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Abstract. Investigating climatic and environmental changes during past interglacials is crucial to improve our understanding 18 

of the mechanisms that govern changes related to current global warming. Among the numerous proxies that can be used to 19 

reconstruct past environmental and climatic conditions, pollen allows quantitative reconstructions of annual, warmest month 20 

and coldest month air temperatures as well as precipitation sums, and Chironomidae larvae are widely used to infer past 21 

summer air temperature. Chironomidae have mostly been used for reconstructing Holocene and Late Weichselian summer 22 

temperatures whilst there are only four sites in Europe with chironomid-based summer air temperature reconstructions for the 23 

Late Pleistocene and no such records for any Middle Pleistocene warm period as of the writing of this paper.  In this study we 24 

present the first quantitative palaeoclimate reconstruction for the post-Holsteinian (Marine Isotope Stage - (MIS) 11b) in 25 

Central Europe based on both pollen and fossil chironomid remains preserved in palaeolake sediments recovered from Krępa, 26 

southeastern Poland. Besides being used for the palaeoclimatic reconstruction, pollen analysis provides the biostratigraphic 27 

framework and a broader perspective of climate development at the end of Holsteinian Interglacial. Fossil Chironomidae 28 

assemblages at Krępa consist mainly of oligotrophic and mesotrophic taxa (e.g. Corynocera ambigua, Chironomus 29 

anthracinus-type) while eutrophic taxa (e.g. Chironomus plumosus-type) are less abundant. The chironomid-based summer 30 

temperature reconstruction indicates July air temperatures between 15.3 and 20.11॰C during the early post-Holsteinian, while 31 
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pollen-based temperature reconstructions (using MAT and WA-PLS methods) indicate temperature values from 15 to 19 ॰C. 32 

Pollen-derived mean temperature of the coldest month (MTCO) and mean annual precipitation sum vary from –13.2 to –9.6 33 

॰C and between 500 and 900 mm respectively. In any case, results from Krępa prove that conducting Chironomidae analysis 34 

is feasible for periods as early as the Middle Pleistocene, improving our understanding of the mechanisms that control present-35 

day climatic and environmental changes.  36 

1 Introduction 37 

Earth’s history is characterised by repeated climate fluctuations, which had not been influenced by humans until the Holocene 38 

(marine isotope stage (MIS) 1), the most recent interglacial period. This offers the opportunity to compare natural climatic 39 

changes in the past with current ones in order to assess anthropogenic impact on the present climate. With respect to human 40 

impact during the Holocene, the so-called “Anthropocene” is widely debated across various scientific disciplines though its 41 

exact timing, and the actual dimension of human influence on the environment are still debated (Brondizio et al., 2016).  42 

Holocene environmental archives, such as lake, palaeolake and ocean sediments provide material for comprehensive 43 

palaeoecological analyses. The sensitivity of some groups of organisms in these archives to changing hydrological or climatic 44 

conditions allows reconstruction of past events that directly affected the abundance or structure of the communities (Battarbee, 45 

2000). Species, which are characterised by narrow ecological preferences, such as air temperature, water chemistry or water 46 

depth, are used for certain palaeoenvironmental reconstructions (Juggins and Birks, 2012). Many ecological parameters can 47 

be reconstructed using different proxies. For example, foraminiferas can be used to reconstruct ocean pH (Foster and Rae, 48 

2016; Roberts et al., 2018), pollen can provide information about vegetation changes (Ralska-Jasiewiczowa et al., 2004; 49 

Kupryjanowicz et al., 2018) and can be used to reconstruct past human activity (Chevalier et al., 2020) or past climate 50 

conditions (e.g. Rylova and Savachenko, 2005; Hrynowiecka and Winter, 2016).  Head capsules of  chironomids can serve as 51 

the basis for summer air temperature reconstructions (Eggermont and Heiri, 2012) and for assessing the trophic state or pH of 52 

freshwater ecosystems (Płóciennik, 2005). 53 

In general, palaeoecological and palaeoclimatological reconstructions record human impact on the environment from the Iron 54 

Age (Dumayne-Peaty, 1998; Szal et al., 2014). However, these reconstructions neither provide unequivocal information about 55 

air temperature changes nor allow the relative contribution of natural and human drivers to be distinguished.  To gain a deeper 56 

understanding of the present human impact on climate and environment, it is therefore essential to investigate natural climate 57 

variability and environmental changes during past warm periods prior to any anthropogenic impact. In this regard, a particularly 58 

suitable targets are interglacial periods, e.g. Holsteinian Interglacial (or Mazovian Interglacial in Poland), which is commonly 59 

estimated to have lasted from 423 to 395 ka BP, thus corresponding to MIS 11c (Lauer and Weiss, 2018; Lauer et al., 2020; 60 

Fernández Arias et al., 2023). Holsteinian Interglacial is considered the analogue of the Holocene in terms of astronomical 61 

parameters (eccentricity, precession, insolation), climatic conditions and greenhouse gases levels (Koutsodendris et al., 2010; 62 

Yin and Berger, 2012; Kleinen et al., 2016). To date, there are only a few chironomid-based reconstructions of climatic and 63 
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ecological conditions for the Middle and Late Pleistocene in Europe available (Engels et al., 2008; Bolland et al., 2021; 64 

Ilyashuk et al., 2022; Lapellegerie et al., 2024; Rigterink et al., 2024), but none for the Holsteinian Interglacial and the time 65 

thereafter. Hence, knowledge about climatic conditions at this time is mainly derived from Southern European pollen data, e.g. 66 

from the Praclaux maar in southern France (Reille and de Beaulieu, 1995), Tenaghi Philippon in north-eastern Greece 67 

(Tzedakis et al., 2006; Ardenghi et al., 2019), Lake Ohrid on the North Macedonian-Albanian border (Kousis et al., 2018), 68 

Lake Fucino in central Italy (Vera-Polo et al., 2024) and marine cores from ODP site 976 in the Alboran Sea (Sassoon et al., 69 

2023, 2025) or from the North Atlantic off the Iberian coast (Oliveira et al., 2016) . In Central Europe, high-resolution MIS 11 70 

pollen records are available from the Ossówka palaeolake in eastern Poland (Nitychoruk et al., 2005, 2018; Bińka et al., 2023) 71 

as well as from Nowiny Żukowskie in eastern Poland (Hrynowiecka and Winter, 2016) and Dethlingen in northern Germany 72 

(Koutsodendris et al., 2010). Also notable is Bilhausen in central Germany, which provided a pollen record for the so-called 73 

Bilshausen Interglacial, which might correspond to MIS 11 or MIS 13 (Kühl and Gobet, 2010). In Northern Europe, there are 74 

even fewer records covering MIS 11 e.g. the record from Hoxne in eastern England (Horne et al., 2023) where temperature 75 

reconstructions were performed using chironomids (e.g., (Brooks, 2006), ostracods (Horne, 2007) and beetle remains 76 

(Atkinson et al., 1987).  77 

The contemporary state of knowledge on MIS 11 has been reviewed by Candy et al. (2014). Climate conditions in Central 78 

Europe were in general temperate at that time (Nitychoruk et al., 2018), but vegetation reconstructions suggest warmer and 79 

more humid conditions compared to the Holocene climatic optimum (Hrynowiecka and Winter, 2016). Two major climatic 80 

oscillations have so far been documented during the Holsteinian Interglacial, the Older Holsteinian Oscillation (OHO) and the 81 

Younger Holsteinian Oscillation (YHO). The OHO occurred around 418 ka BP (Koutsodendris et al., 2010, 2012; Górecki, 82 

2023) and is clearly connected to a rapid cooling as indicated by the disappearance of temperate vegetation (mostly Picea-83 

Alnus forests) and the spread of pioneer tree taxa including Betula, Pinus and Larix (Koutsodendris et al., 2010, 2012; Candy 84 

et al., 2014; Hrynowiecka and Pidek, 2017; Górecki et al., 2022). Although the OHO has been described at multiple sites 85 

across northern Europe (Koutsodendris et al., 2012), it has so far been identified in few southern European sites (Kousis et al., 86 

2018; Sassoon et al., 2023, 2025). In contrast to the OHO, the YHO occurred around 400 ka BP within the climatic optimum 87 

of the Holsteinian Interglacial (Carpinus-Abies phase) and was apparently not connected to a significant cooling (Górecki et 88 

al., 2022). Records from Germany and eastern Poland suggest a sudden regression of Carpinus from forest communities 89 

(Koutsodendris et al., 2010; Hrynowiecka et al., 2019; Górecki et al., 2022). Particularly in Poland a rapid spread of Abies 90 

with an admixture of Corylus is observed, with Taxus also found in southern sites (Górecki et al., 2022), suggesting that 91 

temperature was not limiting the growth of Carpinus.  92 

The climate during Holsteinian Interglacial (MIS 11c) was characterised by relatively stable warm and moist conditions with 93 

global temperatures approximately 1.5–2 °C above the pre-industrial level (Masson-Delmotte et al., 2010). Raymo and 94 

