::::
used

:::
for

:::
the

::::::
mixture

:::
of

:::
fine

::::
dust

:::
and

::::::::
non-dust,

:::
as

:::
the

:::::::
analyzed

::::
dust

:::::
layers

:::
are

:::::::
located

:::::
above

:::
the

::::::
marine

::::::::
boundary

:::::
layer,

:::::
where

:::::::
non-dust

:::::::
aerosols

:::
are

::::::::
primarily

::
of

::
a
:::::::::
continental

::::::
nature

:::::::::::::::::::::::::
(Mamouri and Ansmann, 2017

:
).
:

:::
The

::::::
second

:::::::
process

::::::::
separates

::::
fine

::::
dust

::::
from

::::::::
non-dust

:::::::
aerosols

:::::
using

::
δ
::::::::
threshold

::::::
values

::
fo

:::::
these

:::::::::
categories,

:::
as

:::::
shown

:::
in310

::::
Table

::
1.
::::::::::

Ultimately,
:::
the

::::::
values

::
of

::
β

:::
for

:::::
coarse

:::::
dust,

:::
fine

:::::
dust,

:::
and

::::::::
non-dust

:::
are

::::::::::
determined.

::::
Then

::
δ
::::::::
threshold

::::::
values

::::
used

:::
for

::
the

:::::::::
separation

:::
of

:::::::
non-dust

::::
and

:::
dust

:::::::::
categories

:::
are

:::::::
derived

::::
from

::::::::
extensive

::::
lidar

::::::::::::
measurements

::::::::::::::::::::::::::
(Mamouri and Ansmann, 2014

:
),
:::::
while

::::
the

:::::
coarse

::::
and

::::
fine

::::
dust

::
δ

:::::
values

::::
are

:::::::
obtained

:::::
from

:::::::::
laboratory

::::::
studies

::::::::::::::::
(Sakai et al., 2010

:::
and

:::::::::::::::::
Järvinen et al., 2016

:
,
::::::::::::::
correspondingly).

::::::::::::
Additionally,

:::
the

::
δ

:::::
values

::::::::
assigned

::
to
::::

the
:::
fine

::::
dust

::::
and

::::::::
non-dust

:::::::
mixture

::::::
depend

:::
on

:::
the

::::::
nature

:::
of

:::
the

:::::::
non-dust

:::::::
aerosol

:::
and

::
is
::::::::::

determined
:::::::::

iteratively
:::
by

:::::::::
comparing

::::
the

::::::
results

::
it

:::::
yields

::::
with

:::::
lidar

:::::::::::::
measurements,

::
as

:::::::
detailed

:::
in315

::::::::::::::::::::::::::::::
Mamouri and Ansmann (2014, 2017).

:

::::::::::
Calculation

::
of

:::::::
particle

:::::::::
extinction

::::::::::
coefficient:

:::
once

:::
the

::::::::::
backscatter

::::::::::
coefficients

:::
are

::::::::
separated,

::
α

::
is

:::::::::
calculated

::
by

::::::::
applying

:::::::::
appropriate

::::
lidar

::::
ratio

::::::
values

:
for each fraction, with the .

::::
The

:
same S value used

:::::
values

:::
are

:::::::
assumed

:
for dust-related fractions

. The extinction coefficient (α) is calculated by multiplying the segregated backscatter coefficients (β) by their corresponding

lidar ratios. The lidar ratios are estimated
:::::
while

:::
the

:::::::
non-dust

:::::
value

:::
is

:::::
based

:::
on

:::
the

:::::::::
likelyhood

::
of

::::
the

:::::::
aerosols

::::::
origin.

::::
The320

:::::::
estimates

::::
are based on regional data and the probable origins of non-dust aerosols (e.g., marine or continental). Conversion

to mass concentrations: The final step involves converting the calculated extinction coefficients (α)
::
are

:::::::
derived

:::::
from

:::
an

:::::::
extensive

:::::::::
collection

::
of

:::::::
previous

::::
lidar

:::::::::::
observations

::::::::::::::::::::::::::::::
(Mamouri and Ansmann, 2014, 2017

:
).

:::
The

:::::::::
extinction

:::::::::
coefficient

:
is
::::::::
obtained

::
by

::::::::::
multiplying

:::
the

::::::::
separated

::
β

::
by

::::
their

::::::::::::
corresponding

::
S

::::::
values.

:

::::::::::
Conversion

::
to

:::::
mass

::::::::::::::
concentrations:

::
the

:::::::::
extinction

:::::::::
coefficients

::::
are

::::
then

::::::::
converted

:
into volume concentrations and then325

::::
using

:::::::
specific

:::::::::
conversion

:::::::
factors,

::::::::
followed

::
by

::::
the

::::::::::::
transformation

:
into mass concentrations using

:::::::
through

:::
the

:::::::::
application

:::
of

appropriate density values. Conversion factors for this transformation, determined
::::
These

::::::::::
conversion

::::::
factors

:::
are

::::::
derived

:
from

AERONET aerosol climatologies(Mamouri and Ansmann, 2014, 2017; Ansmann et al., 2019), are applied.

Several assumptions are included in the POLIPHON method , most notably the homogenization
::::
while

:::
the

:::::::
assumed

::::::::
densities

::
are

:::::
based

:::
on

:::::::
previous

::::::
aerosol

::::::
studies

:::
and

:::
the

::::::::::
assumption

::
of

:::::::::::
homogeneity

:::::
within

::::
dust

:::
and

:::::::
non-dust

:::::::::
categories

:::::::::::::::::::::::
(Ansmann et al., 2012, 2019330

:
).
:

:::
The

::::::::::
POLIPHON

:::::::
method

::::::::::
incorporates

::::::
several

:::::::::::
assumptions,

:::
the

::::
most

::::::
notable

:::::
being

:::
the

:::::::::
uniformity of optical properties values

across all mineral dust particles, which disregards the
::::::::::
disregarding

:
variations due to different dust source regions. However,

a significant advantages of this method
:::::::::
advantage

::
of

:::
this

::::::::
approach

:
is that it does not require a dust particle shape model in

the data analysissince it relies
::
for

::::
data

::::::::
analysis,

::::::
relying

:
solely on the measured optical properties. Additionally, this method335

:::::::::::
Nevertheless,

:::::
since

:::
the

::::::
method

::::::::
involves

:
a
:::::::::
conversion

::::::
factor

:::::
based

:::
on

::::::::::
AERONET

::::::::::::
climatologies,

:
it
::
is
:::::::::
important

::
to

::::
note

::::
that

::
in

:::::
order

:::
for

::::::::::
AERONET

::
to

::::::
derive

::::::
aerosol

:::::
mass

::::::::
fractions,

::
a

:::::::
spheroid

::::::
shape

:::::::::
assumption

:::
is

::::
used

::::::::::::::::::
(Dubovik et al., 2006

:
).

::::
The

:::::::
two-step

::::::::::
POLIPHON

:::::::
method

:
has been validated, since good agreement was found

::::::::::::
demonstrating

::::
good

:::::::::
agreement

:
between

airborne measurements and lidar retrieved, two-step POLIPHON derived, fine and coarse modes of dust mass concentrations

on Barbados during the SALTRACE campaign (Fig. 5 in Haarig et al., 2019).340
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Table 1.
::::
Used

:::::::
values

:::::
for

::::::::::::
implementing

:::::
the

:::::::::
two-step

::::::::::::
POLIPHON

::::::::
method.

::::::::
Values

:::::
are

:::::::::
obtained

::::::
from

::::::::::::::::::::::::::::::::::::::::::::
Ansmann et al. (2019, 2012); Mamouri and Ansmann (2017).

::
δ
::

is
:::

the
:::::::

particle
:::::::::::
depolarization

::::
ratio,

::
S
:::

is
:::
the

::::
lidar

::::
ratio

:::
and

::::
Cv ::

is
:::
the

:::::
volume

:::::::::
conversion

:::::
factor,

:::
and

:
ρ
::::::::
represents

::::::
density.

::::
Units

::
in

:::::
square

:::::::
brackets.

:::::::
Parameter

::::::
Non-dust

: ::::
Dust

:::::
Coarse

::::
dust

:::
Fine

:::
dust

:

:
δ

::::
0.05

::::
0.31

:::
0.39

:::
0.16

:

:
S

::
50

::
50

:
50

: ::
50

::
Cv:

[
::::::

10-12Mm]
::::::::
0.22±0.06

::::::::
0.64±0.07

::::::::
0.79±0.08

::::::::
0.22±0.06

:
ρ [

::::
g/cm3]

::
1.5

: ::
2.6

: :::
2.6

::
2.6

The data produced from the POLIPHON
:::::::
two-step

::::::::::
POLIPHON

:::::::
derived

:
data are employed in this study as an analysis

tool . Two key ratios are used for that purpose: first
::::::::
analytical

:::
tool

:::::
with

:::
two

::::
key

:::::
mass

:::::::::::
concentration

:::::
ratios

:::::::
serving

:::::::
specific

::::::::
purposes.

::::
First, the ratio of non-dust to dust mass concentration is used for color-coding each

::
to

:::::::::
color-code

::::
each

:::
dust

:::::
layer case

and for quantifying relationships between different case studies. Second, the ratio of fine-to-coarse dust mass concentrations

:::::::::::
concentration

::::
ratio

:
is used to categorize the case studies into three

::::::
distinct

:
groups: (1) dust layers with a higher portion of fine345

dust mass concentration (i.e., fine/coarse > 11%), (2) dust layers with intermediate amounts
::
an

::::::::::
intermediate

:::::::::
proportion

:
of fine

dust mass concentrations (i.e., 9% < fine/coarse < 11%), and (3) dust layers with a lower portion of fine dust mass concentration

(i.e., fine/coarse < 9%). It is important to note
::::::::
emphasize

:
that this classification is specific to these case studies

::
the

::::::::
analyzed

::::
cases

:
and does not imply a general classification of what it means for a dust layer to have a

::::::::
represent

:
a
::::::::

universal
::::::::
standard

::
for

::::::::
defining "large

::::
high" proportion of fine-to-coarse dust mass concentrations ratio. The rationale for this division is based350

on the
:::::::::::
concentration.

