Chironomid- and pollen-based quantitative climate reconstructions

for the post-Holsteinian (MIS 11b) in Central Europe

- 3 Tomasz Polkowski¹, Agnieszka Gruszczyńska^{1,7}, Bartosz Kotrys², Artur Górecki³, Anna Hrynowiecka⁴,
- 4 Marcin Żarski⁵, Mirosław Błaszkiewicz¹, Jerzy Nitychoruk⁶, Monika Czajkowska¹, Stefan Lauterbach^{1,8}
- 5 Michał Słowiński¹
- ¹Institute of Geography and Spatial Organization Polish Academy of Sciences, Warsaw, 00-818, Poland
- ²Polish Geological Institute National Research Institute, Szczecin, 71-130, Poland
- 8 ³Institute of Botany, Jagiellonian University, Cracow, 30-387, Poland
- 9 ⁴Polish Geological Institute National Research Institute, Gdańsk, 80-328, Poland
- 10 ⁵Polish Geological Institute National Research Institute, Warsaw, 00-975, Poland
- ⁶Pope John Paul II State School of Higher Education, Biała Podlaska, 21-500, Poland
- ⁷Faculty of Physics and Earth System Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig,
- 13 Germany

14

20

- ⁸GFZ Helmholtz Centre for Geosciences, Section 4.6 Geomorphology, Working Group Terrestrial
- Climate Archives, 14473 Potsdam, Germany
- 17 Correspondence to: Tomasz Polkowski (tomasz.polkowski@twarda.pan.pl)
- 18 Abstract. Investigating climatic and environmental changes during past interglacials is crucial to improve the our
- 19 understanding of the mechanisms that govern the changes related to current global warming. Among the numerous proxies
 - that can be used to reconstruct past environmental and climatic conditions, pollen allow \underline{s} quantitative reconstructions of annual,
- 21 warmest month and coldest month air temperatures as well as precipitation sums, while the head capsules of and Chironomidae
- 22 larvae are widely used to infer past summer air temperature as well as in the trophic state or pH of water bodies. Nevertheless,
 - the latterChironomidae have so far mostly been used for reconstructing Holocene and Late Weichselian summer temperatures
- 24 while whilst there are to date only four sites in Europe with chironomid-based summer air temperature reconstructions for the
- 25 Late Pleistocene and no such records for any Middle Pleistocene warm period as of the writing of this paper. In this study we
- 26 present the first quantitative palaeoclimate reconstruction for the post-Holsteinian (Marine Isotope Stage (MIS) 11b) in
- 27 Central Europe that is-based on both pollen and fossil chironomid remains preserved in palaeolake sediments recovered at
- 28 from Krepa, southeastern Poland. Besides being used for the palaeoclimatic reconstruction, pollen analyses analysis provides
- 29 the biostratigraphic framework and a broader perspective of climate development at the end of Holsteinian Interglacial. Fossil
- 30 Chironomidae assemblages at Krępa consist mainly of oligotrophic and mesotrophic taxa (e.g. Corynocera ambigua,
- 31 Chironomus anthracinus-type) while eutrophic taxa (e.g. Chironomus plumosus-type) are less abundant. The chironomid-

based summer temperature reconstruction yields indicates. July air temperatures between 15.3 and 20.1°C during the early post-

Holsteinian. Similar summer air temperature changes during the first stadial after the Holstein Interglacial are also reflected

by the pollen data, which, however, show a certain delay compared to the chironomid-based temperature reconstruction. In

any case, results from Krepa prove that conducting Chironomidae analysis is feasible for periods as early as the Middle

Earth's history is characterised by repeated climate fluctuations, which had not been influenced by humans until the Holocene

Pleistocene, improving our understanding of the mechanisms that control present-day climatic and environmental changes.

1 Introduction

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56 57

58

59

60

61

62

63

(marine isotope stage (MIS) 1), the most recent interglacial period which had until the present interglacial, the Holocene (marine isotope stage (MIS) 1), only natural causes and were not influenced by humans. This offers the opportunity to compare natural climatic changes in the past with the current ones in order to better assess the anthropogenic impact on the present climate. With respect to human impact during the Holocene, the so-called "Anthropocene" is presently widely debated across various scientific disciplines though its exact timing, as well as and the actual dimension of human influence on the environment are still debated (Brondizio et al., 2016). Holocene environmental archives, such as lake, palaeolake and ocean sediments provide material for comprehensive palaeoecological analyses. The sensitivity of some groups of organisms in these archives to changing hydrological or climatic conditions allows to reconstruction of past events that directly affected the abundance or structure of the communities (Battarbee, 2000). Species, which are characterised by narrow ecological preferences, whether it besuch as air temperature, water chemistry or water depth, are used for certain palaeoenvironmental reconstructions (Juggins and Birks, 2012). Many ecological parameters can be reconstructed using different proxies. For example, Foraminifera foraminiferas can be used to reconstruct ocean pH (Foster and Rae, 2016; Roberts et al., 2018), pollen can provide information about changes in vegetation changes (Ralska-Jasiewiczowa et al., 2004; Kupryjanowicz et al., 2018) and can be used to reconstruct past human activity (Chevalier et al., 2020) or past climate conditions (e.g. Rylova and Savachenko, 2005; Hrynowiecka and Winter, 2016). Head capsules of chironomids can serve as the basis for summer air temperature reconstructions (Eggermont and Heiri, 2012) as well as and for assessing the trophic state or pH of freshwater ecosystems (Płóciennik, 2005). In general, palaeoecological and palaeoclimatological reconstructions indicate a considerable record human impact on the environment during the last 300 years (Zalasiewicz et al., 2010) from the Iron Age (Dumayne-Peaty, 1998; Szal et al., 2014). However, these reconstructions neither provide unequivocal information about air temperature changes nor allow the relative contribution of natural and human drivers to be distinguished nor allow to distinguish between the relative contribution of natural drivers and human impact to these changes. To gain a deeper understanding of the present human impact on climate and environment, it is therefore essential to investigate natural climate variability and environmental changes during past warm periods prior to any anthropogenic impact. In this regard, a particularly suitable targets are interglacial periods, is thee.g.

BP, thus corresponding to MIS 11c (Lauer and Weiss, 2018; Lauer et al., 2020; Fernández Arias et al., 2023). Holsteinian Interglacial is considered the analogue of the Holocene in terms of astronomical parameters (eccentricity, precession, insolation), climatic conditions and greenhouse gases levels (Koutsodendris et al., 2010; Yin and Berger, 2012; Kleinen et al., 2016). To date, there are only very a few chironomid-based reconstructions of climatic and ecological conditions for the Middle and Late Pleistocene in Europe available (Engels et al., 2008; Bolland et al., 2021; Ilyashuk et al., 2022; Lapellegerie et al., 2024; Rigterink et al., 2024), but none for the Holsteinian Interglacial and the time thereafter in particular. Hence, knowledge about climatic conditions at this time is mainly derived from pollen data, e.g. from the Praclaux maar in southern France (Reille and de Beaulieu, 1995), Tenaghi Philippon in north-eastern Greece (Tzedakis et al., 2006; Ardenghi et al., 2019)-and, Lake Ohrid on the North Macedonian-Albanian border (Kousis et al., 2018), Lake Fucino in central Italy (Vera-Polo et al., 2024) and marine core from ODP site 976 in the Alboran Sea (Sassoon et al., 2023, 2025). In Central Europe, high-resolution MIS 11 pollen records are for example available from the Ossówka palaeolake in eastern Poland (Nitychoruk et al., 2005, 2018; Bińka et al., 2023) as well as from Nowiny Żukowskie in eastern Poland (Hrynowiecka and Winter, 2016) and Dethlingen in northern Germany (Koutsodendris et al., 2010). Another site worth mentioning is Also notable is Bilhausen in central Germany, which provided a pollen record for the so-called Bilshausen Interglacial, which might correspond to MIS 11 or MIS 13 (Kühl and Gobet, 2010). In Northern Europe, there are even fewer records covering MIS 11 e.g. the record from Hoxne in eastern England (Horne et al., 2023) where temperature reconstructions were performed using chironomids (e.g., (Brooks, 2006), ostracods (Horne, 2007) and beetle remains (Atkinson et al., 1987). The contemporary state of knowledge considering on MIS 11 has recently been reviewed by Candy et al. (2014). Climate conditions in Central Europe were in general temperate at that time (Nitychoruk et al., 2018), but vegetation reconstructions suggest warmer and more humid conditions compared to the Holocene climatic optimum (Hrynowiecka and Winter, 2016). Two major climatic oscillations have so far been documented during the Holsteinian Interglacial, the Older Holsteinian Oscillation (OHO) and the Younger Holsteinian Oscillation (YHO). The OHO occurred around 418 ka BP (Koutsodendris et al., 2010, 2012; Górecki, 2023) and is clearly connected to a rapid cooling as indicated by the disappearance of temperate vegetation (mostly Picea-Alnus forests) and the spread of pioneer tree taxa including Betula, Pinus and Larix (Koutsodendris et al., 2010, 2012; Candy et al., 2014; Hrynowiecka and Pidek, 2017; Górecki et al., 2022). Although the OHO has been described at multiple sites across northern Europe (Koutsodendris et al., 2012), it has so far not been identified in few southern European sites (Kousis et al., 2018; Sassoon et al., 2023, 2025). In contrast to the OHO, the YHO occurred around 400 ka BP within the climatic optimum of the Holsteinian Interglacial (Carpinus-Abies phase) and was apparently not connected to a significant cooling (Górecki et al., 2022). Records from Germany and eastern Poland suggest a sudden regression of Carpinus from the forest communities (Koutsodendris et al., 2010; Hrynowiecka et al., 2019; Górecki et al., 2022), and pParticularly in Poland a rapid spread of Abies with an admixture of Corylus is observed, with and at southern sites also David be also David by Poland a rapid spread of Abies with an admixture of Corylus is observed, with and at southern sites also David by Poland a rapid spread of Abies with an admixture of Corylus is observed, with an admixture of Corylus is observed. found in southern sites (Górecki et al., 2022), suggesting that temperature was not limiting the growth of Carpinus. The climate during Holsteinian Interglacial (MIS 11c) was characterised by relatively stable warm and moist conditions with global temperatures approximately 1.5-2 °C above the pre-industrial level (Masson-Delmotte et al., 2010). Raymo and

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86 87

88

89

90

91

92

93

94

95

96

98 Mitrovica (2012) and Muhs et al. (2012) suggest sea level was possibly 6-13 m higher than present in this period. This can be 99 partially attributed to the melting of the Greenland Ice Sheet (Robinson et al., 2017), as pollen and palaeoDNA data suggest 100 the existence of spruce forests in Greenland at this time (Willerslev et al., 2007; de Vernal and Hillaire-Marcel, 2008). 101 In Europe, warm and wet oceanic climate conditions extended far to the east as evidenced by the presence of Taxus and Abies 102 pollen at sites in Lithuania (Kondratiene and Gudelis, 1983), Belarus (Mamakowa and Rylova, 2007), and western Ukraine 103 (Lanczont et al., 2003; Benham et al., 2016), whilst modern distribution limits of these taxa are estimated further to the west 104 (Benham et al., 2016). Evidence from several terrestrial records from Eurasia suggests that the MIS 11c climate was highly 105 complex, with pronounced climate variability occurring on both centennial and millennial timescales (Koutsodendris et al., 106 2010; Prokopenko et al., 2010; Tzedakis, 2010; Oliveira et al., 2016; Tye et al., 2016; Górecki et al., 2022). Holsteinian 107 Interglacial was followed by gradual cooling period (MIS 11b) which resulted in annual temperature decline and forest 108 contractions (Tzedakis et al., 2006; Kousis et al., 2018; Hrynowiecka et al., 2019; Sassoon et al., 2025). 109 The pollen succession of the Holsteinian Interglacial in Poland is characterised by a dominance of Picea-Alnus at first, then 110 Carpinus and Abies, as well as a significant proportion of Taxus. Thermophilic taxa also occur frequently, examples including: 111 Pterocarya, Celtis, Juglans, Ilex, Carya, Parrotia, Buxus, Vitis, Brasenia, Trapa, and Azolla (Janczyk-Kopikowa, 1991). 112 Temperature reconstructions based on the indicator species method suggest the warmest period was the Carpinus-Abies phase, 113 with estimated temperatures of 0-3 °C in January and 21-26 °C in July. This, along with high precipitation created a suitable 114 environment for the spread of rare warmth-adapted taxa (Krupiński, 1995; Hrynowiecka and Winter, 2016). However, 115 palaeotemperature reconstructions from Dethlingen (Koutsodendris et al., 2012) suggest slightly lower temperatures in 116 Western Europe for both January (-2.2 ± 3.1 °C) and July (17.8 ± 2.1 °C). Pollen-based temperature reconstruction from Lake 117 Ohrid (SE Europe) indicates higher January (MTCO) maximum (4.4 °C) (Kousis et al., 2018). 118 MIS 11b brought the AP percentages decrease in Central Europe (Hrynowiecka et al., 2019). Lake Ohrid pollen record reveals 119 the domination of *Pinus* and plant open communities at the time, with Poaceae and *Artemisia* species included (Kousis et al., 120 2018). ODP Site 976 pollen-based climate reconstructions shows annual temperature drop to around 10 °C and summer 121 temperature to 20 °C (Sassoon et al., 2025). 122 The warm phase of the Holsteinian Interglacial was also confirmed by oxygen isotope analyses on endogenic lake carbonates 123 (Nitychoruk et al., 2005) and snail shells (Szymanek, 2018). These showed significant changes in climatic conditions 124 throughout the Holsteinian Interglacial, during which, continental and maritime influences intertwined in Central Europe. 125 Continental influences resulted in a shortened vegetation period with long winters, whilst the opposite occurred under maritime 126 influence, i.e. the vegetation period was significantly longer, temperatures were milder and precipitation rates were higher, 127 also reflected by the appearance of stenothermal plant species (Nitychoruk et al., 2005). 128 Aiming at improving the knowledge about climate variability at the demise of the Holsteinian Interglacial, we present in the 129 following the first quantitative climate reconstructions for the post-Holsteinian in Central Europe, which are based on

chironomid and pollen analyses.-The aim of analysing this post-interglacial period is to investigate temperature and vegetation

130

Chironomidae head capsules' presence in post-Holsteinian section of the core (unlike the Holsteinian part). In addition, we discuss the potential of chironomid analysis for palaeoecological studies study of Quaternary sediments as well as the challenges for chironomid analysis arising from both the evolution and interchanging adaptations to species ecological preferences and the preservation of fossil remains.

The Krepa palaeolake sediment succession (51°37'53.2"N, 22°18'38.1"E, 146 m asl.) is located in SE Poland, near the city

2 Study site and methods

2.1 Study area

136

137

138

139

140

141 142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

of Kock, approximately 120 km southeast of Warsaw (Fig. 1). It is under influence of humid continental climate (Dfb) in terms of the Köppen-Geiger climate classification (Peel et al., 2007). Average annual temperature for this region is ~ 8.6 °C, with July mean temperature of ~ 19 °C and January mean temperature of ~ -1 °C, while average annual precipitation is ca. 600 mm (Ustrnul et al., 2021). In a geomorphological senseGeomorphologically, it is situated in the central-eastern part of the North European Plain behind the maximum extent of the Saalian glaciation (Marks et al., 2018) and the sediment core analysed in this paper was obtained on a moraine plateau related to this ice sheet. Holsteinian Interglacial deposits in the area were first identified by Jesionkiewicz (1982) during cartographic work for the 1:50 000 Detailed Geological Map of Poland (DGMP; Sheet 676 - Kock) (Drozd and Trzepla, 2007). On the moraine plateau, the interglacial deposits are found under a thin cover of moraine deposits, whereas at the slopes of the nearby Wieprz River valley, they are exposed directly atton the surface. This study's material was obtained from a sediment core that was drilled at Krepa in 2015, by using a Geoprobe drilling device (Górecki, 2023). The basal part of the 23.8-m-long sediment core that was recovered from the Krepa sediment succession in 2015 (Fig. 1) consisted of a 2-m-thick layer of light greyish brown sandy clays with a large number of rock fragments (unit 1), which is interpreted as till. As indicated by its stratigraphic position and its petrographic characteristics (Drozd and Trzepla, 2007), this till was likely accumulated during the Elsterian glaciation (Sanian 2 glaciation in Poland), which is considered to correspond to MIS 12. Directly above the till, a 0.6-m-thick layer of laminated sandy silts and sandy-clayey silts is present (unit 2). These sediments are interpreted as the result of glaciolimnic sedimentation in a relatively shallow water body between blocks of dead ice during the recession of the Elsterian ice-sheet. The glaciolimnic sediments of unit 2 gradually turn into a carbonate gyttja with small interlayers of carbonatic-minerogenic gyttja (unit 3), which was most likely deposited in the profundal zone of an already relatively deep lake. Between 1187 and 760 cm core depth, non-carbonatic organic-minerogenic gyttjas are found with mineral content generally increasing towards the top of the core (unit 4). The limnic sediments of unit 4 are interpreted to reflect the gradual shallowing of the lake due to continuous sediment infilling. At the same time, the systematic increase in mineral components in the sediments most likely reflects increased denudation and erosion in the catchment, possibly favoured by reduced vegetation cover in response to a climatic shift towards colder conditions. The gyttja sequence of unit 4 is overlain by a 1.9-m-thick layer of clays (unit 5), which probably represent accumulation in a periglacial lake. The following 1.1-m-

thick layer of fine- to medium-grained sands (unit 6) as well as the overlying 3.1-m-thick layer of rhythmically laminated sandy silts (unit 7) are interpreted as proglacial sediments (units 6 and 7) of the transgressing Early Saalian (MIS 6) ice sheet. Above this, the profile is capped by a 1.5-m-thick layer of sandy morainic till with rock fragments (unit 8) related to Saalian glaciation.