Mitrovica (2012) and Muhs et al. (2012)suggest sea level was possibly 6–13 m higher than present in this period. This can be 95 

partially attributed to the melting of the Greenland Ice Sheet (Robinson et al., 2017), as pollen and palaeoDNA data suggest 96 

the existence of spruce forests in Greenland at this time (Willerslev et al., 2007; de Vernal and Hillaire-Marcel, 2008). 97 
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In Europe, warm and wet oceanic climate conditions extended far to the east as evidenced by the presence of Taxus and Abies 98 

pollen at sites in Lithuania (Kondratiene and Gudelis, 1983), Belarus (Mamakowa and Rylova, 2007), and western Ukraine 99 

(Łanczont et al., 2003; Benham et al., 2016), whilst modern distribution limits of these taxa are estimated further to the west 100 

(Benham et al., 2016). Evidence from several terrestrial records from Eurasia suggests that the MIS 11c climate was highly 101 

complex, with pronounced climate variability occurring on both centennial and millennial timescales (Koutsodendris et al., 102 

2010; Prokopenko et al., 2010; Tzedakis, 2010; Oliveira et al., 2016; Tye et al., 2016; Górecki et al., 2022). Holsteinian 103 

Interglacial was followed by gradual cooling period (MIS 11b) which resulted in annual temperature decline and forest 104 

contractions (Tzedakis et al., 2006; Kousis et al., 2018; Hrynowiecka et al., 2019; Sassoon et al., 2025). 105 

The pollen succession of the Holsteinian Interglacial in Poland is characterised by a dominance of Picea-Alnus at first , then 106 

Carpinus and Abies, as well as a significant proportion of Taxus. Thermophilic taxa also occur frequently, examples including: 107 

Pterocarya, Celtis, Juglans, Ilex, Carya, Parrotia, Buxus, Vitis, Brasenia, Trapa, and Azolla (Janczyk-Kopikowa, 1991). 108 

Temperature reconstructions based on the indicator species method suggest the warmest period was the Carpinus-Abies phase, 109 

with estimated temperatures of 0–3 °C in January and 21–26 °C in July. This, along with high precipitation created a suitable 110 

environment for the spread of rare warmth-adapted taxa (Krupiński, 1995; Hrynowiecka and Winter, 2016). However, 111 

palaeotemperature reconstructions from Dethlingen (Koutsodendris et al., 2012) suggest slightly lower temperatures in 112 

Western Europe for both January (-2.2 ± 3.1 °C) and July (17.8 ± 2.1 °C). Pollen-based temperature reconstruction from Lake 113 

Ohrid (SE Europe) indicates higher January (MTCO) maximum (4.4 °C) (Kousis et al., 2018). The warm phase of the 114 

Holsteinian Interglacial was also confirmed by oxygen isotope analyses on endogenic lake carbonates (Nitychoruk et al., 2005) 115 

and snail shells (Szymanek, 2018). These showed significant changes in climatic conditions throughout the Holsteinian 116 

Interglacial, during which, continental and maritime influences intertwined in Central Europe. Continental influences resulted 117 

in a shortened vegetation period with long winters, whilst the opposite occurred under maritime influence, i.e. the vegetation 118 

period was significantly longer, temperatures were milder and precipitation rates were higher, also reflected by the appearance 119 

of stenothermal plant species (Nitychoruk et al., 2005). 120 

Holsteinian Interglacial was followed by gradual cooling period (MIS 11b) which resulted in annual temperature decline and 121 

forest contractions (Tzedakis et al., 2006; Kousis et al., 2018; Hrynowiecka et al., 2019; Sassoon et al., 2025). MIS 11b brought 122 

the AP percentages decrease in Central Europe (Hrynowiecka et al., 2019). Lake Ohrid pollen record reveals the domination 123 

of Pinus and plant open communities at the time, with Poaceae and Artemisia species included (Kousis et al., 2018). ODP Site 124 

976 pollen-based climate reconstructions shows annual temperature drop to around 10 °C and summer temperature to 20 °C 125 

(Sassoon et al., 2025). 126 

The warm phase of the Holsteinian Interglacial was also confirmed by oxygen isotope analyses on endogenic lake carbonates 127 

(Nitychoruk et al., 2005) and snail shells (Szymanek, 2018). These showed significant changes in climatic conditions 128 

throughout the Holsteinian Interglacial, during which, continental and maritime influences intertwined in Central Europe. 129 

Continental influences resulted in a shortened vegetation period with long winters, whilst the opposite occurred under maritime 130 

influence, i.e. the vegetation period was significantly longer, temperatures were milder and precipitation rates were higher, 131 
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also reflected by the appearance of stenothermal plant species (Nitychoruk et al., 2005).Aiming at improving the knowledge 132 

about climate variability at the demise of the Holsteinian Interglacial, we present the first  quantitative climate reconstructions 133 

for the post-Holsteinian in Central Europe, based on chironomid and pollen analyses of the Krępa core (southeastern Poland). 134 

The aim of analysing this post-interglacial period is to investigate temperature and vegetation changes and to determine if 135 

climate at the time was considerably cooler than today. This choice was also dictated by Chironomidae head capsules’ presence 136 

in post-Holsteinian section of the Krępa core (unlike the Holsteinian part). In addition, we discuss the potential of chironomid 137 

analysis for palaeoecological study of Quaternary sediments as well as the challenges for chironomid analysis arising from 138 

both the evolution and interchanging adaptations to species ecological preferences and the preservation of fossil remains.  139 

2 Study site and methods  140 

2.1 Study area, coring and lithology  141 

The Krępa palaeolake sediment succession (51°37’53.2’’N, 22°18’38.1’’E, 146 m asl.) is located in SE Poland, near the city 142 

of Kock, approximately 120 km  southeast of Warsaw (Fig. 1).It is under influence of humid continental climate (Dfb) in terms 143 

of the Köppen-Geiger climate classification (Peel et al., 2007).  Average annual temperature for this region is ~ 8.6 °C, with 144 

July mean temperature of ~ 19 °C and January mean temperature of ~ -1 °C, while average annual precipitation is ca. 600 mm 145 

(Ustrnul et al., 2021). Geomorphologically, it is situated in the central-eastern part of the North European Plain behind the 146 

maximum extent of the Saalian glaciation (Marks et al., 2018) and the sediment core analysed in this paper was obtained on a 147 

moraine plateau related to this ice sheet. Holsteinian Interglacial deposits in the area were first identified by Jesionkiewicz 148 

(1982) during cartographic work for the 1:50 000 Detailed Geological Map of Poland (DGMP; Sheet 676 - Kock) (Drozd and 149 

Trzepla, 2007). On the moraine plateau, the interglacial deposits are found under a thin cover of moraine deposits, whereas at 150 

the slopes of the nearby Wieprz River valley, they are exposed directly on the surface. This study’s material was obtained from 151 

a sediment core that was drilled at Krępa in 2015, using a Geoprobe drilling device (Górecki, 2023). 152 

The basal part of the 23.8-m-long sediment core that was recovered from the Krępa sediment succession in 2015 (Fig. 1) 153 

consisted of a 2-m-thick layer of light greyish brown sandy clays with a large number of rock fragments (unit 1), which is 154 

interpreted as till. As indicated by its stratigraphic position and its petrographic characteristics (Drozd and Trzepla, 2007), this 155 

till was likely accumulated during the Elsterian glaciation (Sanian 2 glaciation in Poland), which is considered to correspond 156 

to MIS 12. Directly above the till, a 0.6-m-thick layer of laminated sandy silts and sandy-clayey silts is present (unit 2). These 157 

sediments are interpreted as the result of glaciolimnic sedimentation in a relatively shallow water body between blocks of dead 158 

ice during the recession of the Elsterian ice-sheet. The glaciolimnic sediments of unit 2 gradually turn into a carbonate gyttja 159 

with small interlayers of carbonatic-minerogenic gyttja (unit 3), which was most likely deposited in the profundal zone of an 160 

already relatively deep lake. Between 1187 and 760 cm core depth, non-carbonatic organic-minerogenic gyttjas are found with 161 

mineral content generally increasing towards the top of the core (unit 4). The limnic sediments of unit 4 are interpreted to 162 

reflect the gradual shallowing of the lake due to continuous sediment infilling. At the same time, the systematic increase in 163 
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mineral components in the sediments most likely reflects increased denudation and erosion in the catchment, possibly favoured 164 

by reduced vegetation cover in response to a climatic shift towards colder conditions. The gyttja sequence of unit 4 is overlain 165 

by a 1.9-m-thick layer of clays (unit 5), which probably represent accumulation in a periglacial lake. The following 1.1-m-166 

thick layer of fine- to medium-grained sands (unit 6) as well as the overlying 3.1-m-thick layer of rhythmically laminated 167 

sandy silts (unit 7) are interpreted as proglacial sediments (units 6 and 7) of the transgressing Early Saalian (MIS 6) ice sheet. 168 