:::::::::
Moreover,

::::::::::
considering

:::
the

::::::::::
uncertainties

:::::::::
associated

::::
with

:::::
mass

::::::::::::
concentrations

:::::::::::
calculations,

::
20

::
-
::::
30%

:::
for

::::
total

::::
mass

::::::::::::
concentration,

:::
40

:
-
::::
60%

:::
for

:::
the

:::::::::
fine-mode

::::
mass

::::::::::::
concentration,

::::
and

::
25

::
-
::::
35%

:::
for

:::::::::::
coarse-mode

::::
mass

::::::::::::
concentration

::::::::::::::::::
(Ansmann et al., 2019

:
),

:::
the

::::::::
proposed

:::::::::::
classification

::::
falls

::::::
outside

:::
the

::::::::::
uncertainty

:::::::
margin.

:::::::::
Therefore,

::::
these

::::::::
divisions

::::::
should

:::
be

:::::::
regarded

::
as

::::::::::
exploratory

::::
and

::::::::
artificial,

:::::::
intended

::::::
solely

::
for

::::
the

:::::::
purposes

:::
of

:::
this

::::::
study.

:::
The

:::::::
primary

::::::::
objective

::
is
:::
to

:::::::::
investigate

:
a
::::::::
potential

::::::
method

:::
for

::::::::::::
disentangling

:::::::
physical

:::::::::
parameters

::::::::::
influencing

::::::::
intensive

::::::
optical

:::::::::
properties,

::::::::::
particularly

::
in

::::
light

:::
of

:::
the355

::::::
evident impact of dust size on lidar ratio measurements

::::::
particle

::::
size

::
on

:::
the

:::::
lidar

::::
ratio, as shown in Fig. 5 in Wandinger et al.

(2023) and Fig. 15 in Zhang et al. (2024). Additionally, the

::::::::::
Additionally,

:::
to

::::::
support

:::
the

:::::::::
validation

::
of

::::::
model

::::::
results,

:::
the

:
fine-to-coarse dust mass concentration ratio

::::::
derived

:
from the

POLIPHON is compared with the corresponding ratio from COSMO-MUSCAT per dust layerto enhance
:::
for

::::
each

::::
dust

:::::
layer.

::::
This

::::::::::
comparison

::::::::
enhances

:
the reliability of the comparative analysis between model and lidar measured data

::::::
analysis

:::
by360

::::::::
providing

:
a
:::::
more

:::::
robust

::::::::::
assessment

::
of

::::::
model

:::
and

:::::::::::
lidar-derived

::::
data

:::::::::
agreement. The described products and their application

are illustrated in Fig. 3.
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Figure 3. Process flow illustrating two main methods and their corresponding data outputs used in the study. (a) Violet colors represent the

output from COSMO-MUSCAT. The fine-to-coarse dust mass concentration ratio, and hematite fraction are the model output products used

for the results. The particle diameter threshold for distinguishing between fine and coarse dust mass concentration is set at 1 µm to align with

the POLIPHON classification. (b) The POLIPHON output flow is shown in orange colors. The products from the POLIPHON used for the

results are the fine-to-coarse dust, and the non-dust to dust mass concentration ratios.

3 Results and their discussion

This section is structured as follows: First, lidar measurements from a single day
::
24

::::::
August

::::
2021

:
are shown and described. On

this day, two distinct dust layers are identified and analyzed as separate case studies. The dust layers are shown after applying365

the 2-step POLIPHON method, and the results are compared with the corresponding COSMO-MUSCAT results for the same

day and time. Next, the bulk of case studies is presented, beginning with a comparison of the fine-to-coarse ratios derived

from COSMO-MUSCAT and POLIPHON. This is followed by an analysis of the relationship between hematite fraction and

lidar ratio, as well as particle linear depolarization ratio at both at 355 nm and at 532 nm, and backscatter and extinction-

related Ångström exponents. Finally, for the cases analyzed separately according to size, the hematite fraction is
:::::::
fractions

:::
are370

compared with the aforementioned lidar-measured optical properties.
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Table 2. Mean values of lidar ratios (S), particle linear depolarization ratios (δ), backscatter-related Ångström exponent (ÅE(β)) and

extinction-related Ångström exponent (ÅE(α)) for the 355 nm and 532 nm wavelengths for two dust layers measured on 24 August 2021,

02:45-05:27 UTC. Reference "pure dust" values from Tesche et al. (2011) on the last row.

Height S355 [sr] δ355 S532 [sr] δ532 ÅE(β)355/532 ÅE(α)355/532

1.4 - 2.1 km 59±6 0.201±0.012 44±10 0.252±0.007 -0.26±0.05 0.54±0.57

2.7 - 5.2 km 61±5 0.236±0.003 48±4 0.292±0.001 -0.49±0.07 0.08±0.34

Tesche et al. (2011)
::::
"pure

::::
dust"

:::::::
following

:
53±10 0.26±0.06 54±10 0.31±0.1 0.16±0.45 0.22±0.27

:::::::::::::::
Tesche et al. (2011)

3.1 Single case study - 24 August 2021

3.1.1 Observed dust optical properties

Figure 4 shows the vertical distribution of optical properties retrieved from PollyXT on the 24 of August 2021 between

02:45 UTC and 05:27 UTC. The vertical profiles show two aerosol layers. In order to accurately determine their heights, a375

lower vertical smoothing is used to enhance the distinction between aerosol layers and air layers with less particle contents.

The heights of the layers are then set using a vertical smoothing of 22.5 m(3 bins; profiles not shown). By cross-checking the

measured optical properties against the values signaling for dust layers (Tesche et al., 2011) in Cabo Verde (step 5
:
2
:
of Fig. 1

::
’s

flow chart), it is confirmed that the measurements for this day correspond to two distinct dust layers, each to be considered

as a separate case study (see Table 2). The vertical smoothing used to calculate their optical properties is different for the380

layers to balance the number of independent measurements and the length of their standard variation. For the lower layer near

the surface, a vertical smoothing of 232.5 m (31 bins) is applied, while for the upper layer, a vertical smoothing of 577.5 m

(77 bins) is used, as
:::::
which

::::::
profiles

:::
are

:
illustrated in Fig. 4. It is noteworthy that the particle backscatter coefficient shows a

wavelength dependence, with larger β values for 532 nm than at 355 nm for the upper dust layer but not for the lower layer.

The mean values of the particle extinction coefficient fall within their measurement error margins when comparing 355 nm to385

532 nm wavelengths across both dust layers, implying wavelength independence. Such behaviour
:::::::
behavior

:
is not uncommon

for Saharan dust (Veselovskii et al., 2016, 2020). Since our study focuses on the optical properties of dust independent from

the amount of it, with particular interest in absorption
::::::::::::
backscattering

:
characteristics, the emphasis is in the intensive optical

properties. Table 2 provides the mean values of these intensive optical properties for each dust layer together with Tesche et al.

(2011)’s reference "pure dust" values.390

The mean values of the intensive optical properties reveal that the lidar ratios at 355 nm fall within the upper half of the "pure

dust" tolerance range, whereas the lidar ratios at 532 nm are in the lower half of this range. For the particle linear depolarization

ratios, the values at 355 nm are in the lower half of the "pure dust" tolerance range, while the values at 532 nm are within the

inner half of the "pure dust" tolerance range. The backscatter-related Ångström exponent values are either on the lower end

(lower layer) or below the lower limit of the specified range (upper layer), whereas the extinction-related Ångström exponent395
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Figure 4. Average lidar profiles measured on 24 August 2021, 02:45-05:27 UTC. The vertical profiles are vertically smoothed before calcu-

lation with a resolution of 577.5 m. For plots (a-d), blue represents measurements at 355 nm and green represents measurements at 532 nm

wavelength. The optical properties shown are: particle backscatter coefficient (Bsc. (β)) (a), particle extinction coefficient (Ext. (α)) (b), lidar

ratio (S) (c), and particle linear depolarization ratio (Depol. ratio (δ)) (d). For the Ångström exponent
:::::::
exponents

:
(Ångström (ÅE) ) plot (e),

both ÅE shown are calculated for the 355-532 nm wavelengths, the backscatter-related ÅE is shown in light blue and the extinction-related

ÅE is shown in black.

values are either above the upper limit of the "pure dust" range (upper layer) or on the lower limit of the specified range (lower

layer). Values close to zero for both ÅE(β) and ÅE(α) are related with
:
to

:
the presence of large particles. Negative values are

not unusual for Saharan dust (Haarig et al., 2022; Veselovskii et al., 2016, 2020), with measurements showing ÅE(β) ranging

from -0.55 to 0.5 and ÅE(α) ranging from -0.2 to 0.2. Negative ÅE(β) values can result from a spectral dependence on changes

in the imaginary part of dust’s CRI at 355 nm
::::::
UV-VIS

:::::::::::
wavelengths. A sensitivity study performed in Veselovskii et al. (2020)400

shows that the ÅE(β) is more affected than ÅE(α) by changes of the imaginary CRI part at 355 nm, as it decreases while the

imaginary part increases. The increase of S values, along with the changes in ÅE(β) between lower and upper layer, suggest

that these differences may be influenced by a mineral, such as hematite, that increase
:::::::
increases

:
the imaginary part of the dust’s

CRI
:
at
:::
the

:::::::
UV-VIS

:::::::
spectral

:::::
range.
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3.1.2 POLIPHON derived vs COSMO-MUSCAT dust concentrations405

The results from applying the two-step POLIPHON method to measurements from 24 August 2021, along with the
::::::::
alongside

COSMO-MUSCAT simulation results for that same day at a similar time range (i.e., 3:00-6:00 UTC) are illustrated
::::::::
presented

in Fig. 5. The COSMO-MUSCAT simulation results show
::::::
depicts

:
a two dust layer structure, but the heights of

:
;
::::::::
however, the

:::::::
altitudes

::
of

:::::
these

:
layers do not exactly match

::::
align

::::::::
precisely

::::
with

:
those observed. For comparison

:::::::
purposes, the COSMO-

MUSCAT dust layers are defined as follows: lower layer
::::::
extends

:
from 0.8 to 2.7 km, and upper layer

:::::
while

:::
the

:::::
upper

:::::
layer410

:::::
ranges

:
from 3 to 4.8 km.