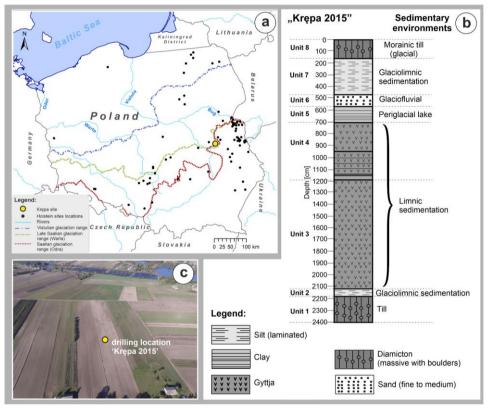


Figure 1: (a) Location of selected sites with deposits from the Holsteinian Interglacial in Poland with the Krępa site indicated by the big yellow dot. Glaciation ranges are based on Żarski et al. (2024), Pochocka-Szwarc et al. (2024) and

Marks (2023). (b) Lithological profile of the Krępa sediment succession and (c) location of the drilling site (foto-picture M. Żarski).

2.2 Holsteinian Interglacial

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

The climate during MIS 11c was characterised by relatively stable warm and moist conditions with global temperatures approximately 1.5 2 °C above the pre-industrial level (Masson Delmotte et al., 2010). According to Raymo and Mitrovica (2012) and Muhs et al. (2012), the sea level was possibly 6-13 m higher than present. This can be partly attributed to the melting of the Greenland Ice Sheet (Robinson et al., 2017), as pollen and palaeoDNA data suggest the existence of spruce forests in Greenland at this time (Willersley et al., 2007; de Vernal and Hillaire-Marcel, 2008). In Europe, warm and wet oceanic climate conditions extended far to the east as evidenced by the presence of Taxus and Abies pollen at sites in Lithuania (Kondratiene and Gudelis, 1983), Belarus (Mamakowa and Rylova, 2007), and the western Ukraine (Lanczont et al., 2003; Benham et al., 2016), while modern distribution limits of these taxa are estimated further to the west (Benham et al., 2016). Evidence from several terrestrial records from Eurasia suggests that the MIS 11c climate was also highly complex, with pronounced climate variability occurring on both centennial and millennial timescales (Koutsodendris et al., 2010; Prokopenko et al., 2010; Tzedakis, 2010; Oliveira et al., 2016; Tye et al., 2016; Górecki et al., 2022).(Tzedakis et al., 2006; Kousis et al., 2018; Hrynowiecka et al., 2019; Sassoon et al., 2025) The pollen succession of the Holsteinian Interglacial in Poland is characterised by a dominance of first Picea Alnus and then Carpinus and Abies, as well as by a significant proportion of Taxus, and a frequent occurrence of thermophilic taxa such as Pterocarya, Celtis, Juglans, Ilex, Carya, Parrotia, Buxus, Vitis, Brasenia, Trapa, and Azolla (Janezyk Kopikowa, 1991). Temperature reconstructions based on the indicator species method suggest for the warmest period, the Carpinus Abies phase, temperatures of 0 3 °C in January and 21 26 °C in July, which along with high precipitation amounts created a suitable environment for the spread of rare warmth-adapted taxa (Krupiński, 1995; Hrynowiecka and Winter, 2016). Palaeotemperature reconstructions from Dethlingen (Koutsodendris et al., 2012) suggest, however, slightly lower temperatures in Western Europe for both January (2.2 ± 3.1 °C) and July (17.8 ± 2.1 °C).(Kousis et al., 2018)(Hrynowiecka et al., 2019)(Kousis et al., 2018)(Sassoon et al., 2025) The warm character of the Holsteinian Interglacial was also confirmed by oxygen isotope analyses on endogenic lake carbonates (Nitychoruk et al., 2005) and snail shells (Szymanek, 2018). These showed significant changes in climatic conditions throughout the Holsteinian Interglacial, during which, continental and maritime influences intertwined in Central Europe. Continental influences resulted in a shortened vegetation period with long winters, while the opposite situation

occurred under maritime influence, i.e. the vegetation period was significantly longer, temperatures were milder and

precipitation rates were higher, also reflected by the appearance of stenothermal plant species (Nitychoruk et al., 2005).

2.2 Chironomidae analysis

Initially, 79 sediment samples of 1 cm³, taken between 800 and 2160 cm depth at 5-40 cm intervals, were investigated for the presence of Chironomidae head capsules. However, only 30 of them (965-1155 cm depth) simultaneously contained more than 0-2 individuals. Chemical preparation followed Brooks et al. (2007). The precipitate was initially heated with KOH. The wet sediment was then passed through 212 µm (to remove larger sediment particles) and 100 µm mesh sieves and subsequent residues were treated in an ultrasonic bath for 3 sec. The processed sediment was subsequently examined under a stereomicroscope (Zeiss Axio Lab A1) at 25× magnification. Chironomid head capsules from each sample were picked and mounted in Euparal. In case of damaged head capsules, individuals were counted as one if more than half of a body was preserved. Identification of chironomid head capsules followed Wiederholm (1983), Schmid (1993), Klink and Moller Pillot (2003), Brooks et al. (2007) and Andersen et al. (2013). Ecological preferences of identified taxa are based mainly on Brooks et al. (2007), Brundin (1949), Brodersen and Lindegaard (1999a) and Saether (1979).

Preliminary tests of sample preparation avoided the use of chemicals and included soaking the samples in water for a long time instead to reduce mechanical stress exerted to the head capsules during sample sieving as much as possible. Nevertheless, intact head capsules could not be extracted from some sediment samples even when using this gentle way of sample preparation, likely because of the already highly compacted sediment. As small numbers of head capsules may hinder palaeoecological and palaeoclimatic reconstructions, it was therefore partly necessary to combine samples (see below) or to increase the volume of the analysed sediment material (some samples were even as large as 20 cm3).

Chironomidae subfossil larvae were obtained from a total of 30 samples from the gyttja sediments (unit 4 on Fig. 1). Samples that contained fewer than 50 head capsules were merged except for a solitary sample at 1000 cm core depth. For 5 samples the required number of 50 head capsules was obtained and the remaining 24 samples were merged into seven clusters. After merging, sample clusters at 975 cm, 1080 cm, 1120 cm and 1125 cm core depth still did not reach 50 head capsules, but nonetheless, these samples and the one from 1000 cm core depth were included in the reconstruction as preliminary results seemed credible in terms of obtained temperature values.

2.3 Chironomid-based mean July air temperature reconstruction

In order to reconstruct mean July air temperatures (T_{jul-Ch}) from the Krepa chironomid assemblage, the Swiss-Norwegian-Polish (SNP) training set (Kotrys et al., 2020) was used as this covers a higher temperature span than other available Europe an training sets (e.g. the Finnish, Russian, Swiss-Norwegian training sets) (Kotrys et al., 2020). The SNP training set includes 357 lakes, 134 taxa, covers a temperature range between 3.5 and 20.1 °C. Weighted averaging-partial least squares transfer function (WA-PLS) was used for performing the reconstruction. The RMSEP for this combined training set is 1.39 °C, and the R^2 is 0.91 (Kotrys et al., 2020). Detrended Correspondence (MinDC) was also calculated. The temperature reconstruction was carried out using the C2 (v. 1.6) software (Juggins, 2007).

Sformatowano: Nagłówek 2

The lowest number of head capsules used for the $T_{\underline{\text{jul-Ch}}}$ reconstruction was 5 individuals at 1070 cm core depth whereas the highest number was 78 at 985 cm core depth. After merging, the total number of samples used for the $T_{\underline{\text{jul-Ch}}}$ reconstruction was 13.

2.43 Pollen analysis

The Krępa sediment core obtained in 2015 was sampled for palynological analyses at 5-cm intervals between 770 and 2180 cm depth, resulting in a total oftotaling 281 samples. A volume of 1 cm³ was collected from organic sediments (peat, gyttja), while minerogenic sediments (clays, silts, sands) were sampled with a volume of 3 cm³ due to the anticipated low pollen grain concentration. Samples were further processed following the standard methodology outlined by Erdtman (1960) with modifications such as involving the use of HF (Berglund and Ralska-Jasiewiczowa, 1986). Prior to laboratory processing, a *Lycopodium* tablet (Lund University, batch number 100320201, 20,408±543 spores per tablet) was added to each sample to determine the absolute sporomorph concentration (Stockmarr, 1971). Pollen grains were counted using a ZEISS Axio Imager A2 light microscope. Palynomorphs were identified using pollen keys and atlases (Beug, 1961; Stuchlik, 2001, 2002, 2009; Lenarczyk, 2014), as well as online resources (PalDat, 2000; NPP Database, Shumilovskikh et al., 2022). For most samples, counts were conducted up to a sum of 500 pollen grains from arboreal (AP) and non-arboreal (NAP) plants. However, samples from glacial sediments with low palynomorph concentration were counted up to a sum of 300 pollen grains only. Percentages were calculated based on the sum of pollen grains from trees and shrubs (AP), as well as herbaceous plants, and dwarf shrubs (NAP). The results of the palynological analysis are depicted in a simplified pollen diagram (Fig. 32) that was plotted using R Studio with the package riojaPlot (Juggins, 2022). Local Pollen Assemblage Zones (LPAZ) were established using the CONISS cluster analysis function within riojaPlot and were visually adjusted if necessary.

2.54 Pollen-based climate reconstructions

Climate variables reconstructed using pollen data include mean annual air temperature (TannTANN), mean annual precipitation sum (PannPANN), mean July air temperaturemean temperature of the warmest month (TjulMTWA), and mean January air temperaturetemperature of the coldest month (TjanMTCO). All reconstructed climatic factors were based on modern data sourced from the Northern Hemisphere database compiled by Herzschuh et al. (Herzschuh et al., 2023a, b). Two reconstruction approaches were applied: the Modern Analog Technique (MAT; (Overpeck et al., 1985; Guiot, 1990) and Weighted Averaging Partial Least Squares regression (WA-PLS; (ter Braak et al., 1993; ter Braak and Juggins, 1993). In the MAT approach, the optimal number of analogues (k) was determined using leave group out (LGO) cross-validationIn the MAT approach, the best number of analogues (k) was chosen by comparing model performance (RMSE and R²) across k values from 1 to 10. This analysis indicated that using k = 7 nearest analogues minimised prediction error, and thus 7 analogues were used in the final MAT reconstructions.; while For WA-PLS model selection, including the determination of the optimal number of components, was based on predictive accuracy assessed through leave-one-out (LOO) cross-validation and

- sformatowano: Angielski (Zjednoczone Królestwo)

- sformatowano: Czcionka: Kursywa

supported by randomization tests, following the methodology outlined by Chevalier et al. (2020). Based on these criteria, a four component WA-PLS was adopted. For each reconstruction model, the coefficient of determination (R2) and root mean square error (RMSE) were calculated to evaluate model performance. To express the uncertainty in the fossil climate reconstructions, we calculated standard errors of prediction (SEP) and depicted them as error bars in the figures. In the WA-PLS approach, sample-specific SEP were obtained via a bootstrapping implemented in the rioja package (Juggins, 2022). For the MAT model we used the cross-validated RMSE as a uniform error estimate for the fossil MAT reconstructions. Standard errors of prediction (SEP) were also computed and used as uncertainty estimates, displayed as error bars in the respective figures. Modern pollen data used in the reconstructions were sourced from the Northern Hemisphere database compiled by Herzschuh et al. (2023a, b). To enhance spatial relevance, the modern dataset was geographically filtered to include only samples within a 3000 km radius of the fossil site. This geographic filtering yielded a regional calibration set of 4955 modern pollen samples, out of the original global dataset. From the fossil pollen dataset, only taxa present in at least 50% of the samples and reaching at least 1% pollen value at least once were included. Additionally we ensured taxonomic consistency between the modern and fossil pollen data by harmonizing taxa names and then removing taxa with zero abundance in the filtered modern set. After this filtering, 10 pollen taxa remained in common between the modern calibration set and the fossil record (primarily major arboreal and herb taxa such as Larix, Betula, Pinus, Salix, Picea, Juniperus, Artemisia, Asteraceae, Poaceae, and Amaranthaceae). Using only these common taxa helps avoid noise from spurious taxa and improves model robustness. All data processing and modeling were carried out in R (RStudio), making use of the analogue and rioja packages for calibration and reconstruction.-The pollen-based reconstructions were restricted to the interval of the succession where chironomid remains were also present and were performed on 44 samples.

2.5 Chironomidae analysis

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

Initially, 79 sediment samples of 1 cm³, taken between 800 and 2160 cm depth at 5-40 cm intervals, were investigated for the presence of Chironomidae head capsules. However, only 30 of them (965-1155 cm depth) simultaneously contained more than 0-2 individuals, creating a sequence that enabled a summer temperature reconstruction. Chemical preparation followed Brooks et al. (2007). The precipitate was initially heated with KOH. The wet sediment was then passed through 212 µm (to remove larger sediment particles) and 100 µm mesh sieves and subsequent residues were treated in an ultrasonic bath for 3 sec. The processed sediment was subsequently examined under a stereomicroscope (Zeiss Axio Lab A1) at 25× magnification. Chironomid head capsules from each sample were picked and mounted in Euparal. In case of damaged head capsules, individuals were counted as one if more than half of a body was preserved. Identification of chironomid head capsules followed Wiederholm (1983), Schmid (1993), Klink and Moller Pillot (2003), Brooks et al. (2007) and Andersen et al. (2013). Ecological preferences of identified taxa are based mainly on Brooks et al. (2007), Brundin (1949), Brodersen and Lindegaard (1999a) and Saether (1979).

Preliminary tests of sample preparation avoided the use of chemicals and included soaking the samples in water for a long time instead to reduce mechanical stress exerted to the head capsules during sample sieving as much as possible. Nevertheless,

— sformatowano: Czcionka: Kursywa

intact head capsules could not be extracted from some sediment samples even when using this gentle way of sample preparation, likely because of the already highly compacted sediment. As small numbers of head capsules may hinder palaeoecological and palaeoclimatic reconstructions, it was therefore partly necessary to combine samples (see below) or to increase the volume of the analysed sediment material (some samples were even as large as 20 cm3). Chironomidae subfossil larvae were obtained from a total of 30 samples from the gyttia sediments (unit 4 on Fig. 1). Samples that contained fewer than 50 head capsules were merged except for a solitary sample at 1000 cm core depth. For 5 samples the required number of 50 head capsules was obtained and the remaining 24 samples were merged into seven clusters. After merging, sample clusters at 975 cm, 1080 cm, 1120 cm and 1125 cm core depth still did not reach 50 head capsules, but nonetheless, these samples and the one from 1000 cm core depth were included in the reconstruction as preliminary results seemed credible in terms of obtained temperature values.

2.6 Chironomid-based mean July air temperature reconstruction

In order to reconstruct mean July air temperatures ($T_{\text{jul-Ch}}$) from the Krepa chironomid assemblage, the Swiss Norwegian-Polish (SNP) training set (Kotrys et al., 2020) was used as this covers a higher temperature span than other available Europe an training sets (e.g. the Finnish, Russian, Swiss-Norwegian training sets) (Kotrys et al., 2020). The SNP training set includes 357 lakes, 134 taxa, covers a temperature range between 3.5 and 20.1 °C. and uses the weighted averaging partial least squares transfer function (WA-PLS). The RMSEP for this combined training set is 1.39°C, and the R^2 is 0.91 (Kotrys et al., 2020). Detrended Correspondence (MinDC) was also calculated. The temperature reconstruction was carried out using the C2 (v. 1.6) software (Juggins, 2007).

Chironomidae subfossil larvae were obtained from a total of 30 samples from the gyttja sediments (unit 4 on Fig. 1). Samples that contained fewer than 50 head capsules were merged except for a solitary sample at 1000 cm core depth. For 5 samples the required number of 50 head capsules was obtained and the remaining 24 samples were merged into seven clusters. After merging, sample clusters at 975 cm, 1080 cm, 1120 cm and 1125 cm core depth still did not reach 50 head capsules, but nonetheless, these samples and the one from 1000 cm core depth were included in the reconstruction as preliminary results seemed credible in terms of obtained temperature values.

. The lowest number of head capsules used for the T_{jul-Ch} reconstruction was 5 individuals at 1070 cm core depth whereas the highest number was 78 at 985 cm core depth. After merging, the total number of samples used for the T_{jul-Ch} reconstruction was 13.

