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Abbreviations 

CM, chamber method. 20 

Cref, reference CO2 concentration measured by Vaisala CO2 sensor and LI-COR gas analyzer. 

CSCD30, CO2 concentration measured by low-cost SCD30 CO2 sensors. 

FCM, soil CO2 flux measured by chamber method.  

FGM, soil CO2 flux calculated by gradient method.  

Fs, soil CO2 flux.  25 

GM, gradient method.  

LC-SS, low-cost sensor system. 

NDIR, non-dispersive infrared.  

SD, secure digital. 

SWC, soil water content.   30 
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Abstract. Soil CO2 flux (Fs) is a carbon cycling metric crucial for assessing ecosystem carbon budgets 

and global warming. However, global Fs datasets often suffer from low temporal-spatial resolution, as 

well as from spatial bias. Fs observations are severely deficient in tundra and dryland ecosystems due to 

financial and logistical constraints of current methods for Fs quantification. In this study, we introduce a 

novel, low-cost sensor system (LC-SS) for long-term, continuous monitoring of soil CO2 concentration 35 

and flux. The LC-SS, built from affordable, open-source hardware and software, offers a cost-effective 

solution (~USD700), accessible to low-budget users, and opens the scope for research with a large 

number of sensor system replications. The LC-SS was tested over ~6 months in arid soil conditions, 

where fluxes are small, and accuracy is critical. CO2 concentration and soil temperature were measured 

at 10-min intervals at depths of 5 and 10 cm. The LC-SS demonstrated high stability and minimal 40 

maintenance requirements during the tested period. Both diurnal and seasonal soil CO2 concentration 

variabilities were observed, highlighting the system's capability of continuous, long-term, in-situ 

monitoring of soil CO2 concentration. In addition, Fs was calculated using the measured CO2 

concentration via the gradient method and validated with Fs measured by the flux chamber method using 

the well-accepted LI-COR gas analyzer system. Gradient method Fs was in good agreement with flux 45 

chamber Fs, highlighting the potential for alternative or concurrent use of the LC-SS with current 

methods for Fs estimation. Leveraging the accuracy and cost-effectiveness of the LC-SS (below 10 % of 

automated gas analyzer system cost), strategic implementation of LC-SSs could be a promising means 

to effectively increase the number of measurements, spatially and temporally, ultimately aiding in 

bridging the gap between global Fs uncertainties and current measurement limitations.  50 
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1. Introduction  

Soil is the largest terrestrial carbon pool (Lal, 2005). Soil carbon can be subdivided into two general 

pools: organic and inorganic, with the global storage of each pool at approximately 1,530 and 940 PgC, 

respectively (Monger et al., 2015). Both organic and inorganic soil carbon exchange with the atmosphere 

through soil CO2 flux (Fs). FS is one of the largest carbon fluxes in the Earth system (Bond-Lamberty., 55 

2018; Friedlingstein et al., 2022). Compared with human-caused increases in atmospheric CO2, annual 

CO2 efflux from the soil into the atmosphere is much larger (Oertel et al., 2016). Therefore, Fs is 

considered a crucial carbon cycling metric, contributing to determining an ecosystem's carbon budget 

and assessing the current global warming scenarios (Bond-Lamberty et al., 2024; Xiao et al., 2012). 

For decades, there has been a lack of Fs monitoring in different parts of the globe. Various initiatives 60 

have been undertaken to integrate dispersed Fs observations worldwide into publicly accessible datasets 

(Bond-Lamberty et al., 2020; Bond-Lamberty and Thomson, 2010; Jian et al., 2021). However, global 

Fs datasets often exhibit low temporal-spatial resolution and spatial bias (Stell et al., 2021; Warner et al., 

2019). These limitations constrain our understanding of the mechanisms governing soil carbon dynamics 

and bias regional-to-global Fs estimation. The largest uncertainties in Fs estimates are found in tundra 65 

and dryland ecosystems primarily situated at the two poles, across Africa, Central Asia, South America, 

and Australia (Stell et al., 2021; Warner et al., 2019; Xu and Shang, 2016). These gaps can be primarily 

attributed to logistical constraints in manual data collection and the high costs of commercial measuring 

devices (Bouma, 2017; Forbes et al., 2023; Xu and Shang, 2016). Addressing logistical and financial 

constraints is crucial because critical questions concerning carbon dynamics can only be answered 70 

through extensive FS quantification (Kim et al., 2022).  

