

1 **Product Ion Distributions using H_3O^+ PTR-ToF-MS: Mechanisms,**
2 **Transmission Effects, and Instrument-to-Instrument Variability**

3 Michael F. Link¹, Megan S. Claflin², Christina E. Cecelski¹, Ayomide A. Akande³, Delaney Kilgour⁴,
4 Paul A. Heine³, Matthew Coggon⁵, Chelsea E. Stockwell⁵, Andrew Jensen^{6,a}, Jie Yu⁷, Han Huynh^{7,b},
5 Jenna C. Ditto^{7,c}, Carsten Warneke⁵, William Dresser⁶, Keighan Gemmell³, Spiro Jorga^{7,d}, Rileigh L.
6 Robertson^{1,e}, Joost de Gouw⁶, Timothy Bertram⁴, Jonathan P.D. Abbatt⁷, Nadine Borduas-Dedekind³,
7 Dustin Poppendieck¹

8 ¹National Institute of Standards and Technology, Gaithersburg, 20899, USA

9 ²Aerodyne Inc., Billerica, 01821, USA

10 ³Department of Chemistry, University of British Columbia, Vancouver, V6T 1Z1, Canada

11 ⁴University of Wisconsin-Madison, Madison, 53706, USA

12 ⁵National Oceanic and Atmospheric Administration, Boulder, 80305, USA

13 ⁶University of Colorado, Boulder, 80309, USA

14 ⁷University of Toronto, Toronto, M5S 3H6, Canada

15 ^aNow at University of Michigan, Ann Arbor, 48109, USA

16 ^bNow at National Oceanic and Atmospheric Administration, Boulder, 80305, USA

17 ^cNow at Washington University in St. Louis, 63130, USA

18 ^dNow at Tofwerk, Thun, 3645, Switzerland

19 ^eNow at University of Colorado, Boulder, 80309, USA

20 *Correspondence to:* Michael F. Link (michael.f.link@nist.gov)

21 **Abstract.** Proton-transfer-reaction mass spectrometry (PTR-MS) using hydronium ion (H_3O^+) ionization is widely used for
22 the measurement of volatile organic compounds (VOCs) both indoors and outdoors. H_3O^+ ionization, and associated
23 chemistry in [the-an](#) ion molecule reactor, is known to generate product ion distributions (PIPs) that include other product
24 ions besides the proton-transfer product. We present a method, using gas-chromatography pre-separation, for quantifying
25 PIPs from PTR-MS measurements of nearly 100 VOCs of different functional types including alcohols, ketones, aldehydes,
26 acids, aromatics, [halogensorganohalides](#), and alkenes. We characterize instrument configuration effects on PIPs and find that
27 reactor [conditionsreduced electric field strength \(E/N\)](#), ion optic voltage gradients, and quadrupole settings have the
28 strongest impact on measured PIPs. Through an interlaboratory comparison of PIPs measured from calibration cylinders we
29 characterized the variability of PIP production from the same model of PTR-MS across seven participating laboratories.
30 [Product ion variability was generally smaller \(e.g., < 20 %\) for ions with larger contributions to the PIPs \(e.g., > 0.30\), but](#)
31 [less predictable for product ions formed through \$\text{O}_2^+\$ and \$\text{NO}^+\$ reactions.](#) We present a [publicly available](#) library of H_3O^+
32 [PTR-MS](#) PIPs [to be publicly available andthat will be](#) updated periodically with user-provided data for the continued
33 investigation into instrument-to-instrument variability of PIPs.

36 **1 Introduction**

37 Measurements of volatile organic compounds (VOCs) using hydronium ion (H_3O^+) proton-transfer-reaction mass spectrometry
38 (PTR-MS) have become ubiquitous in a variety of applications in the past 25 years (Yuan et al., 2017; Sekimoto and Koss,
39 2021). PTR-MS can measure many VOCs simultaneously with fast ($> 1 \text{ Hz}$) time resolution and low detection limits (e.g., $<$
40 1 nmol mol^{-1}), and is selective towards VOCs that have a proton-affinity greater than water (e.g., ketones, aldehydes, nitriles,
41 etc.) (De Gouw et al., 2003). However, in the absence of sample pre-separation, isobaric (i.e., same mass-to-charge ratio, m/q)
42 interferences are known to pose challenges to VOC identification and quantification (Coggon et al., 2024; Kilgour et al., 2024;
43 Ditto et al., 2025). Since the early development of PTR-MS, studies have shown that unintended product ions can complicate
44 mass spectra (Warneke et al., 2003; De Gouw and Warneke, 2007), but more recent studies have highlighted ion interferences
45 in measurements of urban air plumes (Coggon et al., 2024) and indoor air (Ernle et al., 2023; Ditto et al., 2025) where
46 interferences are pronounced because VOC concentrations are high and emission sources are diverse. As PTR-MS technology
47 continues to improve through the development of new sample introduction methods, ionization technologies (Krechmer et al.,
48 2018; Breitenlechner et al., 2017; Reinecke et al., 2023), and enhanced mass resolution through the use of time-of-flight mass
49 analyzers, this method will continue to be utilized in concentrated and chemically diverse sample matrices. The popularity of
50 this measurement technique warrants the creation of standardized methods for measuring and quantifying the effects of
51 unintended, or poorly understood, product ion distributions on PTR-MS mass spectra.

52
53 Unintended product ion generation in PTR-MS has been discussed extensively including studies highlighting the importance
54 of VOC fragmentation from H_3O^+ ionization (e.g., aldehydes (Ernle et al., 2023), peroxides (Li et al., 2022), and monoterpenes
55 (Misztal et al., 2012; Kari et al., 2018; Tani, 2013)) and studies using selected-ion flow tube (SIFT) reaction measurements
56 (summarized in a recent review by Hegen et al. (2023)) to differentiate interferences from O_2^+ and NO^+ reagent ion impurities.
57 Pagonis et al. (2019) presented a library of previously reported product ion distributions (PIPs) compiled from measurements
58 of VOCs. However, water cluster contributions to the PIPs were largely not incorporated in this compilation. The
59 library shows considerable variability in the generation of product ions for a given VOC (e.g., butanal, ethyl acetate, etc.), but
60 from the existing data it is not clear if this variability is explained by instrument operating parameters, features of the specific
61 instrument, or methods of quantifying PIPs.

62
63 In this study we highlight:
64 (1) a gas chromatographic method for measuring PIPs from the ionization of VOCs using PTR-MS (Section 2.2),
65 (2) how instrument configurations can influence PIPs (Section 3.1),
66 (3) instrument-to-instrument variability in measured PIPs determined from an interlaboratory comparison (Section 3.2),
67 (4) the propensity of different VOC functional types to form complex PIPs that include water clusters (Section 3.3),

68 (5) an example of how PIDs can cause ambiguity when identifying ions using a sample of restroom air as a case study (Section
69 3.4),
70 (6) suggestions of how PIDs can be used to aid in identification and quantification of VOCs from PTR-MS mass spectra
71 (Section 3.5),
72 [\(7\) a library of H₃O⁺ PTR-MS PIDs available for community use, to be updated with continued collaborative input, and](#)
73 [uncertainty estimates \(Section 3.6\)](#)
74 [\(8\) a library of H₃O⁺ PIDs available for community use, to be updated with continued collaborative](#)
75 [input recommendations for mitigating and managing unintended product ion generation using PTR-MS \(section 3.7\).](#)

76 2 Materials and Methods

77 2.1 Product Ion Definitions and Formation Mechanisms

78 We use observations from previous studies (Koss et al., 2016; Xu et al., 2022; Pagonis et al., 2019; Hegen et al., 2023; Coggon
79 et al., 2024; Li et al., 2024) to identify the reactions, and associated product ions, that are likely to be important from H₃O⁺
80 (and impurity NO⁺ and O₂⁺) ionization of a given VOC. The reaction mechanisms we identify here do not represent an
81 exhaustive accounting of possible product ion formation mechanisms, but instead represent mechanisms most likely to generate
82 the product ions observed from our data. VOCs (M = VOC) with a proton-affinity greater than water (691 kJ mol⁻¹) can undergo
83 a proton-transfer reaction with H₃O⁺ to form an H⁺ adduct (labelled as MH⁺) as described in Reaction 1.

85 Unique from most previous studies, we quantify the contribution of protonated VOC water clusters (labelled as [MH·(H₂O)_n]⁺
86 where n = 1 or 2) to the product ion distribution that potentially form from direct association reactions following Reaction 2
87 (Li et al., 2024) and/or termolecular association reactions of a protonated VOC with water vapor following Reaction 3.

90 The presence of a collisional body, B (B = N₂ or O₂), in Reactions 2 and 3 implies a pressure-dependence (Mccrumb and
91 Warneck, 1977; Smith et al., 2020). Direct protonation and water cluster formation can also occur from reaction of VOCs with
92 reagent ion water clusters (De Gouw and Warneke, 2007).

95 However, the addition of the RF-only quadrupole around the IMR ([in the instruments evaluated in this study](#)) serves to decrease
96 the influence of higher-order water clusters on ionization chemistry (Krechmer et al., 2018). We note that unlike other PTR-

97 MS instruments, the Vocus PTR-ToF-MS instruments featured in this study have been observed to have ionization chemistry
98 that is not appreciably sensitive to sample water vapor concentrations (Krechmer et al., 2018; Li et al., 2024),[potentially](#)
99 [implying a more predictable influence of water cluster contributions to PIDs](#).

100 Fragmentation of a protonated VOC can occur from the loss of neutral constituents (e.g., H₂O, CO, and C₂H₄O₂) and/or the
101 dissociation of carbon-carbon bonds (Pagonis et al., 2019). We refer to product ions that result from a fragmentation reaction
102 where water is lost from the protonated VOC, following Reaction 6, as dehydration products (labelled as [MH-H₂O]⁺).

104 We highlight the formation of dehydration products because this [type of](#) fragment ion contributed the most to a PID of [an](#)
105 [oxygenated VOCs from our dataset](#). Because other fragmentation product ions could form through a variety of mechanisms
106 [\(including from reactions with NO⁺ and O₂⁺\)](#), we label other fragmentation product ions as F_n where n = 1,2,3,etc.

107 We highlight two other reaction mechanisms, charge transfer and hydride transfer, that are responsible for generating product
108 ions that often appear in PTR-MS mass spectra. Charge transfer reactions, between a VOC and impurity reagent ions like O₂⁺
109 and NO⁺, can form product ions (labelled as M⁺) that appear in the mass spectrum as ionized VOCs with no changes to
110 elemental composition (Reaction 7).

112 Reactions with NO⁺ can also ionize VOCs via hydride transfer (labelled as [M-H]⁺; Reaction 8) (Koss et al., 2016; Spanel and
113 Smith, 1997).

115 We note that Hegen et al. (2023) recently proposed that product ions appearing in mass spectra as hydride transfer products
116 from reactions with O₂⁺ may actually be charge transfer products that lose a neutral hydrogen atom. For the purposes of this
117 study we classify any product ion that appears in the mass spectrum with the formula [M-H]⁺ as a hydride transfer product.
118 NO⁺ and O₂⁺ ion chemistry can also produce additional product ions through other mechanisms (e.g., hydroxide transfer) not
119 discussed here, but which are summarized in Hegen et al. (2023). We note that in the Vocus instruments used in this study the
120 ratio of NO⁺ and O₂⁺ to H₃O⁺ [generated](#) reagent ions cannot be precisely controlled [prior to ionization of VOCs in the IMR](#).

121 We use the above mechanisms for defining the main product ions considered in our analysis and the rules for determining their
122 location in the mass spectrum, relative to the molecular weight (MW) of the VOC, when calculating PIDs (Table 1).

123 **Table 1: Definitions of product ions that occur in PTR-MS mass spectra.**

Product Ion Identity	Product Ion Label	Mass-to-Charge Ratio (Th) ^a
----------------------	-------------------	--

H ⁺ adduct	MH ⁺	MW + 1.007
single water cluster	[MH·H ₂ O] ⁺	MW + 19.018
double water cluster	[MH·(H ₂ O) ₂] ⁺	MW + 37.028
charge transfer	M ⁺	MW - 0.001
hydride transfer	[M-H] ⁺	MW - 1.007
dehydration	[MH-H ₂ O] ⁺	MW - 18.011
fragment	F _n , n = 1 through 5	variable
other	other	variable

124 ^aWe express mass-to-charge ratio (m/q) in units of Thomson (Th) which is equal to $1.0364 \times 10^{-8} \text{ kg C}^{-1}$.

125 For our analyses we limited the total number of fragment ions that contribute to a PID to five. Most VOCs did not generate
 126 more than two fragment ions. Some VOCs (e.g., aromatics generating C₆H₇O⁺) generated product ions that were consistently
 127 observed, but we could not easily explain how they formed and so we classify these few ions as “other”.

128 **2.2 Method of Quantifying PIDs from GC-PTR-ToF-MS Measurements**

129 **2.2.1 Measurement of PIDs using Gas Chromatography Proton-Transfer-Reaction Time of Flight Mass Spectrometry**
 130 **(GC-PTR-ToF-MS)**

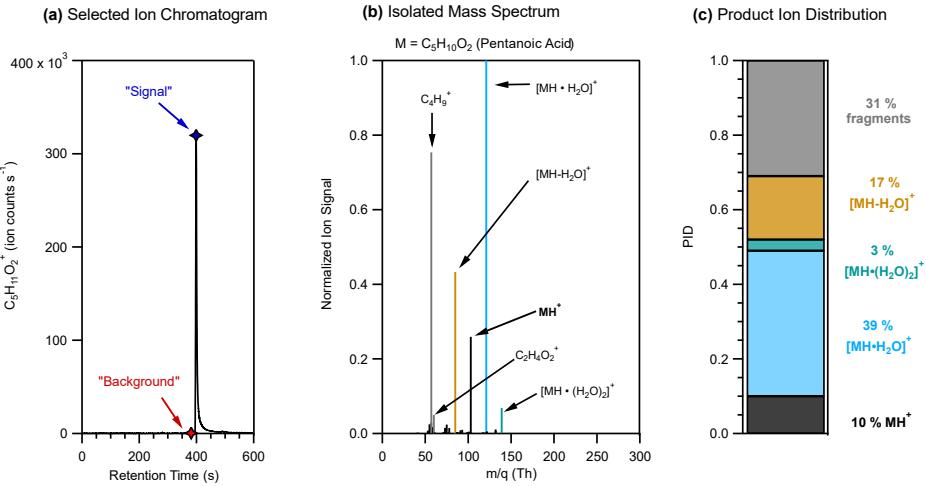
131 We used gas-chromatography (GC) pre-separation as a technique for isolating VOCs from multi-component standards before
 132 their measurement by the proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) to reduce the influence of
 133 PIDs from other interfering VOCs. A step-by-step procedure for reproducing this method is presented in the Supplement. PIDs
 134 were measured by our group and collaborating lab partners by first separating target analytes from a VOC mixture using GC
 135 and then measuring the product ions from H₃O⁺ ionization (including ionization by impurity reagent ions O₂⁺ and NO⁺) of the
 136 separated VOC using Time-of-Flight Mass Spectrometry (Claflin et al., 2021; Vermeuel et al., 2023). We discuss the details
 137 of individual labs’ instrument operation below in Section 2.5. Most of the PIDs for the individual VOCs we report here,
 138 including measurements from instruments participating in the interlaboratory comparison, were measured from calibration
 139 cylinders containing multiple VOCs, while Lab 1 measured some PIDs by sampling an air stream of evaporated liquid VOC
 140 solution. All calibration gas cylinders were less than two years old. VOC sources are listed in the H₃O⁺ PID library included
 141 [here](#) as a supplemental document, [but also available online \(doi: 10.18434/mds2-3582\)](#). We found that PIDs were difficult to

142 quantify from VOCs measured from ambient air samples due to the potential influence of coeluting VOCs on the determination
143 of the background subtracted mass spectra. However, because of a lack of calibration standards, we included PIDs measured
144 from ambient samples for ethanol and α -pinene measured by Lab 6 as well as a monoterpene acetate ester measured by Lab 1.
145 Sample concentrations varied depending on cylinder or liquid solution concentrations, but target VOC concentrations were
146 always less than 10 nmol mol⁻¹.

147
148 All the data presented in this manuscript were collected on the “Lab 1” PTR-ToF-MS, unless otherwise noted such as in Section
149 3.2 where we compare PIDs measured from different instruments. We differentiate between the seven different laboratories
150 that contributed data by labelling the data as coming from Labs 1 through 7 (e.g., “Lab 1”). Each instrument used a GC for
151 pre-separation of VOC mixtures and a Vocus Time-of-Flight Mass Spectrometer with H₃O⁺ ionization for subsequent
152 measurement of PIDs. In principle, the chemistry discussed here applies to all PTR-MS instruments that use H₃O⁺ chemical
153 ionization, but differences in ionization technology, ion transfer optics, and mass analyzers between instruments may have
154 instrument-specific effects on PID measurements. Limited evidence suggests that the PIDs resulting from fragmentation in the
155 Vocus PTR-ToF-MS, as used in this study, and a PTR-MS using a drift tube (instead of an ion-molecule reactor) are
156 comparable (Krechmer et al., 2018), but we limit the implications of our measurements to Vocus PTR-ToF-MS (Tofwerk)
157 instruments until future studies comparing PIDs from different PTR-MS instruments can be performed. The mass spectrometer
158 for Lab 5 used a modified version of the Vocus ionization source (Gkatzelis et al., 2024; Coggon et al., 2024) and the mass
159 spectrometer for Labs 4 and 5 had a lower mass resolution compared to the other instruments (approximately 4000 versus
160 10000 full-width half-maximum, respectively). Lab 5 also used a custom-built GC whereas all the other instruments used a
161 commercially available GC (Aerodyne Research). Because the principle of operation was similar for all instruments, we
162 describe in more detail below the operation of the Lab 1 instrument. Operating details for each of the instruments in the
163 interlaboratory comparison are included in the H₃O⁺ PID library (also outlined in Table 2).

