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Abstract. Coal-fired power plants are a major source of global carbon emissions, and accurately accounting for these 

significant emission sources is crucial in addressing global warming. Many previous studies have used Gaussian plume models 

to estimate power plant emissions, but there is a gap in observation capabilities for high-latitude regions and nighttime 

emissions. However, large emitting power plants exist in high-latitude areas. The DQ-1 satellite is equipped with the world’s 20 

first active remote sensing lidar for detecting CO2 column concentrations, which, compared to passive remote sensing satellites, 

enables observations in these regions. This paper applies a two-dimensional Gaussian plume model to the XCO2 results from 

the DQ-1 satellite and analyses the instantaneous CO2 emissions of 10 power plants globally. Among these, 15 cases of data 

are from nighttime observations, and 3 cases are from power plants located above 60° N latitude. The estimation results show 

good consistency when compared with emission inventories such as Climate TRACE and Carbon Brief, with a correlation 25 

coefficient R = 0.97. The correlation coefficient between the model fits and satellite observations ranges from 0.49 to 0.88, 

and the overall relative random error in the estimates is 15.11 %. This paper also analyses the diurnal and seasonal variations 

in CO2 emissions from the power plants, finding that emission variations align with changes in electricity consumption in the 

surrounding regions. This method is effective for monitoring the diurnal variations of strong emission sources like power 

plants. 30 

1 Introduction 

Global warming is caused by the continuous increase of greenhouse gases in the atmosphere. The Kyoto Protocol under the 

United Nations Framework Convention on Climate Change classifies six gases, including carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCS), perfluorocarbons (PFCS), and sulfur hexafluoride (SF6), as major 
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greenhouse gases, with CO2 being the largest contributor and a key anthropogenic greenhouse gas (Protocol, 1997). Changes 35 

in atmospheric composition due to industrial development, land-use changes, deforestation, and livestock farming have led to 

global warming and a series of severe events impacting the Earth's ecological environment, such as frequent natural disasters. 

These effects are further exacerbated by increasing greenhouse gas emissions (Arias et al., 2021; Searchinger et al., 2018). 

Currently, greenhouse gas emissions are accelerating, with global annual CO2 emissions rising from 27 Pg to 49 Pg over the 

past 40 years (Friedlingstein et al., 2022). In response to the severe challenges posed by climate change, countries worldwide 40 

are actively participating in CO2 growth control initiatives and formulating strategies. China aims to peak CO2 emissions by 

2030 and achieve carbon neutrality by 2060 to curb the sharp rise in atmospheric CO2 concentrations (Li et al., 2022). 

Effective control of CO2 emissions relies on accurate, timely, and transparent monitoring. Currently, countries assess emission 

reduction measures through greenhouse gas inventories, but challenges such as data lag, inconsistent standards, and insufficient 

information transparency undermine comparability and credibility (Tubiello et al., 2015; Peters et al., 2012). For monitoring 45 

urban CO2 emissions, most methods employ emission models based on inventory data, following a "bottom-up" approach 

(Gurney et al., 2017; Turnbull et al., 2018; Lauvaux et al., 2016). The WRF-STILT model is one of the most widely used 

atmospheric transport models for simulating urban greenhouse gas concentrations, but its performance in nighttime CO2 

simulation is hindered by the lack of emission height information in inventories (Turner et al., 2020; Pillai et al., 2012; Hu et 

al., 2022). For small point sources like power plants, airborne or ground-based monitoring is typically used to measure CO2 50 

concentrations. Relevant studies have employed the mass balance method to assess CO2 emissions from power plants and 

cities through airborne observations (Ahn et al., 2020). Some research teams have also utilized the inverse Gaussian plume 

model with MAMAP instruments to remotely sense the column-averaged dry-air mole fractions of CO2 (XCO2) from power 

plants (Krings et al., 2018; Krings et al., 2011). Ground-based equipment, such as portable Fourier transform spectrometers 

(EM27/SUN), combined with the Gaussian plume model, has also been used to measure ground-level CO2 concentrations for 55 

specific power plants and urban areas (Ohyama et al., 2021). 