3. Results and interpretation

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

3.1 Lithological description of the Krepa sediment succession and palaeoenvironmental interpretation

The basal part of the 23.8 m long sediment core that was recovered from the Krepa sediment succession in 2015 (Fig. 1) consists of a 2-m-thick layer of massive, light greyish brown sandy clays with a large number of rock fragments (unit 1), which is interpreted as till. As indicated by its stratigraphic position and its petrographic characteristics (Drozd and Trzepla, 2007). this till was accumulated during the Elsterian glaciation (Sanian 2 glaciation in Poland), which is considered to correspond to MIS 12. Directly above the till, a 0.6 m thick layer of laminated sandy silts and sandy clayer silts is found (unit 2). These sediments are interpreted as the result of glaciolimnic sedimentation in a relatively shallow water body between blocks of dead ice during the recession of the Elsterian ice-sheet. The glaciolimnic sediments of unit 2 gradually turn into a carbonate gyttja with small interlayers of carbonatic minerogenic gyttja (unit 3), which was most likely deposited in the profundal of an already relatively deep lake. Between 1187 and 760 cm core depth, non-carbonatic organic minerogenic gyttias with a generally increasing mineral content towards the top are found (unit 4). The limnic sediments of unit 4 are interpreted to reflect the gradual shallowing of the lake due to continuing sediment infill. At the same time, the systematic increase in mineral components in the sediments most probably reflects increased denudation and erosion in the catchment, likely favoured by reduced vegetation cover in response to a change towards colder climate conditions. The gyttja sequence of unit 4 is overlain by a 1.9 m thick layer of massive clays (unit 5), which probably represent accumulation in a periglacial lake. The following 1.1 m thick layer of fine to medium-grained sands (unit 6) as well as the overlying 3.1 m thick layer of rhythmically laminated sandy silts (unit 7) are interpreted as proglacial sediments (units 6 and 7) of the transgressing Early Saalian (MIS 6) ice sheet. Above this succession, the profile is capped by a 1.5 m thick layer of sandy morainic till with rock fragments (unit 8) related to the Saalian glaciation. The origin of the sedimentary basin at Krepa is difficult to interpret. Most sites with deposits from the Holsteinian Interglacial in this region of Poland are associated with tunnel valleys that formed during the Elsterian glaciation (Zarski et al., 2005; Nitychoruk et al., 2006). However, these sites are usually located beyond the maximum extent of the Older Saalian glaciation (Drenthe Stage in Germany; Odra glaciation in Poland; MIS 6) and thus subtly visible in the present surface morphology. In the case of Krepa, the covering of these deposits by the Older Saalian glacial advance has resulted in the complete obliteration of the post Elsterian landscape. Based on the geological cross section presented in the DGMP sheet 676 Kock (Drozd and Trzepla, 2007) and the distribution of interglacial deposits in the study area (Jesionkiewicz, 1982), it can only be inferred that the depression hosting the Krepa palaeolake was a relatively extensive kettle hole, formed during the recession of the Elsterian ice sheet.

3.2 Vegetation changes during the Holsteinian Interglacial and the Early Saalian Glacial at Krepa site

- LPAZ KR-1 (2120.0-2180.0 cm) NAP values peak at >40 % (mostly Poaceae, but also Artemisia and Betula nana). Open communities are dominant. Tree pollen primarily comprises Pinus and Betula with both taxa potentially existing locally as small trees. Pollen of temperate species is sourced from redeposition. No Chironomidae.
- LPAZ KR-2 (2027,5-2110.0 cm) Initially, a conspicuous dominance of pollen originating from pioneering arboreal species. notably Pinus (up to 61 %) and Betula (up to 38%), coupled with a negligible representation of herbaceous plant pollen, signifies the prevalence of dense birch and pine forests. Subsequently, Picea (up to 24%) becomes established and Alnus (up to 35 %) colonises areas with higher soil moisture, probably adjacent to the lake. Rising pollen values of riparian species, e.g.
- Fraxinus (3.,5 %), Ulmus (2.,5 %), and Quercus (4 %), suggest local presence. No Chironomidae.
- LPAZ KR-3 (1957.5-2027.5-cm) At the beginning, the percentage of Taxus increases sharply (<40 %), suggesting a key role in the formation of forest communities. Continued presence of riparian forests, Corylus, Viburnum, Sambucus nigra and thermophilic species such as Pterocarya fraxinifolia, Vitis, Hedera helix, Ligustrum and Buxus sempervirens appeared in the forest understorey. Despite favourable climatic conditions, high Pinus percentages (>40 %) persisted, suggesting that this taxon was still important in the formation of forest communities. No Chironomidae.
- LPAZ KR-4 (1892.5-2027.5 cm) Rapid decline of Taxus forests (<5 %). Alnus (<25 %) and Picea (<30 %) regain significance in the forest communities. Contribution of riparian taxa remains low (Fraxinus and Ulmus <1..5 %). Appearance of Carpinus, reaching up to 7 %. Continued presence of thermophilic taxa (Viscum, Pterocarya fraxinifolia, Vitis, Hedera helix, Ligustrum, Buxus sempervirens) indicates favourable climate conditions. One specimen of Chironomus anthracinus-
- 376 type.

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

377

378

379

380

384

385

- LPAZ KR-5 OHO (1855.0-1892.5 cm) Clear change in the composition of forest communities Rapidly disappearing temperate vegetation was replaced by pioneer trees such as Betula (25 %) and Pinus (45 %). Forest communities remain a dominant element of the landscape, as suggested by the lack of an increase in NAP. Temperate species survived but at a much lower share. The clear shift in species composition suggests a much colder and drier climate compared to the previous zones.
- 381 No individuals of Chironomidae.
- 382 LPAZ KR-6 (1697.5-1855.0 cm) - This zone is associated with the dominance of Abies and Carpinus (both up to 27 %). 383
 - Mixed Abies forests most likely occupied poorer soils, while more fertile soils were covered by deciduous forests consisting
 - of Carpinus, Ouercus (<15%) and Corylus (<15%) in the understorey. Taxus persists but only as an admixture (<2%). The
 - entire zone is characterised by the undisturbed occurrence of Alnus, which proves the persistence of this taxon near the lake.
- 386 Similarly, no significant changes in forest density are recorded as evidenced by low NAP percentages. Abundant thermophilic
- 387 taxa, including Viscum, Pterocarya fraxinifolia, Vitis, Hedera helix, Ligustrum, Buxus sempervirens, Parrotia persica, Celtis,
- 388 Carva and Juglans indicate favourable climate conditions. No Chironomidae.
 - LPAZ KR-7 YHO (1647.5-1697.5 cm) This zone encompasses an apparent change in forest communities, reflected by a
- 390 breakdown of Carpinus (to 3 %) and an increase of Abies (up to 34 %), Corylus (22 %) and Taxus (5 %). Mixed fir forests

replaced deciduous forests at that time, while Corylus could be both an admixture in mixed forests and create its communities in bright places on more fertile soils. The Carpinus crisis probably did not last long, and it soon began to rebuild its presence. A continuous occurrence of thermophilic taxa is observed throughout the zone. One specimen of Glyptotendipes pallenstvpe. LPAZ KR-8 (1497.5-1647.5 cm) - As in LPAZ KR 6, the two key taxa were Abies and Carpinus. Although percentages of the latter were rising to 36 %, Abies (up to 26 %) remained important and, in some parts, dominated over Carpinus, Buxus deserves special attention among the abundant thermophilic taxa since it occurs at a greater frequency than in the previous zone. The end of the zone is associated with a decline in the percentage of Abies. No Chironomidae. LPAZ KR-9 (1362.5-1497.5 cm) - A characteristic feature of this zone is the dominance of Carpinus (up to 44 %) and a significant decrease in the importance of Abies (<10 %). Mixed forests with a significant share of Quercus (up to 33 %) could develop on poor soils instead of Abies forests. Thermophilic species were the most abundant in the entire profile, especially Pterocarya fraxinifolia (1 %) and Buxus sempervirens (<2 %). Slow overgrowth of the lake is reflected by the slow decline in the proportion of aquatic plants and the decline in Alnus percentages. The zone ends with the decline of Carpinus and Corylus and the reappearance of Picea. No Chironomidae. LPAZ KR-10 (1312.5-1362.5 cm) - The beginning of the zone is marked by the slow disappearance of temperate deciduous species, including Alnus, Quercus, Corylus, and Carpinus. Abies gains importance again (up to 32 %), forming conifer forests together with Picea (up to 13 %) and Pinus. Thermophilic taxa are still present. The end of the zone is associated with the disappearance of Abies, the dominance of Pinus (67%), and the appearance of Larix (<1.5%). No Chironomidae. LPAZ KR-11a (1257.5-1312.5 cm) In this zone, the dominance of pioneer trees and herbs begins. The palynological record suggests the development of sparse Betula and Pinus forests with an admixture of Larix (12 %) and possibly locally occurring Alnus (3 %) and Picea (5 %). Pollen of other temperate trees likely originate from redeposition or long-distance transport and are not indicative of local occurrence. The high share of NAP pollen also proves the openness of forest communities in this period. A rapid change in vegetation is observed in the middle part of this zone. Open communities began to dominate the landscape (NAP <40 %), and woody vegetation was reduced to scattered birch larch tree stands that occurred locally under favourable conditions. Juniperus (33 %) and Poaceae (23 %) had the highest share among the herbaceous plants, suggesting the presence of shrub tundra. Vast areas of open ground likely favoured soil erosion and redeposition of older material, which is visible in the palynological record as a sudden increase in the proportion of pollen from temperate taxa. Following the dominance of herbaceous vegetation, Betula Larix forests re-established in the area. The zone ends with a sudden increase in the percentage of Pinus pollen. No Chironomidae. LPAZ KR-11b (1222.5-1257.5 cm) Pinus Betula forests spread within this zone with an admixture of Larix and Picea. Although forest communities dominated most of the landscape, there were still patches of herbaceous plant communities, as

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

share. No Chironomidae.

indicated by high NAP percentages. The zone ends with a sudden decrease in Pinus percentages and an increase in the Betula

LPAZ KR-11c (1187.5-1222.5 cm) Initially, loose birch forests with an admixture of Larix and Pinus spread. In the middle of the zone, the landscape was further opened and likely dominated by Juniperus shrub tundra. The zone ends with a sharp 426 increase in the percentage of Pinus and a decrease in Betula and NAP. Single specimens of Chironomus plumosus type. LPAZ KR-12a (1122.5-1187.5 cm) At the beginning of the zone, the development of Pinus forests with an admixture of Picea (up to 6 %) is observed. Low NAP percentages suggest a very dense vegetation. However, percentages of Pinus and other tree species gradually decrease, and open herbaceous communities appear. The end of the zone is associated with a decrease in the percentage of Pinus pollen. Low number of Chironomidae head capsules (approximately 15 per sample). Dominance of Chironomus anthracinus-type (25 %) and Corynocera ambigua (16 %). LPAZ KR-12b (1072.5-1122.5 cm) - A further decrease in Pinus pollen is observed. At the end of the zone, the landscape was likely already dominated by open communities (NAP up to 40 %) and sparse Pinus forests. Dominance of Corynocera ambigua (24 %) and high contents of Chironomus anthracinus type. Disappearance of Glyptotendipes pallens-type and appearance of Glyptotendipes severini-type. LPAZ KR-12c (1022.5-1072.5 cm) - Initially, dense Betula forests with Larix as an admixture dominated the landscape. Subsequently, a rapid development of Pinus forests is observed. The end of the zone is associated with a sudden drop in the percentage of Pinus pollen. The number of Chironomidae declines, Dominant species are Chironomus anthracinus-type (17%), Corynocera ambigua and Glyptotendipes pallens-type (13%). LPAZ KR-13a (967,5-1022,5 cm) - Initially, there was a significant opening in the vegetation, and herbaceous plants and shrubs dominated the landscape. In the middle of this zone, there was a temporary return of very sparse Pinus and Betula forests, followed by another expansion of herbaceous vegetation. The end of the zone is associated with an increase in Betula pollen. Significant increase in the number of Chironomidae (on average 45 individuals per sample). Dominant species are Corynocera ambigua (approx. 29 %) and Chironomus anthracinus-type (18 %). LPAZ KR-13b (877.5-967.5 cm) - Relatively high percentages of Pinus (15-48 %) and Betula (29-49 %) suggest the existence of sparse Pinus Betula forests in the vicinity of the lake. The presence of Betula nana (<5 %) indicates patches of shrub tundra in the area. The end of the zone is associated with the further spread of open communities. Unidentifiable Chironomidae. At the end of the zone, the number increases slightly. The dominant species is Propsilocerus lacustris-type and single Chironomus plumosus-type and Dicrotendipes nervosus-type occur. Corynocera ambigua is also abundant. KR-14 (765.0-877.5 cm) - Within this zone, open communities further expanded, likely steppes dominated by Poaceae and Artemisia. The vegetation also featured shrubs, such as Juniperus and Betula nana. Tree species of the Betula genus were present throughout the zone, and percentage variations for this taxon were low. Conversely, Pinus percentages considerably

424

425

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

fluctuated. Both pioneer tree species might have formed sparse patches of forest vegetation in favourable environmental

conditions. Low abundance of Chironomidae. Only two individuals of Chironomus plumosus-type were recorded.

3.13 Ecological reconstruction based on Chironomidae assemblages from the Krepa site

455 456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

ambigua and Chironomus anthracinus-type. Corynocera ambigua is a species that is often described as cold-adapted oligotrophic (Fjellberg, 1972; Pinder and Reiss, 1983; Walker and Mathewes, 1988; Brooks et al., 2007; Luoto et al., 2008; van Asch et al., 2012), inhabiting shallow lakes in arctic and subarctic regions, though it is also found in eutrophic lakes (Halkiewicz, 2008; Kotrys et al., 2020) Adults of this species do not are not able to fly, and breed on the water surface when the temperature reaches approximately 7-8 °C (optimum 13.7 °C). Mothes (1968) concluded that Corynocera ambigua larvae develop in autumn and winter, while the eggs do not develop but only survivebut not during summer. The decline in their numbers may be due to the growth of filamentous algae in summer. Larvae of Corynocera ambigua are eurythermic, while the pupae are cold-stenothermic (Brundin, 1949). They only reproduce at low temperatures and inhabit water bodies with a maximum depth of approximately 25 m. The abundance of Corynocera ambigua has been shown to be correlated with the content of charophytescharophyte contents (Brodersen and Lindegaard, 1999b). Although this species does not feed on charophytes, their presence may increase the number of diatoms and stabilise the trophic status and water clarity (Forsberg, 1965; Blindow, 1992). Corynocera ambigua lives in dendritic tubes. Hs-its main food source is-being diatoms/algal detritus. (Fiellberg, 1972; Boubee, 1983). This species has been recorded during cold episodes or glacial periods, at sites in England (Bedford et al., 2004), Norway (Velle et al., 2005), Poland (Płóciennik et al., 2015), and the Baltic region (Hofmann and Winn, 2000). However, Corynocera ambigua, cannot be considered a-merely a cold species. Some authors believe that its occurrence depends on high oxygen contents in the water (Brodersen and Lindegaard, 1999a) and for some other authors, it is a pioneer species that appears first after glacier glacial retreats, just likesimilarly to Chironomus anthracinus-type (e.g. Heiri and Millet, 2005; Ilyashuk et al., 2005, 2013, 2022; Gandouin et al., 2016). Luoto and Sarmaja-Korjonen (2011) 2011 claim suggest that this is how the species adapts to existing climatic conditions. The locally observed decline in Corynocera ambigua numbers in the Krepa sediments could also be attributed to changes in lake productivity related to changes in the environment. For example, when the production of soil and trees increased, the number of this species has been found to decrease (Magny et al., 2006; Larocque-Tobler et al., 2009). Chironomus anthracinus-type occurs in various zones of lakeslake zones and is capable of surviving approximately 2-4 months of oxygen deficiency in the water (Hamburger et al., 1994). It is a species that which easily occupies niches that are inaccessible to others species. According to some authors, it is a eutrophic (Kansanen, 1985; Brodersen and Lindegaard, 1999b) or cold-adapted species (Rohrig et al., 2004; Brooks et al., 2007; Płóciennik et al., 2011) and it-prefers soft, and more organic sediments (McGarrigle, 1980). Therefore, tThe appearance of Chironomus anthracinus-type and Glyptotendipes pallens-type in the Krepa sediment may thus-indicate the onset of eutrophication. Both Chironomus anthracinus-type and Corynocera

In general, the chironomid assemblages preserved in the Krepa sediments are dominated by the two species Corynocera

ambigua are found in stratified lakes (e.g., Saether, 1979; Heiri, 2004). As we can see observe in our record, both species are

they can occur. The following description of Chironomidae assemblages follows the pollen zonation because (1) it reflects climatic changes better than the chironomid assemblages and (2)the low number of Chironomidae head capsules and the small species diversity prevented the statistically robust determination of a good modern analogue reconstruction of Chironomidae zones. Lower part of the sediment sequence (2180 cm-1160 cm) is almost completely devoid of Chironomid remains, except few badly preserved Chironomus anthracinus, Chironomus plumosus and Glyptotendipes pallens head capsules at 2000 cm, 1680 cm, and 1205-1190 cm depths. At the base of the sediment sequence (2120.0-2027.5 cm), there are no remains of chironomids preserved. The first individuals occur in LPAZ KR 4 and LPAZ KR 7. In these zones, eurytopic Chironomus anthracinustype in a poor state of preservation is observed (Fig. 3). There are no remains of Chironomidae in the following LPAZ belonging to the Holsteinian Interglacial and the first Hhead capsules of Chironomus plumosus type are recorded again in LPAZ KR-11c, which is already considered as post Holsteinian at 1155 cm-1122.5 cm depths - mostly Corynocera ambigua, Chironomus anthracinus, Chironomus plumosus and Glyptotendipes pallens (Fig. 2). This species occurs in a wide range of habitats and is particularly resistant to anoxia (Saether, 1979, Brooks et al., 2007). The following LPAZ KR-12a is characterised by a low abundance of chironomid head capsules. Assemblages could indicate a wide range of environmental conditions (e.g. Chironomus anthracinus type is a profundal species that is tolerant to a wide thermal spectrum (Brooks et al., 2007; Luoto et al., 2019) and Corynocera ambigua is indicative for colder conditions (Brooks, 2006; Brooks et al., 2007). LPAZ KR 12b (1072.5-1122.5 cm part) predominantly contains mainly cold-adapted species like such as Corynocera ambigua and freeze-resistant species — likesuch as Glyptotendipes pallens-type and Glyptotendipes severini-type, which are often associated with algae and diatoms or mine leaves, (Tarkowska-Kukuryk, 2014). LPAZ KR-12e1022.5-1072.5 cm depth range is characterised by species highly resistant to difficult environmental conditions, such as Chironomus anthracinus-type, which is typical for nutrient rich conditions with wide environmental tolerances (Saether, 1979; Self et al., 2011), Corynocera ambigua, which has a broad thermal tolerance (Brodersen & Lindegaard 1999a and Glyptotendipes pallens-type, which can better tolerate harsh winter conditions and lives in different types of substrates (Moller Pillot, 2013; Čerba et al., 2022). LPAZ KR 13aFrom 1022.5 cm to 967.5 cm depth is a phase withthere are mainly cold adapted several species observed, such as Corynocera ambigua. This is the part most abundant in Chironomidae head capsules, with over 40 individuals per sample on average and maximum 78 head capsules at 985 cm sample. Species composition during this part is dominated by Corynocera ambigua, Chironomus anthracinus-type, Chironomus-plumosus-type and Propsilocerus lacustris-type. Additionally, some Tanytarsus glabrecens-type head capsules appear - this species was almost unseen in remaining sections. During LPAZ KR-13bBetween 967.5 cm and 877.5 cm depth, the number of chironomid head capsules gradually increased started to decline above 965 cm depth, with only single unidentified Chironomidae head capsules at 955 cm and 950 cm. with indicators of progressive eutrophication (e.g. Chironomus plumosus type and Dicrotendipes nervosus type (Iwakuma and Yasuno, 1981). and cold oligotrophic species (such as Corynocera ambigua) (Brooks et al., 2007) still occurring frequently. During LPAZ KR 14In subsequent section (877.5-765 cm) the number of Chironomidae is very low – only 2 Chironomus plumosus-type

relatively resistant to unfavourable environmental conditions, thus havingso possess a fairly wide range of conditions in which

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

— sformatowano: Czcionka: Kursywa
— sformatowano: Czcionka: Kursywa
— sformatowano: Czcionka: Kursywa

— sformatowano: Czcionka: Kursywa

individuals were identified. Only eurytopic, warm stenotherm species, which are resistant to anoxia such as *Chironomus plumosus* type appear (Brooks et al., 2007). Even *Corynocera ambigua*, abundant in previous sections, disappears. The disappearance of *Corynocera ambigua* could also be the result of changes in oxygen concentration, reduced production of benthic algae or changes in the structure of the sediment (Brodersen and Lindegaard, 1999b).