164
165 We describe the GC sampling method used for Lab 1 below but note that operational differences may have been utilized for
166 the different labs represented in the interlaboratory comparison (e.g., temperatures and make-up flow rates). Analytes from
167 multi-component VOC samples were first collected using thermal desorption preconcentration ahead of the chromatographic
168 separation before ionization by the PTR-ToF-MS. For the laboratories that utilized the commercial GC systems, sample air
169 was passed at a rate of 100 cm³ min⁻¹ over a multibed sorbent tube (containing Tenax TA, Graphitized Carbon, and Carboxen
170 1000) where VOCs were collected for 10 minutes. The VOCs were then desorbed from the sorbent tube and collected onto a
171 second preconcentration stage, a focusing trap. VOCs were then rapidly desorbed from the focusing trap and injected on a
172 mid-polarity column (Restek MXT-624, 30 m \times 0.25 mm \times 1.4 μ m). VOCs were separated with a helium carrier gas flow of
173 2 cm³ min⁻¹ during the temperature programmed chromatographic separation. Analyte eluting from the column passed through
174 a transfer line, heated to 100 °C, and was combined with 150 cm³ min⁻¹ of ultra pure zero air before being sampled by the

175 PTR-ToF-MS. Chromatograms were collected over 10 minutes. Versions of the GC system used in this study are described in
176 detail elsewhere (Claflin et al., 2021; Vermeuel et al., 2023; Jensen et al., 2023).

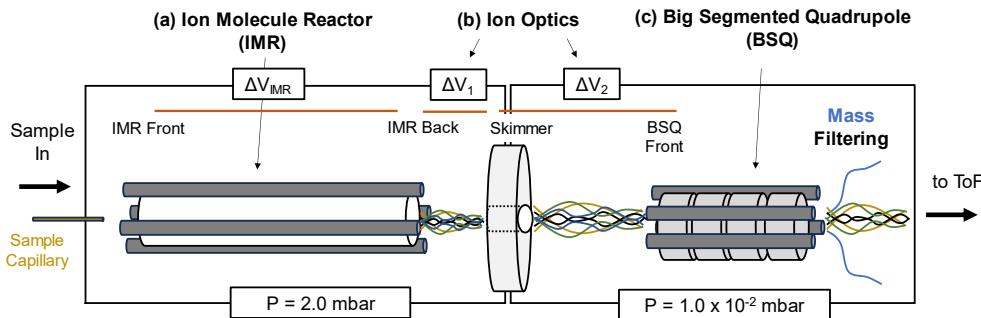

177

178 The PTR-ToF-MS sampled the diluted GC eluent/zero air mixture at a rate of $120 \text{ cm}^3 \text{ min}^{-1}$ through a polyether-ether-ketone
179 (PEEK) capillary (25 mm, 0.25 mm ID) which directs the flow to the center of the focusing ion-molecule reactor (IMR). A
180 separate flow of water vapor saturated air enters a pre-chamber where a plasma creates a reagent ion distribution that includes
181 H_3O^+ , water adducts (i.e., $\text{H}_3\text{O}(\text{H}_2\text{O})_n^+$ where $n = 1,2,3,\text{etc.}$), as well some amount of O_2^+ and NO^+ reagent ions that are
182 considered impurities. These reagent ions from the pre-chamber enter the IMR alongside the eluent sample flow. There are
183 two features of the Vocus PTR-ToF-MS discussed thus far that distinguish this instrument from other instruments that use
184 H_3O^+ chemical ionization: (1) the Vocus PTR-ToF-MS uses a radio frequency (RF) only quadrupole around the IMR to
185 generate H_3O^+ ions in excess by declustering water adducts of H_3O^+ and (2) the water vapor concentration in the IMR is
186 estimated to be approximately 20 % by volume (Krechmer et al., 2018). We do not discuss the effects of IMR quadrupole
187 voltage settings on PIDs here, but instead point the reader to Li et al. (2024) for more information. We do not expect the
188 differences in IMR quadrupole settings utilized in this study to explain the differences observed in the interlaboratory PID
189 comparisons. The higher water vapor concentrations in the Vocus IMR are likely to have impacts that are unique to the Vocus
190 PTR-ToF-MS for PIDs from VOCs historically affected by a water-vapor dependence (e.g., formaldehyde, hydrogen cyanide,
191 and formic acid) compared to PTR-MS instruments using a drift tube where water vapor concentrations are lower.

192 **2.2.2 PID Quantification from GC-PTR-ToF-MS Measurements**

193 For our method of quantifying PIDs, we use chromatographic separation prior to detection of product ions with PTR-ToF-MS.
194 The advantage of using a GC when quantifying PIDs is that analytes in multi-component mixtures (e.g., calibration standards
195 or ambient samples) can be separated before detection and thus avoid interference with PID quantification.

196 Fig. 1 shows an example, using pentanoic acid, of the chromatographic method of determining PIDs from GC-PTR-ToF-MS
197 measurements.



198
199 **Figure 1:** Steps of a method for determining PIDs using pentanoic acid as an example. (a) The selected ion chromatogram for the
200 expected H^+ adduct of pentanoic acid, $\text{C}_5\text{H}_{11}\text{O}_2^+$, showing ion signal as a function of retention time. Markers show the retention time
201 when the maximum signal (blue) and background (red) mass spectra were defined. (b) The pentanoic acid isolated mass spectrum
202 is determined by subtracting the background mass spectrum from the maximum signal mass spectrum. Ion signals are normalized
203 to the highest ion signal. (c) Product ion distribution (PID) measured from the isolated mass spectrum for pentanoic acid using data
204 from (b).

205 As shown in Fig. 1a, we use a selected ion chromatogram from the expected H^+ adduct ion signal to determine where to define
206 the background and maximum signal mass spectra. The background mass spectrum is subtracted from the signal mass spectrum
207 to create the isolated mass spectrum shown in Fig. 1b. The high-resolution fitted peak areas of each product ion m/q , with at
208 least 1 % contribution to the isolated mass spectrum, are added together to represent the sum product ion signal and the relative
209 contribution of each ion to the sum represents the PID. As shown in Figure 1b, some analytes had ions that made small
210 contributions (< 5 %) to the isolated mass spectrum in addition to the ions that were included in the PID for pentanoic acid. If
211 ions could not reasonably be explained mechanistically as product ions from the target analyte and made small contributions
212 (< 5 %) to the isolated mass spectrum we omitted them in the determination of a PID.

213 **2.3 PID Measurement as a Function of Instrument Settings**

214 In the PTR-ToF-MS instruments in this study, chemistry that forms PIDs occurs in the IMR immediately downstream of the
215 capillary that serves as the sample inlet for the instrument (Fig. 2).

218 **Figure 2:** Simplified diagram of the front end of the PTR-ToF-MS evaluated in this study. Sample air enters the instrument through
 219 a capillary and is directed to the IMR. (a) The IMR voltage difference between the back and front (ΔV_{IMR}) in part controls the
 220 energy of ion collisions. (b) After the IMR, there are two sections of the ion trajectory with voltage differentials that occur at
 221 relatively high pressures, these are between the transfer optics (Skimmer – IMR back; ΔV_1 and BSQ front – Skimmer; ΔV_2) as
 222 shown. (c) The big segmented quadrupole (BSQ) is an RF-only quadrupole that filters ions acting as a high-pass filter. Pressures for
 223 the regions defined by the boxed areas are shown at the bottom of the figure (1 mbar = 100 Pa).

225 In the IMR a voltage differential (ΔV_{IMR} in Fig. 2) creates an electric field that focuses ions through the reactor. However, the
 226 electric field (E , $V m^{-1}$) strength the ions experience is reduced by the reactor air number density (N , $molecules cm^{-3}$). The
 227 influence of the reduced electric field strength, E/N , on H_3O^+ ion chemistry is well-documented in PTR-MS literature for both
 228 drift tube (Yuan et al., 2017) and ion-molecule reactors (Krechmer et al., 2018) and can be calculated following Eq. 1 (De
 229 Gouw and Warneke, 2007):

$$230 \frac{E}{N} = \frac{\Delta V_{IMR} \cdot T \cdot R}{L_{IMR} \cdot P \cdot A_V \cdot 10^{-21}} \quad (1)$$

231 where ΔV_{IMR} is the voltage differential between the IMR back and front (V), T is the IMR temperature (K), R is the ideal gas
 232 constant ($8.3 \times 10^{-2} m^3 kPa K^{-1} mol^{-1}$), L_{IMR} is the length of the IMR (10 cm for the instruments in this study), P is the IMR
 233 pressure (kPa), A_V is Avogadro's number, and 10^{-21} is a conversion factor from $V m^{-2}$ to the unit of Townsend (Td). We note
 234 that for the Vocus instruments discussed here the RF-only quadrupole around the IMR adds to the electric field strength, an
 235 effect that is not accounted for in this equation. Li et al. (2024) showed that although the IMR RF voltage can affect analyte
 236 sensitivity it did not affect PIDs. All the instruments in this study operated with similar RF voltages for the IMR (between 400
 237 V and 450 V) so we exclude this contribution from the E/N values we report. To measure the effects of E/N on select PIDs in
 238 this study, we varied the pressure in the IMR—while keeping the reactor voltage differential (ΔV_{IMR}) constant—between 1.4
 239 mbar (0.14 kPa) and 3.0 mbar (0.30 kPa) resulting in E/N values ranging from 90 Td to 190 Td.

241 Although PIDs are initially formed in the IMR, m/q-dependent transmission efficiencies between the IMR and the time-of-
242 flight mass analyzer can affect the PIDs that are ultimately measured (Jensen et al., 2023; Li et al., 2024). We isolate three
243 parts of the ion trajectory in the instrument as possible locations for affecting PIDs through collisional dissociation, quadrupole
244 mass filtering, and/or other transmission effects. The first two areas where ions may undergo declustering of water adducts or
245 collisionally induced fragmentation are shown in Fig. 2 as ΔV_1 and ΔV_2 , which correspond to the voltage differential between
246 the Skimmer and IMR back (ΔV_1) and the BSQ front and Skimmer (ΔV_2). These ion optic voltage differences have been
247 demonstrated to contribute to declustering reactions in a similar mass spectrometer (Brophy and Farmer, 2016).

248

249 In this study, we vary the voltage difference between each ion optic component relationship following the methodology of
250 previous studies (Brophy and Farmer, 2016; Lopez-Hilfiker et al., 2016) by incrementally changing the entire set of voltages
251 upstream (i.e., in the direction of the inlet) of the tested component relationship. We performed these ensemble voltage changes
252 manually without the use of tuning software. The range of tested voltages are based on the observed voltage differences in the
253 interlaboratory comparison dataset. For ΔV_1 we measured PIDs as a function of ΔV ranging from -3 V to -50 V and for ΔV_2
254 we tested a range of -1 V to -10 V. We performed these PID sensitivity tests to instrument configuration only on the instrument
255 corresponding to Lab 1. The skimmer component in the ΔV_1 and ΔV_2 relationships described here corresponds to the skimmer
256 located right before the BSQ (i.e., not the “skimmer 2” component also present in all versions of the Vocus instrument
257 evaluated here.)

258

259 The third ion optic component we evaluate is the effect of the RF-amplitude voltage of the big segmented quadrupole (BSQ)
260 in filtering ions of different m/q. The primary function of the BSQ is to act as a high-pass filter limiting the transmission of
261 lower-mass reagent ions (i.e., H_3O^+ m/q = 19.02 Th and $(\text{H}_2\text{O})\text{H}_3\text{O}^+$ m/q = 37.03 Th) to the detector and thus extending the
262 lifetime of the detector (Krechmer et al., 2018). Product ions with an m/q in the range of these major reagent ions will also
263 experience decreased transmission (Jensen et al., 2023; Li et al., 2024). We measured PIDs at nine different BSQ voltage
264 settings between 225 V and 450 V. Although we focus on three areas where ion m/q dependent transmission effects may
265 occur, we note that mass discrimination effects can occur elsewhere in the instrument and for other reasons such as detector
266 degradation (Heinritz et al., 2016) or discrimination of higher m/q ions because of other quadrupole transmission effects
267 (Holzinger et al., 2019; Antony Joseph et al., 2018).

268 **2.4 PID Measurement as a Function of Sample Capillary Insertion Distance**

269 A small PEEK (25 mm length, 0.18 mm inner diameter) capillary, secured by two Viton o-rings, serves as the sample inlet to
270 the instrument. The distance that this capillary is inserted into the instrument can be manually changed and impacts the
271 ionization chemistry that occurs immediately at the exhausting end of the capillary. We characterized the effects of the capillary
272 insertion distance on the measured PID from pentanoic acid by turning off all voltages to the IMR, closing the standby valve
273 between the IMR region and the rest of the instrument, and manually adjusting the capillary to a different insertion distance.

274 With the capillary at the desired insertion distance we returned the IMR to standard operating conditions and acquired a GC
275 measurement of pentanoic acid. We then changed the capillary insertion distance between 3 mm and 13 mm for five total
276 measurements.

277 **2.5 Interlaboratory Comparison of PIDs**

278 We compare PIDs from seven different instruments under lab-defined settings. Lab-defined settings for all instruments are
279 shown in Table 2.

280 **Table 2. Lab-defined instrument settings for datasets contributed by each lab. Some labs provided data where the instrument**
 281 **was operated under different settings, and/or data was collected years apart, and thus we differentiate datasets by the letters a, b,**
 282 **and c.**

ID	IMR T (°C)	IMR P (mbar)³	ΔV_{IMR} (V)	E/N (Td)	BSQ RF Voltage (V)	ΔV₁ (V)	ΔV₂ (V)	Water Flow (scm³ min⁻¹)⁴	Inlet Flow (cm³ min⁻¹)	Date Acquired
Lab1a	60	2.0	580	133	350	-22.5	-4.1	20	120	5/2023
Lab1b	60	2.0	580	133	300	-22.5	-4.1	20	120	5/2024
Lab 2a ¹	60	2.4	575	110	300	-29.0	-7.3	19	100	10/2020
Lab 2b ^{1,2}	60	2.4	660	126	400	-4.4	-8.1	20	100	11/2023
Lab 3a ²	100	1.5	365	125	215	-39.7	-4.5	20	96	12/2020
Lab 3b ²	100	1.5	385	133	215	-32.0	-4.0	15	88	11/2022
Lab 4	100	2.5	450	122	320	-40.5	-5.1	20	79	9/2024
Lab 5 ²	110	2.5	624	131	250	-27.5	-3.5	21	180	7/2021
Lab 6a ²	90	1.5	480	160	255	-19.1	-6.5	15	260	3/2021
Lab 6b ²	90	1.5	480	160	255	-19.1	-6.5	15	290	5/2022
Lab 7a	100	2.2	570	133	325	-39	-4.2	20	100	4/2022
Lab 7b	100	2.2	570	133	325	-39	-4.2	20	100	9/2022
Lab 7c	100	2.2	570	133	325	-39	-4.2	15	100	5/2023

283 ¹Lab 2a and Lab 2b data comes from two different instruments.

284 ²IMR quadrupole RF voltage was 400 V. The IMR quadrupole RF voltage was 450 V for other instruments.

285 ³1 mbar = 100 Pa.

286 ⁴Standard cm³ min⁻¹ (standard conditions = 293.15 K and 101.325 kPa)

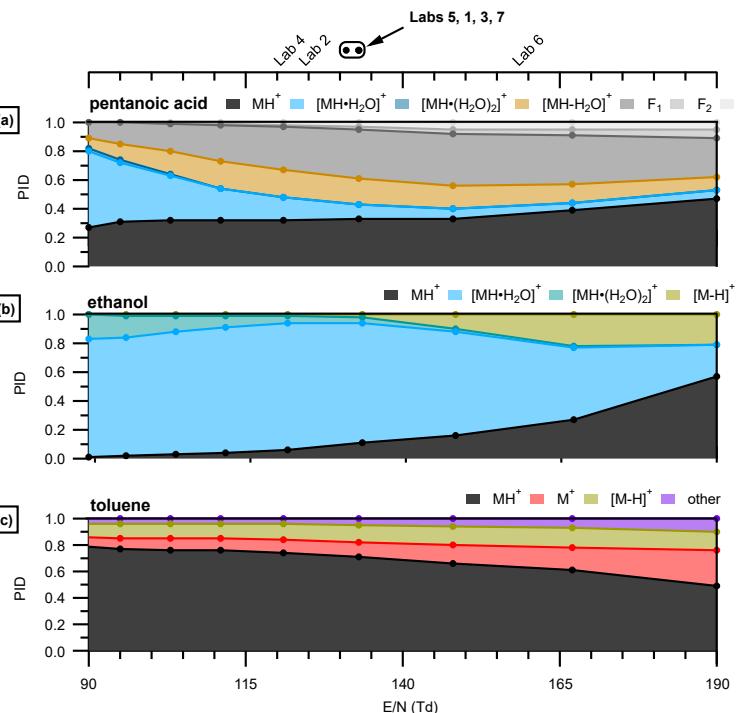
287 2.6 Restroom Air Measurement

288 To demonstrate the uncertainties introduced by [PID-interfering product ions](#) in ambient air, we deployed our GC-PTR-ToF-
 289 MS to a restroom [as](#) detailed in Link et al. (2024). Briefly, the restroom air sample was acquired during a weekend-long

290 measurement period. The restroom air contained elevated concentrations of terpenoids (i.e., monoterpenes, monoterpenoid
291 alcohols, and monoterpenoid acetate esters) that reacted with ozone and created oxygenated VOC products. The relative VOC
292 composition of the restroom air stayed consistent over the measurement period with concentrations decreasing from the start
293 of the period to the end. We highlight one GC chromatogram acquired during that measurement period to demonstrate the
294 effect of PIDs on ion attribution from an indoor air sample.

295 **2.7 Data Processing**

296 During GC measurements mass spectra were collected at a rate of 5 Hz. Mass calibration, resolution and average peak shape
297 determination, and high-resolution peak fitting were all performed in Tofware v3.2.5 (Aerodyne Research). Mass accuracy
298 was maintained within ± 6 ppm when performing mass calibrations. A peak list containing 1046 ions was used for high-
299 resolution peak fitting. VOCs present in calibration standards were used to inform what product ions were likely to be expected
300 following the definitions in Table 1. Selected ion chromatograms and isolated mass spectra were produced using the analysis
301 tools in TERN v2.2.20 software (Aerodyne Research). Data were not ToF duty cycle corrected.