Field methods commonly used worldwide to quantify Fs are the eddy covariance method (Baldocchi et 

al., 1988; Massman and Lee, 2002), the flux chamber method (CM) (Davidson et al., 2002; Lundegårdh, 

1927), and the gradient method (GM) (De Jong and Schappert, 1972; Hirano et al., 2003; Tang et al., 

2003). These methods substantially differ in principles, thus deviating in cost and Fs estimation. The 75 

eddy covariance method provides Fs from a relatively large surface area (Gu et al., 2012), whereas the 

CM and GM yield single-point Fs (Bekin & Agam, 2023; Maier and Schack-Kirchner, 2014). The CM 

allows Fs to be measured directly from the soil surface, while the GM measures subsurface soil CO2 

concentration and estimates Fs using Fick's law (Maier and Schack-Kirchner, 2014).  

Despite the increasing popularity of the eddy covariance and CM, the GM remains a useful, widely used 80 

method (Chamizo et al., 2022; Hirano et al., 2003; Tang et al., 2003; Vargas et al., 2010). In comparison 

to the other two methods, the GM offers several advantages. First, it mitigates issues associated with 

eddy covariance, such as turbulence insufficiency, and with CM, such as the microclimate alterations 

from chamber deployment (Bekin and Agam, 2023; Maier and Schack-Kirchner, 2014). Moreover, GM 

offers additional insights into the depth profile of gas production, consumption, and exchange in the soil 85 

(Maier and Schack-Kirchner, 2014). The most significant advantage of the GM is its lower purchase and 

installation costs (1- 2 orders of magnitude less than the CM or eddy covariance method for continuous 

Fs monitoring). 
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The development of small, low-cost, low-power, environmental sensors, microcontrollers, and 

microcomputers has significantly advanced (Chan et al., 2021; Levintal, Suvočarev, et al., 2021). This 90 

advancement has led to the extended adoption of low-cost environmental sensing systems in the scientific 

community (e.g., Helm et al., 2021). Attempts to monitor soil CO2 concentration using low-cost CO2 

sensors have been made (Blackstock et al., 2019; Hassan et al., 2023; Heger et al., 2020; Osterholt et al., 

2022). Others monitored CO2 fluxes, such as stem, terrestrial, and aquatic fluxes, by implementing the 

CM using low-cost CO2 sensors and data loggers (Bastviken et al., 2015; Gagnon et al., 2016; Brändle 95 

& Kunert, 2019; Carbone et al., 2019; Forbes et al., 2023; Helm et al., 2021). Implementing the GM 

using soil CO2  concentrations measured by underground CO2 sensors was also reported (Osterholt et al., 

2022). However, these studies primarily focused on comparing the precision and accuracy of the low-

cost systems with high-end reference systems, typically conducting short-term in-situ examinations 

lasting from days to weeks, which limits insights into their stability and practicality for long-term use. 100 

To narrow the gap between the uncertainties in the regional-to-global Fs estimations and the capabilities 

of current measurement methods, in this study, we introduce an open-source, low-cost sensor system 

(LC-SS) for continuous, long-term monitoring of soil CO2 concentrations and Fs. The LC-SS was field-

tested over ~6 months in arid soil conditions to examine its stability and accuracy compared to a 

commercial automated flux chamber. Detailed, step-by-step, do-it-yourself guides describing the design, 105 

assembly, and installation are provided to assist non-engineer end-users with easy replication and 

customization.  

2. Materials and methods  

2.1. Hardware 

The LC-SS consists of two units: the control unit and the sensing unit (Fig. 1a & Fig. S1). The control 110 

unit includes a microcontroller (Feather M0 Adalogger, Adafruit, USA) accompanied by Secure Digital 

(SD) card, a latching relay for power control (Latching mini FeatherWing, Adafruit, USA), a clock for 

accurate time readings (DS3231 RTC, Adafruit, USA), a screen to display real-time results (0.96" 128x64 

OLED Graphic Display, Adafruit, USA), and a multiplexer allowing communication to the sensing unit 

(Gravity 1-to-8 I2C Multiplexer, DFRobot, China). For power, the microcontroller uses a 3.7 V lithium-115 

ion polymer battery (3.7 V 6000 mAh, Adafruit, USA) charged by solar energy via a solar charger 