According to the POLIPHON results, the lower layer has an average dust mass concentration of
:
in

:::
the

::::::
lower

:::::
layer

::
is

118 µg/m3, while the upper layer has an average of
::::::
reaches 270 µg/m3. COSMO-MUSCAT simulation results indicate

:::::::
estimate

an average dust mass concentration of 179 µg/m3 for the lower layer, and for the upper layer of 97 µg/m3
:::
for

:::
the

:::::
upper

::::
layer.

This indicates that the model overestimates the dust concentration in the lower layer by a factor 1.5 and underestimates it in the415

upper layer by a factor of 0.35. For the
::::::
Despite

:::::
these

::::::::::::
discrepancies,

:::
the

:::::
model

:::
fits

::::
well

::
to
:::
the

:::::
total

::::::::
measured

::::
dust

::::
mass

:::::
load.

::::
This

:::
can

::
be

::::
seen

::
in

:::
the

::::
good

:::::::::
agreement

:::::::
between

::::::::::
AERONET

:::
and

::::::::::::::::
COSMO-MUSCAT

::::
total

:::::::
column

::::
AOT

:::
for

:::
the

:::::::
Mindelo

::::::
station

::
on

:::
23

::::::
August

:::::
2021

::
at

::::::::::
19:00 UTC,

:::::
where

:::
the

::::::
model

::::::::
calculates

::
a

::::
total

::::::
column

:::::
AOT

::
of

:::::
0.84,

:::::
while

::::::::::
AERONET

::::::::::::
measurements

::::
show

:::
an

::::
AOT

::
of

::::
0.76

::::
(Fig

::::
A1).

:

::::::::
Regarding

:::
the

:
fine-to-coarse dust fraction

::::
ratio, POLIPHON derived values are

::::::
indicate

:::
an

:::::::
average

::
of

:
0.15 for the lower420

layer average and 0.08 for the upper layer. COSMO-MUSCAT simulates
:
a

::::
ratio

::
of

:
0.1 for the lower layer , and 0.12 for the

upper layer. The model simulates coarser particles for the layer closer to the ground, which may explain the higher modelled

:::::::
modeled dust mass concentration for that layer. In contrast, for the upper layer, COSMO-MUSCAT calculates a larger portion

of finer dust than observed, potentially accounting for the underestimation
:::::::::
Conversely,

:::
the

::::::
model

::::::::
estimates

:
a
::::::
greater

:::::::
fraction

::
of

:::
fine

::::
dust

::
in

:::
the

:::::
upper

::::
layer

:::::::::
compared

::
to

::::::::
observed,

:::::
which

::::
may

:::::::::
contribute

::
to

:::
the

:::::::::::::
underestimation

::
of

:::::
mass

:::::::::::
concentration

::
at

:::::
those425

:::::::
altitudes. Despite these discrepancies, the model successfully

:::::::::
effectively represents the two-layer dust structure, and the two

datasets are sufficiently well related, as the mass concentrations are of the same order of magnitude, allowing the combined

analysisto proceed
:
.
::::
This

::::
level

:::
of

:::::::::
agreement

:::::
allows

:::
for

::
a
::::::::::
meaningful

::::::::
combined

::::::::
analysis,

::::::::::
particularly

:::::
since

:::
the

:::::
focus

::
of

::::
this

::::
study

::
is
:::
on

:::::::::::::::
mass-independent

:::::::::
properties.

::
It

::
is

:::::::::
noteworthy

::::
that

:::
the

:::::::::::
discrepancies

::::
may

::::
also

::::
stem

:::::
from

:::
the

:::::
model

:::::::::
averaging

:::
the

:::
dust

:::::::
plumes

:::::
across

:::
the

:::::
entire

::::::
island,

:::::::
making

::
it

::::::::
inherently

::::::
unable

::
to

:::::::
capture

:::
the

:::::
exact

::::
same

:::::::
vertical

:::::::
structure

::::
that

::
is

::::::::
observed430

::
by

::::
lidar

::::::::::::
measurements.

The hematite average
::::::::::
Furthermore,

::::
the

::::::
average

::::::::
hematite fraction per dust layer is 0.008 for the lower layer and 0.011 for

the upper layer. These results point towards confirming
::::::
support the assumption that an increase on the hematite fraction could

:::
may

:
have affected the measured intensive optical measurements between the dust layers. Nevertheless

:::::::
However, the lidar ratio

values for this case are too similar to clearly conclude a hematite influence
:::::::::
definitively

:::::::
attribute

:::
any

:::::::::
difference

:::
due

::
to

::::::::
hematite435

:::::::
presence.

:::
In

:::::::
contrast,

:
a
:::::
clear

:::::::
increase

::
in

:::
the

:::::
ÅE(β)

::
is

::::::::
observed

:::::::
between

:::
the

::::::
layers,

:::::::::
suggesting

:
a
:::::::
potential

::::::::
influence

::
of

::::::::
hematite

::
on

:::
this

:::::::::
parameter.
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Figure 5. Vertical profiles for the POLIPHON derived products from lidar measured optical properties on 24 August 2021 02:45-05:27 UTC,

and COSMO-MUSCAT simulation results above Mindelo. The 532 nm particle backscatter coefficient (a, light green) and the particle linear

depolarization ratio (a, dark blue) are the input to obtain the separated dust and non-dust profiles in (a, b). The POLIPHON products are the

derived 532 nm dust backscatter coefficient (a, orange) and the non-dust backscatter coefficient (a, light blue), dust mass concentration (b,

orange), coarse dust mass concentration (b, gold), fine dust mass concentration (b, bisque), the non-dust mass concentration (b, light blue),

and the dust mass fraction (b, black, ratio of the dust to total particle mass concentration, dashed black vertical line indicates a dust mass

fraction of 1). Vertical profiles of simulated mineral dust mass concentrations from the COSMO-MUSCAT model (c). The vertical profile

corresponds to values calculated for the grid cell where Mindelo, Cape Verde is found in the model for 24 August 2021 3:00-6:00 UTC. Total

dust mass concentration (c, orange), coarse dust mass concentration (c, gold), fine dust mass concentration (c, bisque), and hematite mass

concentration (c, tomato) are shown.
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Figure 6. Fine-to-coarse dust mass concentrations comparison between COSMO-MUSCAT and POLIPHON. The dashed line represents the

1:1 line and the dash-dot lines represent the 2:1 and 1:2 lines. The error bars represent the standard deviation of the ratio per dust layer.

3.2 Multiple case studies

Figure 6 shows the fine-to-coarse dust mass concentration ratios obtained from POLIPHON compared to the COSMO-

MUSCAT simulation results for 22 case studies. The results show that the ratios are in the same order of magnitude and440

they all fall within the range of the 2-to-1 and 1-to-2 lines. There is a notable tendency for COSMO-MUSCAT to lean towards

the 2-to-1 comparison, indicating a slight overestimation of the fine portion of the dust mass concentration.

Studies by Adebiyi and Kok (2020) and Kok et al. (2017) compared ensembles of atmospheric models with dust aerosol

in-situ measurements and found that atmospheric models tend to ovepredict
:::
over

::::::
predict

:
the fine dust portion while underes-

timating the coarse dust portion. This over and under prediction has impacts on the calculation of the global direct radiative445

effect. Fine dust significantly contributes to the extinction at 550 nm, with only a few percent of that extinction due to absorp-

tion, whereas coarse dust absorbs a larger fraction of the extinguished radiation at 550 nm (Adebiyi et al., 2023).

19



::
To

::::::
further

:::::::
validate

:::
the

::::::
model

::::::
results,

::
a

:::::::::
comparison

:::
of

:::
the

::::::
aerosol

:::::
mass

::::::
loading

::::
was

:::::::::
conducted

:::
by

::::::::
analyzing

::::
total

:::::::
column

::::::
aerosol

::::::
optical

::::::::
thickness

::::::
(AOT)

::
at
:::::::

550 nm
:::::::
against

::::::::::
AERONET

::::
data.

:::::
This

::::::::::
comparison

:::::::::
considered

::::
five

::::::::::
AERONET

:::::::
stations

::::::::::
strategically

:::::::::
distributed

:::::
across

:::
the

::::::
Sahara

:::::
Desert

::::::
region

:::
and

:::::
along

:::
the

:::
dust

::::::::
transport

:::::::
pathway

::::
over

:::
the

:::::::
Atlantic,

::::
with

::::::::::::
corresponding450

:::
grid

::::
cells

::::::
values

::
in

:::
the

::::::
model

::::::
results.