302 **3 Results and Discussion**

303 **3.1 Influence of Instrument Configuration on PIDs**

304 In Section 3.1 we use PIDs measured from pentanoic acid as a case example to describe the influence of instrument settings
305 on PIDs from the Lab 1 instrument. We highlight pentanoic acid because it forms both water clusters and fragments. The
306 formation of cluster and fragment ions from pentanoic acid are dependent on the E/N in the IMR and the m/q transmission
307 efficiency since the m/q range of the pentanoic acid PID spans from m/q 41.04 Th ($\text{C}_5\text{H}_9\text{O}_2^+$, fragment) to m/q 139.10 Th
308 ($\text{C}_8\text{H}_{15}\text{O}_4^+$, double water cluster) allowing a demonstration of potential mass discrimination effects from the BSQ.

309 **3.1.1 Influence of IMR E/N on PIDs**

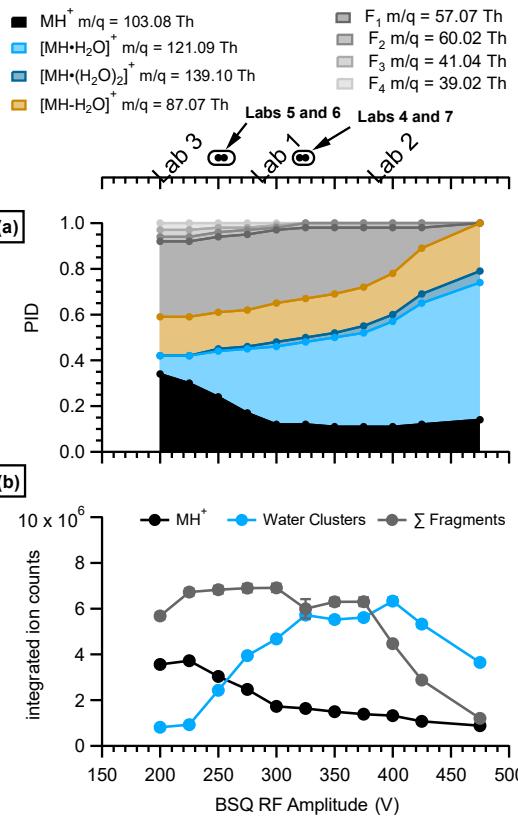
310 IMR E/N is an important determinant of water clustering and fragmentation. Fig. 3 shows the PID for pentanoic acid, [ethanol](#),
311 and [toluene](#) measured at different E/N values.

312
 313 **Figure 3:** (a) Pentanoic acid PID as a function of E/N. Colored text in the legend above the panel correspond to the colored traces in
 314 the panel. (b) Ethanol and (c) Toluene as a function of E/N. E/N values used by the different labs in the interlaboratory comparison
 315 are shown in the top axis. The circle markers indicate values where the lab text markers would overlap and are listed in order of
 316 E/N in the corresponding text label. Measurements were acquired with a BSQ voltage of 300 V.
 317

318 [We highlight pentanoic acid because it forms fragments and water clusters across a wide m/q range \(m/q 39.02 to m/q 139.10\).](#)
 319 [We highlight ethanol because it forms water clusters and a hydride transfer product. We highlight toluene because it forms](#)
 320 [charge and hydride transfer products as well as a product we classify as “other” \(\$C_6H_5O^+\$ \).](#) In the case of pentanoic acid, the
 321 contribution of the H^+ adduct increased from 0.26 to 0.47 with increasing E/N (Figure 3). This change in the H^+ adduct
 322 contribution was mostly due to the decreasing contribution of the first water cluster from 0.53 at the lowest E/N to 0.06 at the
 323 highest E/N. In contrast, the contribution of total fragmentation products (dehydration + other fragment ions) increased from
 324 0.20 at the lowest E/N to 0.60 at an E/N of 148 Td (Figure 3). Above E/N 148 Td, the contribution of the H^+ adduct to the PID
 325 increases and the relative contribution of fragment ions decreases. The general pattern of water cluster and fragment product
 326 ion variation with E/N shown in Fig. 3 suggests lower E/N will decrease the contributions of fragment ions in the mass

327 spectrum. However, higher E/N values will decrease the contribution of water clusters to the mass spectrum. Because different
328 PIDs (i.e., different contributions of fragments, water clusters, and the H⁺ adduct) are generated at the different values of E/N
329 tested here, measurable product ion formation will likely occur for a variety of VOCs regardless of E/N. As is the case [here](#)
330 [for pentanoic acid for the three VOCs highlighted here](#), the secondary product ion [generation](#) is not suppressed across the tested
331 E/N range.

332


333 As another example, we show (Fig. 3b and 3c) how the PIDs vary as a function of E/N for species that can generate product
334 ions from reactions with impurity reagents NO⁺ and O₂⁺. Impurity reagent ions are generated unintentionally in the PTR-ToF-
335 MS and result from oxygen ionizing in the ion source plasma. We show here, using ethanol and toluene as examples, that
336 higher E/N may qualitatively indicate that a user could expect more important contributions of hydride and charge transfer
337 products to the PID. Ethanol forms C₂H₅O⁺, a likely hydride transfer product from reaction with NO⁺, while toluene forms
338 C₇H₇⁺, a likely hydride transfer product from reaction with NO⁺ (Smith et al., 2020), and C₇H₈⁺, a charge transfer product from
339 reaction with both O₂⁺ and NO⁺ (Coggon et al., 2024; Koss et al., 2016). The increased contributions of charge and hydride
340 transfer products to the PIDs of ethanol and toluene potentially suggest an increased influence of impurity reagent ions, but
341 we do not have an explanation for how impurity reagent ion concentrations would increase with increasing E/N in the IMR.
342 We note that the presence of air leaks in the reagent delivery system may increase the importance of impurity reagent ion
343 chemistry. Also, purging the water reagent source with pure nitrogen may be a possible method to [mitigate decrease](#) impurity
344 reagent ion chemistry due to the presence of dissolved oxygen.

345 3.1.2 Influence of BSQ RF Voltage on PIDs

346 Another important influence on PIDs [from pentanoic acid was is](#) the BSQ RF amplitude voltage (referred to hereafter as “BSQ
347 voltage”). BSQ voltages observed from the lab-defined settings in the interlaboratory comparison dataset ranged from 215 V
348 to 400 V. The BSQ acts as a high-pass filter and thus low-mass ion transmission decreases with increasing BSQ voltage. In
349 other words, at low BSQ voltages (e.g., 225 V) we would expect to see greater transmission of low-mass ions (e.g., m/q <
350 55.04 Th) compared to higher voltages (e.g., 450 V). When considering how the BSQ affects PIDs we expected that product
351 ions that were low-mass, both H⁺ adduct and fragment ions, would be most affected by different BSQ voltages versus the
352 higher m/q water cluster products.

353

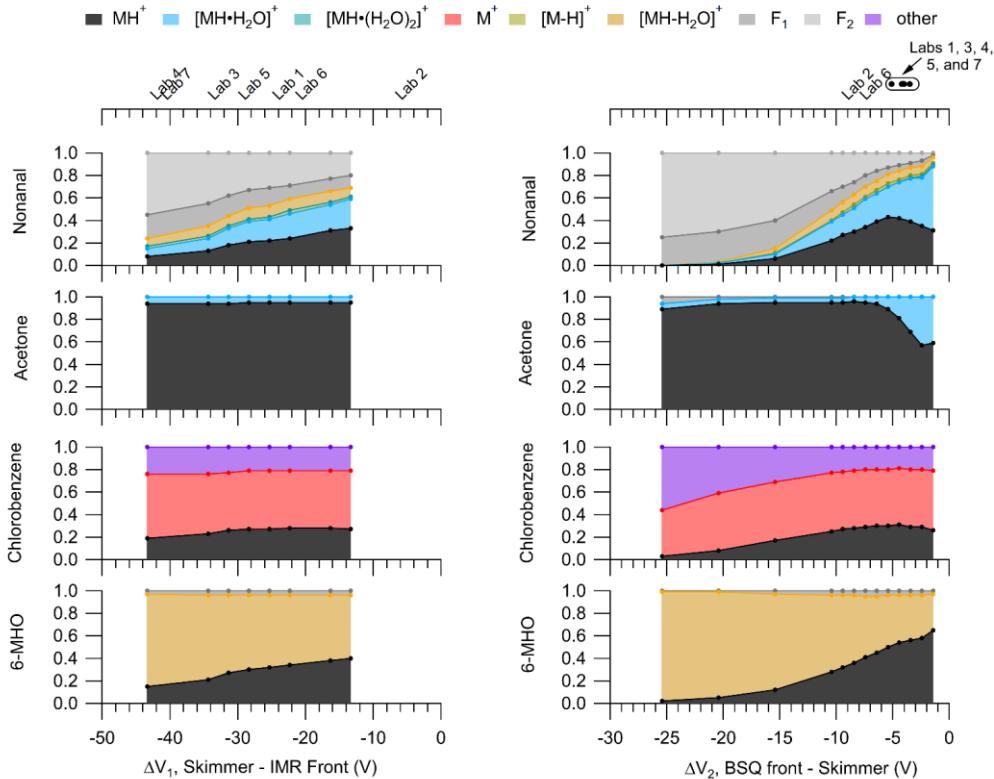
354 Fig. 4 shows the ion signals and PIDs for pentanoic acid measured across a range of BSQ voltages at an E/N of 133 Td.

355

356 **Figure 4:** Pentanoic acid (a) PID and (b) product ion signals as a function of BSQ RF Amplitude voltage measured with IMR E/N =
357 133 Td. Because the BSQ is supposed to mainly act as a high pass filter, the m/q values for the product ions are listed next to the
358 product ion definition in the legend to contextualize m/q-dependent transmission effects from the changing BSQ voltage. The ion
359 signals for the MH^+ ion, sum of the water cluster product ions, and sum of the fragment product ions were determined by integrating
360 product ion peaks from their selected ion chromatograms. Error bars are difficult to visualize but show the error from the residual
361 peak area. The BSQ voltages used by the laboratories in the comparison are shown in the top axis. The circle markers indicate values
362 where the lab text markers would overlap and are listed in order of BSQ [voltage](#) in the corresponding text label.
363

364 The integrated ion counts in Fig. 4 demonstrate the effect of the BSQ voltage on total transmission of ions whereas the PIDs
365 demonstrate transmission effects relative to other ions.

366 Because the BSQ mainly acts as a high-pass filter, BSQ effects on PIDs are likely to be most pronounced for VOCs that
367 generate lower m/q ions like the fragment ions generated from pentanoic acid. The contribution of fragment ions to the PID


368 for pentanoic acid are most pronounced at BSQ voltages less than 350 V. As the BSQ voltage increases, the lowest m/q product
369 ion ($C_3H_5^+$, $C_3H_5^+$, $C_4H_9^+$, and $C_2H_4O_2^+$) contributions decrease. At 450 V the $C_3H_3^+$ and $C_3H_5^+$ ions no longer make measurable
370 contributions to the PID and the contribution of $C_4H_9^+$ has decreased by a factor of five. However, as the contribution of lower
371 m/q ions to the PID decreases with increasing BSQ voltage the contribution of higher m/q ions (H^+ adduct and water clusters)
372 generally increase for pentanoic acid. Notably, the relative contribution of the single water cluster to the PID, ~~when E/N = 190~~
373 ~~Td~~, increases by a factor of ~~eight-six~~ at 450 V compared to 225 V. Notably, we cannot explain why the integrated ion counts
374 for the MH^+ ion from pentanoic acid decrease going from a BSQ voltage of 200 V to 300 V. ~~Going from 200 V to 300 V the~~
375 ~~total ion counts decrease by an order of magnitude (5 x 10⁶ ions s⁻¹ at 200 V to 5 x 10⁵ ions s⁻¹ at 300 V) so we hypothesize~~
376 ~~that as total ion transmission decreases with increasing BSQ voltage other transmission effects (besides high-pass filtering)~~
377 ~~may create m/q dependent changes in transmission efficiency.~~

378 3.1.3 Influence of Ion Optic Voltages and Capillary Distance on PIDs

379 We found that ion optic voltage differences (i.e., ΔV_1 and ΔV_2 [in Figure 2](#)) and the capillary insertion distance did not impact
380 the pentanoic acid PID as clearly as E/N and the BSQ settings. Figures presented in the Supplement demonstrate the variability
381 in PIDs measured for pentanoic acid when testing the voltage differences for ΔV_1 ([Fig. S24](#)) and ΔV_2 ([Fig. S3](#)[Fig. S2](#)), and the
382 sample capillary insertion distance ([Fig. S33](#)). We also analyzed the PID for benzene to investigate if charge transfer product
383 ions were modulated by the capillary distance. We did not observe any clear trends in the PID for pentanoic acid or the charge
384 transfer product ion contributions to the benzene PID as a function of capillary distance.

385

386 Although we did not observe major effects of ΔV_1 and ΔV_2 on the pentanoic acid PID, we did observe notable changes in the
387 PIDs for other VOCs as shown in Fig. 5.

388
389 **Figure 5:** PIDs for nonanal, acetone, chlorobenzene, and 6-methyl-5-heptene-2-one (6-MHO) as a function of ΔV_1 (left) and ΔV_2 (right). The top axes for both left and right panels correspond to the bottom axes and the midpoint of the labels show the ΔV corresponding to the respective lab. Circle markers on the top right axis correspond to a range of ΔV of ± 1 V and the text labels shown above for clarity. These PIDs were measured at an IMR E/N of 150 Td and a BSQ voltage of 300 V. Fig. S43 in the Supplement shows these PIDs measured at an IMR E/N of 106 Td.

390
391
392
393
394
395 The mechanism of how changes in PIDs are affected with changes induced by voltage gradients across the ion optics voltages
396 likely result from collisionally assisted fragmentation and declustering is different from the mechanisms that influence PIDs
397 for the IMR and BSQ. As shown in Fig. 5 we observe some increased fragmentation and increased water adduct declustering
398 with higher as the absolute ΔV increases for both ΔV_1 and ΔV_2 . These changes in the PIDs are associated with the increased

399 energy of ion collisions as they traverse the voltage gradient. These collisional effects are highlighted in the PIDs for nonanal
400 and 6-MHO where fragmentation product ion contributions to the PIDs increase with increasing ΔV .

401

402 The PID for chlorobenzene ~~is represented by~~ consists of the H^+ adduct, a charge transfer product, and another product ion
403 formed by an unknown mechanism, $C_6H_7O^+$. Compared to nonanal and 6-MHO the PID for chlorobenzene does not show as
404 strong of an influence of ion collisions changing the PID. The relative stability of the chlorobenzene PID with ΔV for both
405 ΔV_1 and ΔV_2 suggests that other species that have PIDs mostly containing charge transfer and hydride transfer product ions
406 may also be minimally influenced by ion optic voltage differences. However, the increasing contributions of both $C_6H_7O^+$ (the
407 “other” product ion) and $C_6H_5Cl^+$ (the charge transfer product ion) to the chlorobenzene PID with increasing ΔV_2 possibly
408 suggest collisions may be important for converting the H^+ adduct to these other product ions given high enough collisional
409 energy.

410

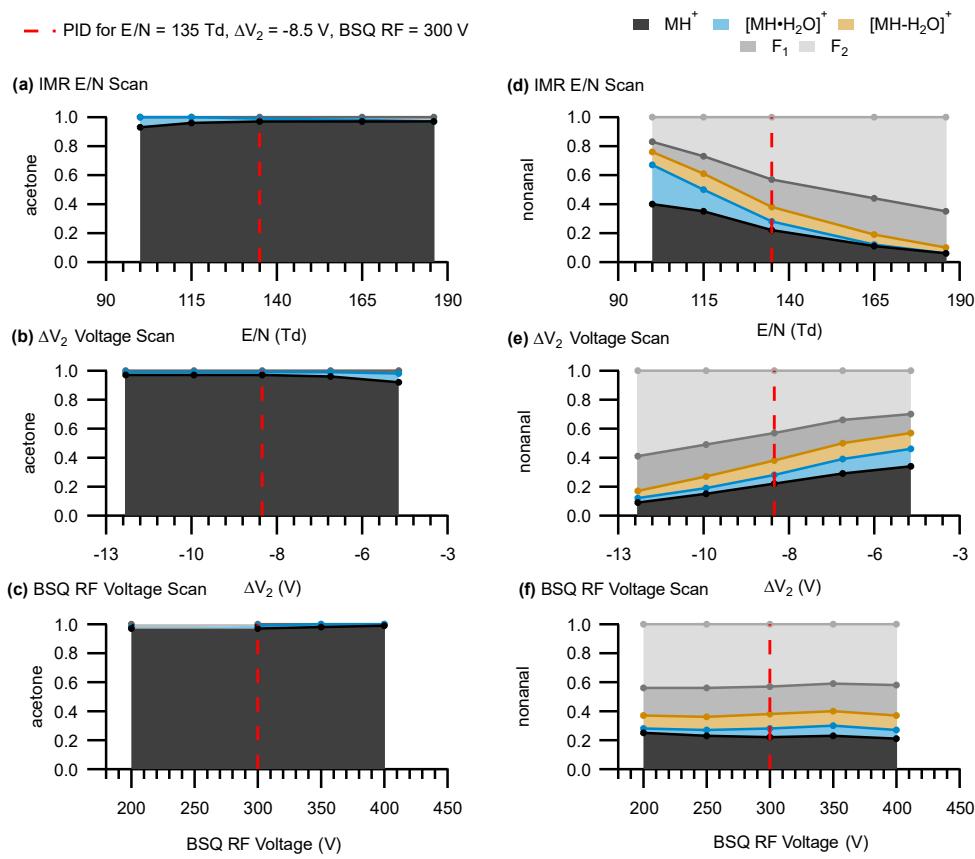
411 ~~Although~~ We did not observe major effects of ion optic voltage differences on the pentanoic acid PID, but the results in Fig.
412 5 suggest that increased ion optic voltage differences may increase the contribution of fragmentation and decrease the
413 contribution of water cluster ions to a PID for other molecules. The voltage differences used by the different labs included in
414 the interlaboratory comparison encompassed a smaller range for ΔV_2 compared to ΔV_1 .