Above this, the profile is capped by a 1.5-m-thick layer of sandy morainic till with rock fragments (unit 8) related to Saalian 169 

glaciation. 170 

Due to the inability to apply radiocarbon dating (e.g. 14C) and the challenges in developing an age–depth model, the direct 171 

dating of Holstein interglacial sediments is highly limited. In this context, palynology plays a key role, as pollen analysis 172 

enables biostratigraphic comparison between sites. Vegetation changes that occurred during the Holstein interglacial show a 173 

relatively uniform pattern across Central Europe from boreal phases to the development of thermophilus deciduous forests  174 

(Nitychoruk et al., 2005; Koutsodendris et al., 2010; Hrynowiecka and Winter, 2016) and cooling period (MIS 11b) thereafter 175 

(Hrynowiecka et al., 2019). Thanks to the repeatability of this vegetational succession, it is possible to correlate sediment 176 

profiles from different locations and assign them to a common stratigraphic framework. Thus, palynology becomes the primary 177 

tool for reconstructing and comparing environmental records from this period, despite the lack of precise absolute dating. 178 

 179 

 180 
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 181 

Figure 1: (a) Location of selected sites with deposits from the Holsteinian Interglacial in Poland with the Krępa site 182 

indicated by the big yellow dot. Glaciation ranges are based on Żarski et al. (2024), Pochocka-Szwarc et al. (2024) and 183 

Marks (2023). (b) Lithological profile of the Krępa sediment succession and (c) location of the drilling site (picture M. 184 

Żarski). 185 

 186 
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2.2 Chironomidae analysis 187 

Initially, 79 sediment samples of 1 cm³, taken between 800 and 2160 cm depth at 5-40 cm intervals, were investigated for the 188 

presence of Chironomidae head capsules. However, only 30 of them (965-1155 cm depth) simultaneously contained more than 189 

0-2 individuals. Chemical preparation followed Brooks et al. (2007). The precipitate was initially heated with KOH. The wet 190 

sediment was then passed through 212 µm (to remove larger sediment particles) and 100 μm mesh sieves and subsequent 191 

residues were treated in an ultrasonic bath for 3 sec. The processed sediment was subsequently examined under a 192 

stereomicroscope (Zeiss Axio Lab A1) at 25× magnification. Chironomid head capsules from each sample were picked and 193 

mounted in Euparal. In case of damaged head capsules, individuals were counted as one if more than half of a body was 194 

preserved. Identification of chironomid head capsules followed Wiederholm (1983), Schmid (1993), Klink and Moller Pillot 195 

(2003), Brooks et al. (2007) and Andersen et al. (2013). Ecological preferences of identified taxa are based mainly on Brooks 196 

et al. (2007), Brundin (1949),  Brodersen and Lindegaard (1999a) and Saether (1979).  197 

Preliminary tests of sample preparation avoided the use of chemicals and included soaking the samples in water for a long time 198 

instead to reduce mechanical stress exerted to the head capsules during sample sieving as much as possible. Nevertheless, 199 

intact head capsules could not be extracted from some sediment samples even when using this gentle way of sample 200 

preparation, likely because of the already highly compacted sediment. As small numbers of head capsules may hinder 201 

palaeoecological and palaeoclimatic reconstructions, it was therefore partly necessary to combine samples (see below) or to 202 

increase the volume of the analysed sediment material (some samples were even as large as 20 cm3).  203 

Chironomidae subfossil larvae were obtained from a total of 30 samples from the gyttja sediments (unit 4 on Fig. 1). Samples 204 

that contained fewer than 50 head capsules were merged except for a solitary sample at 1000 cm core depth. For 5 samples the 205 

required number of 50 head capsules was obtained and the remaining 24 samples were merged into seven clusters. After 206 

merging, sample clusters at 975 cm, 1080 cm, 1120 cm and 1125 cm core depth still did not reach 50 head capsules, but 207 

nonetheless, these samples and the one from 1000 cm core depth were included in the reconstruction as preliminary results 208 

seemed credible in terms of obtained temperature values.  209 

 210 

2.3 Chironomid-based mean July air temperature reconstruction    211 

In order to reconstruct mean July air temperatures (Tjul-Ch) from the Krępa chironomid assemblage, the Swiss-Norwegian-212 

Polish (SNP) training set (Kotrys et al., 2020) was used as this covers a higher temperature span than other available European 213 

training sets (e.g. the Finnish, Russian, Swiss-Norwegian training sets) (Kotrys et al., 2020). The SNP training set includes 214 

357 lakes, 134 taxa,  covers a temperature range between 3.5 and 20.1 °C.  Weighted averaging-partial least squares transfer 215 

functionregression (WA-PLS) was used for performing the reconstruction. The Root Mean Square Error of Prediction 216 

(RMSEP) for this combined training set is 1.39°C, and the R2 is 0.91 (Kotrys et al., 2020). Detrended Correspondence (MinDC) 217 

was also calculated. The temperature reconstruction was carried out using the C2 (v. 1.6) software (Juggins, 2007). 218 
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The lowest number of head capsules used for the Tjul-Ch reconstruction was 5 individuals at 1070 cm core depth whereas the 219 

highest number was 78 at 985 cm core depth. After merging, the total number of samples used for the T jul-Ch reconstruction 220 

was 13. 221 

2.4 Pollen analysis 222 

The Krępa sediment core obtained in 2015 was sampled for palynological analyses at 5-cm intervals between 770 and 2180 223 

cm depth, totaling 281 samples. A volume of 1 cm³ was collected from organic sediments (peat, gyttja), while minerogenic 224 

sediments (clays, silts, sands) were sampled with a volume of 3 cm³ due to the anticipated low pollen grain concentration. 225 

Samples were further processed following the standard methodology outlined by Erdtman (1960) with modifications such as 226 

the use of HF (Berglund and Ralska-Jasiewiczowa, 1986). Prior to laboratory processing, a Lycopodium tablet (Lund 227 

University, batch number 100320201, 20,408±543 spores per tablet) was added to each sample to determine the absolute 228 

sporomorph concentration (Stockmarr, 1971). Pollen grains were counted using a ZEISS Axio Imager A2 light microscope. 229 

Palynomorphs were identified using pollen keys and atlases (Beug, 1961; Stuchlik, 2001, 2002, 2009; Lenarczyk, 2014), as 230 

well as online resources (PalDat, 2000; NPP Database, Shumilovskikh et al., 2022). For most samples, counts were conducted 231 

up to a sum of 500 pollen grains from arboreal (AP) and non-arboreal (NAP) plants. However, samples from glacial sediments 232 

with low palynomorph concentration were counted up to a sum of 300 pollen grains only. Percentages were calculated based 233 

on the sum of pollen grains from trees and shrubs (AP), as well as herbaceous plants, and dwarf shrubs (NAP). The results of 234 

the palynological analysis are depicted in a simplified pollen diagram (Fig. 3) that was plotted using R Studio with the package 235 

riojaPlot (Juggins, 2022). Local Pollen Assemblage Zones (LPAZ) were established using the CONISS cluster analysis 236 

function within riojaPlot and were visually adjusted if necessary. 237 

2.5 Pollen-based climate reconstructions 238 

Climate variables reconstructed using pollen data include mean annual air temperature (TANN), mean annual precipitation 239 

(PANN), mean temperature of the warmest month (MTWA), and mean temperature of the coldest month (MTCO). All 240 

reconstructed climatic factors were based on modern data sourced from the Northern Hemisphere database compiled by 241 

Herzschuh et al. (2023a, b). Two reconstruction approaches were applied: the Modern Analog Technique (MAT; (Overpeck 242 

et al., 1985; Guiot, 1990) and Weighted Averaging Partial Least Squares regression (WA-PLS; (ter Braak et al., 1993; ter 243 

Braak and Juggins, 1993). In the MAT approach, the best number of analogues (k) was chosen by comparing model 244 

performance (RMSE and R2) across k values from 1 to 10. This analysis indicated that using k = 7 nearest analogues minimised 245 

prediction error, and thus 7 analogues were used in the final MAT reconstructions. For WA-PLS model selection, including 246 

the determination of the optimal number of components, was based on predictive accuracy assessed through leave-one-out 247 

(LOO) cross-validation and supported by randomization tests, following the methodology outlined by Chevalier et al. (2020). 248 