:::::::
Despite

::::::
certain

:::::::::
limitations,

:::::
such

::
as

::::::::
extended

::::::
periods

::
of

:::::::
missing

::::
data

:::
for

:::::
some

:::::::
stations,

:::
and

:::::::
specific

:::::
events

:::::
being

:::::::::::::
misrepresented

:::
by

:::
the

::::::
model,

::::::::::::::::
COSMO-MUSCAT

:::::::::
effectively

::::::::::
reproduces

:::
the

:::::::
temporal

::::::::
evolution

:::
of

:::
dust

:::::::
plumes

::
in

:::
the

::::::
region,

::::::::
capturing

:::
the

::::::
general

:::::::
patterns

::
of
::::::

timing
::::
and

:::::::
intensity,

::::::::::
particularly

:::
for

:::
the

:::::::
periods

::
of

::::
time

:::::
when

:::
the

:::::::::::
ÅE(α)440/870:::

are
:::::
below

::::
0.3,

::::::::
indicating

::::
that

::::
dust

:
is
:::
the

:::
the

:::::
main

::::::
aerosol

:::::
type.

:::::
These

:::::::
findings

::::::
suggest

::::
that

:::
the

:::::
model

:::::::
captures

::::
well

:::
the

::::
dust

::::::::
transport

:::::
across

:::
the

::::::
region.

:::::::::::
Furthermore,

::::::::::
considering

::::
that

::::
dust455

::::::
plumes

::::::
during

:::
this

::::::
season

::::::::
typically

:::::
travel

:::::
above

:::
the

::::::
marine

::::::::
boundary

:::::
layer

::::::::::::::::::::
(Schepanski et al., 2009

:
),

:::
the

::::
dust

::::::::
observed

::::
over

::::
Cabo

:::::
Verde

::
is
::::::
mostly

::::
part

::
of

:::
the

:::::
larger

:::::::
regional

::::::::
transport

::::::
patterns

::::::
rather

::::
than

:::::::::
originating

::::
from

:::::
local

::::::::
emissions.

::::
The

::::::
results

:::
are

::::::::
presented

:::
and

::::::
further

::::::::
discussed

::
in

:::
the

:::::::::
Appendix

::
A.

3.2.1 Dependence of optical properties on hematite fraction

Figure 7 illustrates the relationship between the average modelled hematite fraction and lidar retrieved intensive optical460

properties across the 22 study cases. The linear fits for the lidar ratio changes in relation to increases in the hematite fraction

reveal a weak to non-existent relation, indicating that the changes in the hematite fraction do not linearly impact lidar ratio

values for either the 355 or the 532 nm wavelength (Fig. 7(a) and Fig. 7(b)). The Pearson correlation coefficient and p-value for

the S355 and hematite fraction show a very weak positive relationship (r=0.09)with no statistical significance (p=0.68), while

for the S532 case, the values depict a moderate positive relationship (r=0.36), but also lack statistical significance (p=0.1).465

The Pearson correlation coefficients and p-values for the relationship between the particle linear depolarization ratios and

hematite fractions show no significant relations, with p-values above or equal to 0.95. However, the correlation coefficients

for the relationship with the
::::::
average

::::::::
modeled

:::::::
hematite

:::::::
fraction

:::
and

:::::
lidar

:::::::
retrieved

::::::::
intensive

::::::
optical

:::::::::
properties

:::::
across

:::
22

::::
dust

:::::
layers.

::::::
While

::
no

:::::::::
significant

:::::::::
correlation

::
is
::::::
found

:::::::
between

:::::::
hematite

:::::::
fraction

::::
and

::::
lidar

:::::
ratios

::
or

:::::::
particle

::::::::::::
depolarization

:::::
ratios

::
at

:::
355

::::
and

:::::::
532 nm,

::::::::
indicating

::
a
::::::
limited

::::::::
influence

:::
of

:::::::
hematite

:::::::
content

::
on

:::::
these

:::::::::
properties,

::
a
:::::::::
moderately

:::::::
positive

::::::::::
correlation

::
is470

:::::::
observed

:::::::
between

:::
the

::::::::::::::::
backscatter-related Ångström exponent , both for the backscatter-related

:
(ÅEand the extinction ÅE show

moderately positive relationships (r
:::::::::
(β)355/532)

:::
and

::::::::
hematite

::::::
fraction

::::
(R2=0.41 and r=0.39)with marginal statistical significance

(p=0.06 and p=0.07)
:::::
0.49).

::::
This

:::::::
suggest

:::
that

::::::::
hematite

:::::::
fraction

:::::::::
influences

::::
dust

::::::::::::
backscattering

:::::::::
properties

::::
with

::
a
::::::::::
wavelength

::::::::::
dependence,

::::::
leading

::
to
::::::
higher

::::::::::::
backscattering

::::::::::
coefficients

::
at

::::::
532 nm

::::::::
compared

::
to
:::::::
355 nm.

The color coding in
::
the

:::::
lidar

::::
ratio

:::::::
analysis

::
in

:
Fig. 7 represents the fine-to-coarse fraction in percentage. In Fig. 7(a), the475

point
:::::::::
Noteworthy,

:::
the

::::::
points with the highest fine-to-coarse fraction (16%), shown in yellow, lies

::
lie outside of the range of the

other S355 values. In contrast, Fig. 7(b) does not show a clear influence of this fraction on S532.
::
S

::::::
values. Lower fine-to-coarse

percentages are clustered around hematite fractions of 0.01 to 0.012.

In summary, there is no statistically significant relationship between the

::::::
Limited

::::::::::
correlations

:::::::
between

:::::
most measured intensive optical properties and the modelled hematite fractions per dust layer.480

This lack of correlation
:::::::
modeled

:::::::
hematite

:::::::
fractions

:::
are

::::::::
observed.

::::
This

:
is likely because of the lidar ratio depending non-linearly
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Figure 7. Mean values for 22 dust layers, hematite fractions are shown in the x axis and three intensive optical properties are shown in the y

axes per graph. Lidar ratios are shown in color coded dots, its standard deviation is shown by the error bar. The triangle symbols represent

the particle linear depolarization ratios with is standard deviation in the error bar, and the Ångström exponents are depicted by the 45° tilted

"Y" symbols. Linear fits between the hematite fraction and the intensive optical properties are illustrated by the dotted lines, the R squared

value of the linear fit is shown in the dashed line legends. (a) Illustrates S355, δ355, and ÅE(β)355/532, (b) shows the values related to S532,

δ532, and ÅE(α)355/532. The color coding of the lidar ratio depends on the fine-to-coarse fraction obtained from the POLIPHON method,

values in percentage are shown by the color bar.
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to
::::::::
nonlinear

:::::::::
dependence

:::
of

::::
these

::::::::
intensive

::::::
optical

::
on

:
particle size, shape and composition (Huang et al., 2023; Saito and Yang,

2021; Wandinger et al., 2023). Studies by Di Biagio et al. (2019) and Adebiyi and Kok (2020) indicate that the absorption effi-

ciency increases with particle diameter, while the scattering efficiency decreases. Therefore, it is recommended to separate the

study cases by
::
To

:::::
better

:::::::::
understand

:::::
these

::::::::::::
dependencies,

::::::::
separating

:::::
study

:::::
cases

:::::
based

:::
on the fine-to-coarse ratio to disentangle485

these dependencies. Additionally, it is important to note that although the study cases were carefully selected
::::::
particle

::::
ratio

::
is

::::::::::::
recommended, in order to isolate dust dominated aerosol layers, other aerosols that can affect the measured optical properties

may still be present. For example, aerosols that are a product
:::::
control

:::
for

:::
big

::::::::::
variabilities

::
in

:::
the

:::::::
particle

::::
size

:::::::::
distribution

:::::
from

:::
one

::::
dust

::::
layer

::
to

:::::::
another.

:

::::::::::
Furthermore,

:::
the

:::::
lidar

::::
ratio

::::::
related

::::::::
Ångström

::::::::
exponent

:::
for

::
the

::::
355

:::
and

:::::::
532 nm

::::::::::
wavelengths

:::::::::::::
(ÅE(S)355/532)

:::::::
exhibits

:
a
:::::
weak490

:::::::
negative

:::::::::
correlation

::::
with

::::::::
hematite.

:::::
This

:::::::
suggests

::::
that

:::
the

:::::::
hematite

:::::::
fraction

::::
may

::::::::
influence

:::
the

:::::
lidar

::::
ratio

::::
with

::
a
::::::::::
wavelength

::::::::::
dependence,

:::::::::
potentially

:::
by

:::::::::
impacting

::::
more

:::::
S355::::

than
:::::
S532.

::::
This

::::::::
influence

:::::
could

:::
be

::::::::
attributed

:::
to

:::
the

:::::
effect

::
of

::::::::
hematite

:::
on

::
the

:::::::::
imaginary

::::
part

::
of

::::
the

::::
CRI

::::::
through

:::
its

::::::
impact

:::
of

::::
dust

:::::::::
absorption

::::::
and/or

::::::::::::
backscattering

:::::::::
properties.

::::::::
However,

:::::
with

:
a
::::
low

::::::::
R-squared

:::::
value

::
of

:::::
0.25,

:::
this

::::::::::
relationship

:::::::
remains

:::::
weak

:::
and

::::::::::::
non-significant

::
to
:::::::
provide

:::
any

::::::::::
conclusions

::::
(see

::::
Fig.

::::
B1).

:::::
While

:::
for

::::
this

:::::
study

:::::::::::::
dust-dominated

::::::
layers

::::
were

::::::::
carefully

::::::::
selected,

:::
the

::::::::
presence

::
of

:::::
other

::::::::
aerosols,

:::::
such

::
as

:::::
those

:
from495

anthropogenic activity, e.g., black carbon , and biomass burningare known for absorbing ,
::::::
cannot

::
be

:::::::
entirely

:::::
ruled

:::
out.

::::::
These

:::::::
aerosols,

::::::::::
particularly

:::::
black

::::::
carbon,

:::
are

::::::
known

::
to

::::::
absorb radiation, specially in UV part of the spectrum (Li et al., 2022; Tesche

et al., 2011). ,
::::::
which

:::
can

:::::::::
potentially

::::::::
influence

:::
the

:::::::::
measured

::::::
optical

:::::::::
properties.