415

416 We observe sensitive changes to the nonanal and 6-MHO PIDs within the narrow range of voltages used for ΔV_2 , but also
417 measurable, albeit less sensitive, changes in the PIDs for ΔV_1 . ~~Although~~ The effects of ΔV_1 on PIDs was not as sensitive as
418 ΔV_2 we acknowledge the potentially important role this ion optic voltage difference could have in interpreting differences in
419 PIDs measured between labs such as Labs 4 and 6, in the interlaboratory comparison, which have a difference in ΔV_1 between
420 the two labs ΔV of approximately 20 V. For instance, going from the highest measured ΔV_1 we measured for 6-MHO to the
421 lowest ΔV_1 , the contribution of the MH^+ product ion to the PID decreases by 30 % (i.e., from 0.59 to 0.36). Because of the
422 greater sensitivity of the greater sensitivity of PIDs to ΔV_2 we highlight the importance of this relationship in affecting PIDs,
423 but note that Fig. 5 demonstrates that differences in ΔV_1 are likely important enough to create differences in product ion
424 contributions to PIDs on the order of 10 % to 30 % for the instruments evaluated as part of the interlaboratory comparison.

425

426 An important implication of sensitive declustering and fragmentation effects from ΔV_2 is that the IMR E/N alone cannot
427 accurately predict the extent of possible fragmentation or declustering affecting PIDs. We show in Fig. 6, how the PID for
428 acetone and nonanal changes when varying the IMR E/N, ΔV_2 , and BSQ voltage individually compared to a reference set of
429 instrument operating parameters (red dotted line corresponding to E/N = 135 Td, ΔV_2 = -8.5 V, and BSQ RF voltage = 300
430 V). For both acetone and nonanal, we ~~can~~ see the same effects of increasing water cluster declustering and fragment ion
431 formation as E/N goes from low to high values (Fig. 6a and 6d) as we observed for pentanoic acid (Fig. 3). While keeping the
432 IMR E/N = 135 Td and varying ΔV_2 we see changes in the nonanal PID (Fig. 6e) that are nearly as pronounced as similar


Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold

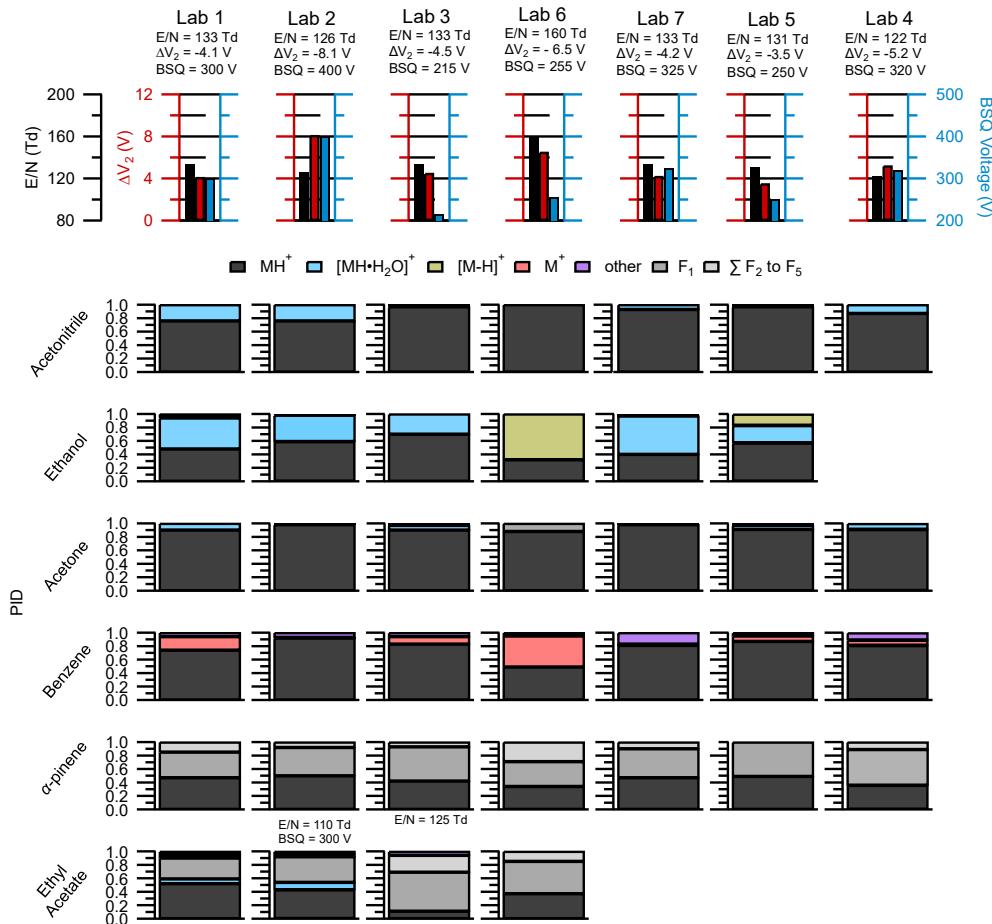
433 incremental changes in the IMR E/N. For instance, at a $\Delta V_2 = -4.4$ V the PID for nonanal is similar to the PID measured at
 434 100 Td. To a rough approximation, a 1 V change in ΔV_2 is equivalent to a change in IMR E/N of 9 Td for nonanal. A similar
 435 sensitivity to ΔV_2 is observed for acetone, but [our interpretation is limited because](#) the PID only has a minor contribution from
 436 the water cluster under all conditions. In contrast to pentanoic acid (Fig. 4), major PID changes for acetone and nonanal were
 437 not observed when scanning the BSQ RF voltage demonstrating that the combined influence of the instrument components
 438 evaluated here on measured PIDs can vary considerably between different chemical species.

439
 440 **Figure 6: PIDs for acetone (left panels) and nonanal (right panels). Panels a and d show PIDs as a function of IMR E/N ($\Delta V_2 = -8.5$ V
 441 and BSQ RF = 300 V), panels b and e show PIDs as function of ΔV_2 (BSQ front - Skimmer; IMR E/N = 135 Td and BSQ**

442 RF = 300 V), and panels c and f show PIDs as a function of BSQ RF voltage (IMR E/N = 135 Td and ΔV_2 = -8.5 V). The
443 red dotted line shows where the settings for the IMR, ΔV_2 , and the BSQ were equivalent (E/N = 135 Td, ΔV_2 = -8.5 V,
444 and BSQ RF = 300 V). Because PIDs are more sensitive to ΔV_2 compared to ΔV_1 we only show the PIDs as a function
445 of ΔV_2 here for simplicity.

446

447


448

449 **3.2 Interlaboratory Comparison of PIDs**

450 We compare PIDs measured from the seven laboratories under lab-defined settings. Acetonitrile and α -pinene were the only
451 VOCs with PIDs measured by every lab. We highlight select VOCs with a particular propensity for water cluster and/or
452 fragment ion formation, that were commonly measured amongst the labs, for a qualitative comparison. We then compare a
453 more diverse suite of VOCs for a quantitative characterization of PIDs across instruments.

454 **3.2.1 Qualitative Comparison of PIDs Across Instruments**

455 Figure 7 highlights differences in PIDs measured from select VOCs common across most of the instruments.

456

457 **Figure 7:** The top row shows the lab identity label (i.e., Lab 1, Lab 2, etc.) and corresponding E/N (left axis, black), ΔV_2 (left axis, red), and BSQ voltages (right axis; blue) used for the PID measurements shown below. PIDs are shown in the lower panels for select
 458 VOCs from the interlaboratory comparison dataset and were chosen based on if the VOC measurement was available for each lab.
 459 Empty spots where a barplot would be indicate that lab did not have measurements for the VOC in the corresponding row. The
 460 PIDs for ethyl acetate were measured for Lab 2 and Lab 3 under slightly different instrumental conditions than the rest of the VOCs
 461 and the corresponding E/N and BSQ voltages are shown above the barplots. Contributions of 3 % or less to the PID may be difficult
 462 to see in the figure, but exact values can be found in the H_3O^+ PID library.
 463
 464

465 The appearance and contribution of product ions to the PID of a given VOC varied between instruments but can mostly be
466 qualitatively explained by variations in E/N, ΔV_2 , and BSQ voltage. We note that the effects of instrument configuration (i.e.,
467 E/N, BSQ voltage, ion optic voltages) should have predictable effects on PIDs measured by a single instrument and thus using
468 the product ion quantification methods described later in Section 3.5 are not dependent on our ability to reconcile instrument-
469 to-instrument differences.

470
471 Data shown in Fig. 7 originate from instruments operating within a relatively narrow range of E/N (122 Td to 133 Td) with
472 the exceptions of Lab 6 which ran at an E/N of 160 Td and the ethyl acetate measurement from Lab 2. Our analyses of pentanoic
473 acid PID variability as a function of instrument configuration provide some context for interpreting the PID variability observed
474 here. Measurements of the pentanoic acid PID as a function of E/N in Fig. 3 demonstrate that variability in water cluster and
475 fragment product ion contributions to the PID may vary on the order of approximately 10 % when comparing measurements
476 acquired at an E/N of 120 Td versus 130 Td. [Similarly, we may expect variability of water cluster contributions for the VOCs](#)
477 [shown in Fig. 7 to vary on the order of 10 % within the E/N range of all labs except Lab 6.](#)

478
479 The appearance and contribution of product ions to the PID of a given VOC varied between instruments and was not always
480 easily explained by variations in E/N and/or BSQ voltage. Although we find some difficulty explain the expected effects of
481 instrument configuration on PIDs across different instruments, we note that the effects of instrument configuration (i.e., E/N,
482 BSQ voltage, ion optic voltages) should have predictable effects on PIDs measured by a single instrument and thus using the
483 product ion quantification methods described later in Section 3.5 are not dependent on reconcile instrument-to-instrument
484 differences. Water clusters made some contribution to the PID [from at least one of the VOCs for each lab except Lab 6](#) which operated at the highest E/N (160 Td). [However, the contribution of the water cluster to the PID for acetonitrile was 24 % for Lab 1 and 3 % for Lab 7 despite operating with nearly the same E/N and BSQ voltage.](#)

487
488 We expected the acetone PID could provide evidence of BSQ low-mass filtering as the m/q of the H^+ adduct ion (m/q 59.05
489 Th) is lower than the water cluster product ion (m/q 77.06 Th) and so lower BSQ voltages may correspond to higher
490 contributions of the H^+ ion to the PID compared to the water cluster. Comparison of the acetone PID from Lab 1 versus Lab 2
491 and Lab 7 displays the opposite trend where, when BSQ voltage increases, the contribution of the H^+ ion increases compared
492 to the water cluster ion. [For Lab 2, we suspect this discrepancy in BSQ effect is explained by the mechanism of acetone water](#)
493 [clusters formed in the IMR likely declustering after passing through the \$\Delta V_2\$ ion optic relationship \(highest \$\Delta V_2 = -8.1\$ V](#)
494 [indicating potentially important fragmentation/declustering\) creating a measured PID entirely consisting of the . However, we](#)
495 [do not have an explanation for why Lab 7 does not show water cluster contributions to the acetone PID, where Lab 1 shows](#)
496 [about a 10 % contribution, despite having nearly identical settings to the Lab 1 instrument.](#) -This comparison of the acetone
497 PID with BSQ voltage demonstrates the challenge of generalizing patterns of PIDs from a single instrument setting [to other](#)
498 [instruments.](#)

499

500 Each instrument in this intercomparison was operated with a different BSQ voltage which likely influenced variability in PIDs
501 between instruments. For several of the VOCs in Fig. 7 we might expect higher contributions of water clusters to the PIDs for
502 acetonitrile, ethanol, and acetone at higher BSQ voltages because higher voltages decrease the transmission efficiency, relative
503 to water clusters, for the H^+ adduct. For instance, Lab 3 operated with a BSQ voltage of 215 V and Lab 2 operated with a
504 voltage of 400 V representing the lower and upper ends, respectively, of the dataset BSQ voltage range. One possible
505 explanation for the difference in the water cluster contribution to the acetonitrile PID, measured for Lab 3 and Lab 2 of 3 %
506 and 24 % respectively, is increased relative transmission efficiency of the water cluster at the higher BSQ voltage used in Lab
507 2 (both labs have similar E/N).

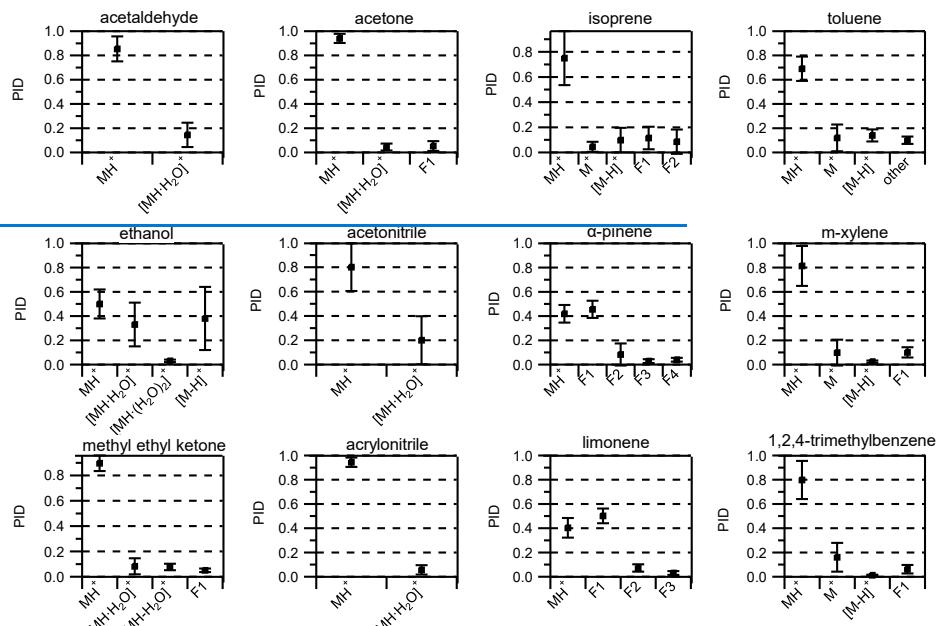
508

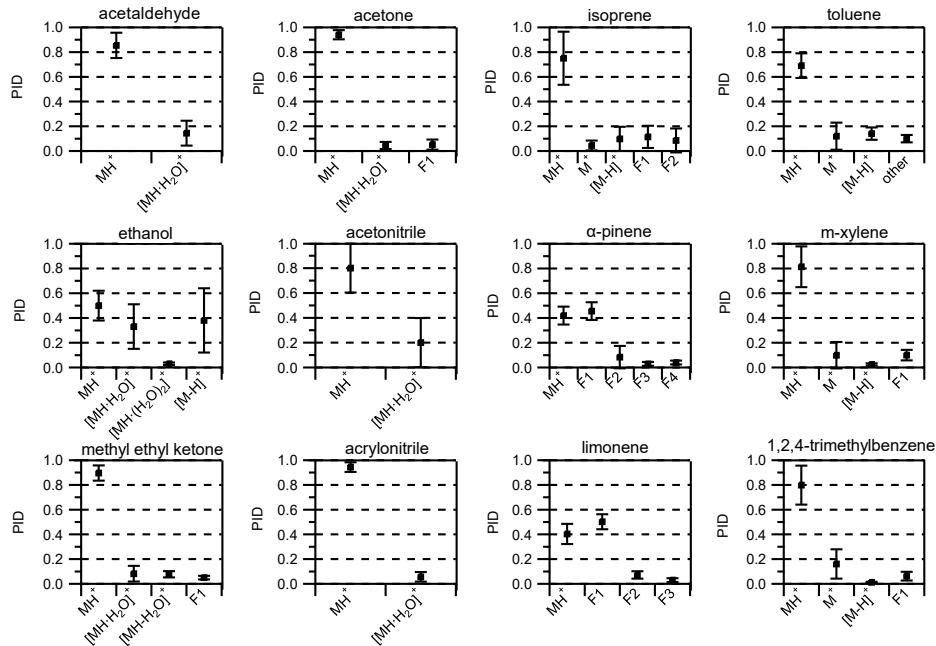
509 Ethyl acetate was also impacted by BSQ voltage effects (Fig. 7). The E/N for the Lab 3 (E/N = 122 Td) measurement of ethyl
510 acetate falls in between that of Lab 1 (E/N = 133 Td) and Lab 2 (E/N = 110 Td) and thus we might expect the PID to be similar
511 to those two labs. In contrast to Labs 1 and 2, the Lab 3 ethyl acetate PID shows a higher contribution of fragment ions and
512 does not show a water cluster contribution. The two major fragment ions for ethyl acetate ($\text{C}_2\text{H}_3\text{O}^+ = 43.02$ Th and $\text{C}_2\text{H}_5\text{O}_2^+ =$
513 61.03 Th) are similar in m/q to the fragment ions of pentanoic acid ($\text{C}_3\text{H}_5^+ = 41.04$ Th and $\text{C}_4\text{H}_9^+ = 57.07$ Th) that we saw
514 affected by the BSQ voltage in Fig. 4. Thus, the lower BSQ voltage used for Lab 3 (BSQ = 215 V), compared to Labs 1 (BSQ
515 = 300 V) and 2 (BSQ = 400 V), likely increased the transmission efficiency of fragment ions, relative to the H^+ adduct and
516 water cluster, and increased their contribution to the PID for Lab 3.

517

518 Of the VOCs presented here, α -pinene, shows considerable fragmentation, but also reasonable agreement in the PID (± 10 %
519 for any given product ion contribution to the PID) across instruments. Variability in α -pinene PIDs between instruments can
520 be qualitatively explained by differences in E/N. Lab 6, operating at an E/N of 160 Td (higher fragmentation than the other
521 instruments), showed a near equal contribution of the H^+ adduct, F_1 , and sum of other fragments to the PID whereas the other
522 instruments showed roughly half H^+ adduct, half F_1 , with some (< 10 %) contribution of the sum of other fragments. We expect
523 α -pinene, and most other monoterpenes, to be minimally influenced by changes in BSQ voltage (and thus low-mass filtering
524 effects) as most of the major product ions are greater than m/q 55.04 Th (corresponding to the reagent ion double water cluster,
525 $(\text{H}_2\text{O})_2\text{H}_3\text{O}^+$) where mass-filtering effects are expected to be less pronounced (Krechmer et al., 2018).

