Supplemental Information for:

Intended and Unintended Consequences of Atmospheric Methane Oxidation Enhancement

Hannah M. Horowitz¹

¹ Department of Civil and Environmental Engineering and Department of Climate, Meteorology, & Atmospheric Sciences,

1

5 University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Correspondence to: Hannah M. Horowitz (hmhorow@illinois.edu)

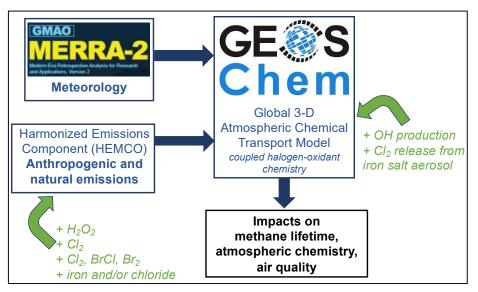


Figure S1. Methodology Schematic.

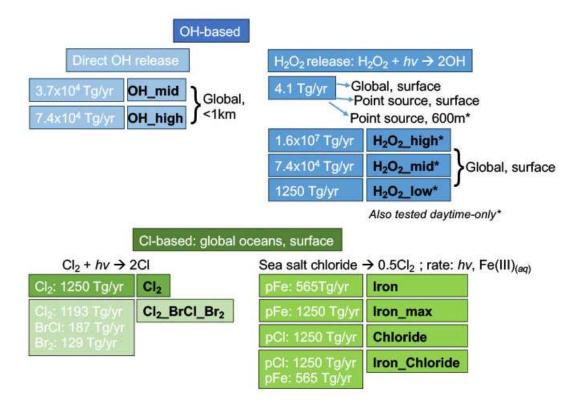


Figure S2. All model experiments conducted in the current study, grouped by methane oxidation mechanism and emitted species.

Table S1	Scenarios	with Negligible Results
----------	-----------	-------------------------

	Emitted Species	Total Emissions	Emissions	Emissions Rate	
		(Tg/yr)	Location	at Location of	
				Emissions	
				$(kg/m^2/s)$	
H ₂ O ₂ _production	H_2O_2	4.1	Globally at	2.549E-13	
			surface		
H ₂ O ₂ _point	H_2O_2	4.1	Major natural	1.126E-10	
			gas point		
			sources		
H ₂ O ₂ _point_600m	H_2O_2	4.1	Major natural	1.126E-10; also	
			gas point	tested with 2x	
			sources, at 600	emissions during	
			m altitude	daytime only	
				(6am–6pm)	

Table S2 Direct OH Release Scenarios

	Emitted Species	Production	Emissions	Reaction, Rate
		Rate (Tg/yr)	Location	Coefficient
OH_mid	ОН	3.7E4	Globally up	[O ₂]*1.78E-12
			to 1 km	
OH_high	ОН	7.4E4	Globally up	[O ₂]*3.56E-12
			to 1 km	

-		= =
	Q. Li et al. (2023)	This Study
Model	CAM4-Chem-CESM-1.1	GEOS-Chem 13.2.1
Model run time	2020–2050	2019
Anthropogenic emissions	Representative concentration pathway 8.5 time-varying	CEDS CMIP6, year 2019
Halogen chemistry	Li et al. (2022); includes Saiz-Lopez et al. (2014) and Ordóñez et al. (2012) plus chlorine and bromine release from sea salt+ N_2O_5 (also in GEOS-Chem), sea salt+HNO ₃ (not in GEOS-Chem), and N_2O_5 +HCl based on Hossaini et al. (2016)	Wang et al. (2021); includes Wang et al. (2019), Sherwen, Evans, et al. (2016), Sherwen, Schmidt, et al. (2016), and Zhu et al. (2019), plus sulfate formation from HOBr and HOCl, $N_2O_5+Cl^-$ from Wang et al. (2020), improved reactive uptake coefficients on ice crystals for halogens
Model resolution	$1.9^{\circ} \times 2.5^{\circ}$ horizontal	$4^{\circ} \times 5^{\circ}$ horizontal
Model resolution	26 vertical levels up to 40 km	72 vertical layers up to 80 km; chemistry performed in first 59 layers up to 49.8 km

 $\label{eq:comparison} \textbf{Table S3} \ \text{Comparison of Q. Li et al. (2023) and the Current Study Relevant to the Cl_2 and Cl_2_BrCl_Br_2 \ Scenarios$

	van Herpen et al. (2023)	This Study		
Model	CAM4-Chem	GEOS-Chem 13.2.1		
Model run time	June 1996–1998	2019		
Aerosols participating	Dust 1–2.5 µm	Dust 0.1–1 μ m; Accumulation mode sea salt chloride (\leq 0.5 μ m)		
Dust iron content	3.5%	3.5%		
Photoactive iron	Dust: 1.8%	Dust: 2.68% Anthropogenic: 26.8%		
Reaction rate for Cl ₂ release	Fe(II)–Fe(III) cycling kinetics from Zhu et al. (1993) (calculations based on field samples)	Based on Wittmer, Bleicher, and Zetzsch (2015) chamber study (Chen et al., 2024)		
Halogen chemistry	Wang et al. (2021)	Wang et al. (2021)		
Horizontal model resolution	0.9° × 1.25°	$4^{\circ} \times 5^{\circ}$		
Vertical model resolution	56 vertical levels up to 40 km	72 vertical levels up to 80 km; chemistry performed in first 59 layers up to 49.8 km		