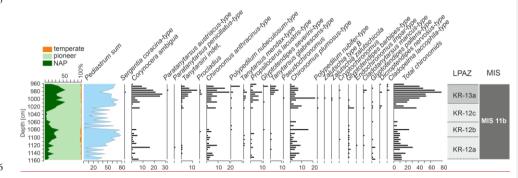


Figure 2: Stratigraphic diagram of the Chironomidae assemblages. Caption: Chironomidae species are presented as counted numbers of specimens.

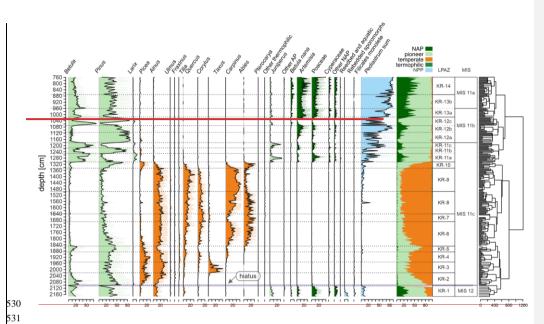


Figure 2: Percentage diagram of selected pollen, spore, and algal taxa form the Krepa 2015 sediment core on depth scale (cm) with zonation of the diagram.

3.24 Summer July air temperature reconstruction based on Chironomidae assemblages from the Krepa site

Due to the low number of chironomid head capsules preserved in the Krępa sediments, a chironomid-based summer-July temperature reconstruction was only possible for the uppermost part of the sediment core, encompassing the post-Holsteinian stadial that is most likely equivalent to MIS 11b (Table 1). In LPAZ KR-12a, which marks the onset of MIS 11b that directly follows the Holsteinian Interglacial,—In this period, average summer-July temperatures still ranged between 17 and 19 °C before shortly rapidly dropping to about 16 °C and increasing again to 18-20 °C in LPAZ KR-12b. Summer-July temperatures remained at this level throughout LPAZ KR-12c, before significantly dropping to 15-17 °C in the middle of LPAZ KR-13a. Only at the end of LPAZ KR-13a, which is equivalent to the transition to the following interstadial that most likely corresponds to MIS 11a, summer-July temperatures markedly increased again to about 20 °C.

Table 1: Air \P emperature reconstruction from Chironomidae preserved in the Krępa sediments with reconstructed mean July air temperature ($T_{jul\text{-}Ch}$), error of the estimated $T_{jul\text{-}Ch}$, minimum dissimilarity between the chironomid assemblage in the Krępa sediments training set samples (MinDC), principal component analysis values (PCA) and corresponding LPAZ

Core depth (cm)	Tjul-Ch	error of est. (T _{jul-Ch})	MinDC	PCA	Number of Chironomidae head capsules	LPAZ
969	20.10	1.60	9.82830		51	KR-13a
975	15.26	1.64	6.08105	-1.2383560	48	
980	16.82	1.57	7.89471	-1.7518844	67	KR-12c
985	17.23	1.59	8.37351	-1.4636110	78	
990	15.93	1.70	7.35685	-1.9244674	52	KR-12b
995	15.84	1.72	6.77137	-0.6709448	53	
1000	18.77	1.52	8.27430	6.5934818	42	KR-12a
1011	18.09	1.63	7.90763	0.4039345	51	
1022	19.25	1.50	7.06444	0.4114688	53	
1080	20.20	1.53	8.02666	0.5281182	52	
1102	18.55	1.52	8.95789	1.3132870	48	
1125	17.69	1.52	8.63666	-0.2629876	64	
1148	18.97	1.56	6.86405	-0.1236256	57	

According to the SNP training set-based reconstruction, 10 samples with good modern analogues remain below the 5 % percentile threshold (minDC), while 3 samples with average modern analogues have values above the 5 % percentile threshold (6.08105 < minDC) > 9.82830. PCA values range between ~ -1.92 and 6.59 (Tab. 1).

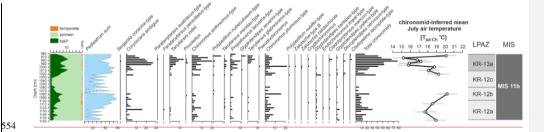
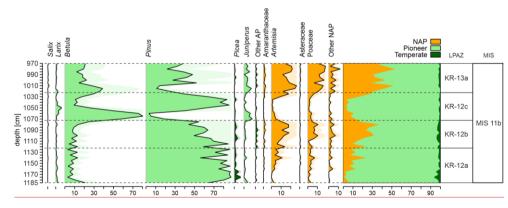


Figure 3: Chironomid-inferred mean July temperature reconstruction from Krępa with stratigraphic diagram of the Chironomidae assemblages. Caption: Chironomidae species are presented as counted numbers of specimens. Grey bars in the Tjul Ch curve indicate error range.

3.3 Vegetation changes during the Early Saalian Glaciation at Krepa site


Initially, 14 Local Pollen Assemblages Zones (LPAZ) covering the end of MIS 12 and MIS 11 period were extracted. Post-holsteinian (MIS 11b) covers LPAZ from 12a to 13a.

LPAZ KR-12a (1122.5-1187.5 cm) - At the beginning of the zone, the development of *Pinus* forests with an admixture of *Picea* (up to 6 %) is observed. Low NAP percentages suggest a very dense vegetation. However, percentages of *Pinus* and other tree species gradually decrease, and open herbaceous communities appear. The end of the zone is associated with a decrease in the percentage of *Pinus* pollen. Low number of Chironomidae head capsules (approximately 15 per sample). Dominance of *Chironomus anthracinus*-type (25 %) and Corynocera ambigua (16 %).

LPAZ KR-12b (1072.5-1122.5 cm) - A further decrease in *Pinus* pollen is observed. At the end of the zone, the landscape was likely already dominated by open communities (NAP up to 40 %) and sparse *Pinus* forests. Dominance of *Corynocera ambigua* (24 %) and high contents of *Chironomus anthracinus*-type. Disappearance of *Glyptotendipes pallens*-type and appearance of *Glyptotendipes severini*-type.

LPAZ KR-12c (1022.5-1072.5 cm) - Initially, dense *Betula* forests with *Larix* as an admixture dominated the landscape. Subsequently, a rapid development of *Pinus* forests is observed. The end of the zone is associated with a sudden drop in the percentage of *Pinus* pollen. The number of Chironomidae declines. Dominant species are *Chironomus anthracinus*-type (17 %), Corynocera ambigua and *Glyptotendipes pallens*-type (13 %).

LPAZ KR-13a (967.5-1022.5 cm) - Initially, there was a significant opening in the vegetation, and herbaceous plants and shrubs dominated the landscape. In the middle of this zone, there was a temporary return of very sparse *Pinus* and *Betula* forests, followed by another expansion of herbaceous vegetation. The end of the zone is associated with an increase in *Betula* pollen. Significant increase in the number of Chironomidae (on average 45 individuals per sample). Dominant species are Corynocera ambigua (approx. 29 %) and *Chironomus anthracinus*-type (18 %).

582 Figure 3: Simplified percentage pollen diagram from the Krepa 2015 sediment core on depth scale (cm) with zonation of the diagram, 583 3.45 Pollen-based climate reconstructions from the Krepa site 584 Pollen-based climate reconstructions from the Krepa sediment core reveal distinct climate variability throughout MIS 11b, 585 reflecting stadial-interstadial transitions (Fig. 4). The pollen based climate reconstructions from the Krepa sediment core 586 reveal a distinct climate variability throughout MIS 11b, in general following the vegetation indicated stadial interstadial 587 transitions (Fig. 4)-The two pollen-based methods show broadly similar trends across all zones, with MAT generally producing 588 higher summer temperature values than WA-PLS except in KR-12c. Where chironomid data are available, pollen-based 589 MTWA reconstructions reproduce similar patterns, with differences falling within their respective uncertainty ranges. Among 590 the two pollen-based models, MAT generally corresponds better to the chironomid WA-PLS reconstructions, showing overall 591 closer alignment in reconstructed summer temperatures. 592 WA-PLS reconstructions were somewhat less robust, especially for precipitation, while the TANN and MTWA estimates still 593 showed moderate predictive ability (Tab. 2). Reconstructed MTWA from both pollen-based methods generally ranged between 594 approximately 15°C and 19°C. The two pollen-based methods show similar trends across all zones, with MAT often producing 595 slightly higher summer temperature values than WA-PLS. 596 During LPAZ KR-12a, MAT- and WA-PLS-derived MTWA averaged approximately 16.8°C, close to the chironomid-inferred 597 mean of 18.3°C. In LPAZ KR-12b, both pollen methods indicate further warming (~18.7°C MAT, ~16.4°C WA-PLS), 598 consistent with the chironomid estimate of 19.4°C, reflecting peak interstadial conditions. In LPAZ KR-12c, MTWA values 599 dropped to ~15.1°C (MAT) and ~15.7°C (WA-PLS), indicating cooling during this interval. A moderate rebound is evident in 600 LPAZ KR-13a, with MTWA increasing again to ~17.3°C (MAT) and ~15.3°C (WA-PLS), while the mean chironomid MTWA 601 is 17.5°C. 602 TANN values generally followed the summer temperature trends, beginning with relatively warm conditions in LPAZ KR-603 12a (~3°C). A slight increase was observed in LPAZ KR-12b (~3.1°C), followed by cooling in LPAZ KR-12c (~1.2°C). In 604 LPAZ KR-13a, a modest recovery occurred with TANN rising to around 1.57°C. 605 MTCO showed greater variability. Winters in LPAZ KR-12a and KR-12b were comparably cold, with MTCO values around 606 -9.6°C and -11.7°C, respectively. LPAZ KR-12c showed slightly less severe winters (~-10.72°C). A more pronounced 607 cooling occurred in LPAZ KR-13a, where MTCO reached around -13.2°C. 608 PANN reconstructions showed some uncertainty but generally ranged between 500 and 900 mm. LPAZ KR-12a was 609 characterized by relatively high precipitation (~640 mm), followed by moderately high values in LPAZ KR-12b (~510 mm). 610 A moderate increase occurred in LPAZ KR-12c (~580 mm). In LPAZ KR-13a, PANN remained lower, typically around 520 611 mm, suggesting continued reduction in annual precipitation. 612 Conducted cross-validation indicated that MAT reconstructions achieved the highest predictive skill, particularly for the

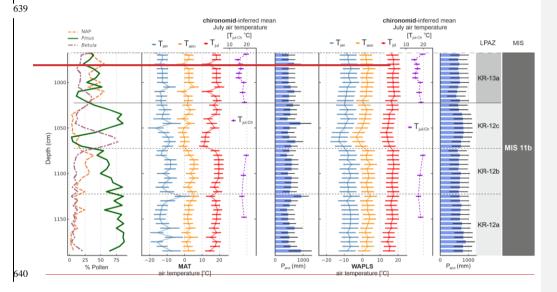
Sformatowano: Odstęp Po: 0 pkt, Interlinia: 1,5 wiersza, Obramowanie: Góra: (Brak obramowania), Dół: (Brak obramowania), Na lewo: (Brak obramowania), Na prawo: (Brak obramowania), Pomiędzy: (Brak obramowania)

- sformatowano: Czcionka: 10 pkt, Nie Pogrubienie

the Tann and Tian estimates still showed moderate predictive ability (Tab. 2).

reconstructed temperatures (Table 2). WA PLS reconstructions were somewhat less robust, especially for precipitation, while

613


			•	•
Method	Climate Variable	Optimal component/k	<u>R</u> 2	RMSE
WA-PLS	Pann	1	0.21	328 mm
	T _{ann}	2	0.59	3.53 °C
	T _{jul}	1	0.46	3.42 °C
	T _{jan}	2	0.59	4.7 °C
MAT	Pann	2	0.56	252 mm
	T _{mm}	2	0.77	2.71 °C
	Ŧ _{jul}	2	0.69	2.63 °C
	T jan	2	0.81	3.23 °C

Reconstructed T_{jul} from both pollen-based methods generally ranged between approximately 14 °C and 19 °C. In the LPAZ where chironomid data are available, the pollen-based T_{jul} values show a consistent trend and are within the respective uncertainty ranges broadly in line with the chironomid-inferred temperatures. During LPAZ KR-12a, MAT- and WA-PLS-derived T_{jul} averaged at ~17.3 and ~15.9 °C, respectively, aligning with the chironomid-inferred mean T_{jul} ch- of 18.3 °C. In LPAZ-KR-12b, both pollen-methods indicate further warming (~18.8 °C MAT, ~17.1 °C WA-PLS), which is in good agreement with the chironomid-based estimate of 19.4 °C, reflecting peak interstadial conditions. In LPAZ-KR-12c, T_{jul} values dropped to ~14.7 °C (MAT) and ~15.0 °C (WA-PLS), indicating cooling during this interval. A moderate rebound is evident in LPAZ-KR-13a, which is reconstructed similarly across pollen- and chironomid-based models, with T_{jul} increasing again to ~17.5 °C (MAT) and ~17.3 °C (WA-PLS), while the mean T_{jul} ch is 17.5 °C.

T_{ann} values generally follow the summer temperature trends, beginning with relatively warm conditions in LPAZ KR-12a, where T_{ann} was 1.5°C. A slight increase is observed in LPAZ KR-12b, reaching peak interstadial warmth at approximately 2.0°C. This is followed by a marked cooling in LPAZ KR-12c, where T_{ann} drops to about -2.0°C. In LPAZ KR-13a, a modest recovery occurs with T_{mm} values rising to around -0.9°C.

Tjan generally exhibits a greater variability. In LPAZ KR-12a and LPAZ KR-12b, winters were comparably cold, with T_{jan} values around 11.1 and 10.5 °C, respectively. LPAZ KR-12c shows a slight increase in winter severity with T_{jan} values of approximately 11.3 °C. A more pronounced decline follows in LPAZ KR-13a, where T_{jan} reaches around 12.7 °C.

P_{mm} reconstructions show some uncertainty but annual precipitation sums generally range between 500 and 900 mm. LPAZ KR-12a is characterized by relatively high precipitation (~690–770 mm), followed by still moderately high values in LPAZ KR-12b (~670–740 mm). A notable decrease occurs in LPAZ KR-12e, with Pann values around 640 mm, indicating drier conditions. In LPAZ KR-13a, P_{mm} remains lower, typically between 615 and 655 mm, suggesting a continued reduction in annual precipitation.

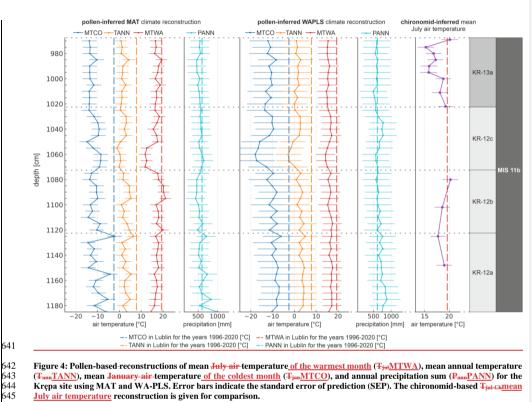


Figure 4: Pollen-based-reconstructions of mean July air temperature of the warmest month (FixiMTWA), mean annual temperature (TamaTANN), mean January air temperature of the coldest month (TjanMTCO), and annual precipitation sum (PannPANN) for the Krepa site using MAT and WA-PLS. Error bars indicate the standard error of prediction (SEP). The chironomid-based Tall Chirological Property of the Chirological Chirology of the Chirology of th July air temperature reconstruction is given for comparison.