526

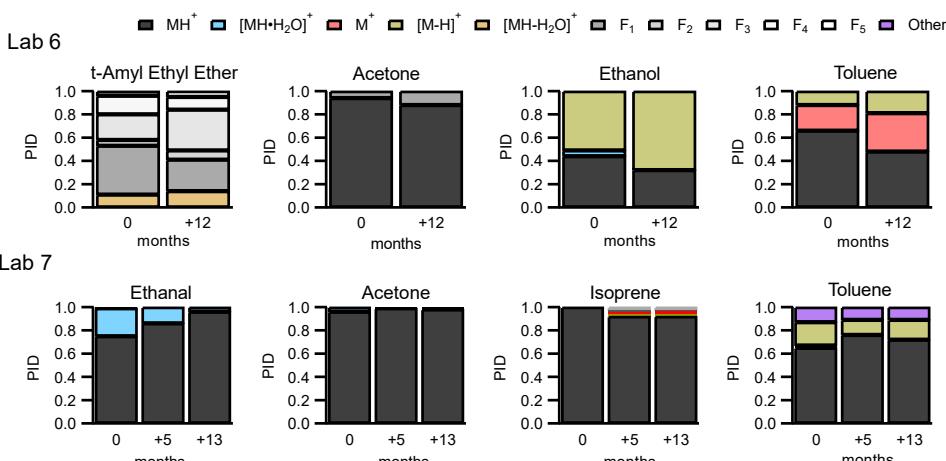
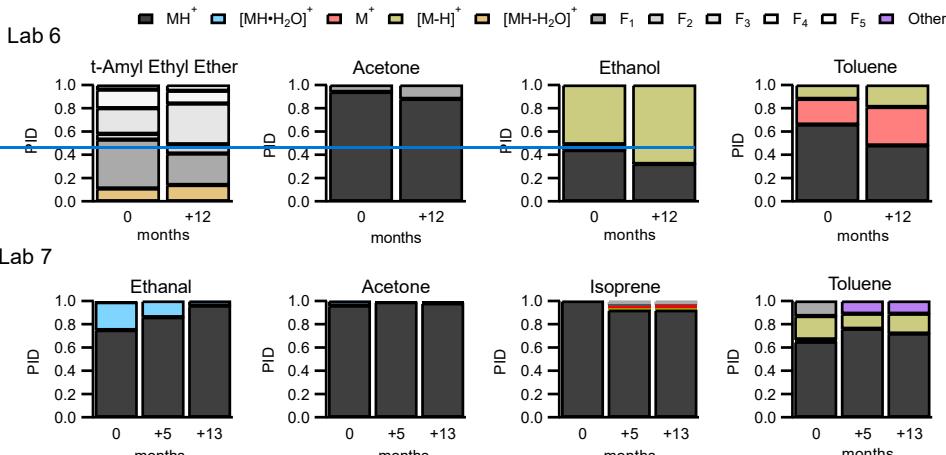

527 Reagent ion impurities, O_2^+ and NO^+ , are likely responsible for charge and hydride transfer product ions observed for benzene
528 and ethanol shown in Fig. 7. In Fig. 3 we show that the PID contribution for both hydride (as seen for ethanol and toluene) and
529 charge transfer products (as seen for toluene) increase with increasing E/N. However, variability in E/N does not explain the
530 differences in hydride transfer product contributions to the PID for ethanol and charge transfer product contributions to the
531 PID for benzene between the labs in Fig. 7. Lab 6, which operated with the highest E/N (160 Td), had the largest contributions
532 of both the hydride transfer product for ethanol and the charge transfer product for benzene which is consistent with the


533 observation of more impurity reagent ion chemistry at higher E/N. However, Lab 1 and Lab 7 operated with nearly the same
534 E/N, ΔV_2 , and BSQ voltage, but Lab 7 did not measure the charge transfer product for benzene whereas Lab 1 measured a 20
535 % contribution. We hypothesize that increased inlet flow rates increase O_2^+ and/or NO^+ chemistry as evidenced by the ethanol
536 hydride transfer product making the largest contributions to the ethanol PID for Lab 5 and Lab 6 which operated their
537 instruments at higher flowrates compared to the other labs (Lab 5 = $180\text{ cm}^3\text{ min}^{-1}$ and Lab 6 = $290\text{ cm}^3\text{ min}^{-1}$, while the other
538 systems operated with an inlet flow rate of approximately $100\text{ cm}^3\text{ min}^{-1}$). The increased inlet flowrate may increase mixing
539 of sample air and dilute the water vapor saturated air in the ionization region thus generating more NO^+ and O_2^+ reagent ions.
540

541 We note that several aromatics (e.g., benzene, toluene, chlorobenzene) also generated a product ion, $C_6H_7O^+$, that we could
542 not identify a mechanism for and we classified as “other”. With regard to benzene detection, this product ion contributed 20
543 % to the PID for Lab 7 but made smaller contributions (< 5 %) to the PIDs for other labs. In the case of Lab 7, larger
544 contributions of $C_6H_7O^+$ did not coincide with enhanced contributions of the charge transfer product to the benzene PID so
545 this ion may not be a product of O_2^+ and/or NO^+ chemistry. Because $C_6H_7O^+$ is generated from several aromatics (see H_3O^+
546 PID library) it may be an important isobaric interference for phenol.

547 **3.2.2 Quantitative Comparison of PIDs Across Instruments**

548 We calculated the average and standard deviation of the mean of the product ion contributions to the PIDs for 12 VOCs
549 contained within the interlaboratory comparison dataset (Fig. 8).



551
 552 **Figure 8: Averages (black squares) and standard deviations of the mean (1 σ) of PIDs for select VOCs. Averages were determined**
 553 **from at least five measurements from the interlaboratory comparison dataset. The number of individual measurements used to**
 554 **calculate average and standard deviation values can be found in Table S1.**

555
 556 In contrast to the reporting uncertainties later discussed in Section 3.6, these averages and standard deviations are meant to
 557 quantitatively show variability across the instruments in this study. Many of the VOCs had standard deviations (1 σ) associated
 558 for with product ion contributions to PIDs that varied by no more than 0.3020 % thus providing a constraint for predicting
 559 PIDs across instruments operating under different conditions. Generally, the relative standard deviation (RSD) of product ion
 560 contributions to PIDs was larger for product ions with smaller fractional contributions (e.g., < 0.10) compared to larger
 561 contributions (e.g., > 0.30). For instance, the average and standard deviation of the contribution of the MH^+ ion to the methyl
 562 ethyl ketone PID was 0.90 ± 0.06 (7 % RSD) whereas the water cluster was 0.08 ± 0.06 (75 % relative standard deviation).
 563 This relatively tight distribution of product ion abundance also suggests the H_2O^- -PID library included as a supplemental
 564 spreadsheet could be a useful guide for estimating PIDs from Vocus PTR-TeF-MS instruments. Ethanol and acetonitrile
 565 showed considerable (i.e., > 40 % RSD) product ion variability (Fig. 8). For ethanol, the importance of the water cluster was

566 highly dependent on E/N. Additionally, the fraction of the hydride transfer product ranged from < [0.05 %](#) to roughly [0.50 %](#).
567 The ethanol and acetonitrile PIDs are not only influenced by E/N but also likely impacted by the BSQ voltage since the H⁺
568 adducts are a relatively low m/q (i.e. m/q < 55.04 Th). VOCs like isoprene and the aromatics have PIDs that are impacted by
569 NO⁺ and O₂⁺ reagent ion chemistry which, as discussed above, is difficult to predict without directly measuring PIDs of
570 susceptible VOCs. [Although E/N influences PIDs, t](#)The general trend of fragmentation/declustering with increasing E/N [and](#)
571 [ΔV₂](#) can be used as a guideline to inform a user how they might expect their PIDs to deviate from the averages shown in Fig.
572 8. [We recommend the H₃O⁺ PID library as guide for estimating PIDs for VOCs measured with Vocus PTR-ToF-MS](#)
573 [instruments in the absence of direct measurements.](#)

574 **3.2.3 Consistency of PIDs Measured Over Time**

575 Two labs, Lab 6 and Lab 7, provided data where the instrument was operated under the same voltage configurations, but PIDs
576 were measured a year or more apart. Figure 9 shows the variability in PIDs for four select VOCs from these two labs over a
577 year.

580 Figure 9: PIDs for select VOCs from Lab 6 (top frames) and Lab 7 (bottom frames) showing variability of PIDs over one year.

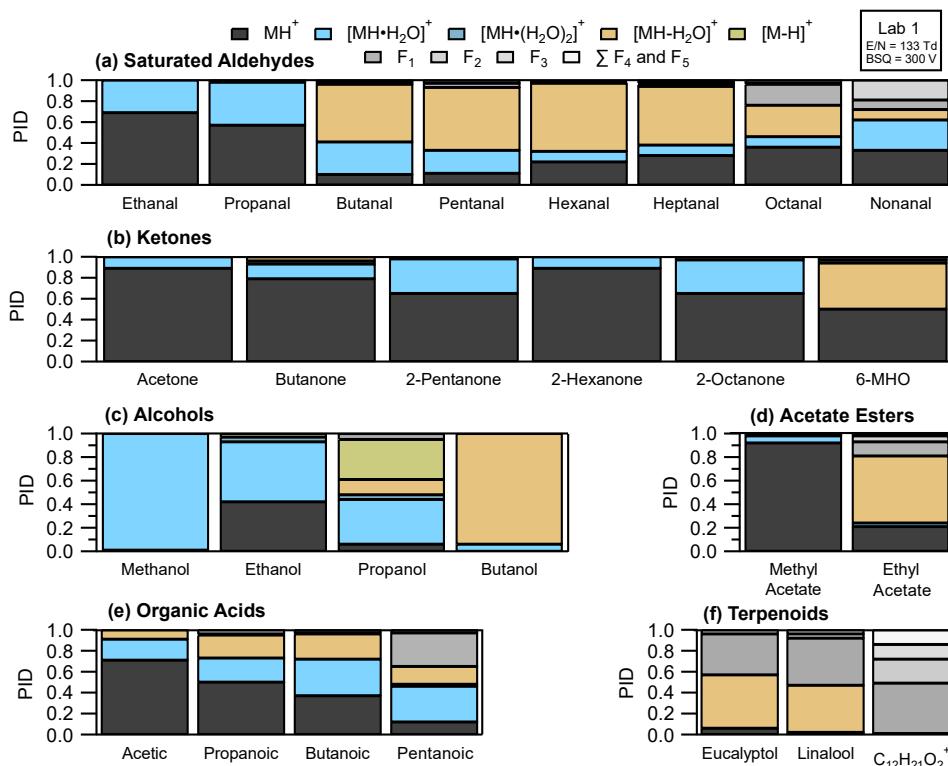
581

582 Measurements from both labs indicate that, given the same voltage configurations on the same instrument, PIDs can change
583 over time. The largest change from the subset of VOCs in Fig. 27 is the water cluster contribution to the ethanal (acetaldehyde)

584 PID, from Lab 7, starting at 24 % and decreasing to 4 % after 13 months. [Toluene, measured from Lab 7, has a fragment](#)
585 [product ion starting out that is no longer detected after five months and instead the product ion C₆H₅O⁺ begins to make](#)
586 [contributions to the PID. Similarly, isoprene from Lab 7 has fragment and charge/hydride transfer product ions that appear in](#)
587 [the PID after five months.](#)

588
589 The PIDs for the four VOCs from Lab 6 show greater contributions of fragment and charge/hydride transfer product ions after
590 12 months compared to the first measurement. We hypothesize three possible factors could be related specifically to the
591 increase in charge/hydride transfer product ions over time: (1) the increase in inlet flowrate (260 cm³ min⁻¹ at 0 months to 290
592 cm³ min⁻¹ at +12 months), (2) capillary insertion depth, and (3) leaks into the sampling system from maintenance. Lab 6 reports
593 that after maintenance on their instrument changes in instrument performance (e.g., sensitivity) were observed and may be
594 associated with cleaning the capillary that serves as the inlet to the instrument (Jensen et al., 2023). The instrument was in a
595 stable condition after maintenance before the PIDs were collected. Although we did not observe a strong dependence of NO⁺
596 and O₂⁺ chemistry on capillary insertion distance for the Lab 1 instrument (Fig. S53), it is possible that at the higher inlet
597 flowrates, used for the Lab 6 measurements, an effect could be observed.

598
599 None of the product ions from this example change their contribution to the PID by more than 10 % over time—with the
600 exception of the ethanal water cluster. This time-dependent variability in PIDs demonstrated in Fig. 9 points to some factor or
601 combination of factors affecting PIDs not considered in our analyses (e.g., degradation of the microchannel plate detector
602 (Müller et al., 2014) [or possibly ion source degradation](#)). Additionally, the variability of individual product ions over time
603 provides an estimate of [natural aging](#) variability on the order of 10 % (but as high as 20 %). [when comparing product ion](#)
604 [contributions to PIDs between instruments like we did in Section 3.2.1.](#)


605 3.3 Measurements of PIDs for Oxygenated VOCs from Lab 1

606 We highlight features of PID formation from VOCs with oxygenated functionalities that may be measured in high
607 concentrations from samples of indoor air and/or urban air plumes in the sections below. Product ion formation is characterized
608 in the literature for some VOCs like aromatics and monoterpenes (Yuan et al., 2017; Misztal et al., 2012; Materić et al., 2017;
609 Kari et al., 2018) that do not readily form water clusters. Product ion formation from oxygenated VOCs is less well-
610 characterized, particularly for water cluster formation.

611
612 Figure 10 shows PIDs for select VOCs categorized by functional group as measured from Lab 1 using calibration standards
613 (except for the unidentified monoterpene acetate ester which was measured from a restroom air sample). PIDs were measured
614 under instrument settings that correspond to Lab 1b in Table 1. A key result demonstrated in Fig. 10 is that, for the subset of
615 VOCs shown here, the H⁺ adduct contribution to the PID is often less than 60 % and thus air samples containing these VOCs
616 may have many product ions populating the mass spectra. In other words, H₃O⁺ ionization [\(including NO⁺ and O₂⁺ impurities\)](#)

617 is generating unintended product ions often at similar rates as the intended H^+ adduct for most VOCs. Below we discuss general
 618 patterns of product ion formation from VOCs with varying functionalities.

619

620
 621 **Figure 10: PIDs measured for Lab 1 for select VOCs representing different functional groups. VOCs from left to right, per functional**
 622 **group, are in order of increasing carbon number. “ $\text{C}_{12}\text{H}_{21}\text{O}_2^+$ ” is an unidentified monoterpene acetate ester, measured from a**
 623 **restroom air sample, likely originating from isobornyl or linalyl acetate. (Link et al., 2024).**

624 **3.3.1 Saturated Aldehydes**

625 Recently, fragment product ions from saturated aldehydes have been highlighted in measurements of urban air influenced by
 626 cooking emissions (Coggon et al., 2024), ozonolysis of sea water (Kilgour et al., 2024), and ozonolysis products of human
 627 skin oils in indoor air (Wang et al., 2024; Ernle et al., 2023). In the Lab 1 instrument fragment product ions contributed > 40

628 % to the PID for saturated aldehydes with a carbon number greater than three (i.e., butanal to nonanal). Water cluster formation
629 contributed > 20 % to the PID for ethanal (acetaldehyde), propanal, and nonanal. As reported previously for butanal through
630 heptanal (Buhr et al., 2002), the fragment ion making the largest contribution to the PID in the Lab 1 instrument was the
631 dehydration product (i.e., $[\text{MH}-\text{H}_2\text{O}]^+$). We find additional agreement with previous literature reporting octanal and nonanal
632 fragmentation to smaller product ions (e.g., C_5H_9^+ , C_3H_5^+ , $\text{C}_6\text{H}_{11}^+$). We suspect, from limited experimental data (ŠPaněl et al.,
633 2002), that larger saturated aldehydes (e.g., decanal) may also produce fragment product ions smaller than the dehydration
634 product ion in the Lab 1 instrument. However, as the carbon number of the saturated aldehyde increases, from butanal, the
635 contribution of the H^+ adduct to the PID increases—and the contribution of dehydration and fragment product ions decrease—
636 suggesting larger aldehydes fragment less overall than butanal, pentanal, and hexanal. [Finally, we note we cannot easily explain](#)
637 [the formation of some product ions from \$\text{H}_3\text{O}^+\$ ionization from typical mechanisms \(e.g., \$\text{C}_5\text{H}_9^+\$ from nonanal\) and thus we](#)
638 [hypothesize that reactions involving \$\text{NO}^+\$ and/or \$\text{O}_2^+\$ may be responsible for the generation of some fragment ions from](#)
639 [saturated aldehydes.](#)

640 3.3.2 Ketones

641 In contrast to saturated aldehydes, and consistent with previous work (Buhr et al., 2002), the saturated ketones (i.e., all the
642 ketones in Fig. 10b except 6-MHO) measured with the Lab 1 instrument do not fragment substantially (i.e., sum of fragment
643 contributions to PID < 5 %). However, the saturated ketones do form water clusters with contributions ranging from 10 %
644 (e.g., acetone) to 40 % (e.g., 2-octanone) to the PID. We do not observe a clear relationship between increasing carbon number
645 and water clustering. In fact, when comparing 6-methyl-5-hepten-2-one (6-MHO) and 2-octanone, two eight carbon molecules,
646 the water cluster for 2-octanone contributed 40 % to the PID whereas 6-MHO had no detectable water cluster formation (Fig.
647 [10g](#)b). Additionally, as demonstrated by the PID from 6-MHO, adding carbon branching and/or additional functionalities can
648 change product ion formation considerably compared to the saturated C_8 ketone analogue.

649 3.3.3 Alcohols

650 We observed important contributions of water clusters (> 40 %) to the PIDs measured for methanol, ethanol, and propanol.
651 Methanol and ethanol can be present in concentrations that exceed 1 nmol mol⁻¹ in both outdoor and indoor air (Nazaroff and
652 Weschler, 2024) and thus the water clusters of these two alcohols may make important contributions to sample mass spectra.
653 We also measured small contributions of double water clusters to the PID from ethanol and [2](#)-propanol (4 % for each VOC).
654 Previous studies have shown considerable fragment product ion production from dehydration of alcohols (Buhr et al., 2002;
655 ŠPaněl et al., 2002; Warneke et al., 2003; Pagonis et al., 2019) and we also observed that for [2](#)-propanol and [1](#)-butanol. For [1](#)-
656 butanol > 90 % of the PID was from the dehydration product ion and we did not measure any generation of the H^+ adduct. We
657 also observe small contributions of the hydride transfer product from ethanol that have been reported from another PTR-ToF-
658 MS (Coggon et al., 2024) and measured with the NO^+ reagent from a selected ion flow tube study (ŠPaněl et al., 2002). The
659 hydride transfer product made a 30 % contribution to the PID measured for [2](#)-propanol. As summarized in Koss et al. (2016),

660 several other saturated alcohols have hydride transfer enthalpies that decrease with increasing carbon number and thus hydride
661 transfer product ions may appear in PTR-MS spectra from ambient air samples where saturated alcohols may be in high
662 abundance. As an example, Buhr, et al. (2002) measured 10 % contribution of the hydride transfer product from 1-octanol and
663 2-octanol to their PIDs.