Satellite remote sensing technology holds significant potential for monitoring atmospheric CO2 due to its capability for long-

term, periodic observations on a global scale (Zhang et al., 2021). Monitoring point source emissions using satellites is 

challenging. Although the accuracy of the Gaussian plume model (GPM) is highly influenced by the precision of atmospheric 

background fields (Nassar et al., 2017), it is not constrained by the spatial resolution of the model and remains stable and 60 

effective in simulating point source dispersion (Toja-Silva et al., 2017; Schwandner et al., 2017). The Orbiting Carbon 

Observatory-2 (OCO-2) is widely used due to its high measurement accuracy and stable results (Sheng et al., 2023; Crisp et 

al., 2017; Miller et al., 2007). When it passes downwind of a single point source, a significant increase in XCO2 can be observed 

due to strong CO2 emissions, and by fitting the observed XCO2 with plume simulations, instantaneous CO2 emissions can be 

quantified (Nassar et al., 2017). In recent years, a series of studies have been conducted to estimate CO2 emissions from power 65 

plants, volcanoes, and cities based on OCO-2's XCO2 data (Nassar et al., 2017; Guo et al., 2023; Zheng et al., 2020; Crisp et 

al., 2017). Nassar et al. used the Gaussian plume model to estimate CO2 emissions from 20 power plants and related facilities 

in the U.S., India, South Africa, Poland, Russia, and South Korea, noting an average difference of 15.1 % between the estimated 
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emissions and reported values for U.S. power plants (Nassar et al., 2021). However, OCO-2/OCO-3/GOSAT are passive 

remote sensing satellites, which present data gaps in high-latitude and nighttime observations, and their spatial resolution of 70 

approximately 3 km poses limitations for monitoring small-scale strong point sources (Shi et al., 2023; Taylor et al., 2022; 

Eldering et al., 2019). For power plants, due to variations in power demand, nighttime emissions differ significantly from 

daytime levels, and there may be instances of illegal nighttime over-emissions at certain plants, making nighttime CO2 emission 

observations necessary (Letu et al., 2014). 

In 2022, China launched the Atmospheric Environment Monitoring Satellite (AEMS, also known as DQ-1), the first equipped 75 

with spaceborne IPDA (Integrated Path Differential Absorption) lidar, capable of global XCO2 measurements. This technology 

addresses the gap in XCO2 observations at high latitudes and during nighttime (Cai et al., 2022; Fan et al., 2024). Additionally, 

the XCO2 measurement accuracy is less than 1 ppm, with a footprint interval of 330 meters, significantly enhancing spatial 

and temporal coverage for power plant monitoring (Zhang et al., 2024; Zhang et al., 2023). Han et al. applied the EMI-GATE 

model, based on the Gaussian plume, to evaluate power plant emissions using DQ-1 data (Han et al., 2024). Compared to Han 80 

et al.'s research, this study employs a different approach to the Gaussian plume model, resulting in lower random errors in 

emission estimates. This paper also analyses two years of satellite data, examining emission variations of a single power plant 

over time. Section 2 introduces the data sources and methods of this study. In Section 3, the improved Gaussian plume model 

is integrated with DQ-1 satellite observations, selecting 10 globally high-emission power plants, including 15 nighttime 

observations and 23 observations of power plants in high-latitude regions, estimating their CO2 emissions. Analyses of diurnal 85 

and seasonal variations in CO2 emissions are also conducted. Section 4 provides a summary and discusses the potential 

applications of the Gaussian plume model with spaceborne IPDA lidar. 

2 Data and Methodology 

2.1 Data 

2.1.1 DQ-1 satellite data 90 

On 16 April 2022, China launched the world's first satellite designed for active remote sensing of carbon dioxide. This satellite 

is equipped with an Aerosol and Carbon Dioxide Laser Detection Lidar (ACDL). The primary scientific objectives are to 

measure high-resolution vertical profiles and the optical properties of global atmospheric aerosols and clouds, as well as to 

obtain global atmospheric CO2 column concentration data. This provides precise quantitative information for studies on CO2 

sources and sinks (Fan et al., 2024). The satellite utilizes Integrated Path Differential Absorption (IPDA) technology to measure 95 

CO2 column concentration. It employs a 1572 nm pulsed laser and the IPDA lidar method, using two wavelengths (λon and 

λoff, corresponding to regions of strong and weak absorption lines). The difference in absorption cross-sections (σ) between 

these two wavelengths is used to determine the CO2 column concentration. On-orbit tests of the lidar have yielded high-

precision remote sensing data, confirming that the CO2 column concentration measurement accuracy is better than 1 ppm. 
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Notably, this satellite provides the first global CO2 column concentration measurements at night and over the poles (Zhang et 100 

al., 2024). The satellite’s footprint spacing of 330 meters ensures high spatial resolution. This study utilizes the satellite’s L2D 

product, which includes global XCO2 data derived from raw observation data combined with the IPDA lidar inversion method. 

The datasets include XCO2 values, uncertainty for XCO2, and the corresponding surface elevation and geographic coordinates 

for each footprint. 