::::::::
However,

:::
we

:::::::::
minimized

:::
the

::::::::
potential

::::::
impact

::
by

::::::::
applying

::
the

::::::::::::
ÅE(α)440/870:::::::

criterion
:::
for

:::
the

::::
dust

:::::
layer

:::::::
selection

::::
(see

:::::
step 1

::
in

::::
Fig.

::
1).

:

::::::::::
Interestingly,

::::
the

:::::::
observed

::::::::::
moderately

:::::
linear

::::::::::
relationship

::::::::
between

::::::::::::
ÅE(β)355/532 :::

and
::::::::
hematite

:::::::
fraction

::
is

:::
not

:::::::
reflected

:::
in500

::
the

:::::
lidar

::::
ratio

::::::::
analysis.

::::
This

::
is
::::::

partly
::::::::
explained

:::
by

:::
the

:::::
lack

::
of

:::::::::
correlation

:::::
with

:::
the

:::::::::::::::
extinction-related

:::::::::
Ångström

::::::::
exponent

:::::::::::::
(ÅE(α)355/532),

::::::
thereby

::::::::::
diminishing

:::
the

::::::::
influence

::
of

:::::::
hematite

:::
on

:::
dust

::::::::::::
backscattering

:::::::::
properties.

:::::::
Beyond

:::::::::::
compositional

::::::::
changes,

:::::::
intensive

::::::
optical

::::::::
properties

::::
also

::::::
depend

:::
on

:::::
shape

:::
and

::::
size.

:::::
Given

:::
the

:::::::::::
methodology

::::
used

:::
for

:::
this

:::::
study,

:::
an

::::::::
intriguing

::::::::::
opportunity

:
is
::::::::
presented

::
in
:::::
order

::
to

::::::
explore

:::::::
whether

:::::::
limiting

::::
size

::::::::
variations

:::::
within

:::
the

::::
dust

::::::
plumes

:::::
could

:::::::::
potentially

:::::::::
strengthen

::::::::::
correlations

:::::::
between

:::::::
hematite

:::::::
fraction

:::
and

::::::::
intensive

::::::
optical

:::::::::
properties.505

3.2.2 Size dependency

To gain a clearer understanding of the relationship between the measured intensive optical properties and the modelled
:::::::
modeled

hematite fraction, the study cases were separated into three
:::::::
artificial clusters based on different fine-to-coarse dust mass ratio

. This approach is made with regards to the idea that reducing size changes
:::
(see

::::
Fig.

:::
3).

::::
This

:::::::::
clustering

::::::::
approach

::::
aims

:::
to

:::::
reduce

::::
size

::::::::
variations

:
within the dust layerswould mitigate the ,

:::::::::
mitigating

:::
the

:::::::::::::
size-dependent effects of the lidar ratio ’s size510

dependency
::
and

:::
the

::::::::::::::::
backscatter-related

:::
ÅE.

Figure 8 shows dust cases separated according to size differencesand
:::
the

:::::
cases

:::::::::
segregated

::
by

::::
size

:::::::::
differences,

:::::
while

:
Table 3

shows
::::::::::
summarizes the mean values

:::
per

:::
size

:::::
class of the intensive optical properties and their Pearson correlation coefficients.

::
In

Fig. 8(a-b) shows the cases with the highest fine-to-coarse ratios
:::
are

::::::
shown,

::::::::
reflecting

:::::
larger

::::::::::
proportions

::
of

:::
fine

::::
and, indicating

a larger portion of fine dust portion andtherefore, the cases where the particle sizes change the most
:::::::::::
consequently,

:::
the

:::::::
greatest515
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::::::
particle

::::
size

::::::::
variations

:::::
within

::
a
:::
dust

:::::
layer. Fig. 8(e-f) illustrates

:::::
depicts

:
cases with the largest coarse dust portion, implying less

size variations
::::::::
indicating

::::
less

::::::
drastic

:::
size

:::::::::
variations

:::::
within

:::::
each

:::
dust

:::::
layer, while Fig. 8(c-d) represents the intermediate cases.

Analysis of the linear fits
:::::
Linear

:::::::::
regression

:::::::
analysis

::::::::
revealed

::::
that for these cases suggest that a linear model does not

adequately explain the data variability
::
of

::::
most

:::
of

:::
the

::::::
optical

::::::::
properties

::::::::
analyzed. Nevertheless, it is noteworthy that both the

R2, and the Pearson correlation coefficients (r and p)change positively from the
::::::::::
correlations

::::
with

:::
the

:::::::::::::::
backscatter-related

::::
ÅE520

::
are

::::::::::
consistently

::::::::::
significant,

::::
with

:::
the

::::::
highest

:::::::::
correlation

:::::::::
coefficient

:::::
found

::
in

:::
the

::::::::::
intermediate

::::
size

::::::
cluster

:::
Fig.

:::::
8(c).

:::::::
Notably,

:::
the

:::::::::
correlation

:::::::::
coefficient,

:::
R2,

::::::::
increases

:::::::::
positively

:::::
when

::::::
moving

:::::
from cases with the higher fine dust portion towards those with

less.
::
to

:::::
those

::::
with

:::::
lower

::::::::::
proportions,

::
as

::::
seen

::
in
::::

Fig.
:::::
8(a,b)

:::::::::
compared

::
to

::::
Fig.

:::::
8(e,f),

:::::::::
suggesting

:
a
::::::::

stronger
::::::::::
relationship

:::::::
between

:::::::
hematite

:::::::
fraction

:::
and

::::::::::::
backscattering

:::::::::
properties

::
in

:::::::
coarser

::::
dust

::::::
layers.

::::
This

::::::::
clustering

::::::::
approach

::
is
::::::::
validated

:::
by

:::
the

::::::::
observed

::::
mean

::::::
values.

::::
Due

::
to
:::
the

::::::::
influence

::
of

:::::::
coarser

:::::::
particles

::
in

:::
the

::::
lidar

:::::
ratio,

::
it

:
is
::::::::

expected
::::
that

:::
the

:::::
values

::
of

::
S
:::
for

::::::
coarser

::::::::
particles525

::
are

::::::
higher

::::
than

:::::
those

::::::::
associated

::::
with

:::::
finer

:::::::
particles.

::::
This

:::::
effect

::
is
::::::
evident

:::
in

::
the

::::
size

:::::::::
clustering,

::
as

:::::::
reflected

::
in
:::
the

:::::
mean

::::::
values

::::::::::
summarized

::
in

:::::
Table

::
3.

For the relationship between hematite fractions and S355 :::
Fig.

:
8(a,c,e), the Pearson correlation coefficients and p-values shift

from a very weak negative relationship with no statistical significance (r=-0.03, p=0.94), to a moderate positiverelationship

with a lack of statistical significance (r=0.46, p=0.36). For
::::::::
correlation

::::::::::
coefficients

:::::
shift

::::
from

::::
non

:::::::::
significant

::
to

::::::::::
moderately530

:::::::
positive.

::::::::
Similarly,

::::
for the relationship between hematite fractions and S532 :::

Fig.
::

8(b,d,f), the coefficients change from a

moderate positive relationship with no statistical significance (r=0.35, p=0.39) to a positive relationship with a marginal

statistical significance (r=0.74, p=0.09). Despite the small sample size
::
f).

::::::::
Although

:::
the

::::::
sample

::::
size

::
is
:::::
small, particularly in

cases with larger proportion of coarse particles (just six samples), the strong correlation coefficient suggests a
:::::::::::
progressively

:::::::
stronger

:::::::::
correlation

::::::::::
coefficients,

:::::::::
combined

::::
with

:::
the

:::::::::::::
well-established

::::::::
influence

::
of
:::::::::

variations
::
in

:::
the

:::::::::
imaginary

::::
part

::
of

:::
the

::::
CRI535

::
on

::::::::::::
backscattering

:::::::::
properties,

::::::::
suggests

:
a
:::::::::
potentially

:
meaningful relationship between the hematite fraction and

:::
the lidar ratio,

at least so
::::
with

:
a
:::::
more

::::::
marked

::::::::
tendency

:
for the VIS portion of the spectrum at 532 nm.

This finding fits within the context from other studies that have looked for a relationship between the hematite fraction and

absorption at different wavelengths. The study from Di Biagio et al. (2019) found a higher R2 when analyzing the variation of

the hematite fraction relative to the single scattering albedo at 520 nm (R2=0.78) compared to 370 nm (R2=0.73).540

::::::
Overall,

::::
this

:::::::
analysis

:::::::::
highlights

:::
that

::::::::::
segregating

::::
dust

::::::
plumes

::::
into

:::::::::
size-based

:::::::
clusters,

::::::
which

::::::
reduce

:::
size

:::::::::
variability

::::::
within

::
the

::::::::
analyzed

::::
dust

:::::::
plumes,

:::::
leads

::
to

:::::::
stronger

::::::::::
correlation

::::::::::
coefficients.

::::
This

:::::::::::
improvement

::
is
:::::::

evident
:::
for

:::
the

::::::::::::::::
backscatter-related

:::
ÅE

::
at

:::
the

:::::::
UV-VIS

:::::::
spectral

::::::
range,

::
as

::::::
shown

::::::
across

:::
all

::::
three

::::::
cluster

::::::::::::
classifications

:::
in

:::
Fig.

:::
8,

:::::::::
regardless

::
of

:::
the

:::::::
specific

::::
size

::::::::::::
classifications.

::::::::
However,

:::
this

:::::
trend

::
is

:::
not

::::::::
consistent

:::
for

::
all

:::
the

::::::::
intensive

::::::
optical

:::::::::
properties,

:::::
which

::::::
reflects

:::
the

::::::::::
complexity

::
of

:::
the

:::::::::::
relationships.