664

665 Although we focus on reaction with NO^+ as the primary reagent producing hydride transfer products from reaction with VOCs,
666 Hegen et al. (2023) hypothesized that charge transfer from O_2^+ to methanol, with subsequent loss of hydrogen atom, may be
667 an important mechanism for creating product ions that appear in the mass spectrum as hydride transfer products. Thus, both
668 charge and hydride transfer enthalpies may be useful qualitative indicators for predicting if $[\text{M}-\text{H}]^+$ product ions are generated
669 from ionization of alcohols. For VOCs whose PIDs are not included in the H_3O^+ PID library, we refer the reader to Koss et al.
670 (2016) for a table of hydride and charge transfer enthalpies for many VOCs measured using PTR-MS as a useful resource for
671 predicting the possible generation of product ions.

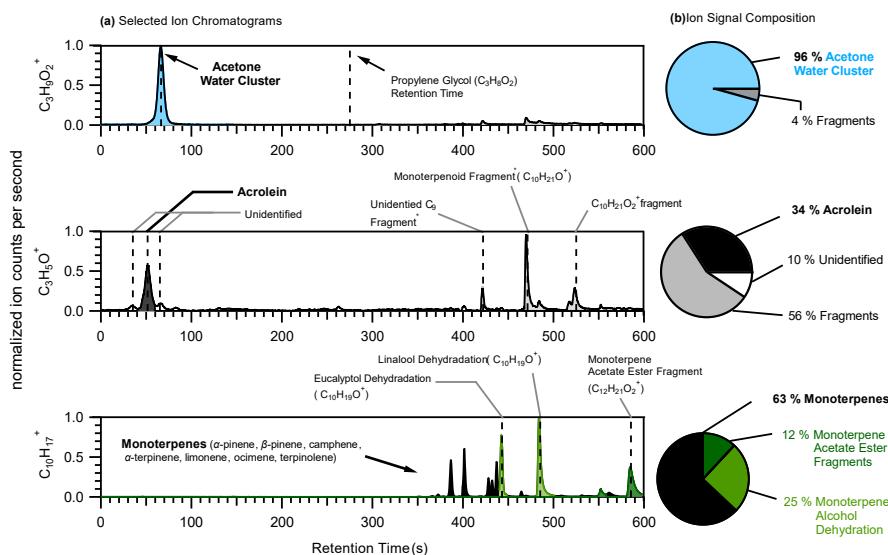
672 **3.3.4 Acetate Esters, Organic Acids, and Oxygenated Monoterpenes**

673 Neither the acetate esters nor oxygenated monoterpenes in this study show a propensity to form water clusters. We measure
674 considerable fragmentation of ethyl acetate (Fig. 10d). In addition to ethyl acetate, Buhr et al. (2002) measured major
675 contributions of fragmentation products of several other acetate esters to their PIDs. Although Buhr et al. (2002) used an older
676 model of PTR-MS with a drift tube ionization region, we expect that larger acetate esters may also fragment to the same degree
677 as observed in that study in the Vocus PTR-ToF-MS.

678

679 Alkanoic acids have PIDs that show complexity similar to the saturated aldehydes with extensive water cluster formation and
680 fragmentation (Fig. 10e). Notably, the fraction of H^+ adduct in the PID decreases with increasing carbon number with roughly
681 15 % of the PID for pentanoic acid allocated to the H^+ adduct. More data is needed, but this trend suggests larger organic acids
682 (i.e., $> \text{C}_5$) may also produce water cluster and fragment product ions in similar abundance to the H^+ adduct. Characterization
683 of PIDs for larger (e.g., C_9 and C_{10}) acids may be of particular importance for measurements of early generation oxidation
684 products of terpenes.

685


686 Notably, the contribution of the H^+ adduct to the PID for the terpenoids highlighted here are all less than 5 %. The monoterpene
687 alcohols (eucalyptol and linalool) generate dehydration product ions with abundances greater than 40 % (Fig. 10f). The
688 dehydration product of the monoterpene alcohols, $\text{C}_{10}\text{H}_{17}^+$, is isobaric (i.e., occurring at the same m/q) with the H^+ adduct for
689 monoterpenes. We also highlight the PID measured for $\text{C}_{12}\text{H}_{21}\text{O}_2^+$, a monoterpene acetate ester (most likely linalyl or isobornyl
690 acetate based on offline GC analysis presented in Link, et al. (2024)), measured from a restroom air sample. This ion fragments,
691 losing a neutral acetic acid, to form $\text{C}_{10}\text{H}_{17}^+$ suggesting monoterpene acetate esters may also create monoterpene interferences
692 from samples where monoterpenes and the acetate esters are both present.

693 **3.4 Mass Spectral Ambiguity from the Influence of PIDs: A Restroom Air Sample Case Study**

694 One consequence of multi-product ion generation in PTR-MS is that if PIDs are unknown or uncharacterized they can create
 695 ambiguity when identifying peaks in the mass spectrum in the absence of a pre-separation method. In particular, studies
 696 performing non-targeted analysis of the ion signals measured by PTR-MS from indoor air samples (Link et al., 2024; Ditto et
 697 al., 2023; Mattila et al., 2021; Liu et al., 2024; Klein et al., 2016) may be challenged by the presence of unintended product
 698 ions generated by high concentrations of parent VOCs. For instance, Ernle et al. (2023) recently demonstrated the challenge
 699 of quantifying isoprene from m/q 69.07 ($C_5H_9O^+$) because of interferences from fragments of aldehydes generated from ozone
 700 skin oil oxidation indoors. We briefly demonstrate several challenges related to product ion generation and resulting mass
 701 spectral ambiguity using a measurement of ambient air in a restroom as a case study.

702

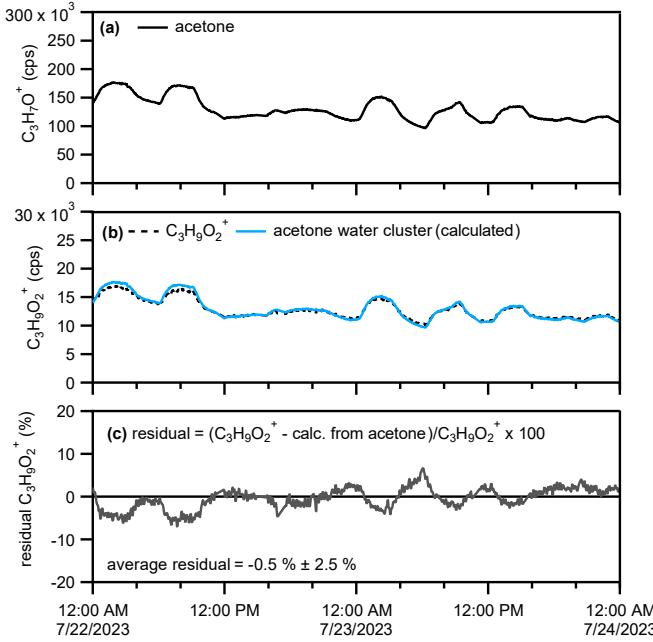
703 High concentrations of terpenoids emitted from fragrant urinal screens reacted with ozone to create oxidized VOCs in the
 704 restroom we sampled from. Fig. 11 shows the selected ion chromatograms for three ions measured, using GC-PTR-ToF-MS,
 705 from the restroom air sample to demonstrate challenges associated with product ion formation.

706
 707 **Figure 11:** (a) Selected ion chromatograms (left) of three ions for which PIDs present challenges: $C_3H_9O_2^+$ (top), $C_3H_5O^+$ (middle),
 708 and $C_{10}H_{17}^+$ (bottom). Dotted vertical lines are placed at the retention times assigned to VOCs or parent ion species either directly
 709 measured from calibration sources or supported by time series correlations with known product ions. Peak assignments with an
 710 asterisk are species that were assigned from product ion time series analyses. (b) Pie charts showing the ion signal composition with
 711 contributions from the VOC typically assigned to the ion (black) and contributions from interfering product ions. Product ion

712 contributions to the ion signal are determined by integrating areas of all the major peaks, calculating the relative contribution of
713 each peak to the total area of all the identified peaks, and classifying them by product ion identity.
714

715 In the restroom the ion possibly attributable to propylene glycol, $C_3H_9O_2^+$ (Hopstock et al., 2024), was found to be mostly
716 comprised of the acetone water cluster. Acetone generates a water cluster with a roughly 10 % efficiency in the Lab 1
717 instrument used for this restroom measurement. Acetone concentrations are generally elevated indoors, compared to outdoors,
718 and in the restroom acetone concentrations were elevated at approximately 20 nmol mol⁻¹ (equivalent to 20 parts-per-billion).
719 Recent studies have used PTR-MS for the measurement of VOCs, including propylene glycol, in the smoke of electronic
720 cigarettes (Bielik et al., 2024; Hopstock et al., 2024; Sheu et al., 2020). Sheu et al. (2020) could not quantify possible
721 contributions of propylene glycol to thirdhand smoke indoors because of the acetone water cluster interference. This $C_3H_9O_2^+$
722 interference from acetone water cluster may be most pronounced indoors where air can contain elevated acetone concentrations
723 from human breath and materials emissions (Molinier et al., 2024).
724

725 Acrolein (C_3H_4O) is a hazardous indoor air pollutant (Seaman et al., 2007; Logue et al., 2011) and recently was measured,
726 using PTR-MS, from a residential test facility (Arata et al., 2021) where concentrations were high enough such that it was the
727 largest source of gas-phase hazardous exposure (Hodshire et al., 2022). In the restroom the $C_3H_5O^+$ ion signal (i.e., the H^+
728 adduct ion commonly attributed to acrolein) experienced considerable interferences from fragmentation of VOCs containing
729 nine (C_9) to twelve (C_{12}) carbon atoms. There were some additional interferences from unidentified sources—one of which
730 may be the propanal hydride transfer product (could not confirm here due to coelution of acetone). In the restroom where
731 terpenoid (monoterpenes, monoterpene alcohols, and monoterpene acetate esters) concentrations were roughly 20 nmol mol⁻¹
732 the fragmentation of two ions likely attributable to terpenoids, $C_{10}H_{21}O^+$ and $C_{10}H_{21}O_2^+$, make important contributions (56 %)
733 to the $C_3H_5O^+$ ion signal. We note that the terpenoids emitted from the urinal screens created high concentrations that may
734 uniquely impact the $C_3H_5O^+$ signal compared to other indoor environments. However, this observation points to the possible
735 unexpected impact of consumer product emissions on indoor air measurements of acrolein.
736


737 We highlight here the possible interferences on the $C_{10}H_{17}^+$ ion, normally attributed to monoterpene isomers, from
738 fragmentation reactions of monoterpene alcohols (eucalyptol and linalool) and monoterpene acetate esters (likely isoborynl or
739 linalyl acetate). Previous studies have pointed to $C_{10}H_{17}^+$ interferences from dehydration of monoterpene alcohols of biogenic
740 origin (Joó et al., 2010; Kari et al., 2018; Demarcke et al., 2010). In the restroom we found 25 % of the $C_{10}H_{17}^+$ signal was
741 attributable to dehydration of linalool and eucalyptol which were emitted from urinal screens. This highlights how in indoor
742 spaces personal care products and scented consumer goods can emit terpenoids (not typically measured in high concentrations
743 from biogenic sources) in high concentrations that can complicate the measurement of monoterpene using PTR-MS without
744 pre-separation. Additionally, we show a $C_{10}H_{17}^+$ interference from loss of acetic acid from monoterpene acetate esters which
745 is possibly a problem unique to the measurement of indoor air.

747 Isoprene has a history of being difficult to quantify from PTR-MS measurements (e.g., urban air influenced by cooking
748 emissions (Coggon et al., 2024), seawater (Kilgour et al., 2024), and biogenic emissions (Vermeuel et al., 2023)) mostly from
749 fragmentation of aldehydes, but also from the dehydration of 2-methyl-3-buten-2-ol (MBO) measured from coniferous forests.
750 Similar to $C_3H_5O^+$ we show that fragments of the terpenoid ions, $C_{10}H_{16}O^+$ and $C_{10}H_{16}O_2^+$, also make important contributions
751 (80 %) to the $C_3H_5^+$ ion signal (Fig. 11). Given the ubiquity of the ions highlighted here indoors, terpenoid presence is another
752 factor that can impact PTR-MS isoprene quantification indoors.

753 3.5 Using PIDs to Improve Identification and Quantification of VOCs from PTR-MS Measurements

754 3.5.1 Method 1: Estimating Product Ion Abundance from Real-Time Data

755 In Section 3.4 we demonstrated the interference of acetone water cluster on the ion signal, $C_3H_9O_2^+$, that might be typically
756 attributed to propylene glycol (Fig. 11) using a chromatographic pre-separation. If a PID has been measured from a calibration
757 source, it can be used to estimate the abundance of product ions to an ion signal relative to another ion from real-time data.
758 For example, we can determine the influence of acetone water cluster on the $C_3H_9O_2^+$ ion signal measured by the PTR-MS,
759 without chromatographic pre-separation (“real-time data”), by calculating the expected contribution predicted by the acetone
760 PID. We show an example of how we estimated the influence of acetone water cluster on the real-time $C_3H_9O_2^+$ ion signal in
761 Figure 12.

762
 763 **Figure 12:** (a) Time series for $\text{C}_3\text{H}_7\text{O}^+$ attributable to acetone. (b) Time series for $\text{C}_3\text{H}_9\text{O}_2^+$ with the raw signal (black
 764 dotted line) and $\text{C}_3\text{H}_9\text{O}_2^+$ calculated to be attributable to acetone water cluster (10 % contribution to acetone PID). (c)
 765 Percent residual $\text{C}_3\text{H}_9\text{O}_2^+$ ion signal after subtracting out the estimated contribution from acetone water cluster.

766
 767 We measured the PID for acetone (as shown in Fig. 10 and listed in the H_3O^+ PID library) as 0.90 H^+ adduct ($\text{C}_3\text{H}_7\text{O}^+$) and
 768 0.10 water cluster ($\text{C}_3\text{H}_9\text{O}_2^+$). Assuming contributions of isomers or product ions to the $\text{C}_3\text{H}_7\text{O}^+$ signal are negligible, we can
 769 divide the product ion fraction for $\text{C}_3\text{H}_9\text{O}_2^+$ ($f_{[\text{MH}\cdot\text{H}_2\text{O}]^+}$) by the product ion fraction for $\text{C}_3\text{H}_7\text{O}^+$ (f_{MH^+}) to get the fraction of
 770 acetone water cluster relative to acetone H^+ adduct ($\frac{f_{[\text{MH}\cdot\text{H}_2\text{O}]^+}}{f_{\text{MH}^+}}$). We can then multiply this fraction by the $\text{C}_3\text{H}_7\text{O}^+$ signal (S_{MH^+})
 771 to get the contribution of acetone water cluster to the $\text{C}_3\text{H}_9\text{O}_2^+$ signal ($S_{[\text{MH}\cdot\text{H}_2\text{O}]^+}$) following Equation 2,

$$772 S_{[\text{MH}\cdot\text{H}_2\text{O}]^+} = S_{\text{MH}^+} \cdot \frac{f_{[\text{MH}\cdot\text{H}_2\text{O}]^+}}{f_{\text{MH}^+}} \quad (2)$$

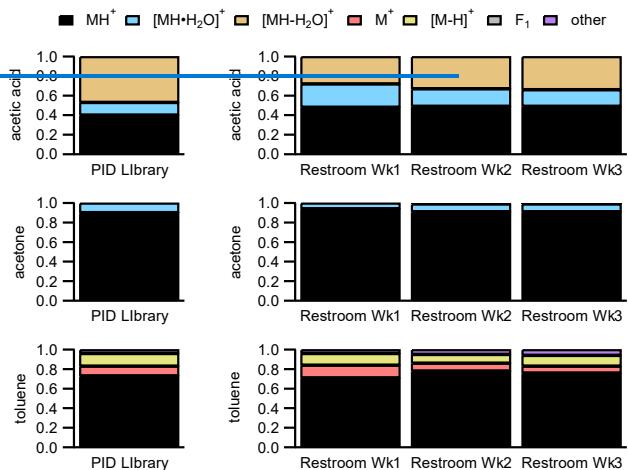
773 Multiplying the $\text{C}_3\text{H}_7\text{O}^+$ signal (shown in Fig. 12a) by $\frac{f_{[\text{MH}\cdot\text{H}_2\text{O}]^+}}{f_{\text{MH}^+}}$ (i.e., $0.10/0.90 \approx 0.11$) generates an estimated $\text{C}_3\text{H}_9\text{O}_2^+$ ion
 774 signal time series (Fig. 12b, blue trace) that is from the acetone water cluster. In Fig. 12c we calculate the percent residual

775 $\text{C}_3\text{H}_9\text{O}_2^+$ signal, after subtracting out the estimated contribution of acetone water cluster. The average residual of -0.5 %
776 indicates that nearly all of the $\text{C}_3\text{H}_9\text{O}_2^+$ ion signal measured from the restroom is from acetone water cluster which is consistent
777 with what we measured from the chromatographic separation in Fig. 11a. Although not shown in this example of $\text{C}_3\text{H}_9\text{O}_2^+$, if
778 after applying this method residual signal remained, and was consistently above zero, that could indicate ion signal related to
779 H^+ adducts of VOCs or influences of other product ions. We verified that the $\text{C}_3\text{H}_7\text{O}^+$ signal we measured from the restroom
780 (using GC) was > 95 % (with some possible contribution from propanal and contributions of fragment ions) attributable to
781 acetone thus suggesting that application of this method may work best when supplemented with a GC measurement.