(bq24074, Adafruit, USA), and a 6 W 6 V solar panel (Adafruit, USA). The sensing unit includes seven 

sensors: six CO2 sensors (SCD30, Sensirion, Switzerland, 0-10,000 ppm, accuracy between 400 to 

10,000 ppm: ±30 ppm + 3 % of full range), and an atmospheric microclimate sensor (pressure, relative 

humidity, and temperature, MS8607, DFRobot, China). The SCD30 CO2 sensor also measures 120 

temperature and relative humidity (accuracy: ±0.4 oC and ±3 %, respectively). 

The LC-SS used in this study featured two waterproof designs of CO2 sensors (Fig. 1b): a 50 ml Falcon 

tube design and a thin coating design. The 50 ml Falcon tube design is an easy-made and long-lasting 

option, while the thin coating design is suitable for near-surface deployment, effectively reducing errors 

associated with measurement depths. Both designs included a hydrophobic membrane to keep water from 125 

penetrating the sensor while allowing gas exchange with the surrounding soil. Providing two designs 
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offers end users the flexibility to adopt the option that best fits their needs and accessibility. The detailed 

do-it-yourself guide of the LC-SS assembly and sensor waterproof designs can be found on our GitHub 

page (https://github.com/OpenDigiEnvLab/soil-CO2-sensor-system). The hardware details are 

summarized in Table 1. 130 

Table 1. Summary of hardware components with examples for potential suppliers (components can be 

purchased from other suppliers). 

Component Quantity Cost/item

(USD) 

Sources Comments 

Feather M0 Adalogger 1 19.95 Adafruit 

(https://www.adafruit.com/

product/2796) 

A low-cost, low-power 

data logger 

RTC DS3231 with 

CR1220 battery 

1 17.5 Adafruit 

(https://www.adafruit.com/

product/3013) 

Provides accurate time 

for the data logger; 

CR1220 battery should 

be purchased separately 

Gravity 1-to-8 I2C 

Multiplexer 

1 6.9 DFRobot 

(https://www.dfrobot.com/p

roduct-1780.html) 

Enables the connection 

of multiple CO2 sensors 

to one data logger  

0.96" 128x64 OLED 

Graphic Display 

1 17.5 Adafruit 

(https://www.adafruit.com/

product/326) 

For real-time display of 

measurement results 

Latching relay 

FeatherWing  

1 7.95 Adafruit 

(https://www.adafruit.com/

product/2923) 

For power control: 

programmed to turn on 

and turn off the system 

to optimize power 

consumption 

P2886A feather header 

kit 

1 0.95 Adafruit 

(https://www.adafruit.com/

product/2886) 

To connect Feather M0 

Adalogger with 

Latching relay 

FeatherWing 

Lithium Ion Battery 

Pack-3.7 V 6600 mAh 

1 24.5 Adafruit 

(https://www.adafruit.com/

product/353) 

To provide power for 

the control and sensor 

unit 

Adafruit Universal USB / 

DC / Solar Lithium 

Ion/Polymer charger - 

bq24074 

1 14.95 Adafruit 

(https://www.adafruit.com/

product/4755) 

To charge the battery 

using the solar energy 

from solar panel 

Medium 6 V-2 W Solar 

panel 

1 29 Adafruit 

(https://www.adafruit.com/

product/200) 

 

SD/MicroSD memory 

card (8GB SDHC) 

 9.95 Adafruit 

(https://www.adafruit.com/

product/1294) 

 

SCD30 CO2 sensors 6 61.79 Digikey 

(https://www.digikey.com/e

n/products/detail/sensirion-

ag/SCD30/8445334) 

4 sensors with thin 

coating and 2 sensors 

with 50ml falcon tube 

STEMMA QT MS8607 

humidity-temperature-

pressure sensor  

1 14.95 Adafruit 

(https://www.adafruit.com/

product/4716) 

 

To measure 

atmospheric humidity, 

temperature, and 

pressure 

Weather-proof container  

 

1 10 Local suppliers For the control unit 

3D-printed frame 4 2 Printed locally For thin coating of 4 

sensors 

Epoxy 500 grams 5 Local suppliers For thin coating of 4 

sensors 

Plasti Dip 50 ml 5 Local suppliers For thin coating of 4 

sensors 
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Cables, wires, and 

general equipment: 