2.1.2 Wind data 105 

This study utilizes horizontal (U) and vertical (V) wind components from the fifth-generation European Centre for Medium-

Range Weather Forecasts (ECMWF) global climate atmospheric reanalysis dataset (ERA-5). The dataset features a temporal 

resolution of 1 hour, a spatial resolution of 0.25°, and includes 37 vertical pressure levels (Hersbach et al., 2020). A four-

dimensional interpolation method is applied to the U and V vectors at the plume lift height, which is set to a default chimney 

height of 240 meters and a plume vertical lift height of 250 meters (Hu and Shi, 2021). To evaluate the impact of wind speed 110 

uncertainty on power plant emission predictions, the study also compares results using MERRA-2 horizontal wind data (Gelaro 

et al., 2017). Ground-level wind speed data are selected from the ERA5-land hourly surface wind speed U and V vectors, 

which are spatially interpolated. Additionally, the water vapor column content is derived from the spatial and temporal 

interpolation of the water vapor column concentration in ERA5-land. 

2.1.3 CO2 emissions data 115 

The power plant validation data used in this study are sourced from the Carbon Brief database 

(https://www.carbonbrief.org/mapped-worlds-coal-power-plants/). However, many power plants in high-latitude regions do 

not provide emission data. Therefore, this study also compares the results with those from Climate TRACE 

(https://climatetrace.org/explore/electricity-generation-co2e100-2022). Climate TRACE estimates the activity levels (capacity 

factors) of power plants and other facilities using satellite observations and machine learning methods. This database provides 120 

annual CO2 emissions and power generation capacities for over 500 power plants worldwide. 

2.2 Emission inversion and Emission Uncertainties 

Gaussian plume models are widely used for monitoring point source emissions due to their stability (Brusca et al., 2016). This 

study applies this method to spaceborne IPDA lidar to estimate CO2 emissions from power plants. The basic equation of the 

model is as follows (Bovensmann et al., 2010): 125 

Δ𝑄𝑄(𝑥𝑥, 𝑦𝑦) =
𝐹𝐹
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Where 𝑥𝑥 and 𝑦𝑦 represent the distances from the chimney along the wind direction and vertical to the wind direction (m), Δ𝑄𝑄 

is the total CO2 column increment (g m-²), 𝐹𝐹 is the point source CO2 emission rate (g s-1), and a is the atmospheric stability 

parameter, which is related to the solar radiation index and surface wind speed. The solar radiation index can be assessed using 

high cloud cover, low cloud cover, and solar elevation angle (Pasquill, 1961; Beals, 1971). The total CO2 column amount 130 

converted to the increment of column concentration Δ𝑋𝑋𝑋𝑋𝑂𝑂2 (ppm) can be calculated using the following equation (Zheng et 

al., 2020): 

Δ𝑋𝑋𝑋𝑋𝑂𝑂2(𝑥𝑥, 𝑦𝑦) = Δ𝑄𝑄(𝑥𝑥,𝑦𝑦) ∙
𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎

𝑀𝑀𝐶𝐶𝑂𝑂2
∙

𝑔𝑔
𝑃𝑃surf − 𝑤𝑤 ∙ 𝑔𝑔

∙ 1000 (2) 

Where 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 is the molecular mass of dry air (g mol-1), 𝑀𝑀𝐶𝐶𝑂𝑂2  is the molecular mass of carbon dioxide (g mol-1), 𝑔𝑔 is the 

acceleration due to gravity, 𝑃𝑃surf is the surface pressure (Pa), and 𝑤𝑤 is the water vapor column content (kg m²). 135 

The satellite-observed XCO2 results need to be converted into the CO2 increment Δ𝑋𝑋𝑋𝑋𝑂𝑂2 caused by power plant emissions. 

The diffusion of CO2 plumes can be simplified using a two-dimensional Gaussian model, where the footprint of the spaceborne 

lidar is tangent to the two-dimensional Gaussian plume, leading to a shape similar to a one-dimensional Gaussian distribution. 

It is assumed that the background CO2 concentration might exhibit a small gradient linear change, and XCO2 distribution is 

considered to follow the distribution: 140 

𝑋𝑋𝑋𝑋𝑂𝑂2(𝑥𝑥) = 𝑋𝑋𝑋𝑋𝑂𝑂2𝑏𝑏 + 𝑏𝑏 ∙ 𝑥𝑥 +
𝑎𝑎

𝜎𝜎√2𝜋𝜋
𝑒𝑒[−(𝑥𝑥−𝜇𝜇)2/2𝜎𝜎2] (3) 

Where 𝑋𝑋𝑋𝑋𝑂𝑂2𝑏𝑏 + 𝑏𝑏 ∙ 𝑥𝑥 is background value of XCO2, 
𝑎𝑎

𝜎𝜎√2𝜋𝜋
𝑒𝑒[−(𝑥𝑥−𝜇𝜇)2/2𝜎𝜎2] is Δ𝑋𝑋𝑋𝑋𝑂𝑂2 caused by power plant emissions (Reuter 

et al., 2019). 
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 Figure 1: inversion framework for Gaussian plume models. 145 