782

783 We point to the study of Coggon et al. (2024) for further demonstrations of how to separate the influence of product ions on
784 H^+ adduct ions for benzene (C_6H_7^+), isoprene (C_5H_9^+), and ethanal (acetaldehyde, $\text{C}_2\text{H}_5\text{O}^+$) measured from outdoor air
785 influenced by oil and gas and cooking emissions. When directly measuring PIDs using a calibration source is not possible, the
786 H_3O^+ PID library included with this manuscript can serve as a useful source for estimating possible product ion interferences.
787 The existing PTR library compiled by Pagonis et al. (2019) contains measurements of fragment product ions that can also
788 provide product ion data relevant for instruments other than the Vocus. This product ion estimation method may produce
789 reasonable results for some VOCs like acetone, but many ions will often have multiple isomers or isobaric product ion
790 interferences that challenge accurate application of the method.

791 **3.5.2 Method 2: Using Product Ions for Quantification**


792 PTR-MS quantification is often performed using calibrations of an H^+ adduct signal for a target VOC (e.g., $\text{C}_3\text{H}_7\text{O}^+$ for
793 acetone), but the PTR-MS can also be calibrated to product ions. Coggon et al. (2024) showed that benzene concentrations
794 calculated from the charge transfer product ion (C_6H_6^+) calibration agreed with concentrations quantified from GC
795 measurements. The authors concluded that the benzene charge transfer product ion (C_6H_6^+), which had no interferences, was
796 a more suitable signal to quantify benzene from than the H^+ adduct (C_6H_7^+), which suffered interferences from fragmented
797 aromatics. However, pre-separation was used in that study to verify the charge transfer product was free of interferences. In
798 principle, any product ion that is free of interferences could be used as an alternative to the H^+ adduct for quantification.

799 **3.5.3 Method 3: Supplemental Measurement with a GC**

800 It is worth acknowledging the value of a supplemental measurement using GC. When directly interfaced to the PTR-MS, GC
801 can be used to measure PIDs and aid in identifying ion signals from the real-time PTR-MS measurement. Benchtop GCs
802 optimized for thermal desorption measurements can also be used in offline analysis to identify possible sources of ion
803 interferences. Although not discussed here, isomers are confounding influences on the interpretation of ion identities and GC
804 is also useful for quantification of VOC isomers. Nevertheless, not all VOCs present in an air sample are likely to be
805 independently separated (e.g., sesquiterpenes for mid-polarity columns) or trapped and desorbed via a preconcentration system.

806 **3.6 The H_3O^+ PTR PID Library and Recommendations for [Reporting](#) Product Ion Uncertainty**

807 We have compiled the data presented in this manuscript into a library included in the supplement. The library will be updated
 808 as new observations are included and the updated library can be found online (Nist, 2024). The measurements included in the
 809 library were collected under different instrument conditions (listed under the “2_Lab_ID” tab of the library spreadsheet) so
 810 care should be taken to most closely compare PIDs reported in this library to PIDs collected on an instrument with a similar
 811 configuration (i.e., similar E/N, BSQ voltage, ion optic voltages, flowrates). There is [some-an](#) inherent precision with which
 812 PIDs can be measured following the GC-based method we have demonstrated. To constrain the uncertainty associated with
 813 the PIDs [we present](#) in the H_3O^+ PTR PID Library, we evaluate the variability in PIDs determined from a single measurement
 814 of a VOC (Fig. S6) and the variability observed in PIDs measured from select VOCs over three weekends from restroom air
 815 samples compared to the PID library measurement performed six months earlier (Fig. [S713](#)).

816
 817 **Figure 13: PIDs for three VOCs measured by Lab 1 from calibration sources and included in the H_3O^+ -PTR-PID
 818 Library (right barplots). PIDs for those same VOCs measured over three weekends from restroom air samples are
 819 shown in the barplots on the right. The label “Restroom Wk1” indicates the sample that was acquired from the
 820 restroom on the first weekend in the measurement set (Wk2 is the second weekend and Wk3 is the third weekend).**

821 We observe that for a single measurement, the contribution of a given product ion to the PID for nonanal varies by no more
 822 than 0.01 fractional units (Table S2). For repeat measurements over time (three weeks for the restroom examples shown here),
 823 we observe that the absolute variability in product ion contributions to a PID is largest for product ions with the largest relative
 824 contributions to the PID (Table S3). For example, from the restroom samples, the fractional contribution of C_7H_9^+ to the toluene

826 PID ranged from 0.71 to 0.78 (a 0.07 fractional unit range) over the three weekends whereas the contribution of $C_6H_7O^+$ ranged
827 from 0.04 to 0.06 (a 0.02 fractional unit range). For both single measurements and the repeat PID measurement example shown
828 in Fig. S743, the relative standard deviation of calculated fractional product ion contributions increases as the absolute
829 contribution decreases.

830
831 Thus, we define uncertainty to ranges of product ion fractional contributions to a PID, for a single measurement and repeat
832 measurements performed on the timescale of weeks, as shown in Table 3.

833 **Table 3: Observed and Recommended Uncertainties for Ranges of Product Ion Contributions to a PID for VOCs in**
834 **the PTR H_3O^+ Library.**

Product Ion Fractional Contribution to PID Range	Single Measurement Uncertainty	Repeat Measurement Uncertainty	Recommended Reporting Uncertainty
> 0.30	5 %	6 %	15 %
0.16 to 0.30	5 %	10 %	20 %
0.04 to 0.15	11 %	30 %	30 %
< 0.04	50 %	100 %	100 %

← Formatted Table

835 The "single measurement uncertainty" reflects the precision with which the fractional contribution of a given product ion to a
836 PID can be determined from a single measurement. We derived the ranges shown in Table 3 from the calculation of the nonanal
837 PID from a GC measurement and we assume this uncertainty is not chemical dependent and thus applies to other chemicals.
838 The "single measurement uncertainty" values are a conservative estimate of the uncertainty associated with the calculation
839 of a product ion contribution to a PID when measured using the GC method.

840 The "repeat measurement uncertainty" reflects the precision of a product ions fractional contribution to a PID when repeatedly
841 measured over the timescale of weeks (supported by the measurements from the restroom shown in Fig. S743). We used the
842 variability in product ion contributions calculated for the acetic acid, acetone, and toluene PIDs shown in Fig. S743 and in

843 Table S3 to constrain the “repeat measurement uncertainty”. We find that the relative standard deviation from repeat
844 measurements of product ion contributions over three weeks is greater than that of a single measurement (Table 3).

845 We derive a recommended reporting uncertainty by comparing the average and standard deviations of the product ion
846 contributions to the PIDs for acetic acid, acetone, and toluene—measured in the restroom samples—to their corresponding
847 entries in the H_3O^+ PTR-MS PID Library. The PID measurements presented in the library (for Lab 1b) were acquired
848 approximately six months prior to the restroom measurements. Thus, the recommended reporting uncertainty provided in Table
849 3 incorporates our constraints on “repeated measurement uncertainty” as well as an estimate of the stochastic variability in
850 PID development that can occur over months as is demonstrated earlier in Fig. 9. By applying the recommended reporting
851 uncertainties to the average product ion contributions measured for the PIDs of the three VOCs in the restroom samples, we
852 find that the average restroom values come into range of the values in the PID library (Table S3).

853 **3.7 Recommendations for Mitigating Challenges from Unintended Product Ion Generation**

854 As demonstrated in the interlaboratory comparison data, PTR-MS users are likely to experience unintended product ion
855 generation under a variety of instrument operating conditions. We recommend several practices that PTR-MS users can adopt
856 to improve the interpretability of PTR-MS data:

- 857 **▪ Measure PIDs regularly:** Surrogate analytes can be used (and included in calibration source cylinders) to provide
858 some indication of how likely it is a mass spectrum may be influenced by certain types of product ions. For example,
859 benzene can be used as a surrogate for charge transfer reaction chemistry, acrolein (data shown in the H_3O^+ PTR PID
860 Library) for water clustering, and α -pinene for fragmentation. Because PIDs can change over time, regularly (at least
861 once a month during periods of active measurements) measuring the PIDs of a few key surrogates can provide relative
862 information on how the PIDs of other VOCs may also be changing. The ion chemistry presented in Table 1 can act
863 as a guide for users to evaluate if ions appearing in a mass spectrum could be generated from unintended product
864 ions. Additionally, the step-by-step procedure outlined in the Supplement can serve as a method for measuring PIDs.
- 865 **▪ Optimize analyte detection with instrument tuning:** Here we demonstrated IMR E/N and BSQ voltage affected PIDs.
866 A user can measure the PID of target analytes and scan E/N and BSQ voltage values to optimize the production of a
867 desired product ion (e.g., the H^+ adduct). Because cluster and fragmentation product ions are generated and detected
868 more efficiently at different extremes of E/N and BSQ voltage values instrument tuning will not eliminate unintended
869 product ion generation.
- 870 **▪ Refer to the H_3O^+ PTR PID Library:** For the VOCs available in the library (Nist, 2024) a user can identify problematic
871 m/q and elemental formula associated with unintended product ions from VOCs known to be in a sample (including
872 multi-component calibration sources).
- 873 **▪ Measure the instrument sample flowrate regularly:** We provide evidence suggesting an influence of flowrate on PIDs,
874 but we also note that the sample flowrate will also affect instrument sensitivity (Jensen et al., 2023). When sampling

875 from pristine environments measuring the sample flow once a week may be sufficient. For measurements of urban or
876 indoor air measuring the flow once a day is recommended. Higher frequency flow checks may be necessary for
877 measurements where particulate matter loading is high (e.g., fire research laboratory burn samples, cooking
878 emissions, etc.).

879 ▪ If possible, use a supplemental measurement, GC or otherwise, to support identification of ions measured with PTR-
880 MS from multi-component air samples.

881 ▪ Define the acceptable level of accuracy for your measurement: PTR-MS provides high time resolution measurements
882 of VOCs in air that cannot be achieved with many techniques. For non-targeted analyses, identifying and accounting
883 for all influences of unintended product ions is currently impractical. Studies that seek to quantify all VOCs measured,
884 both known and unknown, by the PTR-MS may suffer from greater uncertainties arising from unintended product ion
885 generation. While more uncertain, these non-targeted analyses are important for progressing research. On the other
886 hand, users seeking to quantify specific VOCs (e.g., air toxics or hazardous air pollutants) for the purposes of
887 compliance-measurements supporting regulations will need to account for product ion chemistry for high accuracy
888 measurements.

889 **4 Summary and Conclusions**

890 Here we outlined general rules for identifying possible product ion interferences based on common reaction mechanisms that
891 can occur when using PTR-MS. Additionally, the method of product ion classification (using ion formula predicted from
892 mechanisms) used here can be employed in future studies to continue to develop product ion libraries using a consistent
893 methodology so that PIDs can be compared directly from different studies. Consistent with the decades of previous research,
894 which includes measurements on PTR-MS instruments that use a drift tube for ionization, we observe E/N as a predictor of
895 the extent clustering or fragmentation product ions contribute to the PID of a VOC. Of particular importance for the instruments
896 in this study, is also the influence of ΔV_2 in creating “E/N-like effects” on PIDs and the BSQ RF voltage affecting PIDs through
897 mass-discrimination.

898 We demonstrate here that instrument tuning can affect PIDs, but tuning can also affect instrument sensitivity. We do not
899 discuss the relationship between instrument tuning, product ion formation, and instrument sensitivity here, but instead point
900 the reader to Li et al. (2024) for a detailed evaluation of this relationship relevant for Vocus PTR-ToF-MS instruments.
901 However, we note that specific instrument tuning properties explored here have implications for instrument sensitivity. For
902 instance, Li et al. (2024) showed that the H^+ adduct contribution to the PID and sensitivity for 1,3,5-trimethylbenzene did not
903 change appreciably with increasing E/N whereas the H^+ adduct contribution to the PID and sensitivity for hexanal (PID shown
904 here in Fig. 108) decreased with increasing E/N. This comparison demonstrates that VOCs susceptible to fragment ion
905 formation may show decreasing sensitivity to the H^+ adduct with increasing E/N. In addition to E/N we show that as the voltage
906

907 [difference between the BSQ front and Skimmer \(\$\Delta V_2\$ \) increases this can increase fragmentation, and decrease water clustering,](#)
908 [product ion contributions to the PIDs \(Fig. 5\).](#)

909
910 In another example, we demonstrated that higher BSQ voltages can filter out lower m/q ions and affect measured PIDs, but
911 another implication of higher BSQ voltages is that the sensitivity of the H^+ adduct for lower molecular weight species (e.g.,
912 formaldehyde, acetonitrile, formic acid, etc.) will also decrease. Interlaboratory comparisons focusing on constraining the
913 relationship between PIDs and instrument sensitivity would be informative for the development of standard tuning
914 configurations optimized for the measurement of specific VOCs or types of VOCs (e.g., aldehydes, aromatics, etc.).

915
916 Despite having similar operating conditions (i.e. similar E/N and BSQ voltage settings), PIDs measured across laboratories
917 showed considerable variability. Further, PIDs measured from the same instrument over time were not consistent. Our
918 observations support the conclusion that if a user configures the same model PTR-MS identically to an instrument in the
919 literature, they should not expect identical PIDs. Additionally, a user may expect different PIDs from the same instrument after
920 several months.

921
922 However, we also show that some of the variability in PIDs between instruments was explainable from qualitative arguments.
923 For example, Lab 6 operated with the highest E/N and showed the largest contributions of fragmentation and charge/hydride
924 transfer products to PIDs and small contributions from water clusters compared to the other labs. Qualitative arguments based
925 on E/N or BSQ voltage could not completely explain the variation in water clustering between labs. The quantitative constraints
926 on PIDs presented here could be improved with continued input of data from users to the H_3O^+ PID library (included here as
927 a supplemental document). Future work from our group at NIST will focus on integrating measurements of PIDs contained in
928 the existing PTR library from Pagonis et al. (2019) with the H_3O^+ PID library included here. We encourage users to continue
929 to contribute data for inclusion in the H_3O^+ PID library in continued efforts to understand PIDs and standardize methods of
930 PTR-MS measurements.

931 **5 Outlook**

932 All reagent ions used for chemical ionization mass spectrometry create unintended product ions that can present challenges
933 when identifying and quantifying VOCs. Continued work characterizing and constraining the impact of instrument operating
934 parameters and sampling methods on product ion generation is warranted to leverage the sensitivity, selectivity, and versatile
935 sampling capabilities that field-deployable chemical ionization mass spectrometers provide. PTR-MS users should be aware
936 that product ion generation (of not only fragments but also charge/hydride transfer and water clusters) occurs for most VOCs
937 to varying degrees. Additionally, the ambiguity created from product ion contributions to mass spectra measured from
938 chemically complex samples may create challenges to accurate identification and quantification of VOCs—particularly for

939 non-targeted analyses. Further characterization of PIDs across many PTR-MS instruments may be useful in constraining
940 interferences and decreasing the uncertainty from their influence on mass spectra.

941

942 There is a current interest to develop standardized methods of measurement using chemical ionization mass spectrometers.
943 Currently, no standard methods for sampling with PTR-MS or other chemical ionization instruments exists. Notable research
944 efforts towards standardization methods of PTR-MS measurements include the development of ion libraries (Pagonis et al.,
945 2019; Yáñez-Serrano et al., 2021), calibrations and standard reference materials (Worton et al., 2023; Jensen et al., 2023;
946 Sekimoto et al., 2017), data analysis methods (Holzinger, 2015; Cubison and Jimenez, 2015), and interlaboratory comparison
947 studies (Holzinger et al., 2019). Continued efforts, particularly in the form of coordinated interlaboratory comparison studies,
948 would be useful for the development of standard operational procedures and practices.

949 **Supplement**

950 Additional analyses of instrument configuration on PIDs are presented in the supplement. A spreadsheet containing the PID
951 data from the interlaboratory comparison (the “H₃O⁺ PID Library”) is included as a supplemental document and the most up-
952 to-date versions can be retrieved online (doi:10.18434/mds2-3582). Users wishing to submit data to this library can email the
953 corresponding author (michael.f.link@nist.gov) and a link to submit a data file will be provided [in a follow-up email](#). More
954 details can be found in the “ReadMe” tab of the supplemental H₃O⁺ PID Library.

955 **Competing Interests**

956 The contact author has declared that none of the authors has any competing interests.

957 **Acknowledgements**

958 We would like to acknowledge the National Research Council Research Associateship Program and Alfred P. Sloan
959 Foundation (G-2019-11404) for funding. This material is partially supported by the U.S. Department of Energy (DOE), Office
960 of Science, Office of Biological and Environmental Research, Atmospheric System Research (ASR) under Award No. DE-
961 SC0021985.

962 **Disclaimer**

963 Certain equipment, instruments, software, or materials, commercial or non-commercial, are identified in this paper in to specify
964 the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement of any

965 product or service by NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best
966 available for the purpose.