+ 7 × 4-wire cable 3 m (6 

for SCD30 sensors and 1 

for MS8607 sensor)  

+ Wires in colors white, 

green, red, black 

+ 8 × 4-pin cables with 

Female Dupont 

connectors 

+ 3 × JST PH 2-pin 

cable-male connector 

+ 1× 4-pin PH2.0 cable-

male connector 

+ 2 lever wire connectors 

+ On/off switch  

+ Shrinking sleeves of 

different sizes 

+ Superglue 

 

 ~50 Local suppliers  

 

The hardware is controlled using open-source Arduino code written in C++ (www.arduino.cc). The 

complete code uploaded to the LC-SS can be downloaded from our GitHub page. During every 135 

measurement cycle, all sensors are activated, and measurement readings are logged onto the SD card 

with a timestamp and displayed on the user screen. The default measurement interval is 10 minutes and 

can be easily customized if required.  

2.2. Field installation  

The LC-SS was installed at the Wadi Mashash Experimental farm located in the Northern Negev desert 140 

of Israel (31°04’14’’ N, 34°51’62’’ E; 360 meters above sea level). The local climate is arid, with an 

average annual precipitation of 116 mm, primarily occurring between October and April. The daily 

average maximum and minimum temperatures in January (winter) are 15.9 °C and 8.0 °C, and in August 

(summer) are 33.3 °C and 20.7 °C, respectively. Soil is characterized as sandy-loam loess soil (72.5 % 

sand, 15 % silt, and 12.5 % clay). Soil organic matter content between 0-5 and 5-10 cm is 2.96 and 2.62 145 

%, respectively. CaCO3 content between 0-5 and 5-10 cm is 50 and 47 %, respectively.  

The LC-SS was installed from 24/05/2023 to 14/11/2023, providing continuous measurements for 175 

successive days, spanning both summer and winter. Three CO2 sensors were installed at each depth (5 

and 10 cm) to allow comparison and statistical calibration, as detailed in section 2.3. At each depth, two 

sensors with a thin coating design (labeled as sensor#1_5cm, sensor#2_5cm and sensor#1_10cm, 150 

sensor#2_10cm) and one sensor with the 50 ml Falcon tube design (labeled as sensor#3_5cm and 

sensor#3_10cm) were deployed (Fig. 1c). To enable manual gas sampling during field calibration 

campaigns, a 60-cm Polyurethane tube (outer diameter × inner diameter = 6×4 mm) was inserted at each 

depth. One end of the tube was aligned with the CO2 sensors, while the other end extended above the 

soil surface and was sealed with a valve (Fig. 1d). Additional measurements included soil water content 155 

(SWC) using time-domain reflectometers (TDR-315, Acclima, Inc., USA) installed at 3 and 10 cm 

depths. Air temperature, atmospheric pressure, and precipitation data were taken from a meteorological 
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station located at the same field where the LC-SS was installed (https://ims.gov.il; Zomet Hanegev 

station). 

Fs measured using the CM (FCM) was measured at 1-hour intervals using a non-dispersive infrared 160 

(NDIR) gas analyzer (LI-8100A, LI-COR, USA) connected to four automated non-steady-state chambers 

(104C, LI-COR, USA). FCM was determined as the average readings obtained from the four chambers. 

The FCM measurements were conducted for the periods 24/05-18/06, 17-23/08, and 5/9-17/10/2023.  

 

Figure 1: The design of the low-cost sensor system (LC-SS) (a), two waterproof designs for the 165 

SCD30 CO2 sensors (b), field installation of the CO2 sensor line at 5 cm (c), and the site after 

installation (d).  

2.3. Two-step calibration of the CO2 sensors  

Calculating Fs based on the GM (FGM) (section 2.4) requires accurate soil CO2 concentrations. Therefore, 

we developed a two-step calibration process for the underground CO2 sensors: a field calibration and a 170 

statistical calibration.  