The specific calculation process is illustrated in Fig. 1. To improve the model's fit with satellite observation results, the selected 

DQ-1 orbital data require that the downwind direction of the point source intersects with the satellite footprint and that the 

distance between the XCO2 enhancement location and the point source is less than 30 km. In the simulation, the x-axis of the 

Gaussian plume represents the direction of diffusion. Most studies use interpolated wind vectors from sources like ERA-5 at 

the plume height as the plume's direction (Guo et al., 2023). However, in practice, wind direction may deviate and change 150 

continuously, making instantaneous wind direction insufficient for accurate plume propagation. In this model, the plume 

propagation direction is defined as the vector from the chimney location to the centre of the Gaussian peak. This direction is 

then compared with the interpolated wind direction. Only results where the wind direction difference is less than 25° are 

selected for further comparison and validation. 

The selected satellite observation results are ultimately fitted to the model's plume results at the satellite footprint using the 155 

least squares method to obtain the CO2 emission rate of the target power plant. The model's results can be calculated using Eq. 

(1) and (2), where the atmospheric stability parameter significantly affects the dispersion of the plume. Direct fitting with a 

specific value can easily lead to estimation bias. In this study, the atmospheric stability parameter is empirically interpolated 

by considering factors such as cloud cover and solar altitude. Then, the prior value of the atmospheric stability parameter is 

varied by one standard deviation, and least squares fitting is performed accordingly. The optimal result is selected as the 160 

atmospheric instability of the location. For DQ-1 observational data, smoothing was applied to improve the signal-to-noise 

ratio and reduce errors (Zhang et al., 2023). Therefore, during the least squares fitting process, the model results are also 
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smoothed similarly. The primary differences between the Gaussian plume model used in this study and the EMI-GATE model 

employed by Han et al. lie in the calculation methods for the atmospheric instability parameter, background CO2 column 

concentration, wind speed, and wind direction. Our approach involves varying these parameters within their respective error 165 

ranges based on the original observational values, with each parameter being calculated independently to maximize the 

interpretability of the results. 

This study estimates the uncertainty in power plant emissions using a Gaussian plume model, considering five factors: 

uncertainty in wind speed, uncertainty in wind direction, uncertainty in plume height, uncertainty in atmospheric stability, and 

uncertainty in background field. The total uncertainty can be calculated using Eq. (4): 170 

𝜀𝜀 = �𝜀𝜀𝑠𝑠2 + 𝜀𝜀𝑑𝑑2 + 𝜀𝜀ℎ2 + 𝜀𝜀𝑎𝑎2 + 𝜀𝜀𝑏𝑏2 (4) 

Where 𝜀𝜀𝑠𝑠 represents the error caused by wind speed. This is estimated by comparing the CO2 emissions from the target power 

plant using wind speeds interpolated from MERRA-2 and ERA-5 data, with the wind speed uncertainty given by the difference 

between the two predictions. 𝜀𝜀𝑑𝑑 represents the error caused by wind direction, calculated as the difference in CO2 emissions 

using wind directions interpolated from ERA-5 versus the plume direction computed in this study. 𝜀𝜀ℎ represents the error 175 

caused by the emission height of the power plant. Assuming a default chimney height of 240 meters, and considering variations 

among different plants, including uncertainty in the plume rise height, scenarios with chimney heights of 160 m, 200 m, 240 

m, 280 m, and 320 m are used to estimate the uncertainty. 𝜀𝜀𝑎𝑎 represents the error due to atmospheric instability. The uncertainty 

due to atmospheric instability is calculated by assuming fluctuations of one standard deviation in atmospheric stability 

parameters. 𝜀𝜀𝑏𝑏 represents the error in calculating the CO2 background value. This is determined by comparing the average CO2 180 

concentration at points upwind of the source, outside the Gaussian plume, with the background value computed using the 

Gaussian fitting method employed in this study, thus providing the uncertainty in the CO2 background field. 