Based on these criteria, a four component WA-PLS was adopted. For each reconstruction model, the coefficient of 249 

determination (R²) and root mean square error (RMSE) were calculated to evaluate model performance.  To express the 250 
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uncertainty in the fossil climate reconstructions, we calculated standard errors of prediction (SEP) and depicted them as error 251 

bars in the figures. In the WA-PLS approach, sample-specific SEP were obtained via a bootstrapping implemented in the rioja 252 

package (Juggins, 2022). For the MAT model we used the cross-validated RMSE as a uniform error estimate for the fossil 253 

MAT reconstructions. Modern pollen data used in the reconstructions were sourced from the Northern Hemisphere database 254 

compiled by Herzschuh et al. (2023a, b). To enhance spatial relevance, the modern dataset was geographically filtered to 255 

include only samples within a 3000 km radius of the fossil site. This geographic filtering yielded a regional calibration set of 256 

4955 modern pollen samples, out of the original global dataset. From the fossil pollen dataset, only taxa present in at least 50% 257 

of the samples and reaching at least 1% pollen value at least once were included. Additionally we ensured taxonomic 258 

consistency between the modern and fossil pollen data by harmonizing taxa names and then removing taxa with zero abundance 259 

in the filtered modern set. After this filtering, 10 pollen taxa remained in common between the modern calibration set and the 260 

fossil record (primarily major arboreal and herb taxa such as Larix, Betula, Pinus, Salix, Picea, Juniperus, Artemisia, 261 

Asteraceae, Poaceae, and Amaranthaceae). Using only these common taxa helps avoid noise from spurious taxa and improves 262 

model robustness. All data processing and modeling were carried out in R (RStudio), making use of the analogue and rioja 263 

packages for calibration and reconstruction.The pollen-based reconstructions were restricted to the interval of the succession 264 

where chironomid remains were also present and were performed on 44 samples. 265 

3. Results and interpretation 266 

3.1 Ecological reconstruction based on Chironomidae assemblages from the Krępa site 267 

In general, the chironomid assemblages preserved in the Krępa sediments are dominated by two species Corynocera ambigua 268 

and Chironomus anthracinus-type. Corynocera ambigua is a species often described as cold-adapted oligotrophic (Fjellberg, 269 

1972; Pinder and Reiss, 1983; Walker and Mathewes, 1988; Brooks et al., 2007; Luoto et al., 2008; van Asch et al., 2012) , 270 

inhabiting shallow lakes in arctic and subarctic regions, though it is also found in eutrophic lakes (Halkiewicz, 2008; Kotrys 271 

et al., 2020) Adults of this species are not able to fly, and breed on the water surface when the temperature reaches 272 

approximately 7-8 °C (optimum 13.7 °C). Mothes (1968) concluded that Corynocera ambigua larvae develop in autumn and 273 

winter, but not during summer. The decline in their numbers may be due to growth of filamentous algae in summer. Larvae of 274 

Corynocera ambigua are eurythermic, while the pupae are cold-stenothermic (Brundin, 1949). They only reproduce at low 275 

temperatures and inhabit water bodies with a maximum depth of approximately 25 m. The abundance of Corynocera ambigua 276 

has been shown to be correlated with charophyte contents (Brodersen and Lindegaard, 1999b). Although this species does not 277 

feed on charophytes, their presence may increase the number of diatoms and stabilise the trophic status and water clarity 278 

(Forsberg, 1965; Blindow, 1992). Corynocera ambigua live in dendritic tubes, its main food source being diatoms/algal 279 

detritus. (Fjellberg, 1972; Boubee, 1983).  280 

This species has been recorded during cold episodes or glacial periods, at sites in England (Bedford et al., 2004), Norway 281 

(Velle et al., 2005), Poland (Płóciennik et al., 2015), and the Baltic region (Hofmann and Winn, 2000). However, Corynocera 282 
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ambigua, cannot be considered merely a cold species. Some authors believe that its occurrence depends on high oxygen content 283 

in the water (Brodersen and Lindegaard, 1999a) and for other authors, it is a pioneer species that appears first after glacial 284 

retreat, similarly to Chironomus anthracinus-type (e.g. Heiri and Millet, 2005; Ilyashuk et al., 2005, 2013, 2022; Gandouin et 285 

al., 2016). Luoto and Sarmaja-Korjonen (2011) suggest this is how the species adapts to existing climatic conditions. The 286 

locally observed decline in Corynocera ambigua numbers in the Krępa sediments could also be attributed to changes in lake 287 

productivity related to changes in the environment. For example, when the production of soil and trees increased, the number 288 

of this species has been found to decrease (Magny et al., 2006; Larocque-Tobler et al., 2009).  289 

Chironomus anthracinus-type occurs in various lake zones and is capable of surviving approximately 2–4 months of oxygen 290 

deficiency in water (Hamburger et al., 1994). It is a species which easily occupies niches that are inaccessible to others. 291 

According to some authors, it is a eutrophic (Kansanen, 1985; Brodersen and Lindegaard, 1999b) or cold-adapted species 292 

(Rohrig et al., 2004; Brooks et al., 2007; Płóciennik et al., 2011) and prefers soft, more organic sediments (McGarrigle, 1980). 293 

Therefore, the appearance of Chironomus anthracinus-type and Glyptotendipes pallens-type in the Krępa sediment may 294 

indicate the onset of eutrophication. Both Chironomus anthracinus-type and Corynocera ambigua are found in stratified lakes 295 

(e.g., Saether, 1979; Heiri, 2004). As we observe in our record, both species are relatively resistant to unfavourable 296 

environmental conditions, so possess a wide range of conditions in which they can occur.   297 

Lower part of the sediment sequence (2180 cm-1160 cm) is almost completely devoid of Chironomid remains, except few 298 

badly preserved Chironomus anthracinus, Chironomus plumosus and Glyptotendipes pallens head capsules at 2000 cm, 1680 299 

cm, and 1205-1190 cm depths. Head capsules are recorded again at 1155 cm-1122.5 cm depths – mostly Corynocera ambigua, 300 

Chironomus anthracinus, Chironomus plumosus and Glyptotendipes pallens (Fig. 2). 1072.5-1122.5 cm part predominantly 301 

contains cold-adapted species such as Corynocera ambigua and freeze-resistant species such as Glyptotendipes pallens-type 302 

and Glyptotendipes severini-type, which are often associated with algae and diatoms or mine leaves (Tarkowska-Kukuryk, 303 

2014). 1022.5-1072.5 cm depth range is characterised by species highly resistant to difficult environmental conditions, such 304 

as Chironomus anthracinus-type, Corynocera ambigua and Glyptotendipes pallens-type From 1022.5 cm to 967.5 cm depth 305 

there are several species observed. . This is the part most abundant in Chironomidae head capsules, with over 40 individuals 306 

per sample on average and maximum 78 head capsules at 985 cm sample. Species composition during this part is dominated 307 

by Corynocera ambigua, Chironomus anthracinus-type, Chironomus-plumosus-type and Propsilocerus lacustris-type. 308 

Additionally, some Tanytarsus glabrecens-type head capsules appear – this species was almost unseen in remaining sections.  309 

Between 967.5 cm and 877.5 cm depth, the number of chironomid head capsules started to decline above 965 cm depth, with 310 

only single unidentified Chironomidae head capsules at 955 cm and 950 cm. . . In subsequent section (877.5-765 cm) the 311 

number of Chironomidae is very low – only 2 Chironomus plumosus-type individuals were identified. Even Corynocera 312 

ambigua, abundant in previous sections, disappears. 313 

 314 
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 315 

Figure 2: Stratigraphic diagram of the Chironomidae assemblages with simplified pollen diagram (left) and Local Pollen 316 
Assemblages Zones (LPAZ). Caption: Chironomidae species are presented as counted numbers of specimens before merging.    317 

3.2 July air temperature reconstruction based on Chironomidae assemblages from the Krępa site 318 

Due to the low number of chironomid head capsules preserved in the Krępa sediments, a chironomid-based July temperature 319 

reconstruction was only possible for the uppermost part of the sediment core, encompassing the post-Holsteinian stadial that 320 

is most likely equivalent to  MIS 11b. LPAZ KR-12a marks the onset of MIS 11b that directly follows the Holsteinian 321 

Interglacial. In this period, average July temperatures still ranged between 17 and 19 °C before rapidly dropping to about 16 322 

°C and increasing again to 18-20 °C in LPAZ KR-12b (Fig. 4). July temperatures remained at this level throughout LPAZ KR-323 

12c, before significantly dropping to 15-17 °C in the middle of LPAZ KR-13a. Only at the end of LPAZ KR-13a, which is 324 

equivalent to the transition to the following interstadial that most likely corresponds to MIS 11a, July temperatures markedly 325 

increased again to about 20 °C. 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 
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Table 1: Temperature reconstruction from Chironomidae preserved in the Krępa sediments with reconstructed mean July air 339 

temperature (Tjul-Ch), error of the estimated Tjul-Ch,  minimum dissimilarity between the chironomid assemblage in the Krępa 340 

sediments training set samples (MinDC), principal component analysis values (PCA) and corresponding LPAZ 341 

