Supplementary information

1. Supplementary materials and methods

1.1.Hardware

Figure S1: The schematic design of the LC-SS with the control unit and the sensing unit.

1.2. F_{GM} calculation

The low-cost CO_2 sensors are factory pre-calibrated at fixed pressure and temperature. **Eq. S1** is applied to correct soil CO_2 concentration to in-situ environmental field conditions according to ideal gas law (e.g., Chamizo et al., 2022).

$$C_{\nu} = C_{\nu 0} \frac{P_c(273.2 + T_s)}{P_s(273.2 + T_c)}$$
[S1]

where C_v [µmol mol⁻¹ or ppm] is the corrected soil CO₂ concentration, P_c [hPa] is the atmospheric pressure during factory calibration (Pc = 1013 hPa), P_s [hPa] is the air pressure in soil (assume P_s = atmospheric pressure), T_c [°C] is the air temperature during factory calibration ($T_c = 25$ °C), and T_s is the soil temperature measured by the CO₂ sensors.

The CO₂ concentration or volume fraction (C_v [µmol mol⁻¹ or ppm]) is converted to mole density (C_z [µmol m⁻³]) by **Eq. S2**.

$$C_z = \frac{C_v * 1000}{22.41}$$
[S2]

To correct D_a to in-situ environmental conditions before using it in Eq. 2 (Johns, 2013), Eq. S3 is applied:

$$D_a = D_{a0} \left(\frac{T_a}{T_0}\right)^{1.75} \left(\frac{P_0}{P_a}\right)$$
[S3]

where T_a [K] is the in-situ air temperature, P_a [hPa] is the in-situ air pressure, and D_{a0} [m² s⁻¹] is the reference value of D_a at T_0 (293.15 K) and P_0 (1013 hPa) equals to 1.47×10⁻⁵ m² s⁻¹.

Total soil porosity (Φ) equals the sum of the volumetric air content (ε) and the volumetric water content (θ). Soil porosity is calculated using **Eq. S4**.

$$\Phi = 1 - \frac{\rho_b}{\rho_m} = \varepsilon + \theta$$
 [S4]

where ρ_b [g cm⁻³] is the bulk density and ρ_m [g cm⁻³] is the particle density for the mineral soil ($\rho_m = 2.65$ g cm⁻³).

Figure S2. Soil CO₂ concentrations at 5 cm during the entire study period.

Figure S3. Soil CO₂ concentrations at 10 cm during the entire study period.