3 Results and Discussion 

In this study, we utilized the DQ-1 satellite's Level 2D XCO2 data and selected power plants with characteristics such as being 

located at mid-to-high latitudes and having large CO2 emissions from Climate TRACE. We retrieved all satellite orbits passing 185 

within a circular area centred on the power plant chimney with a radius of 50 km, using ERA-5 wind direction data to filter 

the satellite orbits. For 10 typical coal-fired power plants, 47 sets of satellite footprints were found within the plant area. The 

Gaussian plume model was applied with stringent data filtering criteria, requiring no thick clouds and ensuring that the point 

source's downwind direction intersected with the satellite orbit. Under the condition that the error between wind direction and 

plume dispersion direction was less than 25°, a total of 28 cases were selected, including 15 nighttime observations and 3 cases 190 

where the power plants were located above 60° N latitude. 
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3.1 Emissions from high latitude power plants 

Reftinskaya GRES (61.7° E, 57.1° N) is the largest solid fuel-fired power plant in Russia, generating electricity by burning 

coal. The plant emits not only CO2 and other greenhouse gases but also large amounts of SO2, NOx, and other pollutants, 

making the monitoring of its emissions highly significant. Located in Sverdlovsk Oblast, the plant has a total installed capacity 195 

of 3,800 MW and produces 20 billion kWh of electricity annually. Climate TRACE data shows that its CO2 emissions in 2022 

were 22.7 Mt, ranking it 8th among global power plants. This plant is a major power source for the Sverdlovsk, Tyumen, Perm, 

and Chelyabinsk regions. The plant’s Chimney No. 4, at 330 meters, is one of the tallest chimneys in the world, while the 

heights of the other chimneys are still uncertain. Due to the plant’s high latitude, around 57° N, traditional passive remote 

sensing satellite data has a low efficiency (OCO-2 satellites have no valid Gaussian plume data for this plant), making it 200 

difficult to observe. However, active remote sensing methods provide high data coverage in high-latitude regions, allowing 

for more accurate estimates of the plant’s emissions. In this study, we retrieved two years of observational data from July 2022 

to July 2024, identifying a total of 27 valid satellite orbits passing over the plant, as shown in Fig. 2. Based on ERA-5 wind 

direction data and the XCO2 distribution, 19 valid observations were identified, covering both daytime and nighttime during 

autumn/winter and spring/summer. These data enable analysis of the plant’s emissions over time, with typical daytime and 205 

nighttime observation results presented in Fig. 3.  

 
Figure 2:  The DQ-1 satellite passed through all orbits around the Reftinskaya GRES power plant, where the red hexagonal star 
indicates the position of the power plant. 

 210 
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Night 

   

Day 

   
 

Figure 3:  July 2022-July 2024 DQ-1 satellite passes all orbits around the Reftinskaya GRES power plant, where the red hexagonal 
star indicates the position of the power plant. 

For the nighttime observation on 17 August 2022, the satellite orbit (Fig. 4a) was approximately 12 km from the power plant. 

Using Gaussian fitting, the background CO2 column concentration was calculated to be 419.97 ppm, with an XCO2 increment 

of about 1.3 ppm (Fig. 4b). Within the plume, there were 76 data points, assuming a plume height of 530 meters above ground 215 

level (the sum of the chimney height and the assumed uplift height). The CO2 emission rate of the inventory is 721.3 kg s-¹. 

Combined with the two-dimensional Gaussian model, the theoretical XCO2 enhancement results were calculated (as shown in 

Fig. 4c), and using the least squares method, the fitted CO2 emission result was 806.0 ± 108.2 kg s-1, with a correlation 

coefficient of R = 0.88 (Fig. 4d). The average deviation between the model results and satellite-measured data was 0.32 ppm. 

The total relative error of 13.4 %, which included an uncertainty of 70.5 kg s-1 due to wind conditions, 39.8 kg s-1 due to 220 

background levels, and uncertainties of 26.1 kg s-1 and 64.4 kg s-1 due to plume height and atmospheric stability, respectively. 

The slightly higher result from the model compared to the emissions inventory can be attributed to the fact that the emissions 

inventory represents annual averages. When converting these averages into instantaneous emission rates, the result tends to be 

lower than the actual instantaneous emission due to shutdowns for maintenance throughout the year. Although electricity 

demand decreases at night in the mild summer climate, and the power plant's output is reduced, lower operational efficiency 225 

at low loads can lead to incomplete fuel combustion, resulting in overall CO2 emissions slightly exceeding the emissions 

inventory (Hendriks, 2012). 
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(a) (b) 

  

(c) (d) 

 
Figure 4: (a) DQ-1 satellite observation on 17 August 2022, where the red six-pointed star indicates the location of the power plant, 
and the red arrow indicates the result of wind interpolation of the height of the smoke plume at that location. (b)The result of one-230 
dimensional linear Gaussian fitting of the satellite observation of XCO2 results, the red line is the fitted result. (c) Gaussian plume 
distribution corresponding to the emission results calculated by the model, the blue point is the position of the satellite through the 
plume. (d) Comparison between the XCO2 enhancement results fitted by the model and the measured results, with the red and green 
points indicating the model results, where the green points are the parts contained in the plume, and the black and blue points are 
the measured results of the satellites, and the blue points are the points in the plume. 235 

On the night of 10 December 2023, the satellite also passed over this power plant, with the corresponding satellite trajectory 