::::
One

:::::::
possible

::::::::::
explanation

::
is

:::
that

:::::
since

::::::::
different

:::
size

:::::::::
categories

::::::
impact

::::
dust

::::::
optical

:::::::::
properties

::
in

:::::::
distinct

:::::
ways.545

::::::::::
Specifically,

:::::::::
absorption

::::
tends

:::
to

::::::::
dominate

:::
over

:::::::::
scattering

::
in

::::::
coarser

:::::::
particles

:::::::::::::::::::::::::::::::::::::::
(Adebiyi and Kok, 2020; Di Biagio et al., 2019

:
),

:::::
which

:::::::
provides

:::
an

:::::::::
explanation

:::
as

::
to

::::
why

:::
the

:::
size

::::::
cluster

::::
with

:::
the

::::::
coarser

::::::::
particles,

:::::::
exhibits

:::
the

::::::::
strongest

::::::::::
correlations

:::
for

::::
lidar

:::::
ratios.

The impact of the particle size on the particle linear depolarization ratios, as noted by Hofer et al. (2020) and Miffre et al.

(2023), δ increases with particle size and that is observable in Fig. 8. Specifically, the mean δ355 values rise from 0.21 in550
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Figure 8. As in Fig. 7 but the color coding differs and the twenty two dust cases are separated regarding their fine-to-coarse fraction: (a-b)

dust layers with fine/coarse above 0.11, (c-d) dust layers with fine/coarse above 0.9
::::
0.09 and below 0.11, and (e-f) dust layers with fine/coarse

below 0.9
:::
0.09. (a,c,e) illustrate S355, δ355, and ÅE(β)355/532, (b,d,f) shows the values related to S532, δ532, and ÅE(α)355/532. The color

coding depend on the non-dust to dust fraction obtained from the POLIPHON method, values in percentage are shown by the color bar.
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Table 3. Mean values and the Person
::::
linear

:
correlation coefficients (r

:::::::
coefficient, p)

::
R2,

:
with respect to variations of the hematite fraction

with lidar ratios (S), particle linear depolarization ratios (δ), backscatter-related Ångström exponent (ÅE(β)) and extinction-related Ångström

exponent (ÅE(α)) for the 355 nm and 532 nm wavelengths. Categorized according to size differences throughout the case studies following

Fig. 3 based on the fine-to-coarse ratio (f/c) from the data obtained by appying the POLIPHON method.

fine(f)/coarse(c) S355 [sr] δ355 S532 [sr] δ532 ÅE(β)355/532 ÅE(α)355/532

f/c > 11% 55±4 0.208±0.009 44±5 0.265±0.007 -0.43±0.06 0.13±0.31

(8 cases) r
::
R2=-0.03, p=0.94

:::
0.01

:
r
::
R2=-0.22, p=0.59 0

:
r
::
R2=0.35, p=0.39

::::
0.19 r

::
R2=-0.01, p=0.97

:::
0.05

:
r
::
R2=0.38, p=0.35

::::
0.55 r

::
R2=-0.12, p=0.77

:::
0.01

9% < f/c < 11% 62±3 0.244±0.005 49±3 0.279±0.003 -0.52±0.04 0.07±0.14

(8 cases) r
::
R2=0.16, p=0.71

:::
0.10 r

::
R2=-0.001, p=0.99

:::
0.01

:
r
::
R2=0.38, p=0.36

::::
0.05 r

::
R2=-0.16, p=0.7

:::
0.03 r

::
R2=0.52, p=0.18

::::
0.63 r

::
R2=-0.09, p=0.83

:::
0.19

f/c < 9% 62±4 0.253±0.004 49±5 0.292±0.002 -0.55±0.04 0.04±0.31

(6 cases) r
::
R2=0.46, p=0.36

:::
0.47 r

::
R2=0.26, p=0.62

:::
0.51

:
r
::
R2=0.74, p=0.09

::::
0.04 r

::
R2=-0.41, p=0.42

:::
0.37

:
r
::
R2=0.87, p=0.02

::::
0.60 r

::
R2=-0.02, p=0.97

:::
0.02

:::
Fig.

::
8(a), to 0.25 in

:::
Fig.

::
8(e) as shown in Table 3. A similarly increase in the mean δ532 values is observed. However

:
,
::::::
further

::::::::
validating

:::
the

:::
size

:::::::
clusters.

:::::::::::
Furthermore, the finding from Miffre et al. (2023) laboratory study , which showed that the presence

of hematite lowers δ355, is not reflected in these case studies. A
:::::::
However,

::
a

:::::
slight

:::::::
tendency

::::::::
pointing

::::::
towards

::::
this

::::::::::
relationship

:
is
::::::
shown

::
in

::::
Fig.

::::
8(f),

:::::
where

::
a weak negative correlation (r=-0.41) between δ532 and hematite fraction is observed only for the

coarser particles case, Fig. 8(f), though this is paired with a high p-value (p=0.42). A moderate fit (R2=0.36) from the linear555

analysis is found between them (linear fit not shown).
:
.

When examining the relationships between the backscatter-related Ångström exponent and hematite fractions, the Pearson

:::::
linear correlation coefficients increase as the portion of fine dust decreases

:::
the

::::
most

:::::::
between

:::
the

::::::
cluster

::::
with

::::
finer

:::::::
particles

::::
and

::
the

:::::::::::
intermediate

:::
and

:::::::
coarser

::::::::::::
classifications. In particular, the ÅE(β)355/532 - hematite fraction analysis in (f) shows a strong

positive correlation with statistical significance (r=0.87 with p=0.02). The fitness of the linear relationship is correspondingly560

high (R2=0.6), portraying a moderately strong predictive ability.
:::
Fig.

::::
8(c)

:::
and

:::
(f)

::::
show

::::::
strong

:::::::
positive

::::::::::
correlations. Conversely,

the ÅE(α)355/532 - hematite fraction analysis across varying particle sizes (b,d,e) shows weakening negative correlations

that lack statistical significance
::
no

:::::::::
correlation

::
or

:::::::::
consistent

::::::
change

::::::
within

::::
size

:::::::
clusters. Interestingly, the average values of

ÅE(α)355/532 reduce towards zero as coarser particles become dominant, portraying the
::::::
strength

::
of

:::
the

:
size dependency of

this property.565

Following Miffre et al. (2020) and Veselovskii et al. (2020), it is evident that the backscatter-related Ångström exponent
:::
ÅE

for the 355 to 532 nm wavelengths is influenced by the real and imaginary parts of the complex refractive index (CRI)
::::::::
imaginary

:::
part

::
of

:::
the

::::
CRI. Even though the negative relationship found in Veselovskii et al. (2020)’s sensitivity study, where ÅE(β)355/532

decreases as the imaginary part of the CRI increases, does not align with our findings, Miffre et al. (2020)’s laboratory study

suggest a different scenario. In cases with larger effective radius and considering non-spherical particles, where the real part of570

the CRI does not vary, ÅE(β)355/532 increases as the imaginary part of the CRI increases. Given that Di Biagio et al. (2019)

observed no variation in the real part of the CRI of any dust samples at these wavelengths, it suggests that the changes in

ÅE(β)355/532 are primarily driven by variations in the imaginary part of the CRI, which in turn has been linked to hematite
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content (Fig.9 in Di Biagio et al., 2019). This indicates that the observed changes shown here in the ÅE(β)355/532 are a

result of hematite’s impact on the imaginary part of the CRI, which affects dust’s backscattering capabilities differently for575

the 355 and 532 nm wavelengths. As shown in Fig.9 in Di Biagio et al., 2019, the relationships between hematite content

and the imaginary part of the CRI and SSA exhibit steeper slopes at 355 nm compared to longer wavelengths, highlighting a

wavelength dependency. If the increase in hematite content has a stronger effect on the backscattering coefficient at 355 nm

than at 532 nm, this explains the observed rise in ÅE(β)355/532 with increasing hematite content.

:::
The

:::::
lidar

::::::::::
ratio-related

:::
ÅE

::::::::
analysis

:::::
shows

::
a
::::::
similar

::::::
results

:::
to

::::::::::::
ÅE(β)355/532,

::::::::
showing

:::
the

::::::::
strongest

:::::::::
correlation

:::::
with

:::
the580

::::::
varying

:::::::
hematite

:::::::
fraction

:::
for

::
the

:::::::::::
intermediate

::::::
cluster

:::::::::
(R2=0.42).

:::::::::::
Furthermore,

:::::::::::
ÅE(S)355/532:::::::::

correlation
::::::::::
coefficients

:::
get

:::::::
stronger

:::::::
between

:::
the

:::::
cases

::::
with

::::
finer

:::::::
particles

::::
and

:::
the

::::
ones

::::
with

:::::::
coarser

:::::::
particles

::::
(see

::::
Fig.

::::
B2).

:::::
These

::::::
results

::::::::
reinforce

:::
the

::::
idea

::::
that

:::::::
hematite

::::::::
influences

:::
the

:::::
lidar

::::
ratio

::::
with

:
a
::::::::::
wavelength

::::::::::
dependence

::
by

:::::::::
impacting

:::::::
stronger

::::
S355::::

than
:::::
S532.

Additionally, the color coding provides further insight by highlighting the relationship between the non-dust to dust fraction,

as derived from POLIPHON, within each dust layer. As shown in Fig. 8, the highest non-dust portions are found in the layers585

with the larger fine dust portion
:::
Fig.