For the field calibration, CO2 concentrations from the low-cost SCD30 CO2 sensors (CSCD30) were 

calibrated against reference CO2 concentrations (Cref). Cref were obtained by measuring the CO2 

concentrations sampled from the sampling tube either by a high-end CO2 sensor (GMP252, Vaisala Inc., 

Finland) or by LI-COR gas analyzer (LI-8100A, LI-COR, USA) with three replicates from each depth 175 

(depending on field availability). Cref by the Vaisala CO2 sensor was measured every 5 hours between 
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6:00 and 16:00 on two days, 12/06 and 17/07/2023. Cref by the NDIR gas analyzer was measured every 

3 hours from 12:00 to 21:00 on 10/9/2023 and from 00:00 to 12:00 on 11/09/2023. In total, the calibration 

was determined with 21 and 17 measurement points for each sensor at 5 and 10 cm, respectively, over 

the range of concentrations from ~300 to ~650 ppm. 180 

The statistical calibration consisted of two sequential algorithms. The first algorithm (Fig. 2a) addressed 

abrupt anomalies or jumps of each sensor reading by flagging data points where the difference between 

measured and smoothed data exceeded 10 % of the measured data point. The smoothed data was executed 

using the LOESS smoothing algorithm (Jacoby, 2000), which fits multiple locally weighted least squares 

regressions to estimate a smooth curve through a scatterplot of data points. The second algorithm (Fig. 185 

2b) focused on detecting and correcting gradual drift, utilizing user-defined thresholds to determine when 

the difference between one sensor and the other two sensors becomes significant enough to require 

correction. Thresholds of 5 % and 10 % relative to the average for sensors at 5 and 10 cm, respectively, 

were defined. All calibration algorithms were applied post-data acquisition, ensuring accurate CO2 

concentrations essential for calculating FGM. 190 

 

Figure 2: Flowchart of the two statistical calibration algorithms. The algorithm to correct jumps 

(a) and the algorithm to correct gradual drift (b).  

2.4.  Calculating the FGM using the LC-SS data  
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To calculate FGM, CO2 concentrations were first corrected for temperature and pressure (Eq. S1) and then 195 

converted to mole density (Eq. S2). The GM is based on Fick’s first law, where FGM from depth z to the 

soil surface is calculated as (De Jong and Schappert, 1972):  

𝐹𝐺𝑀 = −𝐷𝑠

𝐶𝑧 − 𝐶0

𝑧
 

[1] 

where FGM [µmol m-2 s-1] is assumed to be equal to Fs from the soil surface (a positive FGM indicates CO2 

efflux and a negative FGM indicates CO2 influx), Ds [m2 s-1] is the CO2 diffusion coefficient between 

depth z [m] (negative) and the soil surface (0 m), Cz [µmol m-3] is the CO2 mole density at depth z, and 200 

C0 [µmol m-3] is the atmospheric CO2 mole density (C0 = 18741.63 µmol m-3 or 420 ppm). The reference 

value of 420 ppm was based on the average atmospheric CO2 concentrations measured by a LI-COR gas 

analyzer between 16/05-18/06 and 2/7-13/8/2023. FGM in this study was calculated using CO2 

concentration gradients between 0 and 5 cm depth, as recommended by Chamizo et al. (2022).  

The relative CO2 diffusion coefficient in the soil (Ds/Da where Da [m2 s-1] is the CO2 diffusion coefficient 205 

in free air) is estimated based on soil air content-dependent models 𝑀(𝜀), with 𝜀 being the volumetric 

air-filled porosity: 

𝐷𝑠

𝐷𝑎

= 𝑀(𝜀) 
[2] 

Da needs to be corrected to in-situ environmental conditions (Jones, 2013) using Eq. S3. Models used in 

this study to calculate 𝑀(𝜀), including the most common models, are listed in Table 2.  

Table 2: Classical soil diffusion coefficient models used for the GM. Porosity (𝝋) values were 210 

calculated as described in Eq. S4, and equal to 45%. 

Authors Model Originally developed for 

Buckingham [1904] 𝐷𝑠 =  𝐷𝑎𝜀2 Repacked soils 

Penman [1940] 𝐷𝑠 =  0.66𝐷𝑎𝜀 Dry porous materials 

Millington & Quirk [1961] 
𝐷𝑠 =  𝐷𝑎

𝜀10/3

𝜑2  
Different porous materials 

Millington [1959] 𝐷𝑠 =  𝐷𝑎𝜀4/3 Comparison of published results 

Campell [1985] 𝐷𝑠 =  0.9𝐷𝑎𝜀2.3 Aggregated silt loam 

Moldrup [2000] 
𝐷𝑠 =  𝐷𝑎

𝜀2.5

𝜑
 

Unstructured natural soils 

Marshall [1959] 𝐷𝑠 =  𝐷𝑎𝜀1.5 Different porous materials 

Currie [1970] 𝐷𝑠 =  𝐷𝑎(
𝜀

𝜑
)4 𝜑1.5 Sand 

Lai [1976] 𝐷𝑠 =  𝐷𝑎𝜀5/3 Undisturbed and repacked soils 
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Sadeghi [1989] 𝐷𝑠 =  0.18𝐷𝑎(
𝜀