(Fig. 5a) located about 31 km from the plant. Using Gaussian fitting, the background value was determined to be 432.42 ppm, 

and the XCO2 enhancement was 1.2 ppm. There were 57 points within the Gaussian plume, and the Gaussian plume model 

predicted the instantaneous emission rate of the plant to be 1027.5 ± 177 kg s-1, with a correlation coefficient R = 0.87. During 

the error calculation, the wind speeds from ERA-5 and MERRA-2 were 6.9 m s-1 and 7.8 m s-1, respectively, contributing an 240 

uncertainty of 110.6 kg s-1 due to wind conditions. Additionally, the atmospheric stability was calculated to be category D, 

leading to an emissions uncertainty of 94.4 kg s-1. Considering all factors, the total relative error was 17.3 %. Since December 
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is already winter in Russia, the increased electricity demand for city lighting, transportation, and residential heating appliances 

(Savić et al., 2014) required the plant to maintain higher power output to meet the surrounding cities' electricity needs, leading 

to an increase in instantaneous emissions. 245 

  
(a) (b) 

 
 

(c) (d) 
 

Figure 5: (a) Observations from the DQ-1 satellite on 20 December 2023. (b)The result after fitting the satellite observation of XCO2 
results to a one-dimensional linear Gaussian, the red line is the fitted result. (c) Gaussian plume distribution corresponding to the 
emission results calculated by the model (d) Comparison of the model-fitted XCO2 enhancement results with the observation results. 

On 8 February 2024, the DQ-1 satellite passed over the power plant again during the day at 08:29 UTC (Fig. 6a), with the 250 

Gaussian plume center located about 21 km downstream of the wind direction. In this observation, the atmospheric background 

field exhibited a strong linear variation trend, and the Gaussian linear fitting results are shown in Fig. 6b, with an average 

XCO2 background concentration of 428.9 ppm. The surface wind speed was 4.2 m s-1, and the atmospheric stability was 

calculated to be class B. There were 51 points within the plume. Using the Gaussian plume model, the plant's instantaneous 

emission rates was predicted to be 1109 ± 169 kg s-1, with a correlation coefficient R = 0.875 between the model results and 255 

satellite observations. The total uncertainty in the estimated emission rates was 168.9 kg s-1, with a relative error of 15.3 %. 
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The largest contribution to this uncertainty was from the variation in the CO2 background field, which caused an emission 

calculation uncertainty of 109.3 kg s-1. The uncertainties due to wind field, plume height, and atmospheric stability were 88.9 

kg s-1, 31.5 kg s-1, and 85.4 kg s-1, respectively. Compared to the observation in December, the CO2 emissions were higher in 

this February observation, which can be attributed to the fact that the observation was conducted during the day when electricity 260 

demand is higher due to residents’ work activities, leading the power plant to increase output, thereby raising CO2 emissions 

(Waite et al., 2017). 

 
 

(a) (b) 

  

(c) (d) 
 

Figure 6: (a) Observations from the DQ-1 satellite on 8 February 2024. (b)Fitting the satellite observation of XCO2 results to a one-
dimensional linear Gaussian, the red line is the fitted result. (c) Gaussian plume distribution corresponding to the CO2 emissions 265 
calculated by the model (d) Comparison between the XCO2 enhancement results fitted by the model and the measured results. 

By analyzing two years of observation data from the GRES power plant (as shown in Fig. 7), the overall estimated average 

emission rate is higher than the emissions reported in the inventory. The plant undergoes annual shutdowns for maintenance, 
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and the satellite observations represent instantaneous emissions, which may differ slightly from the annual average emissions. 

Additionally, the Climate TRACE data reflects the 2022 annual average emissions, and the plant’s yearly emissions fluctuate 270 

due to varying local electricity demand. Fig. 7 shows that summer emissions are lower than winter emissions. It was found 

that the plant is located in a high-latitude region where the climate is mild in summer and cold in winter. During winter, 

residents use electrical appliances and heating systems more frequently, and the power demand for urban infrastructure is 

higher than in summer. As a result, the power plant adjusts its output, leading to higher CO2 emissions in winter (Savić et al., 

2014). The comparison between daytime and nighttime observations shows that the average CO2 emission rate during the day 275 

is 1022 kg s-1, while the nighttime average is 796 kg s-1. The ratio of daytime to nighttime emission rates is 1.28. This ratio 

can be used to estimate the full-day CO2 emissions when only daytime or nighttime observations are available. The power 

plant is the primary source of electricity for the region, and electricity demand from production activities during the day is 

much higher than at night. Consequently, the plant increases its load during the day, resulting in higher CO2 emissions. This 

also indicates that the plant does not engage in unauthorized nighttime emissions during the observation period. 280 