4. Discussion

646

647

648

649

650

651

652

653

654

4.1 Chironomidae analysis as a method of palaeoclimate reconstruction

The analysis of subfossil Chironomidae is part of the palaeoecological analysis conducted in geological, geomorphological, and archaeological research. Chironomidae, which are insects belonging to the suborder of Nematocera, are common, and inhabit various types of aquatic environments, from moist soil to lakes. Their development cycle can last from 20 days to several years as they can extend the duration of the larval stage depending on environmental conditions (Butler, 1982). Because of the excellent preservation of their larvae's head capsules in lake and peat bog sediments for several hundreds of thousands of years, the analysis of their subfossil remains offers the possibility to reconstruct environmental and climatic changes in the past., This includes quantitative reconstructions of the average July air temperature and the trophic state of the inhabited water body as well as the type and dynamics of the lake, the water pH, and microhabitats. Furthermore, training sets are also available to reconstruct the historic water level, salinity or oxygen content of the studied water body (Lotter et al., 1997).

655

656

657

658

659 660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

4.1.1 Possible difficulties in elimate temperature reconstruction based on Chironomidae analysis during past interglacials

The basic principle of palaeoecological reconstructions is geological actuality uniformitarianism, implying that processes taking place on Earth in the past were the same as today (Krzeminski and Jarzembowski, 1999). This, for example, allows to reconstruct temperature to be reconstructed based on fossil Chironomidae assemblages by assuming that a given species still has the same habitat requirements as thousands or hundreds of thousands years ago. The oldest recorded chironomid remains date back to the Late Triassic, i.e. ~200 1 Ma BP (Krzeminski and Jarzembowski, 1999). Data from the MIS 11 Krepa sediments indicate a large difference in the number and state of preservation of the chironomid remains compared to Holocene sites. In general Usually, at least 50 individuals per sample are required for robust reconstructions of the average July temperature... As as smaller numbers of identified head capsules considerably increase the error range of the air temperature reconstruction, it It is therefore commonly recommended to combine adjacent samples in case of low head capsule amounts (Heiri and Lotter, 2001). To enable selection of sites that could potentially yield chironomid-based palaeoen vironmental reconstructions, it is therefore critical to analyse the factors that could limit the degree of preservation in chironomid remains, or cause the disappearance or a marked decrease/complete disappearance in the number of individuals. Chironomidae inhabit all moist or aquatic habitats from moist wood to the ocean, between the tropics and the Arctic. The high specialisation of individual species is thereby decisive for their common occurrence and their ability to survive even under difficult environmental conditions. Among the features that allow the family specimens to succeed are: a short life cycle (in some cases only 8 days) (Reves-Maldonado et al., 2021), osmoregulation, that which enables survival in high-salinity waters (Kokkinn, 1986), or parthenogenesis, that which implies a high efficiency of population reproduction, faster colonisation rate and high fertility (Lencioni, 2004; Nondula et al., 2004; Donato and Paggi, 2008; Orel and Semenchenko, 2019; Lackmann et al., 2020), as well as a short DNA chain (Gusev et al., 2010; Cornette et al., 2015). Some species are able to change food resources depending on the availability in their habitat (Tokeshi, 1995; Davis et al., 2003). Large lakes, like-such as the one that most probably existed at Krepa (1) have a greater variety of habitats, thus being characterised by a larger biodiversity of Chironomidae (Allen et al., 1999; Heino, 2000; Tarr et al., 2005). (Allen et al., 1999; Heino, 2000; Tarr et al., 2005), and (2) are more resilient to extreme droughts and other extreme events. In contrast, small lakes with less diverse and, isolated habitats reveal-exhibit a-reduced species diversity and dispersal (Roberts, 2003). Despite the specialisation of chironomids, there are many conditions in the environment that limit the number of communities. One of the main factors limiting and determining the life processes of Chironomidae is temperature as each life stage is highly

- sformatowano: Czcionka: Nie Kursywa

dependent on this factor. The development of eggs, larvae and pupae, nutrition and growth, the emergence of individuals or

and the ability to fly are all constrained by temperature maxima and minima, beyond which the given processes can no longer

take place. Most groups can tolerate low sub-zero temperatures; the temperature below which the development of most species

does not occur is -15°C (Walker and Mathewes, 1989; Płóciennik, 2005). At Krępa, however, our summer-July temperature reconstruction indicates temperatures well above that threshold, so even in case of severe winters, Chironomids should have been able to develop during the warmer periods of the year. Frost tolerance is highest in the Orthocladinae family and lowest in the Tanypodinae family (Danks, 1971). In the case of the Krępa sediments, species of both families were found (e.g. *Propsilocerus lacustris*-type and *Procladius* respectively) with Orthocladinae being more abundant than Tanypodinae (57 vs. 5 head capsules) and with the highest number of head capsules being preserved during a period with relatively cool summers (15-17°C).

Another important factor causing the decline of Chironomidae populations is the lack of oxygen in the water, although this cannot be directly captured by palaeoreconstructions. Instead, low-oxygen conditions are in generalgenerally only indicated by the-an abundant occurrence of organic matter in the sediments. Such increases in organic matter commonly increase bacterial respiration and cause result in consequence an oxygen deficiency in the profundal of water bodies (Charlton, 1980; Matzinger et al., 2010; Müller et al., 2012). Another factor limiting the preservation of chironomid head capsules in sediments are mechanical factors that cause damage to the head capsules. For example, Tanypodinae remains are, due to their large size, not very resistant to disintegration and the number of preserved capsules may therefore be smaller (Walker et al., 1984). This would be consistent with our finding of only 5 Tanypodinae individuals in the Krępa sediments at-across four different depths. The preservation of remains only from the 3rd and 4th larval stages only is most likely related to the increased amount of chitin in these developmental stages, making remains of these stages more resistant to disintegration. The remains of Chironomidae may also not be preserved if accumulation rate is low and remains of species from shore habitats could be poorly preserved. However, studies confirm a positive relationship between biocenosis and thanatocoenosis (Iovino, 1975; Walker et al., 1984). The number of generations per year may also affect the abundance of Chironomidae, i.e. subfossils of- multivoltine species can be overrepresented compared to bivoltine species, however, it is difficult to determine whether changes in species composition correspond with voltinism (Tokeshi, 1995).

The main factor influencing the preservation of Chironomidae remains is the content of CaCO3, especially in moderately and strongly acidified lakes. This factor is often more important than pH, depth or time since the deposition of remains (Bailey et al., 2005). The microenvironment and the presence of organic matter are of great importance for the preservation of remains (Briggs and Kear, 1993; Sageman and Hollander, 1999). The faster mineralisation occurs, the better the preservation of the any remains (Briggs and Kear, 1993; Park, 1995). –Further factors reducing the abundance of chironomids are extreme temperatures, low nutrient levels, acidic waters, high Se concentrations (Del Wayne et al., 2018; Mousavi, 2002), the content of hydrogen sulphide during holomixis, as well as paludification of the lake (Takagi et al., 2005; Płóciennik et al., 2020).

The lack of oxygen in the sediment could have limited not only the number of Chironomidae but also the number of preserved head capsules in the sediment. In particular, chitin <u>usually</u> does not <u>usually</u> accumulate in anaerobic sediment, <u>s</u> because it is more easily broken down by bacteria, effectively mineralising it into CH4 and CO2 (Wörner and Pester, 2019).

-Chironomid species found in the Krępa sediments have a wide range of environmental conditions in which they occur. In particular, we observe-dominance of species resilient to harsh conditions, such as the oxygen-deficiency-resistant *Chironomus*

anthracinus-type, and the eutrophic Chironomus plumosus-type (18.7 and 22.2 % of the total number of head capsules, respectively), as well as the cold-adapted Corynocera ambigua (25.7%) and the freeze-resistant Propsilocerus lacustris-type (7.5 %). Corynocera ambigua is a species often described as cold-adapted oligotrophic (Fjellberg, 1972; Pinder and Reiss, 1983; Walker and Mathewes, 1988; Brooks et al., 2007; Luoto et al., 2008; van Asch et al., 2012), inhabiting shallow lakes in arctic and subarctic regions, though it is also found in eutrophic lakes (Halkiewicz, 2008; Kotrys et al., 2020) Adults of this species are not able to fly, and breed on the water surface when the temperature reaches approximately 7-8 °C (optimum 13.7 °C). Mothes (1968) concluded that Corynocera ambigua larvae develop in autumn and winter, but not during summer. The decline in their numbers may be due to growth of filamentous algae in summer. Larvae of Corynocera ambigua are eurythermic, while the pupae are cold-stenothermic (Brundin, 1949). They only reproduce at low temperatures and inhabit water bodies with a maximum depth of approximately 25 m. The abundance of Corynocera ambigua has been shown to be correlated with charophyte contents (Brodersen and Lindegaard, 1999b). Although this species does not feed on charophytes, their presence may increase the number of diatoms and stabilise the trophic status and water clarity (Forsberg, 1965; Blindow, 1992). Corynocera ambigua live in dendritic tubes, its main food source being diatoms/algal detritus. (Fjellberg, 1972; Boubee, 1983). This species has been recorded during cold episodes or glacial periods, at sites in England (Bedford et al., 2004), Norway (Velle et al., 2005), Poland (Płóciennik et al., 2015), and the Baltic region (Hofmann and Winn, 2000). However, Corynocera ambigua, cannot be considered merely a cold species. Some authors believe that its occurrence depends on high oxygen content in the water (Brodersen and Lindegaard, 1999a) and for other authors, it is a pioneer species that appears first after glacial retreat, similarly to Chironomus anthracinus-type (e.g. Heiri and Millet, 2005; Ilyashuk et al., 2005, 2013, 2022; Gandouin et al., 2016). Luoto and Sarmaja-Korjonen (2011) suggest this is how the species adapts to existing climatic conditions. The locally observed decline in Corynocera ambigua numbers in the Krepa sediments could also be attributed to changes in lake productivity related to changes in the environment. For example, when the production of soil and trees increased, the number of this species has been found to decrease (Magny et al., 2006; Larocque-Tobler et al., 2009). Chironomus anthracinus-type occurs in various lake zones and is capable of surviving approximately 2-4 months of oxygen deficiency in water (Hamburger et al., 1994). It is a species which easily occupies niches that are inaccessible to others. According to some authors, it is a eutrophic (Kansanen, 1985; Brodersen and Lindegaard, 1999b) or cold-adapted species (Rohrig et al., 2004; Brooks et al., 2007; Płóciennik et al., 2011) and prefers soft, more organic sediments (McGarrigle, 1980). Therefore, the appearance of Chironomus anthracinus-type and Glyptotendipes pallens-type in the Krepa sediment may indicate the onset of eutrophication. Both Chironomus anthracinus-type and Corynocera ambigua are found in stratified lakes (e.g., Saether, 1979; Heiri, 2004). As we observe in our record, both species are relatively resistant to unfavourable environmental conditions, so possess a wide range of conditions in which they can occur. Chironomus plumosus-type, also quite abundant in the sediment sequence, occurs in a wide range of habitats and is particularly resistant to anoxia (Saether, 1979; Brooks et al., 2007). Moreover, along with Dicrotendipes nervosus-type, this species is an

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

indicator of progressive eutrophication (Brodersen and Lindegaard, 1999ab)

However, bBoth-eutrophic and oligotrophic species, as well as warm- and cold-adapted species, occur in the Krępa sediments. The origin of the sedimentary basin at Krępa is difficult to interpret. Most sites with deposits from the Holsteinian Interglacial in this region of Poland are associated with tunnel valleys that formed during the Elsterian glaciation (Żarski et al., 2005; Nitychoruk et al., 2006). However, these sites are usually located beyond the maximum extent of the Older Saalian glaciation (Drenthe Stage in Germany; Odra glaciation in Poland; MIS 6) and thus, are subtly visible in the present surface morphology. In the case of Krępa, these deposits have been covered by the Older Saalian glacial advance, resulting in the complete transformation of the post-Elsterian landscape. Based on the geological cross section presented in the DGMP sheet 676 - Kock (Drozd and Trzepla, 2007) and the distribution of interglacial deposits in the study area (Jesionkiewicz, 1982), it can be in ferred that the depression hosting the Krępa palaeolake was a relatively extensive kettle hole, formed during the recession of the Elsterian ice sheet.

As there are obviously only very few habitats where no invertebrates occur, the absence of chironomid remains during most of the Holsteinian Interglacial might could be best explained by sediment-related disintegration and/or anoxic conditions at the bottom of a fairly relatively deep lake. The lack of Chironomidae remains in the Krepa sediments could also be explained Another reason for the lack of remains could be the by-mineralisation of the chitin. This would be in agreement with the parallel observed lack of cellulose remains from plants as well as with the very low number of Tanypodinae head capsules, which are particularly prone to disintegration. However, satisfyingly explaining the lack of chironomid remains in most of the interglacial lake deposits requires further research as well as and an in-depth comparison of our results with other lake sediments that lack chitinous remains.

4.1.2 Chironomid-inferred temperature reconstructions from the Krępa site in relation to pollen-based climate reconstructions

A chironomid-based summer-July temperature reconstruction was only possible for the part of the Krępa sediment core that corresponds to LPAZ KR-12 and early LPAZ KR-13, which most probably likely corresponds to MIS 11b. Chironomid-based summer-July temperatures during the early part of this interval (LPAZ KR-12a and LPAZ KR-12b), i.e. directly after the Holsteinian Interglacial, were most probably still relatively high and stable, ranging from 19 to 21 °C, but dropping rapidly in LPAZ KR-12c and LPAZ KR-13a to 15-17 °C. The following re-increase to about 20 °C at the top of LPAZ KR-13a possibly reflects the transition into the post-Holsteinian interstadial that corresponds to MIS 11a. These-This data indicates that the summer-July temperature maximum during the post-Holsteinian is consistent with the temperature range of the SNP training set (3.5-20.0 °C) (Kotrys et al., 2020). On the other hand, there were periods with colder summers than today (15°C). Comparing MIS 11 to the Holocene, it is crucial to mention that insolation patterns for both periods differ - MIS 11 was characterised by two insolation maxima, while whilst there was only one (though more distinct) during the Holocene (Rohling et al., 2010). In fact, summer temperature increase during MIS 11b might be explained by increasing insolation-at that time. In general, most Chironomidae remains in the Krepa sediments occur mostly are found during cool periods, while theybut are absent during warm periods. For example, in the interglacial part of the sediment record isolated remains were only found in

LPAZ KR 4, which precedes the OHO, and in LPAZ KR 7, which corresponds to the YHO. In contrast, Chironomidae were most abundant in LPAZ KR-12, which is thought to roughly corresponds to MIS 11b, the first cold phase after the Holsteinian Interglacial (Imbrie et al., 1984; Fawcett et al., 2011).. To date, studies using subfossil Chironomidae to reconstruct past climate conditions mainly focused on the Weichselian Late Glacial and the Holocene (Gandouin et al., 2016; Nazarova et al., 2018; Druzhinina et al., 2020). In contrastAs a result, there are only very few chironomid-based summer July temperature reconstructions for the Late and Middle Pleistocene prior toolder than 20 ka BP available so far (Gandouin et al., 2007; Samartin et al., 2016; Plikk et al., 2019; Ilyashuk et al., 2020; Bolland et al., 2021; Lapellegerie et al., 2024; Rigterink et al., 2024), and actually noneno studies for the MIS 11 complex. In general, chironomid records from other sites and time intervals are characterised by a higher abundance and species diversity of Chironomidae, while whilst at Krępa, Chironomidae occur only during the early glacial period following the Holsteinian Interglacial. A similar phenomenon has so far only been observed in the Laptev Sea region (Arctic Siberia), where Chironomidae also appear only in the cold period after the Eemian Interglacial, when the site was surrounded by wet grass-sedge shrub tundra period (Andreev et al., 2004). Assemblages from this site consist mostly of unidentified Tanytarsini individuals, eutrophic *Chironomus plumosus* and semi-aquatic taxa such as *Limnophyes/Paralimnophyes*, *Smittia* and *Paraphaenocladius*. The three species from the latter group were not identified at Krępa as opposed to *Chironomus plumosus* and Tanytarsini.

In contrast Contrary to the patchy occurrence of chironomids, pollen-based climate reconstructions using MAT and WA-PLS provide continuous and robust records, that have been successfully applied across various European regions and time periods (Mauri et al., 2015; Chevalier et al., 2020). During LPAZ KR-12a, pollen reconstructions indicate relatively stable and moderate summer temperatures. Additionally, Panne PANN remains relatively high during this phase, suggesting consistently moist conditions supporting dense forest coverage. This is in agreement with the observed dominance of *Pinus* forests with possibly still some admixed *Picea* during this phase, reflecting more humid but not necessarily warmer conditions (Caudullo et al., 2016).

The significant NAP increase during following LPAZ KR-12b suggests a substantial forest decline, although the pollen-based T_{jut}-MTWA reconstructions indicate relatively warm summers. This combination of ecological and climatic signals strongly suggests that the decline in forest cover was primarily driven by colder winter temperatures rather than by summer thermal conditions. The pollen-based T_{jut}-MTWA reconstruction confirms peak interstadial warmth in terms of summer temperatures are comparable to current mean July temperatures in Eastern Poland (Mauri et al., 2015; Kotrys et al., 2020; Gedminienė et al., 2025). Furthermore, the pollen-based T_{mm}-TANN reconstruction also highlights peak interstadial warmth during LPAZ KR-12b, indicating overall favourable climatic conditions during the growing season. The pronounced increase in open-ground vegetation (NAP dominance) and herbaceous taxa thus likely reflects an ecological response to severe winter conditions, that restricted the establishment and survival of forest taxa, particularly those sensitive to extreme winter frosts (Körner and Paulsen, 2004; Harrington and Gould, 2015).