𝜑
)2.98 Soils with clay content from 10.3 to 51.1 % 

 

2.5. Validation of FGM using FCM 

FGM values calculated using the gas diffusion models in Table. 2 were validated using measured FCM. 

First, we conducted a cross-correlation analysis (Horvatic et al., 2011) between FCM and FGM to 215 

systematically assess the lag time between measured FCM and calculated FGM, which reflects the time 

delay associated with gas transport from the 5 cm depth to the soil surface as previously reported 

(Sánchez-Cañete et al., 2017). Then, we shifted the FGM  using the identified lag time to align with the 

temporal dynamics of FCM.  

3. Results and discussion 220 

Because this study focuses on the development and field performance of the LC-SS for measuring soil 

CO2 concentrations and calculating FGM, our results and discussion will focus mainly on the LC-SS 

capabilities, such as long-term stability and accuracy. 

3.1. CO2 sensors calibration  

The field calibration curves for the six low-cost CO2 sensors are presented in Fig. 3a. All sensors show 225 

good linearity with high R2 > 0.8. The statistical calibration algorithms (Fig. 2) improved both the sudden 

and permanent drifts (Fig. 3b). At 5 cm, only 6.6, 2.1, and 4.4 % out of 25,200 readings of sensors #1, 

#2, and #3, respectively, required correction. At 10 cm, 34.5, 1.9, and 1.39 % readings were corrected 

for sensor #1, #2, and #3, respectively. The results validate the high stability of the CO2 sensors after ~6 

months. The one exception was sensor#1_10cm, which exhibited significant data requiring correction. 230 

However, the observed drift was systematic; therefore, it was easily corrected by referencing the data 

from the other two sensors at the same depth (i.e., Fig. 3b).  
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Figure 3: Calibration curves of the SCD30 CO2 sensors (a) and distribution of CO2 concentrations 

collected by six SCD30 CO2 sensors after each calibration step (b). 235 

3.2. Soil CO2 concentrations 

The 10-min interval time series of CO2 concentrations at 5 and 10 cm, and precipitation for one month 

(24/05-24/06/2023) as an example are shown in Fig. 4a-b. The complete dataset for the entire studied 

period is reported in the supplementary material (Fig. S2 and Fig. S3). The magnitude of CO2 

concentrations at 10 cm was greater than at 5 cm (~340 – ~730 ppm compared to ~320 – ~1000 ppm, 240 

respectively). CO2 concentrations at both depths during daytime (~7:00 – ~21:00 in summer and ~8:00 

– ~19:00 in winter) were higher than in the atmosphere, with average daytime concentrations of 545 and 

621 ppm at 5 and 10 cm, respectively. However, during nighttime (all hours excluding daytime hours), 

soil concentrations were lower than in the atmosphere, with average nighttime concentrations of ~380 

ppm at both depths. This indicates an efflux of CO2 from the soil to the atmosphere during daytime in 245 

contrast to an influx of CO2 from the atmosphere into the soil during nighttime. Daytime efflux and 

nighttime influx were previously observed in arid soils (Cueva et al., 2019; Hamerlynck et al., 2013; Sagi 

et al., 2021). The study conducted by Sagi et al. (2021) in the Negev Desert revealed a connection 

between soil CO2 influx, cooling soil temperatures, and high soil-to-air temperature gradients, 

specifically occurring when the soil water content (SWC) was below the threshold of ~8%. We observed 250 

similar conditions during our study (Fig. 4c-e). 