Core depth (cm)  Tjul-Ch        error of est. (Tjul-Ch)  MinDC PCA Number of 

Chironomidae 

head capsules 

LPAZ 

969   20.10  1.60  9.82830 

975   15.26  1.64  6.08105 

980   16.82  1.57  7.89471 

985   17.23  1.59  8.37351 

990   15.93  1.70  7.35685 

995   15.84  1.72  6.77137 

1000   18.77  1.52  8.27430 

1011   18.09  1.63  7.90763 

1022   19.25  1.50  7.06444 

1080   20.20  1.53  8.02666 

1102   18.55  1.52  8.95789 

1125   17.69  1.52  8.63666 

1148   18.97  1.56  6.86405 

-1.8144135 

-1.2383560 

-1.7518844 

-1.4636110 

-1.9244674 

-0.6709448 

 6.5934818 

 0.4039345 

 0.4114688 

 0.5281182 

 1.3132870 

-0.2629876 

-0.1236256 

 

51 

48 

67 

78 

52 

53 

42 

51 

53 

52 

48 

64 

57 

KR-13a 

KR-12c 

KR-12b 

KR-12a 

 342 

According to the SNP training set-based reconstruction, 10 samples with good modern analogues remain below the 5 % 343 

percentile threshold (minDC), while 3 samples with average modern analogues have values above the 5 % percentile threshold 344 

(6.08105 < minDC > 9.82830). PCA values range between ~ –1.92 and 6.59 (Tab. 1). 345 

3.3 Vegetation changes during the Early Saalian Glaciation at Krępa site and comparison with chironomid assemblages 346 

changes 347 

Initially, 14 Local Pollen Assemblages Zones (LPAZ) covering the end of MIS 12 and MIS 11 period were extracted. Post-348 

holsteinian (MIS 11b) covers LPAZ from 12a to 13a.   349 

LPAZ KR-12a (1122.5-1187.5 cm) - At the beginning of the zone, the development of Pinus forests with an admixture of 350 

Picea (up to 6 %) is observed. Low NAP percentages suggest a very dense vegetation. However, percentages of Pinus and 351 

other tree species gradually decrease, and open herbaceous communities appear. The end of the zone is associated with a 352 

decrease in the percentage of Pinus pollen. Low number of Chironomidae head capsules (approximately 15 per sample). 353 

Dominance of Chironomus anthracinus-type (25 %) and Corynocera ambigua (16 %). 354 

LPAZ KR-12b (1072.5-1122.5 cm) - A further decrease in Pinus pollen is observed. At the end of the zone, the landscape 355 

was likely already dominated by open communities (NAP up to 40 %) and sparse Pinus forests. Dominance of Corynocera 356 

ambigua (24 %) and high contents of Chironomus anthracinus-type. Disappearance of Glyptotendipes pallens-type and 357 

appearance of Glyptotendipes severini-type.  358 

LPAZ KR-12c (1022.5-1072.5 cm) - Initially, dense Betula forests with Larix as an admixture dominated the landscape. 359 

Subsequently, a rapid development of Pinus forests is observed. The end of the zone is associated with a sudden drop in the 360 

Tabela sformatowana

— sformatowano: Czcionka: Kursywa
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percentage of Pinus pollen. The number of Chironomidae declines. Dominant species are Chironomus anthracinus-type 361 

(17 %), Corynocera ambigua and Glyptotendipes pallens-type (13 %). 362 

LPAZ KR-13a (967.5-1022.5 cm) - Initially, there was a significant opening in the vegetation, and herbaceous plants and 363 

shrubs dominated the landscape. In the middle of this zone, there was a temporary return of very sparse Pinus and Betula 364 

forests, followed by another expansion of herbaceous vegetation. The end of the zone is associated with an increase in Betula 365 

pollen. Significant increase in the number of Chironomidae (on average 45 individuals per sample). Dominant species 366 

are Corynocera ambigua (approx. 29 %) and Chironomus anthracinus-type (18 %). 367 

 368 

 369 

Figure 3: Simplified percentage pollen diagram from the Krępa 2015 sediment core on depth scale (cm) with zonation of the diagram. 370 

3.4 Pollen-based climate reconstructions from the Krępa site 371 

Pollen-based climate reconstructions from the Krępa sediment core reveal distinct climate variability throughout MIS 11b, 372 

reflecting stadial–interstadial transitions (Fig. 4). The two pollen-based methods show broadly similar trends across all zones, 373 

with MAT generally producing higher summer temperature values than WA-PLS except in KR-12c. Where chironomid data 374 

are available, pollen-based MTWA reconstructions reproduce similar patterns, with differences falling within their respective 375 

uncertainty ranges. Among the two pollen-based models, MAT generally corresponds better to the chironomid WA-PLS 376 

reconstructions, showing overall closer alignment in reconstructed summer temperatures. 377 

WA-PLS reconstructions were somewhat less robust, especially for precipitation, while the TANN and MTWA estimates still 378 

showed moderate predictive ability (Tab. 2). Reconstructed MTWA from both pollen-based methods generally ranged between 379 

approximately 15°C and 19°C. The two pollen-based methods show similar trends across all zones, with MAT often producing 380 

slightly higher summer temperature values than WA-PLS.  381 
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During LPAZ KR-12a, MAT- and WA-PLS-derived MTWA averaged approximately 16.8°C, close to the chironomid-inferred 382 

mean of 18.3°C. In LPAZ KR-12b, both pollen methods indicate further warming (~18.7°C MAT, ~16.4°C WA-PLS), 383 

consistent with the chironomid estimate of 19.4°C, reflecting peak interstadial conditions. In LPAZ KR-12c, MTWA values 384 

dropped to ~15.1°C (MAT) and ~15.7°C (WA-PLS), indicating cooling during this interval. A moderate rebound is evident in 385 

LPAZ KR-13a, with MTWA increasing again to ~17.3°C (MAT) and ~15.3°C (WA-PLS), while the mean chironomid MTWA 386 

is 17.5°C. 387 

TANN values generally followed the summer temperature trends, beginning with relatively warm conditions in LPAZ KR-388 

12a (~3°C). A slight increase was observed in LPAZ KR-12b (~3.1°C), followed by cooling in LPAZ KR-12c (~1.2°C). In 389 

LPAZ KR-13a, a modest recovery occurred with TANN rising to around 1.57°C. 390 

MTCO showed greater variability. Winters in LPAZ KR-12a and KR-12b were comparably cold, with MTCO values around 391 

–9.6°C and –11.7°C, respectively. LPAZ KR-12c showed slightly less severe winters (~–10.72°C). A more pronounced 392 

cooling occurred in LPAZ KR-13a, where MTCO reached around –13.2°C. 393 

PANN reconstructions showed some uncertainty but generally ranged between 500 and 900 mm. LPAZ KR-12a was 394 

characterized by relatively high precipitation (~640 mm), followed by moderately high values in LPAZ KR-12b (~510 mm). 395 

A moderate increase occurred in LPAZ KR-12c (~580 mm). In LPAZ KR-13a, PANN remained lower, typically around 520 396 

mm, suggesting continued reduction in annual precipitation. 397 

  398 

 399 

 400 
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 401 

Figure 4: Pollen-basedreconstructions of mean temperature of the warmest month (MTWA), mean annual temperature (TANN), 402 
mean temperature of the coldest month (MTCO), and annual precipitation sum (PANN) for the Krępa site using MAT and WA-403 
PLS. Error bars indicate the standard error of prediction (SEP). The chironomid-based mean July air temperature reconstruction 404 
is given for comparison. 405 

4. Discussion 406 

4.1 Chironomidae analysis as a method of palaeoclimate reconstruction 407 

The analysis of subfossil Chironomidae is part of palaeoecological analysis conducted in geological, geomorphological, and 408 

archaeological research. Chironomidae, which are insects belonging to the suborder of Nematocera, are common, and inhabit 409 

various types of aquatic environments, from moist soil to lakes. Their development cycle can last from 20 days to several years 410 

as they can extend the duration of the larval stage depending on environmental conditions (Butler, 1982). Because of the 411 

excellent preservation of their larvae’s head capsules in lake and peat bog sediments, the analysis of their subfossil remains 412 

offers the possibility to reconstruct environmental and climatic changes in the past. This includes quantitative reconstructions 413 

of the average July air temperature and the trophic state of the inhabited water body as well as the type and dynamics of the 414 



 