LPAZ KR-12c begins with pioneer *Betula-Larix* forests, reflecting a significant climatic shift towards colder and possibly drier conditions. The appearance of *Larix*, a cold-tolerant, light-demanding taxon adapted to short growing seasons and low

- sformatowano: Czcionka: Kursywa

- sformatowano: Czcionka: Kursywa

Sformatowano: Odstęp Przed: 0 pkt, Po: 0 pkt

— **sformatowano:** Czcionka: Kursywa

precipitation (San-Miguel-Ayanz et al., 2022). Our MAT and WA PLS reconstructions support this shift, showing notable declines in T_{int} and T_{ann} as well as in P_{nnn}, aligning with the development of tundra-like sparse forest communities. Gradually increasing pollen signals from *Pinus* indicate a modest rise in thermal conditions later within LPAZ KR-12c, vet stillbut within a generally cool and moisture-limited climatic regime. The absence of chironomids during this interval corroborates the interpretation of sustained cooler and drier conditions. Chironomid assemblages are sensitive to environmental harshness, and under extremely cold or oligotrophic conditions, their production may be so low that remains are not preserved in sediment records (Eggermont and Heiri, 2012). The gradual cooling indicated by our chironomid-and pollen-based reconstructions during subsequent LPAZ KR-13a is consistent with the presence of sparse Betula forests at the onset of this zone. Pollen-based reconstructions suggest that Taul MTWA remained relatively mild (~17.35 °C MAT, ~4715.3 °C WA-PLS), closely aligning with the chironomid-inferred mean T_{iul-Ch} value of ~17.5°C for this interval. Although the chironomid data exhibits a broader range (15–20°C), this variability falls within typical reconstruction uncertainties and does not suggest a fundamentally different climatic signal. Meanwhile, declines in T_{ann} and especially T_{ian}-MTCO indicate that cold-season severity remained the primary constraint on forest development (Nienstaedt, 1967; Körner and Paulsen, 2004; Harrington and Gould, 2015). In parallel, a reduction in Pann further supports increasing climatic stress, potentially limiting moisture availability and forest resilience during this transitional phase (Körner and Paulsen, 2004). The broader relevance of the elimate climatic conditions reconstructed from the Krepa pollen data is given by the comparison with other MIS 11 palaeotemperature reconstructions from Southern Europe (Fig. 5) (Rodrigues et al., 2011; Oliveira et al., 2016; Kousis et al., 2018; Ardenghi et al., 2019; Sassoon et al., 2023, 2025). These Mediterranean records indicate generally warm conditions during MIS 11b, punctuated by recurrent cooling and drying events that led to repeated forest contractions. For instance, the Lake Ohrid from SE Europe record shows a transition from temperate deciduous to cold mixed forests, with

T_{ann} dropping to ~2 °C and mean temperature of the coldest month below -8 °C during the coldest events, despite precipitation

often remaining near or above 800-900 mm (Kousis et al., 2018). Meanwhile, records from the SW Mediterranean reflect

similar climate oscillations, with Sassoon et al. (2025) documenting synchronous declines in T_{ann} and P_{ann} centered ~398 ka

BP. -(Ardenghi et al., 2019)(Sassoon et al., 2025)(Rodrigues et al., 2011; Oliveira et al., 2016)Meanwhile, records from the

SW Mediterranean reflect similar climate oscillations, with Sassoon et al. (2025) documenting synchronous declines in Tamo

and Pann centered around 398 ka BP. In contrast, the Krepa record reflects relatively steady summer cooling alongside more

marked declines in winter temperatures and moderately decreasing precipitation. Mediterranean vegetation is primarily water-

limited, making it especially vulnerable to fluctuations in atmospheric moisture and reductions in winter rainfall (Giorgi, 2006;

Lionello et al., 2006). In contrast, vVegetation in Eastern Europe, however, is highly responsive to winter climate extremes.

In particular, cold-season frost events, snow cover variability, and late-winter cold snaps affect plant performance, especially

temperatures, reinforces the interpretation of subarctic or boreal-like climate conditions. Larix is typically associated with

northern coniferous forests, and reaches its distributional limits in areas with low winter temperatures and moderate

823 824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

- sformatowano: Czcionka: Kursywa

- sformatowano: Czcionka: Kursywa

in temperate and continental zones (Kreyling, 2010; Camarero et al., 2022).

The lack of accurate absolute dating for terrestrial sediment sequences from the Holsteinian Interglacial makes it difficult to directly compare the results from Krępa to other MIS 11 sites. However, as there are a few quantitative temperature reconstructions based on pollen and biomarkers from other sites in Europe for the post-Holsteinian, a general comparison of temperature levels during this interval seems—is feasible. For example, Tenaghi Philippon record indicates mild summer temperature drop to ~16 °C at the coolest period of MIS 11b (Ardenghi et al., 2019). Climatic fluctuations at another Mediterranean region site — ODP 986 at Alboran Sea — were not abrupt, especially during first half of MIS 11b. Initially summer temperature stayed above 20 °C, only at further stage decreasing to ~17 °C (Fig. 5) (Sassoon et al., 2025). —For example, pollen Pollen analyses on marine sediments from the Iberian margin show similar climatic and ecological patterns for MIS 11b as observed at Krępa, namely repeated forest decline events. These were paralleled by reductions in sea surface temperatures, although -temperatures were in general still relatively high during most of MIS 11b, i.e. —only about 1 °C below the—MIS 11c levels ((Rodrigues et al., 2011; Oliveira et al., 2016) Oliveira et al., 2016). A similar pattern with between still relatively high air temperature during early MIS 11b, and a temperature drop only during late MIS 11b is also seen in palynological data from Lake Ohrid in SE Europe (Kousis et al., 2018).

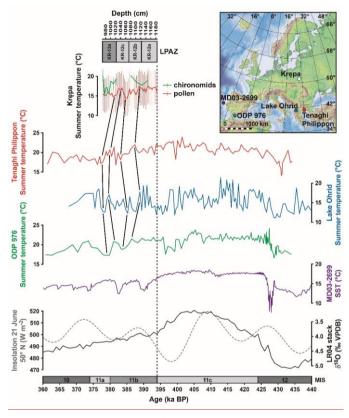


Figure 5: Comparison of (top to bottom) the Marine Isotope Stage (MIS) 11b pollen- and chironomid-based summer temperature reconstructions from Krepa, a summer temperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Tenaghi Philippon, Greece (Ardenghi et al., 2019), a pollen-based summer temperature reconstruction from Lake Ohrid, Balkan Peninsula (Kousis et al., 2018; Kountsodendris et al., 2020), a pollen-based summer temperature reconstruction from ODP Site 976, Alboran Sea (Sassoon et al., 2025), and a biomarker-based (Uk'37) sea surface temperature (SST) reconstruction from marine core MD03-2699, Iberian margin (Rodrigues et al., 2011). The LR04 d¹⁸O stack (solid black line; Lisiecki and Raymo, 2005) and the 21 June insolation at 50° N (approximate latitude of Krepa; dashed grey line; Laskar et al., 2004) are provided as a palaeoclimatic context. The timing of the MIS boundaries 12/11c and 11a/10 is given according to Lisiecki and Raymo (2005); the timing of the MIS boundaries 11c/11b and 11b/11a is tentative. The insert map shows the locations of the individual proxy records.

In line with our chironomid-based summer July temperature reconstruction from Krępa, these results show that the temperature decline at the demise of the Holsteinian Interglacial was not abrupt, and that at least summer temperatures most probably likely remained at a relatively high level for several thousand years. The general summer temperature variability that is seen in the

Krepa record throughout the post-Holsteinian, i.e. the <u>moderate-initial</u> drop during <u>the</u> early MIS 11b, the following increase and the more pronounced <u>drop-decrease</u> during late MIS 11b, as well as the marked <u>re-increase</u> at <u>the-transition</u> into MIS 11a, closely resembles vegetation and sea surface temperature variability at the Iberian margin, and <u>might-may</u> indicate a substantial impact of insolation variability ((Rodrigues et al., 2011; Oliveira et al., 2016)Oliveira et al., 2016).

Conclusion

This study presents the first combined chironomid- and pollen-based palaeoclimatic reconstruction for the post-Holsteinian i.e. MIS 11b, offering a new perspective on climate variability in Eastern Europe during this time interval period. The results highlight the complementarity and reliability of both proxiesy types, as pollen-based MAT and WA-PLS reconstructions show strong internal consistency and correspond well with chironomid-inferred summer temperatures where data are is available. The summer temperatures range from 154 to 19 °C and between 15 and 20 °C for the pollen- and chironomid-based reconstruction respectively. This indicates colder summers compared to present times for most of the post-Holsteinian period. Among the models, tThe pollen-based MAT reconstructions exhibit particularly high predictive skill, especially for temperature variables. The analysed part of the Krepa sediment record reveals a progressive shift towards a more continental climate conditions throughout MIS 11b. This is reflected by gradually cooling summers, increasingly severe winters, and a decline in annual precipitation. These climatic trends coincide with marked vegetation changes, including forest retreat and a rise in herbaceous taxa during colder phases.

-To date, the vast majority of studies addressing terrestrial palaeoclimate variability in the terrestrial realm-during the Middle Pleistocene relies on pollen analysis. Nevertheless However, this does not prejudge the imply a complete lack or low abundance of Chironomid-inferred reconstruction in sites other than Holocene. More than that Moreover, they might may prove to be a priceless source of knowledge about on temperature, considering potential differences between pollen and Chironomid-inferred records. By comparing the results from different sites, it will be possible to find the factoridentify the factor(s) that influenced the preservation of Chironomidae subfossil remains of Chironomidae.

Ultimately, this study underscores the value of multi-proxy approaches in palaeoclimate reconstruction, particularly for pre-Holocene periods. Chironomids show significant potential as a summer temperature proxy in older sediments, as long as preservation conditions are favourable.

Financial support

The research was funded by the National Science Centre project, "Novel multi-proxy approaches for synchronisation of European palaeoclimate records from the Holstein interglacial". Project no. 2019/34/E/ST10/00275.

Authors contribution

- 913 TP proposed the idea of the main text, and contributed to the figures. TP,AGr and AG wrote the original draft version of the
- 914 manuscript. BK performed the chironomid-inferred summer temperature reconstruction. AG performed the pollen-inferred
- 915 climate reconstructions. MZ collected and described the core in the field. AG, AH, and MS analysed the pollen data. TP, AGr
- and MS analysed the chironomid data. TP, AGr, AG, SL, MB and MS did the visualisations (graphs and maps). AG, AH, MZ,
- MB, JN, MC, SL and MS reviewed the paper. All authors have made substantial contributions to the submission of this
- 918 manuscript.

912

919

921

924

927

Competing interests

920 The authors declare that they have no conflict of interest.

References

- 922 Allen, A. P., Whittier, T. R., Kaufmann, P. R., Larsen, D. P., O'Connor, R. J., Hughes, R. M., Stemberger, R. S., Dixit, S. S.,
- 923 Brinkhurst, R. O., Herlihy, A. T., and Paulsen, S. G.: Concordance of taxonomic richness patterns across multiple assemblages
 - in lakes of the northeastern United States, Can. J. Fish. Aquat. Sci., 56, 739-747, 1999.
- 925 Andersen, T., Sæther, O., Cranston, P., and Epler, J.: 9. The larvae of Orthocladiinae (Diptera: Chironomidae) of the Holarctic
- 926 Region Keys and diagnoses. In: Andersen, T. Cranston, P.S. & Epler J.H. (Sci. eds): The larvae of Chironomidae (Diptera)
 - of the Holarctic region Keys and diagnoses., Insect Syst. Evol. Suppl., 66, 189-386, 2013.
- 928 Andreev, A. A., Grosse, G., Schirrmeister, L., Kuzmina, S. A., Novenko, E. Yu., Bobrov, A. A., Tarasov, P. E., Ilyashuk, B.
- 929 P., Kuznetsova, T. V., Krbetschek, M., Meyer, H., and Kunitsky, V. V.: Late Saalian and Eemian palaeoenvironmental history
- 930 of the Bol'shoy Lyakhovsky Island (Laptev Sea region, Arctic Siberia), Boreas, 33, 319-348, https://doi.org/10.1111/j.1502-
- 931 3885.2004.tb01244.x, 2004.
- 932 Ardenghi, N., Mulch, A., Koutsodendris, A., Pross, J., Kahmen, A., and Niedermeyer, E. M.: Temperature and moisture
- 933 variability in the eastern Mediterranean region during Marine Isotope Stages 11-10 based on biomarker analysis of the Tenaghi
- 934 Philippon peat deposit, Quat. Sci. Rev., 225, 105977, https://doi.org/10.1016/j.quascirev.2019.105977, 2019.
- 935 van Asch, N., Kloos, M. E., Heiri, O., de Klerk, P., and Hoek, W. Z.: The younger dryas cooling in northeast Germany: summer
- 936 temperature and environmental changes in the Friedländer Große Wiese region, J. Quat. Sci., 27, 531-543,
- 937 https://doi.org/10.1002/jqs.2547, 2012.
- 938 Atkinson, T. C., Briffa, K. R., and Coope, G. R.: Seasonal temperatures in Britain during the past 22,000 years, reconstructed
- 939 using beetle remains, Nature, 325, 587–592, https://doi.org/10.1038/325587a0, 1987.
- 940 Bailey, J. V., Cohen, A. S., and Kring, D. A.: Lacustrine Fossil Preservation in Acidic Environments: Implications of
- 941 Experimental and Field Studies for the Cretaceous-Paleogene Boundary Acid Rain Trauma, PALAIOS, 20, 376-389,
- 942 https://doi.org/10.2110/palo.2003.p03-88, 2005.

- 943 Battarbee, R. W.: Palaeolimnological approaches to climate change, with special regard to the biological record, Quat. Sci.
- 944 Rev., 19, 107-124, 2000.
- 945 Bedford, A., Jones, Richard. T., Lang, B., Brooks, S., and Marshall, J. D.: A Late-glacial chironomid record from Hawes
- 946 Water, northwest England, J. Quat. Sci., 19, 281–290, https://doi.org/10.1002/jqs.836, 2004.
- 947 Benham, S., Durrant, T., Caudullo, G., and de Rigo, D.: Taxus baccata in Europe: distribution, habitat, usage and threats, 2016.
- 948 Berglund, B. E. and Ralska-Jasiewiczowa, M.: Pollen analysis and pollen diagrams, Handb. Holocene Palaeoecol.
- 949 Palaeohydrology, 455, 484-486, 1986.
- 950 Beug, H.-J.: Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, No Title, 1961.
- 951 Bińka, K., Szymanek, M., and Nitychoruk, J.: Climate and vegetation changes recorded in the post Holsteinian lake deposits
- 952 at Ossówka (eastern Poland), Acta Geol. Pol., 341–354, 2023.
- 953 Blindow, I.: Decline of charophytes during eutrophication: comparison with angiosperms, Freshw. Biol., 28, 9-14,
- 954 https://doi.org/10.1111/j.1365-2427.1992.tb00557.x, 1992.
- 955 Bolland, A., Kern, O. A., Allstädt, F. J., Peteet, D., Koutsodendris, A., Pross, J., and Heiri, O.: Summer temperatures during
- the last glaciation (MIS 5c to MIS 3) inferred from a 50,000-year chironomid record from Füramoos, southern Germany, Quat.
- 957 Sci. Rev., 264, 107008, https://doi.org/10.1016/j.quascirev.2021.107008, 2021.
- 958 Boubee, J. a. T.: Past and present benthic fauna of Lake Maratoto with special reference to the chironomidae, The University
- 959 of Waikato, 1983.
- 960 ter Braak, C. J. F. and Juggins, S.: Weighted averaging partial least squares regression (WA-PLS): an improved method for
- 961 reconstructing environmental variables from species assemblages, Hydrobiologia, 269, 485-502,
- 962 https://doi.org/10.1007/BF00028046, 1993.
- 963 ter Braak, C. J. F., H., van D., Juggins, S., and Birks, H. J. B.: Calibration of modern diatom-climate regressions for
- 964 palaeoenvironmental reconstruction, in: Proceedings of the European Palaeoclimate and Man Symposium, European
- 965 Palaeoclimate and Man Symposium, Stuttgart, 1993.
- 966 Briggs, D. E. G. and Kear, A. J.: Fossilization of Soft Tissue in the Laboratory, Science, 259, 1439-1442,
- 967 https://doi.org/10.1126/science.259.5100.1439, 1993.
- 968 Brodersen, K. P. and Lindegaard, C.: Classification, assessment and trophic reconstruction of Danish lakes using chironomids,
- 969 Freshw. Biol., 42, 143–157, https://doi.org/10.1046/j.1365-2427.1999.00457.x, 1999a.
- 970 Brodersen, K. P. and Lindegaard, C.: Mass occurance and sporadic distribution of Corynocera ambigua Zetterstedt (Diptera,
- 971 Chironomidae) in Danish lakes. Neo- and palaeolimnological records, J. Paleolimnol., 22, 41-52,
- 972 https://doi.org/10.1023/A:1008032619776, 1999b.
- 973 Brondizio, E. S., O'Brien, K., Bai, X., Biermann, F., Steffen, W., Berkhout, F., Cudennec, C., Lemos, M. C., Wolfe, A., Palma-
- 974 Oliveira, J., and Chen, C.-T. A.: Re-conceptualizing the Anthropocene: A call for collaboration, Glob. Environ. Change, 39,
- 975 318–327, https://doi.org/10.1016/j.gloenvcha.2016.02.006, 2016.