CO2 diurnal cycles at 5 cm showed differences between days with and without precipitation (Fig. 4c-d) 

and between summer months (May-September) and winter months (October-November) (Fig. 4d-e). On 

days with precipitation, the average CO2 concentration increased from 400±20 ppm around 8:00–9:00 to 

a daily peak of 530±70 ppm at 16:00. On days without precipitation, the morning increase occurred 255 
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earlier around 11:00–13:00, reaching 662±16 ppm. Inter-season patterns were also observed, with a 

winter daily peak lower than the summer daily peak by 106±22 ppm. The occurrence of diurnal cycles 

during all seasons is a typical phenomenon previously reported (Spohn and Holzheu, 2021; Chamizo et 

al., 2022).  

Our results showcase the ability of the underground CO2 sensor array to capture CO2 concentration 260 

profiles, typical diurnal changes, and seasonal changes. The results also highlight the capability of the 

sensor array to capture "hot moments", such as the effect of precipitation events on CO2 concentration in 

arid soils, significantly contributing to the understanding of the driving mechanisms underlying these 

moments.   

 265 

Figure 4: An example of one month of continuous CO2 concentration measurements between 

24/05-24/06/2023 at 5 cm (a) and 10 cm (b) depths, average daily values at 5 cm of CO2 

concentration, temperature, and soil water content (SWC) during four days with precipitation 

from May to September (c), 130 days without precipitation between May and September (d), and 

44 days without precipitation between October and November (e).  270 

3.3. FGM calculations 

The calculated FS using the GM (FGM, Eq. 1) and the measured FS using the CM (FCM) are presented in 

Fig. 5a; for simplicity, continuous results from only three representative days without precipitation are 

shown. Calculated FGM using different soil gas diffusion models (Table 2) were compared to the FCM. 

We observed a time lag in all calculated FGM compared to the FCM. Since the FGM was calculated using 275 

the CO2 concentration gradient between 5 cm and the soil surface, FGM can only represent subsurface FS. 
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Cross-correlation analysis was used to evaluate the lag time between the surface FCM and the sub-surface 

FGM, resulting in a lag time of three hours. To establish temporal alignment between FGM and FCM, FGM 

was shifted three hours to the past (Fig. 5a, dashed lines).  

A delay was also observed in the nocturnal influx FGM compared to the nocturnal influx FCM. Given the 280 

direction of nocturnal CO2 exchange—moving from the atmosphere into the soil—at any given moment, 

the volume of CO2 traversing a unit surface area at a given time (CO2 influx in units of µm m-2 s-1) must 

exceed that passing through the subsurface region at 5 cm depth. This leads to a more negative nocturnal 

influx FCM than nocturnal influx FGM. Therefore, we used the average daily minimum of nocturnal influx 

FCM as a reference to shift the magnitude of FGM. The time lag between FGM and FCM associated with 285 

measurement depth was also reported in previous studies (Sánchez-Cañete et al., 2017); the delay 

generally increases with sensor depth. 

The magnitude and distribution of FCM and FGM are presented in Fig. 5b (box plots). The total net flux 

over 175 days was calculated by determining the total area under the curve of CO2 efflux minus the total 

area above the curve of CO2 influx. The average daily flux [g C m-2 day-1] was obtained by dividing the 290 

total net flux by the total number of days (Fig. 5b, blue scatters). Except for the FGM by the Buckingham 

gas diffusion model (Buckingham FGM), a discrepancy between FGM and FCM was observed. Sánchez-

Cañete et al., (2017) speculated that ex-situ gas diffusion models yield substantial uncertainties when 

applied to other soils simply because these models were developed based on soil porosity and SWC of 

specific soil types (Table 2). In comparison to FCM, Buckingham FGM was the most comparable, for both 295 

magnitude and distribution, as well as average daily net flux. The outliers observed from the boxplot of 

FCM correspond to CO2 fluxes induced by precipitation events on 28/05/2023, 13/06-2023, and 

9/10/2023. 

https://doi.org/10.5194/egusphere-2024-3156
Preprint. Discussion started: 7 November 2024
c© Author(s) 2024. CC BY 4.0 License.



 

15 
 

 

Figure 5: Diurnal cycles of FS measured by the chamber method (FCM, green scatters), by the 300 

gradient method (FGM, solid lines), and by the gradient method using a 3-hour lag time (dashed 

lines) during three representative days without precipitation (a), comparison of FCM (green) and 

FGM (red; calculated using published gas diffusion models), and average daily flux (blue scatter) 

(b). 