17 

 

lake, the water pH, and microhabitats. Furthermore, training sets are also available to reconstruct the historic water level, 415 

salinity or oxygen content of the studied water body (Lotter et al., 1997). 416 

4.1.1 Possible difficulties in temperature reconstruction based on Chironomidae analysis during past interglacials 417 

The basic principle of palaeoecological reconstructions is uniformitarianism, implying that processes taking place on Earth in 418 

the past were the same as today (Krzeminski and Jarzembowski, 1999). This, for example, allows temperature to be 419 

reconstructed based on fossil Chironomidae assemblages by assuming that a given species has the same habitat requirements 420 

as thousands or hundreds of thousands years ago. The oldest recorded chironomid remains date back to the Late Triassic, i.e . 421 

~200 1 Ma BP (Krzeminski and Jarzembowski, 1999). Data from the MIS 11 Krępa sediments indicate a large difference in 422 

the number and state of preservation of chironomid remains compared to Holocene sites. Usually, at least 50 individuals per 423 

sample are required for robust reconstructions of the average July temperature, as smaller numbers of identified head capsules 424 

considerably increase the error range of the air temperature reconstruction. It is therefore commonly recommended to combine 425 

adjacent samples in case of low head capsule amounts (Heiri and Lotter, 2001). To enable selection of sites that could 426 

potentially yield chironomid-based palaeoenvironmental reconstructions, it is critical to analyse the factors that could limit the 427 

degree of preservation in chironomid remains, or cause a marked decrease/complete disappearance in the number of 428 

individuals. 429 

Chironomidae inhabit all moist or aquatic habitats from moist wood to the ocean between the tropics and the Arctic. The high 430 

specialisation of individual species is thereby decisive for their common occurrence and their ability to survive under difficult 431 

environmental conditions. Among the features that allow specimens to succeed are: a short life cycle (in some cases only 8 432 

days) (Reyes-Maldonado et al., 2021), osmoregulation, which enables survival in high-salinity waters (Kokkinn, 1986), or 433 

parthenogenesis, which implies a high efficiency of population reproduction, faster colonisation rate and high fertility 434 

(Lencioni, 2004; Nondula et al., 2004; Donato and Paggi, 2008; Orel and Semenchenko, 2019; Lackmann et al., 2020), as well 435 

as a short DNA chain (Gusev et al., 2010; Cornette et al., 2015). Some species are able to change food resources depending 436 

on the availability in their habitat (Tokeshi, 1995; Davis et al., 2003). Large lakes, such as the one that probably existed at 437 

Krępa (1) have a greater variety of habitats, thus being characterised by a larger biodiversity of Chironomidae (Allen et al., 438 

1999; Heino, 2000; Tarr et al., 2005), and (2) are more resilient to extreme droughts and other extreme events. In contrast, 439 

small lakes with less diverse, isolated habitats exhibit reduced species diversity and dispersal (Roberts, 2003). 440 

Despite the specialisation of chironomids, there are many conditions that limit the number of communities. One of the main 441 

factors limiting and determining the life processes of Chironomidae is temperature as each life stage is highly dependent on 442 

this factor. The development of eggs, larvae and pupae, nutrition and growth, the emergence of individuals and the ability to 443 

fly are all constrained by temperature maxima and minima, beyond which the given processes can no longer take place. Most 444 

groups can tolerate low sub-zero temperatures; the temperature below which the development of most species does not occur 445 

is -15°C (Walker and Mathewes, 1989; Płóciennik, 2005). At Krępa, however, our July temperature reconstruction indicates 446 

temperatures well above that threshold, so even in case of severe winters, Chironomids should have been able to develop 447 
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during the warmer periods of the year. Frost tolerance is highest in the Orthocladinae family and lowest in the Tanypodinae 448 

family (Danks, 1971). In the case of the Krępa sediments, species of both families were found (e.g. Propsilocerus lacustris-449 

type and Procladius respectively) with Orthocladinae being more abundant than Tanypodinae (57 vs. 5 head capsules) with 450 

the highest number of head capsules being preserved during a period with relatively cool summers (15-17°C). 451 

Another important factor causing the decline of Chironomidae populations is the lack of oxygen in the water, although this 452 

cannot be directly captured by palaeoreconstructions. Instead, low-oxygen conditions are generally only indicated by an 453 

abundant occurrence of organic matter in the sediment. Such increases in organic matter commonly increase bacterial 454 

respiration and result in oxygen deficiency in the profundal of water bodies (Charlton, 1980; Matzinger et al., 2010; Müller et 455 

al., 2012).  Another factor limiting the preservation of chironomid head capsules in sediments are mechanical factors that cause 456 

damage to the head capsules. For example, Tanypodinae remains are, due to their large size, not very resistant to disintegration 457 

and the number of preserved capsules may therefore be smaller (Walker et al., 1984). This would be consistent with our finding 458 

of only 5 Tanypodinae individuals in the Krępa sediments across four different depths.   The preservation of remains only from 459 

the 3rd and 4th larval stages is most likely related to the increased amount of chitin in these developmental stages, making 460 

remains of these stages more resistant to disintegration. The remains of Chironomidae may also not be preserved if 461 

accumulation rate is low and remains of species from shore habitats could be poorly preserved. However, studies confirm a 462 

positive relationship between biocenosis and thanatocoenosis (Iovino, 1975; Walker et al., 1984). The number of generations 463 

per year may also affect the abundance of Chironomidae, i.e. subfossils of multivoltine species can be overrepresented  464 

compared to bivoltine species, however, it is difficult to determine whether changes in species composition correspond with 465 

voltinism (Tokeshi, 1995). 466 

The main factor influencing the preservation of Chironomidae remains is the content of CaCO3, especially in moderately and 467 

strongly acidified lakes. This factor is often more important than pH, depth or time since the deposition of remains (Bailey et 468 

al., 2005). The microenvironment and the presence of organic matter are of great importance for the preservation of remains 469 

(Briggs and Kear, 1993; Sageman and Hollander, 1999). The faster mineralisation occurs, the better the preservation of any 470 

remains (Briggs and Kear, 1993; Park, 1995). Further factors reducing the abundance of chironomids are extreme temperatures, 471 

low nutrient levels, acidic waters, high Se concentrations (Del Wayne et al., 2018; Mousavi, 2002) , the content of hydrogen 472 

sulphide during holomixis, as well as paludification of the lake (Takagi et al., 2005; Płóciennik et al., 2020). 473 

The lack of oxygen in the sediment could have limited not only the number of Chironomidae but also the number of preserved 474 

head capsules in the sediment. In particular, chitin does not usually accumulate in anaerobic sediment,  because it is more 475 

easily broken down by bacteria, effectively mineralising it into CH4 and CO2 (Wörner and Pester, 2019). 476 

Chironomid species found in the Krępa sediments have a wide range of environmental conditions in which they occur. In 477 

particular, we observe dominance of species resilient to harsh conditions, such as the oxygen-deficiency-resistant Chironomus 478 

anthracinus-type, the eutrophic Chironomus plumosus-type (18.7 and 22.2 %  of the total number of head capsules, 479 

respectively), as well as the cold-adapted Corynocera ambigua (25.7%) and the freeze-resistant Propsilocerus lacustris-type 480 

(7.5 %). 481 
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Corynocera ambigua is a species often described as cold-adapted oligotrophic (Fjellberg, 1972; Pinder and Reiss, 1983; 482 

Walker and Mathewes, 1988; Brooks et al., 2007; Luoto et al., 2008; van Asch et al., 2012), inhabiting shallow lakes in arctic 483 

and subarctic regions, though it is also found in eutrophic lakes (Halkiewicz, 2008; Kotrys et al., 2020) Adults of this species 484 

are not able to fly, and breed on the water surface when the temperature reaches approximately 7-8 °C (optimum 13.7 °C). 485 

Mothes (1968) concluded that Corynocera ambigua larvae develop in autumn and winter, but not during summer. The decline 486 

in their numbers may be due to growth of filamentous algae in summer. Larvae of Corynocera ambigua are eurythermic, while 487 

the pupae are cold-stenothermic (Brundin, 1949). They only reproduce at low temperatures and inhabit water bodies with a 488 

maximum depth of approximately 25 m. The abundance of Corynocera ambigua has been shown to be correlated with 489 

charophyte contents (Brodersen and Lindegaard, 1999b). Although this species does not feed on charophytes, their presence 490 

may increase the number of diatoms and stabilise the trophic status and water clarity (Forsberg, 1965; Blindow, 1992). 491 

Corynocera ambigua live in dendritic tubes, its main food source being diatoms/algal detritus. (Fjellberg, 1972; Boubee, 1983).  492 

This species has been recorded during cold episodes or glacial periods, at sites in England (Bedford et al., 2004), Norway 493 