967 **References**

968 Antony Joseph, M. J., McIntosh, D. G., Gibson, J. R., and Taylor, S.: Effects of the source gap on transmission efficiency of
969 a quadrupole mass spectrometer, *Rapid Communications in Mass Spectrometry*, 32, 677-685, 2018.
970 Arata, C., Misztal, P. K., Tian, Y., Lunderberg, D. M., Kristensen, K., Novoselac, A., Vance, M. E., Farmer, D. K., Nazaroff,
971 W. W., and Goldstein, A. H.: Volatile organic compound emissions during HOMEChem, *Indoor Air*, 31, 2099-2117, 2021.
972 Bielik, N., Correia, D., Rodrigues Crespo, K., Goujon-Ginglinger, C., and Mitova, M. I.: Pitfalls in the Detection of Volatiles
973 Associated with Heated Tobacco and e-Vapor Products When Using PTR-TOF-MS, *Journal of the American Society for Mass
974 Spectrometry*, 35, 1261-1271, 10.1021/jasms.4c00062, 2024.
975 Breitenlechner, M., Fischer, L., Hainer, M., Heinritzi, M., Curtius, J., and Hansel, A.: PTR3: An Instrument for Studying the
976 Lifecycle of Reactive Organic Carbon in the Atmosphere, *Analytical Chemistry*, 89, 5824-5831,
977 10.1021/acs.analchem.6b05110, 2017.
978 Brophy, P. and Farmer, D. K.: Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-
979 resolution time-of-flight mass spectrometry, *Atmospheric Measurement Techniques*, 9, 3969-3986, 2016.
980 Buhr, K., van Ruth, S., and Delahunty, C.: Analysis of volatile flavour compounds by Proton Transfer Reaction-Mass
981 Spectrometry: fragmentation patterns and discrimination between isobaric and isomeric compounds, *International Journal of
982 Mass Spectrometry*, 221, 1-7, 2002.
983 Claflin, M. S., Pagonis, D., Finewax, Z., Handschy, A. V., Day, D. A., Brown, W. L., Jayne, J. T., Worsnop, D. R., Jimenez,
984 J. L., and Ziemann, P. J.: An in situ gas chromatograph with automatic detector switching between PTR-and EI-TOF-MS:
985 isomer-resolved measurements of indoor air, *Atmospheric Measurement Techniques*, 14, 133-152, 2021.
986 Coggon, M. M., Stockwell, C. E., Claflin, M. S., Pfannerstill, E. Y., Xu, L., Gilman, J. B., Marcantonio, J., Cao, C., Bates, K.,
987 and Gkatzelis, G. I.: Identifying and correcting interferences to PTR-ToF-MS measurements of isoprene and other urban
988 volatile organic compounds, *Atmospheric Measurement Techniques*, 17, 801-825, 2024.
989 Cubison, M. J. and Jimenez, J. L.: Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks
990 in high-resolution mass spectra, *Atmospheric Measurement Techniques*, 8, 2333-2345, 10.5194/amt-8-2333-2015, 2015.
991 De Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earth's atmosphere using proton-transfer-
992 reaction mass spectrometry, *Mass spectrometry reviews*, 26, 223-257, 2007.
993 De Gouw, J., Warneke, C., Karl, T., Eerdekens, G., Van der Veen, C., and Fall, R.: Sensitivity and specificity of atmospheric
994 trace gas detection by proton-transfer-reaction mass spectrometry, *International Journal of Mass Spectrometry*, 223, 365-382,
995 2003.
996 Demarcke, M., Amelynck, C., Schoon, N., Dhooghe, F., Rimetz-Planchon, J., Van Langenhove, H., and Dewulf, J.: Laboratory
997 studies in support of the detection of biogenic unsaturated alcohols by proton transfer reaction-mass spectrometry, *International
998 Journal of Mass Spectrometry*, 290, 14-21, 10.1016/j.ijms.2009.11.005, 2010.
999 Ditto, J. C., Crilley, L. R., Lao, M., Vandenboer, T. C., Abbott, J. P. D., and Chan, A. W. H.: Indoor and outdoor air quality
1000 impacts of cooking and cleaning emissions from a commercial kitchen, *Environmental Science: Processes & Impacts*, 25,
1001 964-979, 10.1039/d2em00484d, 2023.
1002 Ditto, J. C., Huynh, H. N., Yu, J., Link, M., Poppendieck, D., Claflin, M., Vance, M. E., Farmer, D., Chan, A., and Abbott, J.:
1003 Speciating volatile organic compounds in indoor air: using in-situ GC to interpret real-time PTR-MS signals, *Environmental
1004 Science: Processes & Impacts*, 10.1039/d4em00602j, 2025.
1005 Ernle, L., Wang, N., Bekö, G., Morrison, G., Wargo, P., Weschler, C. J., and Williams, J.: Assessment of aldehyde
1006 contributions to PTR-MS m/z 69.07 in indoor air measurements, *Environmental Science: Atmospheres*, 3, 1286-1295, 2023.
1007 Gkatzelis, G. I., Coggon, M. M., Stockwell, C. E., Hornbrook, R. S., Allen, H., Apel, E. C., Bela, M. M., Blake, D. R.,
1008 Bourgeois, I., and Brown, S. S.: Parameterizations of US wildfire and prescribed fire emission ratios and emission factors
1009 based on FIREX-AQ aircraft measurements, *Atmospheric Chemistry and Physics*, 24, 929-956, 2024.

1010 Hegen, O., Salazar Gómez, J. I., Schlägl, R., and Ruland, H.: The potential of NO⁺ and O₂[•] in switchable reagent ion proton
1011 transfer reaction time-of-flight mass spectrometry, *Mass Spectrometry Reviews*, 42, 1688-1726, 10.1002/mas.21770, 2023.

1012 Heinritzi, M., Simon, M., Steiner, G., Wagner, A. C., Kürten, A., Hansel, A., and Curtius, J.: Characterization of the mass-
1013 dependent transmission efficiency of a CIMS, *Atmospheric measurement techniques*, 9, 1449-1460, 2016.

1014 Hodshire, A. L., Carter, E., Mattila, J. M., Ilacqua, V., Zambrana, J., Abbatt, J. P., Abeleira, A., Arata, C., DeCarlo, P. F., and
1015 Goldstein, A. H.: Detailed Investigation of the Contribution of Gas-Phase Air Contaminants to Exposure Risk during Indoor
1016 Activities, *Environmental science & technology*, 56, 12148-12157, 2022.

1017 Holzinger, R.: PTRwid: A new widget tool for processing PTR-TOF-MS data, *Atmospheric Measurement Techniques*, 8,
1018 3903-3922, 10.5194/amt-8-3903-2015, 2015.

1019 Holzinger, R., Acton, W. J. F., Bloss, W. J., Breitenlechner, M., Crilley, L. R., Dusander, S., Gonin, M., Gros, V., Keutsch, F.
1020 N., and Kiendler-Scharr, A.: Validity and limitations of simple reaction kinetics to calculate concentrations of organic
1021 compounds from ion counts in PTR-MS, *Atmospheric measurement techniques*, 12, 6193-6208, 2019.

1022 Hopstock, K. S., Perraud, V., Dalton, A. B., Barletta, B., Meinardi, S., Weltman, R. M., Mirkhanian, M. A., Rakosi, K. J.,
1023 Blake, D. R., Edwards, R. D., and Nizkorodov, S. A.: Chemical Analysis of Exhaled Vape Emissions: Unraveling the
1024 Complexities of Humectant Fragmentation in a Human Trial Study, *Chemical Research in Toxicology*, 37, 1000-1010,
1025 10.1021/acs.chemrestox.4c00088, 2024.

1026 Jensen, A. R., Koss, A. R., Hales, R. B., and De Gouw, J. A.: Measurements of volatile organic compounds in ambient air by
1027 gas-chromatography and real-time Vocus PTR-TOF-MS: calibrations, instrument background corrections, and introducing a
1028 PTR Data Toolkit, *Atmospheric Measurement Techniques*, 16, 5261-5285, 10.5194/amt-16-5261-2023, 2023.

1029 Joó, É., Dewulf, J., Demarcke, M., Amelynck, C., Schoon, N., Müller, J. F., Šimpraga, M., Steppe, K., and Van Langenhove,
1030 H.: Quantification of interferences in PTR-MS measurements of monoterpene emissions from *Fagus sylvatica* L. using
1031 simultaneous TD-GC-MS measurements, *International Journal of Mass Spectrometry*, 291, 90-95,
1032 10.1016/j.ijms.2010.01.018, 2010.

1033 Kari, E., Miettinen, P., Yli-Pirilä, P., Virtanen, A., and Faiola, C. L.: PTR-ToF-MS product ion distributions and humidity-
1034 dependence of biogenic volatile organic compounds, *International Journal of Mass Spectrometry*, 430, 87-97,
1035 10.1016/j.ijms.2018.05.003, 2018.

1036 Kilgour, D. B., Novak, G. A., Claflin, M. S., Lerner, B. M., and Bertram, T. H.: Production of oxygenated volatile organic
1037 compounds from the ozonolysis of coastal seawater, *Atmospheric Chemistry and Physics*, 24, 3729-3742, 10.5194/acp-24-
1038 3729-2024, 2024.

1039 Klein, F., Platt, S. M., Farren, N. J., Detournay, A., Bruns, E. A., Bozzetti, C., Daellenbach, K. R., Kilic, D., Kumar, N. K.,
1040 and Pieber, S. M.: Characterization of gas-phase organics using proton transfer reaction time-of-flight mass spectrometry:
1041 cooking emissions, *Environmental science & technology*, 50, 1243-1250, 2016.

1042 Koss, A. R., Warneke, C., Yuan, B., Coggon, M. M., Veres, P. R., and de Gouw, J. A.: Evaluation of NO⁺ reagent ion chemistry
1043 for online measurements of atmospheric volatile organic compounds, *Atmospheric Measurement Techniques*, 9, 2909-2925,
1044 2016.

1045 Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M., Stoermer, C., Deming, B., Kimmel, J., Warneke, C., Holzinger, R.,
1046 Jayne, J., Worsnop, D., Fuhrer, K., Gonin, M., and De Gouw, J.: Evaluation of a New Reagent-Ion Source and Focusing Ion-
1047 Molecule Reactor for Use in Proton-Transfer-Reaction Mass Spectrometry, *Analytical Chemistry*, 90, 12011-12018,
1048 10.1021/acs.analchem.8b02641, 2018.

1049 Li, F., Huang, D. D., Tian, L., Yuan, B., Tan, W., Zhu, L., Ye, P., Worsnop, D., Hoi, K. I., and Mok, K. M.: Response of
1050 protonated, adduct, and fragmented ions in Vocus proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS),
1051 *Atmospheric Measurement Techniques*, 17, 2415-2427, 2024.

1052 Li, H., Almeida, T. G., Luo, Y., Zhao, J., Palm, B. B., Daub, C. D., Huang, W., Mohr, C., Krechmer, J. E., and Kurtén, T.:
1053 Fragmentation inside proton-transfer-reaction-based mass spectrometers limits the detection of ROOR and ROOH peroxides,
1054 *Atmospheric Measurement Techniques*, 15, 1811-1827, 2022.

1055 Link, M. F., Robertson, R. L., Shore, A., Hamadani, B. H., Cecelski, C. E., and Poppendieck, D. G.: Ozone generation and
1056 chemistry from 222 nm germicidal ultraviolet light in a fragrant restroom, *Environmental Science: Processes & Impacts*, 26,
1057 1090-1106, 2024.

1058 Liu, J., Jiang, J., Ding, X., Patra, S. S., Cross, J. N., Huang, C., Kumar, V., Price, P., Reidy, E. K., Tasoglou, A., Huber, H.,
1059 Stevens, P. S., Boor, B. E., and Jung, N.: Real-time evaluation of terpene emissions and exposures during the use of scented

1060 wax products in residential buildings with PTR-TOF-MS, *Building and Environment*, 255, 111314,
1061 10.1016/j.buildenv.2024.111314, 2024.

1062 Logue, J. M., McKone, T. E., Sherman, M. H., and Singer, B. C.: Hazard assessment of chemical air contaminants measured
1063 in residences, *Indoor Air*, 21, 92-109, 10.1111/j.1600-0668.2010.00683.x, 2011.

1064 Lopez-Hilfiker, F. D., Iyer, S., Mohr, C., Lee, B. H., D'Ambro, E. L., Kurtén, T., and Thornton, J. A.: Constraining the
1065 sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision
1066 limit and thermodynamic stability of iodide ion adducts, *Atmospheric Measurement Techniques*, 9, 1505-1512, 2016.

1067 Materić, D., Lanza, M., Sulzer, P., Herbig, J., Bruhn, D., Gauci, V., Mason, N., and Turner, C.: Selective reagent ion-time-of
1068 flight-mass spectrometry study of six common monoterpenes, *International Journal of Mass Spectrometry*, 421, 40-50,
1069 10.1016/j.ijms.2017.06.003, 2017.

1070 Mattila, J. M., Arata, C., Abeleira, A., Zhou, Y., Wang, C., Katz, E. F., Goldstein, A. H., Abbatt, J. P., DeCarlo, P. F., and
1071 Vance, M. E.: Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air,
1072 *Environmental Science & Technology*, 56, 109-118, 2021.

1073 McCrumb, J. L. and Warneck, P.: On the mechanism of water cluster-ion formation in nitrogen, *The Journal of Chemical
1074 Physics*, 67, 5006-5011, 10.1063/1.434722, 1977.

1075 Misztal, P., Heal, M., Nemitz, E., and Cape, J.: Development of PTR-MS selectivity for structural isomers: Monoterpenes as
1076 a case study, *International Journal of Mass Spectrometry*, 310, 10-19, 2012.

1077 Molinier, B., Arata, C., Katz, E. F., Lunderberg, D. M., Ofodile, J., Singer, B. C., Nazaroff, W. W., and Goldstein, A. H.:
1078 Bedroom Concentrations and Emissions of Volatile Organic Compounds during Sleep, *Environmental Science & Technology*, 58, 7958-7967, 10.1021/acs.est.3c10841, 2024.

1079 Müller, M., Mikoviny, T., and Wisthaler, A.: Detector aging induced mass discrimination and non-linearity effects in PTR-
1080 ToF-MS, *International Journal of Mass Spectrometry*, 365-366, 93-97, 10.1016/j.ijms.2013.12.008, 2014.

1081 Nazaroff, W. W. and Weschler, C. J.: Methanol and ethanol in indoor environments, *Indoor Environments*, 1, 100049,
1082 10.1016/j.indenv.2024.100049, 2024.

1083 NIST: H₃O+ PTR-MS PID Library (1) [dataset], doi:10.18434/mds2-3582, 2024.

1084 Pagonis, D., Sekimoto, K., and de Gouw, J.: A library of proton-transfer reactions of H₃O+ ions used for trace gas detection,
1085 *Journal of the American Society for Mass Spectrometry*, 30, 1330-1335, 2019.

1086 Reinecke, T., Leiminger, M., Jordan, A., Wisthaler, A., and Müller, M.: Ultrahigh Sensitivity PTR-MS Instrument with a Well-
1087 Defined Ion Chemistry, *Analytical Chemistry*, 95, 11879-11884, 10.1021/acs.analchem.3c02669, 2023.

1088 Seaman, V. Y., Bennett, D. H., and Cahill, T. M.: Origin, Occurrence, and Source Emission Rate of Acrolein in Residential
1089 Indoor Air, *Environmental Science & Technology*, 41, 6940-6946, 10.1021/es0707299, 2007.

1090 Sekimoto, K. and Koss, A. R.: Modern mass spectrometry in atmospheric sciences: Measurement of volatile organic
1091 compounds in the troposphere using proton-transfer-reaction mass spectrometry, *Journal of Mass Spectrometry*, 56, e4619,
1092 2021.

1093 Sekimoto, K., Li, S.-M., Yuan, B., Koss, A., Coggon, M., Warneke, C., and de Gouw, J.: Calculation of the sensitivity of
1094 proton-transfer-reaction mass spectrometry (PTR-MS) for organic trace gases using molecular properties, *International Journal
1095 of Mass Spectrometry*, 421, 71-94, 2017.

1096 Sheu, R., Stönnér, C., Ditto, J. C., Klüpfel, T., Williams, J., and Gentner, D. R.: Human transport of thirdhand tobacco smoke:
1097 A prominent source of hazardous air pollutants into indoor nonsmoking environments, *Science Advances*, 6, eaay4109,
1098 10.1126/sciadv.aay4109, 2020.

1099 Smith, D., McEwan, M. J., and Španěl, P.: Understanding Gas Phase Ion Chemistry Is the Key to Reliable Selected Ion Flow
1100 Tube-Mass Spectrometry Analyses, *Analytical Chemistry*, 92, 12750-12762, 10.1021/acs.analchem.0c03050, 2020.

1101 Španěl, P. and Smith, D.: SIFT studies of the reactions of H₃O+, NO+, and O₂+ with a series of alcohols, *International Journal
1102 of Mass Spectrometry and Ion Processes*, 167-168, 375-388, 10.1016/s0168-1176(97)00085-2, 1997.

1103 Španěl, P., Doren, J. M. V., and Smith, D.: A selected ion flow tube study of the reactions of H₃O+, NO+, and O₂+ with
1104 saturated and unsaturated aldehydes and subsequent hydration of the product ions, *International Journal of Mass Spectrometry*,
1105 213, 163-176, 10.1016/s1387-3806(01)00531-0, 2002.

1106 Tani, A.: Fragmentation and Reaction Rate Constants of Terpenoids Determined by Proton Transfer Reaction-mass
1107 Spectrometry, *Environment Control in Biology*, 51, 23-29, 10.2525/ecb.51.23, 2013.

1108

1109 Vermeuel, M. P., Novak, G. A., Kilgour, D. B., Claflin, M. S., Lerner, B. M., Trowbridge, A. M., Thom, J., Cleary, P. A.,
1110 Desai, A. R., and Bertram, T. H.: Observations of biogenic volatile organic compounds over a mixed temperate forest during
1111 the summer to autumn transition, *Atmospheric Chemistry and Physics*, 23, 4123-4148, 2023.
1112 Wang, N., Müller, T., Ernle, L., Bekö, G., Wargocki, P., and Williams, J.: How Does Personal Hygiene Influence Indoor Air
1113 Quality?, *Environmental Science & Technology*, 2024.
1114 Warneke, C., De Gouw, J. A., Kuster, W. C., Goldan, P. D., and Fall, R.: Validation of atmospheric VOC measurements by
1115 proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method, *Environmental science &*
1116 *technology*, 37, 2494-2501, 2003.
1117 Worton, D. R., Moreno, S., O'Daly, K., and Holzinger, R.: Development of an International System of Units (SI)-traceable
1118 transmission curve reference material to improve the quantitation and comparability of proton-transfer-reaction mass-
1119 spectrometry measurements, *Atmospheric Measurement Techniques*, 16, 1061-1072, 10.5194/amt-16-1061-2023, 2023.
1120 Xu, L., Coggon, M. M., Stockwell, C. E., Gilman, J. B., Robinson, M. A., Breitenlechner, M., Lamplugh, A., Crounse, J. D.,
1121 Wennberg, P. O., Neuman, J. A., Novak, G. A., Veres, P. R., Brown, S. S., and Warneke, C.: Chemical ionization mass
1122 spectrometry utilizing ammonium ions (NH_{4+}) for measurements of organic compounds in the atmosphere, *Atmospheric Measurement Techniques*, 15, 7353-7373, 10.5194/amt-15-7353-2022, 2022.
1123 Yáñez-Serrano, A. M., Filella, I., Llusia, J., Gargallo-Garriga, A., Granda, V., Bourtsoukidis, E., Williams, J., Seco, R.,
1124 Cappellin, L., Werner, C., De Gouw, J., and Peñuelas, J.: GLOVOCS - Master compound assignment guide for proton transfer
1125 reaction mass spectrometry users, *Atmospheric Environment*, 244, 117929, 10.1016/j.atmosenv.2020.117929, 2021.
1126 Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw, J. A.: Proton-transfer-reaction mass
1127 spectrometry: applications in atmospheric sciences, *Chemical reviews*, 117, 13187-13229, 2017.
1128