 
Figure 7: Diurnal emission rates of CO2 from the GRES power plant over a 2-year period, with daytime results in red and nighttime 
observations in blue 

3.2 Emissions uncertainty analysis 

The uncertainty in the model calculations was assessed using Eq. (4) from Sect. 2.2, revealing that the uncertainty contributions 285 

vary across different power plants and influencing factors. The overall uncertainty results are presented in Table 1. The average 

relative random error is 15.11 %, which is lower than the 18.8 % random error of the EMI-GATE model (Han et al., 2024). 
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The primary contributors to this uncertainty are errors in the background field calculation, wind field errors, and atmospheric 

stability errors. Regarding wind fields, both the ERA-5 and MERRA-2 datasets are reanalysis results However, discrepancies 

can occur between these datasets, particularly in high-latitude regions where wind speed observations are sparse. When these 290 

wind speeds are used in the Gaussian model to estimate power plant emissions, differences can lead to errors in Gaussian 

diffusion velocity, thereby affecting prediction accuracy (Nassar et al., 2021). In this study, wind field-related uncertainty 

accounts for 26.7 % of the total error, with an average relative random error of 7.4 %. Atmospheric stability is another 

significant factor contributing to uncertainty. Atmospheric stability is not constant and varies in real-time with solar radiation, 

which is influenced by factors such as cloud cover and solar elevation angle (Ashrafi and Hoshyaripour, 2010). Since 295 

atmospheric stability directly impacts the shape of Gaussian diffusion, it introduces errors in predicted CO2 emissions. For all 

results considered, uncertainty due to atmospheric stability contributes 25.1 % to the total error, with an average relative 

random error of 7.3 %. Plume height uncertainty also plays a role in the overall error. While some power plants provide 

chimney height data, allowing for the consideration of plume rise uncertainty only, others require an assumed chimney height 

(Guo et al., 2023). This assumption can lead to relatively high errors, primarily because wind speed and direction near the 300 

ground can vary with height, resulting in inaccuracies in wind field calculations. Plume height uncertainty contributes 6.5 % 

to the total error, with an average relative random error of 3.3 %. Uncertainty in the background field is mainly due to 

inaccuracies in its calculation. In areas with significant anthropogenic interference, a linear function may not adequately 

represent changes in background CO2 concentration. Although the XCO2 observation accuracy of the DQ-1 satellite is better 

than 1 ppm, uncertainty in its results contributes to errors in point source estimation. Background field errors account for 40.7 % 305 

of the total error, with an average relative random error of 9.5 %. For spaceborne lidar, the spatial distribution of satellite nadir 

points differs from that of passive remote sensing satellites, leading to fewer observed points within the plume. This increases 

the weight of background field uncertainty in the total error (Nassar et al., 2021; Shi et al., 2023). 
Table 1 Uncertainty caused by different error factors in the forecast results of different power plants. 

Power Station 
Wind field 

(Kg s-1) 

Plume    height 

(Kg s-1) 

Stability 

(Kg s-1) 

Background 

field (Kg s-1) 

Total error 

(Kg s-1) 

Relative 

error 

Scherer 34.2 13.9 59.4 47.4 72.4 15.1 % 

Belchatow 48.3 14.5 72.9 98.8 134.2 15.4 % 

Medupi 64 45.8 12.3 52.8 98 16.4 % 

Matimba 81.3 21.7 34.8 75.5 118.3 16.7 % 

CHP-1 4.3 1.9 9.5 15.2 18.4 16.7 % 

CHP-3 5.2 1.8 5.8 9.1 12.1 21.2 % 

GRES-2 43.2 31.2 72.3 107.2 143.5 12.6 % 

GRES 80.3 27.8 71.8 90.7 147.3 15.9 % 

Taean 51.8 27.4 10.8 27.8 73.3 7.4 % 

Daesan 2.8 0.9 1.6 1.2 3.5 12.7 % 
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3.3 Validation of Emission results 310 

The estimations from this study were compared with the emission inventories provided by Climate TRACE and Carbon Brief, 

as shown in Table 2. Both inventories present the annual total emission values, whereas the model results calculated from 

satellite observations represent instantaneous emission rates. Due to the power plant's ability to adjust its output based on local 

electricity demand, some differences between the two sets of results are expected. However, most results fall within the error 

range of the model predictions. The study includes three observation cases for latitude above 60° N and 15 cases of night-time 315 

emission detections. The use of spaceborne lidar to detect XCO2 effectively compensates for the limitations of passive remote 

sensing satellites in high-latitude and night-time observations. A comparison of all observation results with the Climate 

TRACE inventory is shown in Fig. 8, with a correlation coefficient of 0.97. 
Table 2 Information on different power plants and the comparison of model predictions with emission inventories 