(Velle et al., 2005), Poland (Płóciennik et al., 2015), and the Baltic region (Hofmann and Winn, 2000). However, Corynocera 494 

ambigua, cannot be considered merely a cold species. Some authors believe that its occurrence depends on high oxygen content 495 

in the water (Brodersen and Lindegaard, 1999a) and for other authors, it is a pioneer species that appears first after glacial 496 

retreat, similarly to Chironomus anthracinus-type (e.g. Heiri and Millet, 2005; Ilyashuk et al., 2005, 2013, 2022; Gandouin et 497 

al., 2016). Luoto and Sarmaja-Korjonen (2011) suggest this is how the species adapts to existing climatic conditions. The 498 

locally observed decline in Corynocera ambigua numbers in the Krępa sediments could also be attributed to changes in lake 499 

productivity related to changes in the environment. For example, when the production of soil and trees increased, the number 500 

of this species has been found to decrease (Magny et al., 2006; Larocque-Tobler et al., 2009).  501 

Chironomus anthracinus-type occurs in various lake zones and is capable of surviving approximately 2–4 months of oxygen 502 

deficiency in water (Hamburger et al., 1994). It is a species which easily occupies niches that are inaccessible to others. 503 

According to some authors, it is a eutrophic (Kansanen, 1985; Brodersen and Lindegaard, 1999b) or cold-adapted species 504 

(Rohrig et al., 2004; Brooks et al., 2007; Płóciennik et al., 2011) and prefers soft, more organic sediments (McGarrigle, 1980). 505 

Therefore, the appearance of Chironomus anthracinus-type and Glyptotendipes pallens-type in the Krępa sediment may 506 

indicate the onset of eutrophication. Both Chironomus anthracinus-type and Corynocera ambigua are found in stratified lakes 507 

(e.g., Saether, 1979; Heiri, 2004). As we observe in our record, both species are relatively resistant to unfavourable 508 

environmental conditions, so possess a wide range of conditions in which they can occur.  509 

Chironomus plumosus-type, also quite abundant in the sediment sequence, occurs in a wide range of habitats and is particularly 510 

resistant to anoxia (Saether, 1979; Brooks et al., 2007). Moreover, along with Dicrotendipes nervosus-type, this species is an 511 

indicator of progressive eutrophication (Brodersen and Lindegaard, 1999b) 512 

 Both eutrophic and oligotrophic species, as well as warm- and cold-adapted species, occur in the Krępa sediments.    513 

The origin of the sedimentary basin at Krępa is difficult to interpret. Most sites with deposits from the Holsteinian Interglacial 514 

in this region of Poland are associated with tunnel valleys that formed during the Elsterian glaciation (Żarski et al., 2005; 515 
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Nitychoruk et al., 2006). However, these sites are usually located beyond the maximum extent of the Older Saalian glaciation 516 

(Drenthe Stage in Germany; Odra glaciation in Poland; MIS 6) and thus, are subtly visible in the present surface morphology. 517 

In the case of Krępa, these deposits have been covered by the Older Saalian glacial advance, resulting in the complete 518 

transformation of the post-Elsterian landscape. Based on the geological cross section presented in the  DGMP sheet 676 - Kock 519 

(Drozd and Trzepla, 2007) and the distribution of interglacial deposits in the study area (Jesionkiewicz, 1982), it can be in ferred 520 

that the depression hosting the Krępa palaeolake was a relatively extensive kettle hole, formed during the recession of the 521 

Elsterian ice sheet. 522 

As there are obviously only very few habitats where no invertebrates occur, the absence of chironomid remains during most 523 

of the Holsteinian Interglacial could be best explained by sediment-related disintegration and/or anoxic conditions at the 524 

bottom of a relatively deep lake. Another reason for the lack of remains could be the mineralisation of chitin. This would be 525 

in agreement with the parallel observed lack of cellulose remains from plants as well as with the very low number of 526 

Tanypodinae head capsules. However, satisfyingly explaining the lack of chironomid remains in most of the interglacial lake 527 

deposits requires further research and an in-depth comparison of our results with other lake sediments that lack chitinous 528 

remains. 529 

4.1.2 Chironomid-inferred temperature reconstruction from the Krępa site in relation to pollen-based climate 530 

reconstructions 531 

A chironomid-based July temperature reconstruction was only possible for the part of the Krępa sediment core that corresponds 532 

to LPAZ KR-12 and early LPAZ KR-13, which most likely corresponds to MIS 11b. Chironomid-based July temperatures 533 

during the early part of this interval (LPAZ KR-12a and LPAZ KR-12b) were probably still relatively high and stable, ranging 534 

from 19 to 21 °C, but dropping rapidly in LPAZ KR-12c and LPAZ KR-13a to 15-17 °C. The following increase to ~20 °C at 535 

the top of LPAZ KR-13a possibly reflects the transition into the post-Holsteinian interstadial that corresponds to MIS 11a. 536 

This data indicates the July temperature maximum during the post-Holsteinian is consistent with the temperature range of the 537 

SNP training set (3.5-20.0 °C) (Kotrys et al., 2020). Comparing MIS 11 to the Holocene, it is crucial to mention that insolation 538 

patterns for both periods differ - MIS 11 was characterised by two insolation maxima,  whilst there was only one (though more 539 

distinct) during the Holocene (Rohling et al., 2010). In fact, summer temperature increase during MIS 11b might be explained 540 

by increasing insolation.  541 

In general, most Chironomidae remains in the Krępa sediments are found during cool periods, but are absent during warm 542 

periods. In contrast, Chironomidae were most abundant in LPAZ KR-12, which roughly corresponds to MIS 11b, the first cold 543 

phase after the Holsteinian Interglacial (Imbrie et al., 1984; Fawcett et al., 2011). To date, studies using subfossil Chironomidae 544 

to reconstruct past climate conditions mainly focused on the Weichselian Late Glacial and the Holocene (Gandouin et al., 545 

2016; Nazarova et al., 2018; Druzhinina et al., 2020). As a result, there are very few chironomid-based July temperature 546 

reconstructions for the Late and Middle Pleistocene older than 20 ka BP available (Gandouin et al., 2007; Samartin et al., 2016; 547 

Plikk et al., 2019; Ilyashuk et al., 2020; Bolland et al., 2021; Lapellegerie et al., 2024; Rigterink et al., 2024),  and no studies 548 
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for the MIS 11 complex. In general, chironomid records from other sites and time intervals are characterised by a higher 549 

abundance and species diversity of Chironomidae, whilst at Krępa, Chironomidae occur only during the early glacial period 550 

following the Holsteinian Interglacial. A similar phenomenon has so far only been observed in the Laptev Sea region (Arctic 551 

Siberia), where Chironomidae also appear only in the cold period after the Eemian Interglacial, when the site was surrounded 552 

by wet grass-sedge shrub tundra period (Andreev et al., 2004). Assemblages from this site consist mostly of unidentified 553 

Tanytarsini individuals, eutrophic Chironomus plumosus and semi-aquatic taxa such as Limnophyes/Paralimnophyes, Smittia 554 

and Paraphaenocladius. The three species from the latter group were not identified at Krępa as opposed to Chironomus 555 

plumosus and Tanytarsini. Contrary to the patchy occurrence of chironomid-based temperature reconstructions, the pollen-556 

based climate reconstructions using MAT and WA-PLS provide continuous and robust recordsthat have been successfully 557 

applied across various European regions and time periodstemperature and precipitation records (Mauri et al., 2015; Chevalier 558 

et al., 2020). During LPAZ KR-12a, pollen reconstructions indicate relatively stable and moderate summer temperatures. 559 

Additionally, PANN remains relatively high during this phase, suggesting consistently moist conditions supporting dense 560 

forest coverage. This is in agreement with the observed dominance of Pinus forests with some  admixed Picea during this 561 

phase, reflecting more humid but not necessarily warmer conditions (Caudullo et al., 2016).  562 

The significant NAP increase LPAZ KR-12b suggests substantial forest decline, although the pollen-based MTWA 563 

reconstructions indicate relatively warm summers. This combination of ecological and climatic signals strongly suggests that 564 

the decline in forest cover was primarily driven by colder winter temperatures rather than summer thermal conditions. The 565 

pollen-based MTWA reconstruction confirms peak interstadial warmth in terms of summer temperatures are comparable to 566 

current mean July temperatures in Eastern Poland (Mauri et al., 2015; Kotrys et al., 2020; Gedminienė et al., 2025). 567 

Furthermore, the pollen-based TANN reconstruction also highlights peak interstadial warmth during LPAZ KR-12b, indicating 568 

overall favourable climatic conditions during the growing season. The pronounced increase in open-ground vegetation (NAP 569 

dominance) and herbaceous taxa thus likely reflects an ecological response to severe winter conditions, that restricted the 570 

establishment and survival of forest taxa, particularly those sensitive to extreme winter frosts (Körner and Paulsen, 2004; 571 