::
8(a-b), and this ratio decreases progressively as the fine dust portion diminishes. The

presence of higher non-dust content, such as soot - whether locally produced or transported within the layer - can influence

the measured optical properties by absorbing radiation at UV wavelengths (Müller et al., 2009). This effect contributes into the

understanding of the lack of clear, positive relationships between the S355, S532, ÅE(β)355/532, and the increase of hematite

content for cases a higher portion of non-dust aerosols.590

We conclude that due to the complex interactions between the particle size, shape and composition with the intensive op-

tical properties ,
::::
make

:
the effect of increased hematite fraction on absorption becomes more apparent only when dust cases

are separated, reducing size variations and minimizing
:::
size

:::::::::
segregated.

:::::
This

:::::::
approach

:::::::
reduces

::::
size

::::::::
variations

::::
and

:::::::::
minimizes

interference from other aerosols.
:::::::
Although

:::::
these

::::::::::
separations

:::
are

:::::::
artificial

:::
due

:::
to

:::
the

::::::::::
uncertainties

:::
of

:::
the

:::::::::::
fine-to-coarse

::::::
ratios,

:::
they

:::::
serve

::
as

::
a
:::::::
valuable

::::::::::
exploratory

::::::::
analysis,

::::::::::
highlighting

:::
the

::::::::::
importance

::
of

:::
size

::::::::::
segregation

::
in

::::::::
studying

:::
the

:::::::
impacts

::
of

::::
iron595

::::
oxide

:::::::
content

::
on

::::::::
intensive

::::::
optical

:::::::::
properties.

4 Conclusion and implications

A positive relationship is found
::::::
Positive

:::::::::::
correlations

:::
are

:::::::
revealed

:::
in

:::
the

:::::::
analysis

:
between lidar retrieved intensive optical

properties and modelled hematite fraction for
:::::::
modeled

:::::::
hematite

:::::::
fraction

::
in
:
dust cases when analysed separately according to

particle size . These dust layers have a minor amount of fine dust fraction and minimal
:::::::::
considering

:::::::
particle

::::
size

:::::::::
separately,600

::::::::
especially

:::
for

:::::
layers

::::
with

:::::::
minimal

::::
fine

::::
dust

:::
and non-dust content. However, this does not mean that hematite has no impact on

intensive optical properties in cases with more heterogeneous size distributions. Instead,
:::
This

::::::::
suggests

:::
that

::::
both

:
particle size

and composition both impact these properties of dust , though
:::::::::
significantly

::::::::
influence

::::
dust

:::::::
optical

:::::::::
properties,

:::::::
although

:
their

effects are difficult to separate. This complexity arises because
:::::::::
intertwined

::::
and

:::::::
difficult

::
to

::::::::::
disentangle

:::
due

::
to

:::::
their

::::::::
nonlinear

:::::
nature.

:::::::::::
Furthermore, due to the nature of the POLIPHON method, most

::
the

::::::::::::
concentration

::
of non-dust particles are concentrated605
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in the fine particle fraction
::
is

::::::::
contained

:::::
within

:::
the

::::
fine

::::::
fraction

::::::::
therefore

::::::::
obscuring

:::
the

:::::::::
correlation

:::::::
between

::::::::
hematite

:::
and

::::::
optical

::::::::
properties

::
in

:::
this

::::
size

:::::
range.

Regarding the positive correlation found with the backscatter-related Ångström exponent, our findings align with Miffre

et al. (2020), indicating that an increase in the imaginary part of the CRI, linked to higher hematite content, leads to an increase

in ÅE(β)355/532. This supports the notion that changes in ÅE(β)355/532 are primarily driven by variations in the imaginary610

component
::::
part of the CRI, rather than the real part. This is consistent with previous studies, such as those by Di Biagio et al.

(2019), which found no variation in the real part of the CRI but identified hematite’s impact on the imaginary part. Although the

:::::
These

::::::::::
correlations

::::::
indicate

::
a
::::::
positive

::::::::::
relationship

:::::::
between

:::
the

::::::::
hematite

::::::
fraction

::::
and

::
the

::::::
dust’s

:::::::::::
backscattering

:::::::::
properties,

::::
with

::
a

::::::::::::::::::
wavelength-dependent

::::::::
influence.

::::::
While

::
the

:
lidar ratio does not show a strong correlationwith changes in hematite content, there

is ,
:

a clear trend where the positive correlation becomes stronger
:::::::
emerges as particle size differences decrease

::::::
become

:::::
more615

:::::::::
constrained

:
at both 355 nm and 532 nm wavelengths. These correlations indicate a positive relationship between the hematite

fraction and the dust’s backscatter and extinction properties, with a wavelength-dependent influence.
::
In

:::
the

::::
size

:::::::::
segregated

:::::
cases,

:::
the

::::::
positive

::::::::::
correlation

::::::::::
strengthens.

::::
This

::::
trend

::
is
::::::
further

:::::::::
supported

::
by

:::
the

::::
lidar

::::::::::
ratio-related

::::
ÅE

:::::::::
correlation

:::::::
analysis.

:

This study presents a framework for understanding the influence of hematite content on lidar measurements. To enhance the

statistical validity of these findings, it is essential to identify additional lidar retrieved dust plumes that meet this study criteria,620

potentially using machine learning techniques. Expanding this research to other desert regions globally is also recommended,

given the lidar ratio variations across different deserts (Hofer et al., 2020; Schuster et al., 2012).

Future modeling efforts should include a parametrization that takes into account the changes in particle size distribution

as minerals get emitted, as well as adding the soil distribution content of goethite. Additionally, a new development could

replace the use of soil interpolation produced databases by providing a mineralogical dataset from spaceborne hysperspectral625

measurements through NASA’s Earth Surface Mineral Dust Source Investigation (EMIT: https://earth.jpl.nasa.gov/emit/).

Moreover, if a specific combination of lidar retrieved measurements can be identified for dust layers with varying hematite

content, these measurements could be linked to distinct dust source regions with unique mineralogical distributions (Formenti

et al., 2014; Go et al., 2022). This would build on previous studies that have linked differences in measured lidar ratios to dust

originating from different regions of the Sahara Desert (Esselborn et al., 2009). To advance this research, efforts could also630

incorporate the infrared channel from PollyXT retrievals to identify minerals interacting with this part of the spectrum (Gebauer

et al., 2024; Haarig et al., 2022).

To conclude, although a positive correlation has been identified between lidar retrieved intensive optical properties
:::
the

:::::::::::::::
backscatter-related

:::::::::
Ångström

:::::::
exponent

:
and hematite fraction, it is clear that further research is necessary in order to material-

ize and characterize this relationship
:::
and

::::::
further

::::::::::
relationships

:::::::
between

::::::::
hematite

::::::::
variations

:::
and

:::::
lidar

:::::::
retrieved

::::::::
intensive

::::::
optical635

::::::::
properties. Nonetheless, these findings underscore the importance of considering both size and compositional factors for accu-

rately representing dust optical properties. This could aid reduce uncertainties in model estimates of dust and its direct radiative

effect.
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Data availability. The dataset for reproducing the graphs presented here are available at http://doi.org/10.5281/zenodo.13908845.

Raw polly lidar observations (level 0 data, measured signals) can be accessed through the PollyNet database (http://polly.tropos.de/, last640

access on October 2024
:::::::
February

::::
2025).
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Appendix A:
::::::::::
Comparison

::::::::
between

::::::::::::::::::::::::
COSMO-MUSCAT-derived

::::
and

::::::::::
AERONET

:::::
AOT

:
A
::::::::::

comparison
:::

of
::::::
aerosol

::::::
optical

:::::::::
thickness

::::::
(AOT)

::
at

::::::
550 nm

::::
was

:::::::::
conducted

:::::
using

::::::::::
AERONET

::::
data

::
to

::::::::
evaluate

:::
the

:::::::
model’s

:::::::::::
performance.

:::
The

::::::
model

::::::
derived

:::::
AOT

:
is
:::::::::
calculated

:::::
based

::
on

:::
the

:::::::::
simulated

::::
total

::::::
column

::::
dust

:::::
mass

:::::
loads,

::
an

:::::::
effective

::::::
radius,

::
a

:::::::::::
dimensionless

::::
dust

:::::::::
extinction

::::::::
efficiency

::
at

:::::::
550 nm,

:::::
which

::::
vary

:::::
within

:::
the

::::::
model

:::
size

:::::::::::::
classifications,

:::
and

:
a
:::::
fixed,

::::::::::::
homogeneous645

::::::
density

::
of

::::::::::
2650 kg/m3.

:::::::
Further

::::::
details

::
of

::::
this

:::::::::
diagnostic

::::::::
approach

:::
can

:::
be

:::::
found

::
in

:::::::::::::::::::::::::::::
Gómez Maqueo Anaya et al. (2024)

:
.
::::
The

:::::::::
comparison

:::::::
covered

:::
the

::::::
entire

:::::::::
simulation

:::::::
periods,

::::
from

::
8
:::::::
August

::
to

::
30

::::::::::
September

::::
2021

::::
and

:::::
from

:
2
:::::
June

::
to

:::
31

::::
July

:::::
2022.

:::::::::
AERONET

:::::::
stations

::::
were

:::::::::::
strategically

:::::::
selected

:::::
along

:::
the

:::
dust

::::::::
transport

:::::::
pathway

:::::
from

:::
the

::::::
Sahara

:::::
Desert

:::::::
towards

:::
the

::::::::
Atlantic,

:::
and

::::
level

:::
2.0

:::::
data,

:::::
which

::::::::
undergo

:::::
cloud

::::::::
screening,

:::::
were

:::::
used.

:::
The

::::::
results

:::
are

::::::::
depicted

::
in

::::
Fig.

:::
A1

:::
for

::::
2021

::::
and

::::
Fig.

:::
A2

:::
for

:::::
2022.650

::::::::::::::::
COSMO-MUSCAT

:::::::::::
performance

:::::
varies

::::::
across

:::::::
stations.