Country Station Latitude UTC Time 
Model Result 

(kg s-1) 

Climate 

TRACE 

(kg s-1) 

Carbon 

Brief 

(kg s-1) 

Day or 

Night 

Russia GRES 57.11°N 8/17 22:12 806.0±108  721.3 638 Night 

Russia GRES 57.11°N 5/22 08:35 876.2 ±153 721.3 638 Day 

Russia GRES 57.11°N 11/05 22:10 988.6±161  721.3 638 Night 

Russia GRES 57.11°N 12/10 22:08 1027.5±177 721.3 638 Night 

Russia GRES 57.11°N 2/8 08:29 1109±169 721.3 638 Day 

Russia GRES 57.11°N 7/1 22:08 724.5±115 721.3 638 Night 

America Scherer 33.06°N 5/3 02:37 478±72 267.4 607.5  Night 

Poland Belchatow 51.26°N 5/8 19:18 771±134 867.5 925 Day 

South Africa Medupi 23.71°S 7/24 07:21 598±98 516.6 515.3 Day 

South Africa Matimba 23.60°S 7/24 07:21 708±118 617 664.6 Day 

Russia CHP-1 69.33°N 6/14 21:07 109.7±18  83 -- Night 

Russia CHP-3 69.32°N 6/14 21:07 57.1±12 44.1 -- Night 
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Russia GRES-2 61.28°N 7/24 21:36 1287.3±143  1001.1 -- Night 

Korean Taean 36.90°N 6/03 04:44 991.5±73  1022.2 900.5 Day 

Korean Daesan 36.99°N 6/03 04:44 30.4±3.4  23.9 -- Day 

 320 

 
Figure 8: Comparison of power plant emissions predicted by Gaussian plume model with Climate TRACE statistics, the solid black 
line represents the 1:1 line, and the dashed line indicates the linear fitting line. 

Overall, the CO2 emissions predicted by the Gaussian plume model are generally higher than those in the emissions inventory. 

This is because some of the observations were made during the winter and summer in the Northern Hemisphere when residents' 325 

demand for electricity, such as air conditioning, increases, prompting power plants to raise their generation capacity. 

Comparing nighttime CO2 emissions with daytime observations shows that emissions from some power plants are lower at 

night, primarily due to reduced electricity demand at night (Waite et al., 2017), and some power stations adjust power 

generation in real-time to avoid power storage saturation. However, for some plants, nighttime emissions exceed those in the 

inventory, possibly because when the load on the equipment is below its optimal level, the plant’s overall efficiency decreases, 330 

leading to incomplete fuel combustion. Additionally, frequent start-stop operations during low-load conditions may cause 

unstable combustion, further increasing emissions (Hendriks, 2012). Overall, the predicted emissions are slightly higher than 

those reported by Carbon Brief and Climate TRACE, mainly because conventional power plants undergo annual shutdowns 
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for equipment inspections, resulting in lower annual averages compared to instantaneous emissions. Moreover, by utilizing 

the high spatial resolution of the DQ-1 satellite, it is possible to monitor low CO2-emitting power plants (F < 100 kg s-1), with 335 

results fitting well with the inventory data. 

4 Conclusions 

This study utilized the IPDA lidar aboard the DQ-1 satellite to monitor emissions from localized strong point sources and, for 

the first time, observed the diurnal variation of CO2 emissions from a high-latitude power plant, effectively covering areas that 

passive remote sensing satellites fail to monitor. The two-dimensional Gaussian plume model was optimized in terms of plume 340 

direction and atmospheric stability and applied to XCO2 observation results. Validation and comparison results indicate that 

the improved Gaussian plume model has a strong correlation with the emissions inventory, with a correlation coefficient of 

0.97. The average relative random error of the predicted results is 15.11 %, which is lower than that of the EMI-GATE model, 

due to different parameter selections in the Gaussian plume model, thus reducing the random error. The main factors affecting 

estimation errors are the uncertainty in the atmospheric wind field (26.7 % of total error), uncertainty in atmospheric stability 345 

(25.1 %), and uncertainty in background field calculations (40.7 %). Establishing automatic weather stations around the power 

plant for real-time monitoring of atmospheric radiation and surface wind speed could reduce errors caused by uncertainties in 

atmospheric stability. Overall, power plant CO2 emissions were largely consistent with local electricity consumption patterns, 

with most plants emitting less at night than during the day, and with higher emissions in winter and summer compared to 

spring and autumn. This research provides a new approach for global carbon accounting. In 2025, China will launch the DQ-350 

2 satellite, equipped with the same IPDA lidar for carbon dioxide observation. As satellite density increases, global coverage 

of emissions detection data will significantly improve. 
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