- 976 Brooks, S. J.: Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region, Quat. Sci. Rev., 25,
- 977 1894–1910, https://doi.org/10.1016/j.quascirev.2005.03.021, 2006.
- 978 Brooks, S. J., Langdon, P. G., and Heiri, O.: The identification and use of Palaearctic Chironomidae larvae in palaeoecology,
- 979 Quat. Res. Assoc. Tech. Guide, i-vi,1, 2007.
- 980 Brundin, L.: Chironomiden und andere bodentiere der südschwedischen urgebirgsseen: Ein beitrag zur kenntnis der
- 981 bodenfaunistischen charakterzüge schwedischer oligotropher seen, Fiskeristyrelsen, 1949.
- 982 Butler, M. G.: A 7-year life cycle for two Chironomus species in arctic Alaskan tundra ponds (Diptera: Chironomidae), Can.
- 983 J. Zool., 60, 58–70, https://doi.org/10.1139/z82-008, 1982.
- 984 Camarero, J. J., Sánchez-Salguero, R., Sangüesa-Barreda, G., Lechuga, V., Viñegla, B., Seco, J. I., Taïqui, L., Carreira, J. A.,
- 985 and Linares, J. C.: Reply to the letter to editor regarding Camarero et al. (2021): Overgrazing and pollarding threaten Atlas
- 986 cedar conservation under forecasted aridification regardless stakeholders' nature, For. Ecol. Manag., 503, 119779,
- 987 https://doi.org/10.1016/j.foreco.2021.119779, 2022.
- 988 Candy, I., Schreve, D. C., Sherriff, J., and Tye, G. J.: Marine Isotope Stage 11: Palaeoclimates, palaeoenvironments and its
- role as an analogue for the current interglacial, Earth-Sci. Rev., 128, 18–51, https://doi.org/10.1016/j.earscirev.2013.09.006,
- 990 2014.

- 991 Caudullo, G., Tinner, W., and De Rigo, D.: Picea abies in Europe: distribution, habitat, usage and threats, 2016.
- 992 Charlton, M. N.: Hypolimnion Oxygen Consumption in Lakes: Discussion of Productivity and Morphometry Effects, Can. J.
- 993 Fish. Aquat. Sci., 37, 1531–1539, https://doi.org/10.1139/f80-198, 1980.
- 994 Chevalier, M., Davis, B. A. S., Heiri, O., Seppä, H., Chase, B. M., Gajewski, K., Lacourse, T., Telford, R. J., Finsinger, W.,
- 995 Guiot, J., Kühl, N., Maezumi, S. Y., Tipton, J. R., Carter, V. A., Brussel, T., Phelps, L. N., Dawson, A., Zanon, M., Vallé, F.,
- 996 Nolan, C., Mauri, A., de Vernal, A., Izumi, K., Holmström, L., Marsicek, J., Goring, S., Sommer, P. S., Chaput, M., and
- 997 Kupriyanov, D.: Pollen-based climate reconstruction techniques for late Quaternary studies, Earth-Sci. Rev., 210, 103384,
- 998 https://doi.org/10.1016/j.earscirev.2020.103384, 2020.
- 999 Cornette, R., Gusev, O., Nakahara, Y., Shimura, S., Kikawada, T., and Okuda, T.: Chironomid Midges (Diptera,
- 1000 Chironomidae) Show Extremely Small Genome Sizes, Zoolog. Sci., 32, 248–254, https://doi.org/10.2108/zs140166, 2015.
- 1001 Danks, H. V.: OVERWINTERING OF SOME NORTH TEMPERATE AND ARCTIC CHIRONOMIDAE: II.
- 1002 CHIRONOMID BIOLOGY, Can. Entomol., 103, 1875–1910, https://doi.org/10.4039/Ent1031875-12, 1971.
- 1003 Davis, S., Golladay, S. W., Vellidis, G., and Pringle, C. M.: Macroinvertebrate Biomonitoring in Intermittent Coastal Plain
 - Streams Impacted by Animal Agriculture, J. Environ. Qual., 32, 1036–1043, https://doi.org/10.2134/jeq2003.1036, 2003.
- 1005 Del Wayne, R. N., Herrmann, S. J., Sublette, J. E., Melnykov, I. V., Helland, L. K., Romine, J. A., Carsella, J. S., Herrmann-
- 1006 Hoesing, L. M., Turner, J. A., and Heuvel, B. D. V.: Occurrence of Chironomid Species (Diptera: Chironomidae) in the High
- 1007 Se-78 Concentrations and High pH of Fountain Creek Watershed, Colorado, USA, West. North Am. Nat., 78, 39-64,
- 1008 https://doi.org/10.3398/064.078.0106, 2018.

- 1009 Donato, M. and Paggi, A. C.: Polypedilum parthenogeneticum (Diptera: Chironomidae): a new parthenogenetic species from
- 1010 Eryngium L. (Apiaceae) phytotelmata, Aquat. Insects, 30, 51–60, https://doi.org/10.1080/01650420701829633, 2008.
- 1011 Drozd, M. and Trzepla, M.: Objaśnienia do Szczegółowej mapy geologicznej Polski 1:50 000, Arkusz Kock (676), 2007.
- 1012 Druzhinina, O., Kublitskiy, Y., Stančikaitė, M., Nazarova, L., Syrykh, L., Gedminienė, L., Uogintas, D., Skipityte, R.,
- 1013 Arslanov, K., Vaikutienė, G., Kulkova, M., and Subetto, D.: The Late Pleistocene-Early Holocene palaeoenvironmental
- 1014 evolution in the SE Baltic region: a new approach based on chironomid, geochemical and isotopic data from Kamyshovoye
- 1015 Lake, Russia, Boreas, 49, 544–561, https://doi.org/10.1111/bor.12438, 2020.
- 1016 Dumayne-Peaty, L.: Human Impact on the Environment during the Iron Age and Romano-British Times: Palynological
- 1017 Evidence from Three Sites near the Antonine Wall, Great Britain, J. Archaeol. Sci., 25, 203-214,
- 1018 https://doi.org/10.1006/jasc.1997.0205, 1998.
- 1019 Eggermont, H. and Heiri, O.: The chironomid-temperature relationship: expression in nature and palaeoenvironmental
- implications, Biol. Rev., 87, 430–456, https://doi.org/10.1111/j.1469-185X.2011.00206.x, 2012.
- 1021 Engels, S., Bohncke, S. J. P., Bos, J. A. A., Brooks, S. J., Heiri, O., and Helmens, K. F.: Chironomid-based palaeotemperature
- estimates for northeast Finland during Oxygen Isotope Stage 3, J. Paleolimnol., 40, 49–61, https://doi.org/10.1007/s10933-
- 1023 007-9133-y, 2008.
- 1024 Erdtman, G.: Pollen walls and angiosperm phylo-geny., 1960.
- 1025 Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T., Berke, M. A., Smith, S. J., Goff, F., Donohoo-
- Hurley, L., Cisneros-Dozal, L. M., Schouten, S., Sinninghe Damsté, J. S., Huang, Y., Toney, J., Fessenden, J., WoldeGabriel,
- 1027 G., Atudorei, V., Geissman, J. W., and Allen, C. D.: Extended megadroughts in the southwestern United States during
- 1028 Pleistocene interglacials, Nature, 470, 518–521, https://doi.org/10.1038/nature09839, 2011.
- 1029 Fernández Arias, S., Förster, M. W., and Sirocko, F.: Rieden tephra layers in the Dottinger Maar lake sediments: Implications
- 1030 for the dating of the Holsteinian interglacial and Elsterian glacial, Glob. Planet. Change, 227, 104143,
- 1031 https://doi.org/10.1016/j.gloplacha.2023.104143, 2023.
- 1032 Fjellberg, A.: Present and late weichselian occurrence of Corynocera ambigua zett.(Diptera, Chironomidae) in Norway, Nor.
- 1033 Entomol Tidsskr, 1972.
- 1034 Forsberg, C.: Nutritional Studies of Chara in Axenic Cultures, Physiol. Plant., 18, 275–290, https://doi.org/10.1111/j.1399-
- 1035 3054.1965.tb06890.x, 1965.
- 1036 Foster, G. L. and Rae, J. W. B.: Reconstructing Ocean pH with Boron Isotopes in Foraminifera, Annu. Rev. Earth Planet. Sci.,
- 1037 44, 207–237, https://doi.org/10.1146/annurev-earth-060115-012226, 2016.
- 1038 Gandouin, E., Ponel, P., Andrieu-Ponel, V., Franquet, É., Beaulieu, J.-L. de, Reille, M., Guiter, F., Brulhet, J., Lallier-Vergès,
- 1039 É., Keravis, D., Grafenstein, U. von, and Veres, D.: Past environment and climate changes at the last Interglacial/Glacial
- 1040 transition (Les Échets, France) inferred from subfossil chironomids (Insecta), Comptes Rendus Géoscience, 339, 337–346,
- 1041 https://doi.org/10.1016/j.crte.2007.03.002, 2007.

- 1042 Gandouin, E., Rioual, P., Pailles, C., Brooks, S. J., Ponel, P., Guiter, F., Djamali, M., Andrieu-Ponel, V., Birks, H. J. B.,
- 1043 Leydet, M., Belkacem, D., Haas, J. N., Van der Putten, N., and de Beaulieu, J. L.: Environmental and climate reconstruction
- 1044 of the late-glacial-Holocene transition from a lake sediment sequence in Aubrac, French Massif Central: Chironomid and
- diatom evidence, Palaeogeogr. Palaeoclimatol. Palaeoecol., 461, 292–309, https://doi.org/10.1016/j.palaeo.2016.08.039, 2016.
- 1046 Gedminienė, L., Spiridonov, A., Stančikaitė, M., Skuratovič, Ž., Vaikutienė, G., Daumantas, L., and Salonen, J. S.: Temporal
- 1047 and spatial climate changes in the mid-Baltic region in the Late Glacial and the Holocene: Pollen-based reconstructions,
- 1048 CATENA, 252, 108851, https://doi.org/10.1016/j.catena.2025.108851, 2025.
- 1049 Giorgi, F.: Climate change hot-spots, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL025734, 2006.
- 1050 Górecki, A.: Plant succession as an indicator of climatic oscillations during Masovian Interglacial (MIS 11c), PhD Thesis,
- 1051 2023.

- 1052 Górecki, A., Żarski, M., Drzewicki, W., Pleśniak, Ł., Zalewska-Gałosz, J., and Hrynowiecka, A.: New climatic oscillations
- 1053 during MIS 11c in the record of the Skrzynka II site (Eastern Poland) based on palynological and isotope analysis, Quat. Int.,
 - 632, 4-20, https://doi.org/10.1016/j.quaint.2021.09.017, 2022.
- 1055 Guiot, J.: Methodology of the last climatic cycle reconstruction in France from pollen data, Palaeogeogr. Palaeoclimatol.
- 1056 Palaeoecol., 80, 49–69, https://doi.org/10.1016/0031-0182(90)90033-4, 1990.
- 1057 Gusev, O., Nakahara, Y., Vanyagina, V., Malutina, L., Cornette, R., Sakashita, T., Hamada, N., Kikawada, T., Kobayashi, Y.,
- 1058 and Okuda, T.: Anhydrobiosis-Associated Nuclear DNA Damage and Repair in the Sleeping Chironomid: Linkage with
- 1059 Radioresistance, PLOS ONE, 5, e14008, https://doi.org/10.1371/journal.pone.0014008, 2010.
- 1060 Halkiewicz, A.: Corynocera ambigua (Insecta, Diptera) subfossils occurrence in recent sediments of four shallow Polesie lakes,
- in: Annales Universitatis Mariae Curie-Sklodowska, 31, 2008.
- 1062 Hamburger, K., Dall, P. C., and Lindegaard, C.: Energy metabolism of Chironomus anthracinus (Diptera: Chironomidae) from
- 1063 the profundal zone of Lake Esrom, Denmark, as a function of body size, temperature and oxygen concentration, Hydrobiologia,
- 1064 294, 43-50, https://doi.org/10.1007/BF00017624, 1994.
- Harrington, C. A. and Gould, P. J.: Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific
- Northwest tree species, Front. Plant Sci., 6, 120, 2015.
- 1067 Heino, J.: Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water
- 1068 chemistry, Hydrobiologia, 418, 229–242, https://doi.org/10.1023/A:1003969217686, 2000.
- 1069 Heiri, O.: Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes, J. Paleolimnol., 32, 67-
- 1070 84, https://doi.org/10.1023/B:JOPL.0000025289.30038.e9, 2004.
- 1071 Heiri, O. and Lotter, A. F.: Effect of low count sums on quantitative environmental reconstructions: an example using subfossil
- 1072 chironomids, J. Paleolimnol., 26, 343–350, https://doi.org/10.1023/A:1017568913302, 2001.
- 1073 Heiri, O. and Millet, L.: Reconstruction of Late Glacial summer temperatures from chironomid assemblages in Lac Lautrey
- 1074 (Jura, France), J. Quat. Sci., 20, 33–44, https://doi.org/10.1002/jqs.895, 2005.

- 1075 Herzschuh, U., Böhmer, T., Li, C., Chevalier, M., Hébert, R., Dallmeyer, A., Cao, X., Bigelow, N. H., Nazarova, L., Novenko,
- 1076 E. Y., Park, J., Peyron, O., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and
- 1077 Zheng, Z.: LegacyClimate 1.0: A dataset of pollen-based climate reconstructions from 2594 Northern Hemisphere sites
- 1078 covering the last 30 kyr and beyond, Earth Syst. Sci. Data, 15, 2235–2258, https://doi.org/10.5194/essd-15-2235-2023, 2023a.
- 1079 Herzschuh, U., Böhmer, T., Chevalier, M., Hébert, R., Dallmeyer, A., Li, C., Cao, X., Peyron, O., Nazarova, L., Novenko, E.
- 1080 Y., Park, J., Rudaya, N. A., Schlütz, F., Shumilovskikh, L. S., Tarasov, P. E., Wang, Y., Wen, R., Xu, Q., and Zheng, Z.:
- 1081 Regional pollen-based Holocene temperature and precipitation patterns depart from the Northern Hemisphere mean trends,
 - Clim. Past, 19, 1481–1506, https://doi.org/10.5194/cp-19-1481-2023, 2023b.
- 1083 Hofmann, W. and Winn, K.: The Littorina Transgression in the Western Baltic Sea as Indicated by Subfossil Chironomidae
- 1084 (Diptera) and Cladocera (Crustacea), Int. Rev. Hydrobiol., 85, 267–291, https://doi.org/10.1002/(SICI)1522-
- 1085 2632(200004)85:2/3<267::AID-IROH267>3.0.CO;2-Q, 2000.
- 1086 Horne, D. J.: A Mutual Temperature Range method for Quaternary palaeoclimatic analysis using European nonmarine
 - Ostracoda, Quat. Sci. Rev., 26, 1398–1415, https://doi.org/10.1016/j.quascirev.2007.03.006, 2007.
- Horne, D. J., Ashton, N., Benardout, G., Brooks, S. J., Coope, G. R., Holmes, J. A., Lewis, S. G., Parfitt, S. A., White, T. S.,
- 1089 Whitehouse, N. J., and Whittaker, J. E.: A terrestrial record of climate variation during MIS 11 through multiproxy
 - palaeotemperature reconstructions from Hoxne, UK, Quat. Res., 111, 21-52, https://doi.org/10.1017/qua.2022.20, 2023.
- 1091 Hrynowiecka, A. and Pidek, I. A.: Older and Younger Holsteinian climate oscillations in the palaeobotanical record of the
- 1092 Brus profile (SE Poland), Geol. Q., 61, 723–737, doi: 10.7306/gq.1358, https://doi.org/10.7306/gq.1358, 2017.
- 1093 Hrynowiecka, A. and Winter, H.: Palaeoclimatic changes in the Holsteinian Interglacial (Middle Pleistocene) on the basis of
- 1094 indicator-species method Palynological and macrofossils remains from Nowiny Żukowskie site (SE Poland), Quat. Int., 409,
 - 255–269, https://doi.org/10.1016/j.quaint.2015.08.036, 2016.
- Hrynowiecka, A., Żarski, M., and Drzewicki, W.: The rank of climatic oscillations during MIS 11c (OHO and YHO) and post-
- interglacial cooling during MIS 11b and MIS 11a in eastern Poland, Geol. Q., 63, 375-394, doi: 10.7306/gq.1470,
- 1098 https://doi.org/10.7306/gq.1470, 2019.

1087

1090

1095

- 1099 Ilyashuk, E. A., Ilyashuk, B. P., Hammarlund, D., and Larocque, I.: Holocene climatic and environmental changes inferred
- 1100 from midge records (Diptera: Chironomidae, Chaoboridae, Ceratopogonidae) at Lake Berkut, southern Kola
- 1101 Peninsula, Russia, The Holocene, 15, 897–914, https://doi.org/10.1191/0959683605hl865ra, 2005.
- 1102 Ilyashuk, E. A., Ilyashuk, B. P., Kolka, V. V., and Hammarlund, D.: Holocene climate variability on the Kola Peninsula,
- 1103 Russian Subarctic, based on aquatic invertebrate records from lake sediments, Quat. Res., 79, 350-361,
- 1104 https://doi.org/10.1016/j.yqres.2013.03.005, 2013.
- 1105 Ilyashuk, E. A., Ilyashuk, B. P., Heiri, O., and Spötl, C.: Summer temperatures and lake development during the MIS 5a
- 1106 interstadial: New data from the Unterangerberg palaeolake in the Eastern Alps, Austria, Palaeogeogr. Palaeoclimatol.
- 1107 Palaeoecol., 560, 110020, https://doi.org/10.1016/j.palaeo.2020.110020, 2020.