::::::
While

:::
the

:::::
model

:::::
tends

:::
to

::::::::::::
underestimate

::::
AOT

::
at
::::::
certain

::::::::
stations,

::::
such

::
as

:::::::
Mindeo

:::
and

::::::::::::
Banizoumbou

::::::
during

::::::
JATAC

:::::
2021,

:::
and

:::::
Santa

:::::
Cruz

::
in

::::
both

:::::::::
campaign

:::::::
periods,

:
it
::::::::
generally

::::::::::::
overestimates

::::
AOT

::
at

:::
the

:::::
other

::::::
studied

:::::::
stations.

:::::::
Among

:::
the

:::::::
stations

::::::::
analyzed,

:::::
Santa

:::::
Cruz

::::::
station

::::::
showed

::::
the

:::
best

:::::::
overall

:::::::::
agreement

::::
with

::
the

::::::::
modeled

::::::
values.

::::::::
However,

:::
the

::::
lack

::
of

::::::::::::
measurements

::
at

:::::
some

::::::
stations

::::::
during

:::::::::
significant

::::::
periods

::
of

:::::
time

::
in

::::
both

:::::::::
campaigns

::::::::
introduces

::::
bias

::::
into

:::
the

:::::::::::::::
model-observation

:::::::::::
correlations.

:::::::
Specific

::::::
events,

::::
such

::
as

::
on

::
9
::::::
August

:::::
2021

::
at

:::::::
Cinzana

:::
and

:::
the

:::::::
midday655

::
of

::
23

:::::::
August

::::
2021

::
at
::::::::
Mindelo

:::
are

::::::::::
significantly

::::
over

::::::::::
represented

::::
and

:::::
under

::::::::::
represented

::
by

:::
the

::::::
model,

:::::::::::
respectively.

::::
The

::::
dust

::::
event

::::::::
recorded

::
at

:::
the

:::::::::::
Banizoumbou

::::::
station

:::
on

:::
the

::
13

:::::::::
September

:::::
2021

::::
also

::::::
appears

::
to

:::
be

:::::
under

::::::::::
represented.

::::::::
However,

:::::::
satellite

::::::::::
observations

:::::::
suggest

:::::::
potential

:::::
cloud

::::::::::::
contamination

::
in

::::::::::
AERONET

::::
AOT

::::::
values

::::::
despite

:::::
cloud

::::::::
screening

::::::::::
procedures.

:
It
::
is
:::::::::
important

::
to

::::::::
highlight

::::
that

::::::::::
AERONET

::::
AOT

::::::::
retrievals

:::::::
account

:::
for

:::
all

::::::
aerosol

:::::
types

:::::::::
potentially

:::::::
present,

::::::::
whereas

:::
the

:::::
model

::::::::
simulates

::::
only

::::
dust

::::::::
aerosols.

:::
To

:::::
ensure

::
a
:::::
more

:::::
direct

::::::::::
comparison,

:::
the

:::::
focus

::
is
::::::
placed

:::
on

::::::
periods

:::::
when

::::::::::::
ÅE(α)440/870660

:::::
values

:::
are

:::::
below

::::
0.3,

:::::
which

:::::
serves

:::
as

:
a
::::::
reliable

::::::::
indicator

:::
that

::::
dust

::
is

:::
the

::::::::
dominant

::::::
aerosol

::::
type

::::::::::::::::::
(Ansmann et al., 2019

:
).
:::::::
Despite

::::
these

::::::::::
challenges,

:::
the

:::::
model

:::::::::
effectively

::::::::::
reproduces

:::
the

:::::::
temporal

::::::::
evolution

:::
of

:::
dust

:::::::
plumes

::
in

:::
the

::::::
region,

::::::::::
successfully

::::::::
captures

::
the

:::::::
general

:::::::
patterns

::
in

::::::
timing

::::
and

::::::::
intensity.

::::
This

::::::
suggest

::::
that

:::
the

::::::
model

:::::::
provides

::
a
:::::::
reliable

::::::::::::
representation

::
of

::::
dust

::::::::
transport

:::::
across

:::
the

::::::
region

:::
and

:::
can

:::
be

:::::::::
confidently

::::
used

::
to

::::::::
simulate

:::
the

:::
life

::::
cycle

:::
of

::::::
mineral

::::
dust

::::::::
aerosols.
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Figure A1.
::::
Dust

::::
AOT

::
at

:::
550

::::
nm

::::::::
calculated

::::
from

:::::::::::::::
COSMO–MUSCAT

::::
dust

:::::::::::
concentration

::::
fields

::::::
(green)

::::
and

::::
AOT

::
at

:::
550

:::
nm

::::
and

:::
the

:::::::::::::
exctintion-related

:::::::
Ångström

::::::::
exponent

::
for

:::
the

:::::::
440–870

:::
nm

:::::::::
wavelength

::::
range

::::::::::::
(ÅE(α)440/870)

::::
from

::::::::::
AERONET,

::::
level

:::
2.0,

::::::::::::
sun-photometer

::::::::::
measurements

:::::
(blue

:::
and

::::
gold),

:::::
where

::::
each

:::::
x-axis

:::
tick

::::::::
represents

:::::::::
12:00UTC

::
for

::::
each

:::
day

::
in

:::
the

::::
range

::
of
::

8
::::::
August

::
to

::
30

::::::::
September

:::::
2021.

:::
Five

:::::::
different

::::::
stations

:::::
across

:::
the

::::::
Sahara

:::
and

::::::::
downwind

:::::::
locations

:::
are

::::::
shown.

::
a)
:::::::
Mindelo

:::::::::
(16.878°N,

::::::::
24.995°W;

:::::
Cape

:::::
Verde),

:::
b)

:::::
Dakar

::::
Belair

:::::::::
(14.702°N,

::::::::
17.426°W;

:::::::
Senegal),

::
c)
:::::

Santa
::::
Cruz

::::::
Tenerife

:::::::::
(28.473°N,

::::::::
16.247°W;

::::::
Spain),

::
d)

:::
IER

:::::::
Cinzana

::::::::
(13.278°N,

::::::::
5.934°W;

:::::
Mali),

:
e)
:::::::::::
Banizoumbou

::::::::
(13.547°N,

:::::::
2.665°E;

::::::
Niger),

::
(f)

:::::::::
AERONET

:::::
station

:::::::::
geographic

:::::::
locations

:::
and

:::::
names

:::
used

::
in
:::
this

::::::::::
comparison.
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Figure A2.
::
As

:
in
::::

Fig.
::
A1

:::
but

:::
for

::
the

:::::
period

::
of
::
2

:::
June

::
to
:::
31

:::
July

::::
2022.
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Figure B1.
::::
Mean

:::::
values

::
for

:::
22

:::
dust

:::::
layers,

:::::::
hematite

:::::::
fractions

::
are

::::::
shown

:
in
:::

the
::
x

:::
axis

:::
and

:::
the

:::
lidar

::::::::::
ratio-related

:::::::
Ångström

:::::::
exponent

:::
for

:::
the

:::
355

:::
and

::::::
532 nm

:
is
:::::
shown

::
in
:::
the

::
y

::::
axes.

:::
The

:::::::
standard

:::::::
deviation

::
of

:::::::::::
ÅE(S)355/532 :

is
:::::
shown

:::
by

::
the

::::
error

::::
bar.

:::::
Linear

::
fit

::::::
between

:::
the

:::::::
hematite

::::::
fraction

:::
and

::::::::::
ÅE(S)355/532::

is
::::::::
illustrated

::
by

:::
the

:::::
dotted

::::
lines,

:::
the

:
R
::::::
squared

:::::
value

:
of
:::

the
:::::
linear

::
fit

:
is
:::::
shown

::
in
:::
the

:::::
dashed

:::
line

::::::
legend.

Appendix B:
:::::
Lidar

::::
ratio

:::::::::
Ångström

:::::::::
exponent

::
vs

::::::::
hematite

:::::::
fraction

:
665

::::::
Figures

:::
B1

::::
and

:::
B2

:::::
show

:::
the

::::::::::
correlation

:::::::
analysis

:::::::
between

::::::::
averaged

::::::::
modeled

::::::::
hematite

:::::::
fraction

:::
and

::::
the

::::
lidar

:::::::::::
ratio-related

::::::::
Ångström

::::::::
exponent

::::::::::
considering

::
22

::::
dust

::::::
layers.

:::
The

::::
lidar

:::::::::::
ratio-related

::::::::
Ångström

::::::::
exponent

::
is

::::::
derived

:::::
from

::::
lidar

::::::::::::
measurements

::
in

:::
the

:::::::::
following

::::
way:

:

ÅE(S)355/532 =
ln(S355/S532)

ln(355/532)

=
ln(α355/β355 ∗β532/α532)

ln(355/532)

=
ln(α355/α532)+ ln(β532/β355)

ln(355/532)

= ÅE(α)355/532 −ÅE(β)355/532
:::::::::::::::::::::::::::::::::::::::

(B1)
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Figure B2.
::::
Same

::
as

:::
Fig.

::
B1

:::
but

:::
for

::
the

::::
case

::::::
studies

::::
being

:::::::
separated

::::::::
regarding

:::
their

:::::::::::
fine-to-coarse

::::::
fraction:

::::
first

:::
row

:::::
shows

:::
dust

:::::
layers

::::
with

::::::::
fine/coarse

:::::
above

::::
0.11,

:::::
middle

:::
row

::::::::
illustrates

:::
dust

:::::
layers

::::
with

::::::::
fine/coarse

:::::
above

::::
0.09

:::
and

:::::
below

::::
0.11,

:::
and

:::
last

:::
row

::::::
depicts

:::
dust

:::::
layers

::::
with

::::::::
fine/coarse

:::::
below

::::
0.09.
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