Harrington and Gould, 2015). 572 

LPAZ KR-12c begins with pioneer Betula-Larix forests, reflecting a significant climatic shift towards colder and possibly drier 573 

conditions. The appearance of Larix, a cold-tolerant, light-demanding taxon adapted to short growing seasons and low 574 

temperatures, reinforces the interpretation of subarctic or boreal-like climate conditions. Larix is typically associated with 575 

northern coniferous forests, and reaches its distributional limits in areas with low winter temperatures and moderate 576 

precipitation (San-Miguel-Ayanz et al., 2022). Gradually increasing pollen signals from Pinus indicate a modest rise in thermal 577 

conditions later within LPAZ KR-12c, but within a generally cool and moisture-limited climatic regime. The absence of 578 

chironomids during this interval corroborates the interpretation of sustained cooler and drier conditions. Chironomid 579 

assemblages are sensitive to environmental harshness, and under extremely cold or oligotrophic conditions, their production 580 

may be so low that remains are not preserved in sediment records (Eggermont and Heiri, 2012). 581 
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The gradual cooling indicated by our chironomid-based reconstruction during LPAZ KR-13a is consistent with the presence 582 

of sparse Betula forests at the onset of this zone. Pollen-based reconstructions suggest that MTWA remained relatively mild 583 

(~17.3 °C MAT, ~15.3 °C WA-PLS), closely aligning with the chironomid-inferred mean Tjul-Ch value of ~17.5°C for this 584 

interval. Although the chironomid data exhibits a broader range (15–20°C), this variability falls within typical reconstruction 585 

uncertainties and does not suggest a fundamentally different climatic signal. Meanwhile, declines in Tann TANN and especially 586 

MTCO indicate cold-season severity remained the primary constraint on forest development (Nienstaedt, 1967; Körner and 587 

Paulsen, 2004; Harrington and Gould, 2015). In parallel, a reduction in Pann PANN further supports increasing climatic stress, 588 

potentially limiting moisture availability and forest resilience during this transitional phase (Körner and Paulsen, 2004). 589 

The broader relevance of the climatic conditions reconstructed from Krępa pollen data is given by the comparison with other 590 

MIS 11 palaeotemperature reconstructions from Southern Europe (Fig. 5) (Rodrigues et al., 2011; Oliveira et al., 2016; Kousis 591 

et al., 2018; Ardenghi et al., 2019; Sassoon et al., 2023, 2025). These Mediterranean records indicate generally warm conditions 592 

during MIS 11b, punctuated by recurrent cooling and drying events. For instance, the Lake Ohrid from SE Europe record 593 

shows a transition from temperate deciduous to cold mixed forests, with Tann TANN dropping to ~2 °C and mean temperature 594 

of the coldest month below −8 °C during the coldest events, despite precipitation often remaining near or above 800–900 mm 595 

(Kousis et al., 2018). Meanwhile, records from the SW Mediterranean reflect similar climate oscillations, with Sassoon et al. 596 

(2025) documenting synchronous declines in Tann TANN and Pann PANN centered ~398 ka BP. Krępa record reflects relatively 597 

steady summer cooling alongside more marked declines in winter temperatures and moderately decreasing precipitation. 598 

Mediterranean vegetation is primarily water-limited, making it especially vulnerable to fluctuations in atmospheric moisture 599 

and reductions in winter rainfall (Giorgi, 2006; Lionello et al., 2006). Vegetation in Eastern Europe, however, is highly 600 

responsive to winter climate extremes. In particular, cold-season frost events, snow cover variability, and late-winter cold 601 

snaps affect plant performance, especially in temperate and continental zones (Kreyling, 2010; Camarero et al., 2022).  602 

The lack of accurate absolute dating for terrestrial sediment sequences from the Holsteinian Interglacial makes it difficult to 603 

directly compare the results from Krępa to other MIS 11 sites. However, as there are a few quantitative temperature 604 

reconstructions based on pollen and biomarkers from other sites in Europe for the post-Holsteinian, a general comparison of 605 

temperature levels during this interval is feasible. For example, Tenaghi Philippon record indicates mild summer temperature 606 

drop to ~16 °C at the coolest period of MIS 11b (Ardenghi et al., 2019). Climatic fluctuations at another Mediterranean region 607 

site – ODP 9786 at Alboran Sea – were not abrupt, especially during first half of MIS 11b. Initially summer temperature stayed 608 

above 20 °C, only at further stage decreasing to ~17 °C (Fig. 5) (Sassoon et al., 2025). Pollen analyses on marine sediments 609 

from the Iberian margin show similar climatic and ecological patterns for MIS 11b as observed at Krępa, namely repeated 610 

forest decline events. These were paralleled by reductions in sea surface temperature, although temperatures were still 611 

relatively high during most of MIS 11b – only about 1 °C below MIS 11c levels (Rodrigues et al., 2011; Oliveira et al., 2016). 612 

A similar pattern between still relatively high air temperature during early MIS 11b, and a temperature drop only during late 613 

MIS 11b is also seen in palynological data from Lake Ohrid in SE Europe (Kousis et al., 2018).  614 
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 615 

Figure 5: Comparison of (top to bottom) the Marine Isotope Stage (MIS) 11b pollen- and chironomid-based summer temperature 616 
reconstructions from Krępa, a summer temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers 617 
(brGDGTs) from Tenaghi Philippon, Greece (Ardenghi et al., 2019), a pollen-based summer temperature reconstruction from Lake 618 
Ohrid, Balkan Peninsula (Kousis et al., 2018; Kountsodendris et al., 2020), a pollen-based summer temperature reconstruction from 619 
ODP Site 976, Alboran Sea (Sassoon et al., 2025), and a biomarker-based (Uk’37) sea surface temperature (SST) reconstruction 620 
from marine core MD03-2699, Iberian margin (Rodrigues et al., 2011). The LR04 d18O stack (solid black line; Lisiecki and Raymo, 621 
2005) and the 21 June insolation at 50° N (approximate latitude of Krępa; dashed grey line; Laskar et al., 2004) are provided as a 622 
palaeoclimatic context. The timing of the MIS boundaries 12/11c and 11a/10 is given according to Lisiecki and Raymo (2005); the 623 
timing of the MIS boundaries 11c/11b and 11b/11a is tentative. The insert map shows the locations of the individual proxy records. 624 

In line with our chironomid-based July temperature reconstruction from Krępa, these results show that the temperature decline 625 

at the demise of the Holsteinian Interglacial was not abrupt, and at least summer temperatures likely remained at a relatively 626 

high level for several thousand years. The general summer temperature variability that is seen in the Krępa record throughout 627 

the post-Holsteinian, i.e. the initial drop during the early MIS 11b, the following increase and the more pronounced decrease 628 



 

24 

 

during late MIS 11b, as well as the marked increase at transition into MIS 11a, closely resembles vegetation and sea surface 629 

temperature variability at the Iberian margin, and may indicate a substantial impact of insolation variability (Rodrigues et al., 630 

2011; Oliveira et al., 2016). 631 

Conclusion 632 

This study presents the first combined chironomid- and pollen-based palaeoclimatic reconstruction for the post-Holsteinian 633 

i.e. MIS 11b, offering a new perspective on climate variability in Eastern Europe during this period. The results highlight the 634 

complementarity and reliability of both proxies, as pollen-based MAT and WA-PLS reconstructions show strong internal 635 

consistency and correspond well with chironomid-inferred summer temperatures where data is available. The summer 636 

temperatures range from 15 to 19 °C and between 15 and 20 °C for the pollen- and chironomid-based reconstruction 637 

respectively. This indicates colder summers compared to present times for most of the post-Holsteinian period. The pollen-638 

based MAT reconstructions exhibit particularly high predictive skill, especially for temperature variables. The analysed part 639 

of the Krępa sediment record reveals a progressive shift towards a more continental climate throughout MIS 11b. This is 640 

reflected by gradually cooling summers, increasingly severe winters, and a decline in annual precipitation. These climatic 641 

trends coincide with marked vegetation changes, including forest retreat and a rise in herbaceous taxa during colder phases.  642 

To date, the vast majority of studies addressing terrestrial palaeoclimate variability during the Middle Pleistocene relies on 643 

pollen analysis. However, this does not imply a complete lack or low abundance of Chironomid-inferred reconstruction in sites 644 

other than Holocene. Moreover, they may prove to be a priceless source of knowledge on temperature, considering potential 645 

differences between pollen and Chironomid-inferred records. By comparing the results from different sites, it will be possible 646 

to identify the factor(s) that influenced the preservation of Chironomidae subfossil remains.  647 

Ultimately, this study underscores the value of multi-proxy approaches in palaeoclimate reconstruction, particularly for pre-648 

Holocene periods. Chironomids show significant potential as a summer temperature proxy in older sediments, as long as  649 

preservation conditions are favourable. 650 
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