Table S4 Comparison of van Herpen et al. (2023) and Current Study for Iron and Chloride Scenarios

Table S5 Changes in Tropospheric Burdens for the OH Experiments

	Bry	Cly	I_{y}	O ₃	ОН	Cl	NO _x	СО
Standard	20 Gg	241 Gg	12 Gg	338 Tg	215 Mg	318 kg	359 Gg	349 Tg
OH_mid	41.2	11.6	-17.8	-10.4	50.8	45.2	-21.1	-26.4
OH_high	54.6	19.5	-28.3	-14.3	94	72.3	-24.7	-31.1

5

TABLE S6 Percent Change in Tropospheric Burdens of Other Climate Forcers and Ozone-Depleting Substances, with Cl

 Atom Included for Reference, for Experiments Described in Table 1

	HCFC-	Total	Dibromo-	Bromoform	Methyl	Cl	ozone
	123	inorganic	methane	(CHBr ₃)	ioidide		
		aerosol	(CH ₂ Br ₂)		(CH ₃ I)		35
H2O2_high	-74.2	11.0	-61.0	-39.3	-6.6	396.4	-38.5
H2O2_mid	-34.7	13.7	-30.7	-20.9	-3.0	75.2	-6.3
H2O2_low	-3.8	7.3	-3.8	-2.6	-0.4	6.5	-0.8
Cl2	30.7	6.8	36.9	10.8	-1.1	2185.2	-24.4
Cl2_BrCl_Br2	64.0	20.9	76.2	12.1	-7.9	1839.8	-67.7
Iron	2.7	10.0	2.8	1.0	-0.2	179.3	-3.5
Chloride	5.3	-0.5	5.6	2.3	-0.2	180.9	-5.5
Iron_Chloride	11.0	10.9	11.8	4.4	-0.5	680.8	-10.7

45

TABLE S7 Percent Change in Stratospheric Burdens (tropopause up to 50 km) of Other Climate Forcers and Ozone-Depleting Substances, with Cl Atom Included for Reference, for Experiments Described in Table 1

	HCFC-	Total	Dibromo-	Bromoform	Methyl	Cl	ozone
	123	inorganic	methane	(CHBr ₃)	ioidide		
		aerosol	(CH ₂ Br ₂)		(CH ₃ I)		50
H2O2_high	-0.7	-2.0	-61.0	-60.6	-11.0	0.3	-0.3
H2O2_mid	-0.3	-1.3	-27.0	-23.4	-3.9	0.0	-0.1
H2O2_low	0.0	-0.2	-3.1	-2.5	-0.5	0.0	0.0
Cl2	0.3	3.4	36.9	16.0	-2.4	-3.1	-0.5
Cl2_BrCl_Br2	0.5	9.2	76.2	11.7	-15.6	-1.5	55 -7.8
Iron	0.0	0.4	2.5	1.1	-0.4	0.0	0.0
Chloride	0.0	0.2	5.0	2.4	-0.5	-2.3	-0.3
Iron_Chloride	0.1	1.0	10.9	4.9	-1.1	-2.2	-0.5

TABLE S8 Changes in Tropospheric Species in Reference to Impacts from Future Hydrogen Economy

	OH	Methane	СО	Ozone	NO	Sulfate
Hydrogen ^a	\downarrow	1	↑	↑	N/A	N/A; shift from new
						particle formation to
						particle growth ^b
H ₂ O ₂ -based	↑	\downarrow	\downarrow	\downarrow	\downarrow	\uparrow
oxidation						
enhancement ^c						
Chlorine-based	\downarrow	\downarrow	↑	\downarrow	\downarrow	↑
oxidation						
enhancement ^c						

60 NOTE: "Hydrogen" here does not include reductions in fossil fuel emissions replaced by hydrogen technology.

^{*a*} Warwick et al., 2023.

^b O'Connor et al., 2022.

^{*c*} This work.

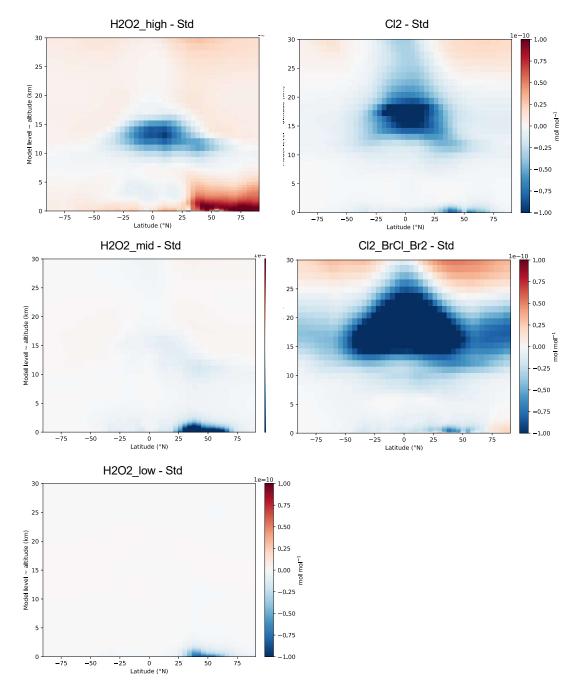


Figure S3 Zonal mean absolute changes in NO_x across the scenarios in mol/mol.

Figure S4 Changes in global annual mean ozone (orange), CO (gray) (left axis), and PM_{2.5} (blue, right axis) concentrations across the experiments.