The linear regression between Buckingham FGM and measured FCM is presented in Fig. 6a (R2 = 0.70). 305 

FS obtained by these two methods correlated mostly on days without precipitation (Fig. 6b). In contrast, 

on days with precipitation such as 13/06/2023 with 2 mm day-1, large variations between the two methods 

were observed (Fig. 6c). The instantaneous increase of FCM due to precipitation was a well-recognized 

phenomenon when rewetting occurs in water-limited arid soils (Andrews et al., 2023; Barnard et al., 

2020; Fierer & Schimel, 2003). The observed CO2 pulse, as measured by CM, agrees with the observed 310 

pattern of very high rates right after rewetting and slowly declines over time by Kim et al. (2012). These 

precipitation-induced CO2 pulses were underestimated by the GM. Previous studies also reported that 

the GM did not capture the abrupt CO2 pulse increases after water application (Jiang et al., 2022; Yang 

et al., 2018). Therefore, the utility of the GM in general is often accompanied by a validation/calibration 

using a short-term FS measurement for the CM (Chamizo et al., 2022; Sánchez-Cañete et al., 2017).  315 
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Figure 6: Linear regression between the Buckingham gradient flux (FGM) and the chamber flux 

(FCM) (a), the Buckingham FGM and the FCM during two days without precipitation (23-24/07/2023) 

(b), and during two days with precipitation (13-14/06/2023) (c). 

3.3. Limitation and modification 320 

We acknowledge that the FGM calculation method has its limitations. FGM calculation requires an accurate 

diffusion coefficient of CO2 between 5 cm and the soil surface. This study did not directly measure but 

used models to estimate the diffusion coefficient, supplemented by FCM measurements for validation. 

FCM measurements, which require chambers and a LI-COR gas analyzer, may pose a cost constraint for 

resource-limited research. This limitation is not unique to the LC-SS but applies to GM regardless of the 325 

sensor type. Even though using FCM measured by high-end gas analyzers to validate FGM is a 

recommended practice (Chamizo et al., 2022; Sánchez-Cañete et al., 2017) and applied in this study, it 

is not inherently obligatory. An alternative is to measure site-specific diffusion coefficient and calculate 

FGM without using published gas diffusion models. For example, Osterholt et al. (2022) suggested an 

approach to inject CO2 as a tracer gas to estimate diffusion coefficient. Furthermore, high-end, expensive 330 

chambers and gas analyzers can also be replaced with a low-cost, open-source chamber system (e.g., 

Forbes et al., 2023). When used with the LC-SS, only one chamber-gas analyzer system per several LC-

SSs is needed since only a short duration of FCM measurements is required for validation.  

The LC-SS presented here relies exclusively on an SD card for data logging and storage, which requires 

manual data retrieval and lacks real-time accessibility for monitoring and troubleshooting. Alternatively, 335 

we introduce an updated version of LS-SS equipped with a modem for real-time data updates and 

immediate troubleshooting whenever necessary (e.g., Levintal., et al., 2021). A detailed, step-by-step, 

do-it-yourself guide for the updated version is also available on our GitHub page. 

4. Conclusions  

This study introduces an innovative LC-SS developed for continuous, long-term monitoring of soil CO2 340 

concentration and Fs, facilitating in-situ soil-gas-related research. The LC-SS was built from low-cost, 

readily available hardware and open-source software components. The LC-SS design emphasizes 

modularity, with publicly available, comprehensive, technical documentation for each module, allowing 

straightforward replication and customization for non-engineering, low-budget end-users worldwide.  
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The LC-SS was field-tested for ~6 months, showcasing high stability, minimal maintenance 345 

requirements, and capabilities to capture the temporal dynamics of soil CO2 concentrations, including 

diurnal and seasonal variabilities. Furthermore, the agreement observed between the calculated FGM and 

measured FCM, both in the short term (i.e., sub-daily fluctuation) and in the long term (i.e., net CO2 

exchange over ~6 months), demonstrate the potential of the LC-SS as a new approach for Fs 

quantification. 350 

In conclusion, the LC-SS, priced at ~USD700, not only provides high accuracy of Fs but also offers 

higher temporal resolution and the potential for improved spatial resolution if widely adopted. This, in 

turn, could contribute to a more comprehensive dataset for regional-to-global estimation of Fs and 

advancing our understanding of the global soil carbon cycle.  
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