- 1108 Ilyashuk, E. A., Ilyashuk, B. P., Heiri, O., and Spötl, C.: Summer temperatures and environmental dynamics during the Middle
- 1109 Würmian (MIS 3) in the Eastern Alps: Multi-proxy records from the Unterangerberg palaeolake, Austria, Quat. Sci. Adv., 6,
- 1110 100050, https://doi.org/10.1016/j.qsa.2022.100050, 2022.
- 1111 Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton,
- 1112 N. J.: The orbital theory of Pleistocene climate: support from a revised chronology of the marine d18O record, 1984.
- 1113 Iovino, A. J.: Extant chironomid larval populations and the representativeness and nature of their remains in lake sediments.,
- 1114 Indiana University, 1975.
- 1115 Janczyk-Kopikowa, Z.: The Ferdynand6w Interglacial in Poland, Geol. Q., 35, 71–80, 1991.
- l 16 Jesionkiewicz, P.: Nowe stanowisko interglacjału mazowieckiego w Krępie koło Kocka, Geol. Q., 26, 423–430, 1982.
- 1117 Juggins, S.: C2: Software for ecological and palaeoecological data analysis and visualisation (user guide version 1.5), Newctle.
- 1118 Tyne Newctle. Univ., 77, 680, 2007.
- 1119 Juggins, S.: riojaPlot: Stratigraphic diagrams in R, package version (0.1-20), 2022.
- 1120 Juggins, S. and Birks, H. J. B.: Quantitative Environmental Reconstructions from Biological Data, in: Tracking Environmental
- 1121 Change Using Lake Sediments: Data Handling and Numerical Techniques, edited by: Birks, H. J. B., Lotter, A. F., Juggins,
- 1122 S., and Smol, J. P., Springer Netherlands, Dordrecht, 431–494, https://doi.org/10.1007/978-94-007-2745-8 14, 2012.
- 1123 Kansanen, P. H.: Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in
- the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna, Ann. Zool. Fenn., 22, 57–90, 1985.
- 1125 Kleinen, T., Brovkin, V., and Munhoven, G.: Modelled interglacial carbon cycle dynamics during the Holocene, the Eemian
- and Marine Isotope Stage (MIS) 11, Clim. Past, 12, 2145–2160, https://doi.org/10.5194/cp-12-2145-2016, 2016.
- 1127 Klink, A. G. and Moller Pillot, H.: Chironomidae larvae: key to the higher taxa and species of the lowlands of Northwestern
- 1128 Europe., 2003.
- 1129 Kokkinn, M. J.: Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus
- ll 30 barbitarsis Freeman, Mar. Freshw. Res., 37, 243–250, https://doi.org/10.1071/mf9860243, 1986.
- 1 Kondratiene, O. and Gudelis, W.: Morskie osady plejstoceńskie na obszarze Pribałtyki, Przegląd Geol., 31, 497, 1983.
- 1132 Körner, C. and Paulsen, J.: A world-wide study of high altitude treeline temperatures, J. Biogeogr., 31, 713-732,
- 1133 https://doi.org/10.1111/j.1365-2699.2003.01043.x, 2004.
- 1134 Kotrys, B., Płóciennik, M., Sydor, P., and Brooks, S. J.: Expanding the Swiss-Norwegian chironomid training set with Polish
- data, Boreas, 49, 89–107, https://doi.org/10.1111/bor.12406, 2020.
- Kousis, I., Koutsodendris, A., Peyron, O., Leicher, N., Francke, A., Wagner, B., Giaccio, B., Knipping, M., and Pross, J.:
- 1137 Centennial-scale vegetation dynamics and climate variability in SE Europe during Marine Isotope Stage 11 based on a pollen
- 1138 record from Lake Ohrid, Quat. Sci. Rev., 190, 20–38, https://doi.org/10.1016/j.quascirev.2018.04.014, 2018.
- 1139 Koutsodendris, A., Müller, U. C., Pross, J., Brauer, A., Kotthoff, U., and Lotter, A. F.: Vegetation dynamics and climate
- 1140 variability during the Holsteinian interglacial based on a pollen record from Dethlingen (northern Germany), Quat. Sci. Rev.,
- 29, 3298–3307, https://doi.org/10.1016/j.quascirev.2010.07.024, 2010.

— **sformatowano:** Polski

- 1142 Koutsodendris, A., Pross, J., Müller, U. C., Brauer, A., Fletcher, W. J., Kühl, N., Kirilova, E., Verhagen, F. T. M., Lücke, A.,
- 1143 and Lotter, A. F.: A short-term climate oscillation during the Holsteinian interglacial (MIS 11c): An analogy to the 8.2 ka
- 1144 climatic event?, Glob. Planet. Change, 92–93, 224–235, https://doi.org/10.1016/j.gloplacha.2012.05.011, 2012.
- 1145 Kreyling, J.: Winter climate change: A critical factor for temperate vegetation performance, Ecology, 91, 1939-1948,
- 1146 https://doi.org/10.1890/09-1160.1, 2010.
- 1147 Krupiński, K. M.: Taxus in plant communities of the Mazovian interglacial age in Central Europe and its climatostratigraphical
- 1148 consequences, Bull. Pol. Acad. Sci. Earth Sci., 43, 1995.
- 1149 Krzeminski, W. and Jarzembowski, E.: Aenne triassica sp.n., the oldest representative of the family Chironomidae [Insecta:
- 1150 Diptera], Pol. Pismo Entomol., 68, 1999.

- 1151 Kühl, N. and Gobet, E.: Climatic evolution during the Middle Pleistocene warm period of Bilshausen, Germany, compared to
- the Holocene, Quat. Sci. Rev., 29, 3736–3749, https://doi.org/10.1016/j.quascirev.2010.08.006, 2010.
- 1153 Kupryjanowicz, M., Nalepka, D., Pidek, I. A., Walanus, A., Balwierz, Z., Bińka, K., Fiłoc, M., Granoszewski, W., Kołaczek,
 - P., Majecka, A., Malkiewicz, M., Nita, M., Noryśkiewicz, B., and Winter, H.: The east-west migration of trees during the
- 1155 Eemian Interglacial registered on isopollen maps of Poland, Quat. Int., 467, 178-191,
- 1156 https://doi.org/10.1016/j.quaint.2017.08.034, 2018.
- 1157 Lackmann, A. R., McEwen, D. C., and Butler, M. G.: Evidence of parthenogenetic populations from the Paratanytarsus
- 1158 laccophilus species group (Diptera: Chironomidae) in the Alaskan Arctic, CHIRONOMUS J. Chironomidae Res., 48-58,
- 1159 https://doi.org/10.5324/cjcr.v0i33.3478, 2020.
- 1 60 Lanczont, M., Pidek, I. A., Bogucki, A., Wieliczkiewicz, F., and Wojtanowicz, J.: Kluczowy profil interglacjału
- 1 61 mazowieckiego w Krukienicach na międzyrzeczu Sanu i Dniestru (Ukraina), Przegląd Geol., 51, 597–608, 2003.
- 1162 Lapellegerie, P., Millet, L., Rius, D., Duprat-Oualid, F., Luoto, T., and Heiri, O.: Chironomid-inferred summer temperature
- 1163 during the Last Glacial Maximum in the Southern Black Forest, Central Europe, Quat. Sci. Rev., 345, 109016,
- 1164 https://doi.org/10.1016/j.quascirev.2024.109016, 2024.
- 1165 Larocque-Tobler, I., Grosjean, M., Heiri, O., and Trachsel, M.: High-resolution chironomid-inferred temperature history since
- 1166 ad 1580 from varved Lake Silvaplana, Switzerland: comparison with local and regional reconstructions, The Holocene, 19,
- 1167 1201–1212, https://doi.org/10.1177/0959683609348253, 2009.
- 1168 Lauer, T. and Weiss, M.: Timing of the Saalian- and Elsterian glacial cycles and the implications for Middle Pleistocene
- 1169 hominin presence in central Europe, Sci. Rep., 8, 5111, https://doi.org/10.1038/s41598-018-23541-w, 2018.
- 1170 Lauer, T., Weiss, M., Bernhardt, W., Heinrich, S., Rappsilber, I., Stahlschmidt, M. C., von Suchodoletz, H., and Wansa, S.:
- 1171 The Middle Pleistocene fluvial sequence at Uichteritz, central Germany: Chronological framework, paleoenvironmental
- 1172 history and early human presence during MIS 11, Geomorphology, 354, 107016,
- 1173 https://doi.org/10.1016/j.geomorph.2019.107016, 2020.
- 1174 Lenarczyk, J.: The Algal Genus" pediastrum Meyen"(chlorophyta) in Poland, W. Szafer Institute of Botany, Polish Academy
- 1175 of Sciences, 2014.

- 1176 Lencioni, V.: Survival strategies of freshwater insects in cold environments, 2004.
- 1177 Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P., Artale, V., Li, L., Luterbacher, J., May, W., Trigo, R., Tsimplis,
- 1178 M., Ulbrich, U., and Xoplaki, E.: The Mediterranean climate: An overview of the main characteristics and issues, in:
- 1179 Developments in Earth and Environmental Sciences, vol. 4, edited by: Lionello, P., Malanotte-Rizzoli, P., and Boscolo, R.,
- 1180 Elsevier, 1–26, https://doi.org/10.1016/S1571-9197(06)80003-0, 2006.
- Lotter, A. F., Birks, H. J. B., Hofmann, W., and Marchetto, A.: Modern diatom, cladocera, chironomid, and chrysophyte cyst
- 1182 assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate, J.
- Paleolimnol., 18, 395–420, https://doi.org/10.1023/A:1007982008956, 1997.
- 1184 Luoto, T. P. and Sarmaja-Korjonen, K.: Midge-inferred Holocene effective moisture fluctuations in a subarctic lake, northern
- Lapland, Boreas, 40, 650–659, https://doi.org/10.1111/j.1502-3885.2011.00217.x, 2011.
- 1186 Luoto, T. P., Nevalainen, L., and Sarmaja-Korjonen, K.: Multiproxy evidence for the 'Little Ice Age' from Lake Hampträsk,
- Southern Finland, J. Paleolimnol., 40, 1097–1113, https://doi.org/10.1007/s10933-008-9216-4, 2008.
- 1188 Magny, M., Aalbersberg, G., Bégeot, C., Benoit-Ruffaldi, P., Bossuet, G., Disnar, J.-R., Heiri, O., Laggoun-Defarge, F.,
- 1189 Mazier, F., Millet, L., Peyron, O., Vannière, B., and Walter-Simonnet, A.-V.: Environmental and climatic changes in the Jura
- 1190 mountains (eastern France) during the Lateglacial-Holocene transition: a multi-proxy record from Lake Lautrey, Quat. Sci.
- 1191 Rev., 25, 414–445, https://doi.org/10.1016/j.quascirev.2005.02.005, 2006.
- 1192 Mamakowa, K. and Rylova, T. B.: The interglacial from Korchevo in Belarus in the light of new palaeobotanical studies, Acta
- 1193 Palaeobot., 47, 2007.
- Marks, L.: Quaternary stratigraphy of Poland-current status, Acta Geol. Pol., 73, 307-340, 2023.
- 1195 Marks, L., Karabanov, A., Nitychoruk, J., Bahdasarau, M., Krzywicki, T., Majecka, A., Pochocka-Szwarc, K., Rychel, J.,
- 1196 Woronko, B., Zbucki, Ł., Hradunova, A., Hrychanik, M., Mamchyk, S., Rylova, T., Nowacki, Ł., and Pielach, M.: Revised
- limit of the Saalian ice sheet in central Europe, Quat. Int., 478, 59–74, https://doi.org/10.1016/j.quaint.2016.07.043, 2018.
- 1198 Masson-Delmotte, V., Stenni, B., Pol, K., Braconnot, P., Cattani, O., Falourd, S., Kageyama, M., Jouzel, J., Landais, A.,
- 1199 Minster, B., Barnola, J. M., Chappellaz, J., Krinner, G., Johnsen, S., Röthlisberger, R., Hansen, J., Mikolajewicz, U., and Otto-
- 1200 Bliesner, B.: EPICA Dome C record of glacial and interglacial intensities, Quat. Sci. Rev., 29, 113-128,
- 1201 https://doi.org/10.1016/j.quascirev.2009.09.030, 2010.
- 1202 Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., and Wüest, A.: Hypolimnetic oxygen consumption by sediment-
- 1203 based reduced substances in former eutrophic lakes, Limnol. Oceanogr., 55, 2073-2084,
- 1204 https://doi.org/10.4319/lo.2010.55.5.2073, 2010.
- 1205 Mauri, A., Davis, B. A. S., Collins, P. M., and Kaplan, J. O.: The climate of Europe during the Holocene: a gridded pollen-
- 1206 based reconstruction and its multi-proxy evaluation, Quat. Sci. Rev., 112, 109-127,
- 1207 https://doi.org/10.1016/j.quascirev.2015.01.013, 2015.

- 1208 McGarrigle, M. L.: The Distribution of Chironomid Communities and Controlling Sediment Parameters in L. Derravaragh,
- 1209 Ireland, in: Chironomidae, edited by: Murray, D. A., Pergamon, 275-282, https://doi.org/10.1016/B978-0-08-025889-
- 1210 8.50043-X, 1980.
- 1211 Mousavi, S. K.: Boreal chironomid communities and their relations to environmental factors: the impact of lake depth, size
- 1212 and acidity, Boreal Chironomid Communities Their Relat. Environ. Factors Impact Lake Depth Size Acidity, 7, 63-75, 2002.
- 1213 Muhs, D. R., Pandolfi, J. M., Simmons, K. R., and Schumann, R. R.: Sea-level history of past interglacial periods from
- 1214 uranium-series dating of corals, Curação, Leeward Antilles islands, Quat. Res., 78, 157-169,
- 1215 https://doi.org/10.1016/j.yqres.2012.05.008, 2012.
- 1216 Müller, B., Bryant, L. D., Matzinger, A., and Wüest, A.: Hypolimnetic Oxygen Depletion in Eutrophic Lakes, Environ. Sci.
- 1217 Technol., 46, 9964–9971, https://doi.org/10.1021/es301422r, 2012.
- 1218 Nazarova, L. B., Subetto, D. A., Syrykh, L. S., Grekov, I. M., and Leontev, P. A.: Reconstructions of Paleoecological and
- 1219 Paleoclimatic Conditions of the Late Pleistocene and Holocene according to the Results of Chironomid Analysis of Sediments
- 1220 from Medvedevskoe Lake (Karelian Isthmus), Dokl. Earth Sci., 480, 710–714, https://doi.org/10.1134/S1028334X18060144,
- 1221 2018.
- Nienstaedt, H.: Chilling requirements in seven Picea species, Silvae Genet, 16, 65–68, 1967.
- 1223 Nitychoruk, J., Bińka, K., Hoefs, J., Ruppert, H., and Schneider, J.: Climate reconstruction for the Holsteinian Interglacial in
- 1224 eastern Poland and its comparison with isotopic data from Marine Isotope Stage 11, Quat. Sci. Rev., 24, 631-644,
- 1225 https://doi.org/10.1016/j.quascirev.2004.07.023, 2005.
- 1226 Nitychoruk, J., Bińka, K., Ruppert, H., and Schneider, J.: Holsteinian Interglacial=Marine Isotope Stage 11?, Quat. Sci. Rev.,
- 25, 2678–2681, https://doi.org/10.1016/j.quascirev.2006.07.004, 2006.
- 1228 Nitychoruk, J., Bińka, K., Sienkiewicz, E., Szymanek, M., Chodyka, M., Makos, M., Ruppert, H., and Tudryn, A.: A
- 1229 multiproxy record of the Younger Holsteinian Oscillation (YHO) in the Ossówka profile, eastern Poland, Boreas, 47, 855-
- 1230 868, https://doi.org/10.1111/bor.12308, 2018.
- 1231 Nondula, N., Marshall, D. J., Baxter, R., Sinclair, B. J., and Chown, S. L.: Life history and osmoregulatory ability of
- 1232 Telmatogeton amphibius (Diptera, Chironomidae) at Marion Island, Polar Biol., 27, 629-635, https://doi.org/10.1007/s00300-
- 1233 004-0619-z, 2004.
- 1234 Oliveira, D., Desprat, S., Rodrigues, T., Naughton, F., Hodell, D., Trigo, R., Rufino, M., Lopes, C., Abrantes, F., and Goni,
- 1235 M. F. S.: The complexity of millennial-scale variability in southwestern Europe during MIS 11, Quat. Res., 86, 373-387,
- 1236 https://doi.org/10.1016/j.yqres.2016.09.002, 2016.
- 1237 Orel, O. and Semenchenko, A.: Morphological description and DNA barcodes of adult males of Tanytarsus heliomesonyctios
- 1238 Langton, 1999 (Diptera, Chironomidae) in northeast of Russia, Zootaxa, 4686, https://doi.org/10.11646/zootaxa.4686.1.6,
- 1239 2019.
- 1240 Overpeck, J. T., Iii, T. W., and Prentice, I. C.: Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity Coefficients
- 1241 and the Method of Modern Analogs, Quat. Res., 23, 87–108, https://doi.org/10.1016/0033-5894(85)90074-2, 1985.

- 1242 Park, L. E.: Geochemical and Paleoenvironmental Analysis of Lacustrine Arthropod-Bearing Concretions of the Barstow
- 1243 Formation, Southern California, PALAIOS, 10, 44–57, https://doi.org/10.2307/3515006, 1995.
- 1244 Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol.
- 1245 Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
- 1246 Pinder, L. C. V. and Reiss, F.: The larvae of Chironominae (Diptera: Chironomidae) of the Holarctic region-Keys and
- 1247 diagnoses, Larvae, 1983.

1267

- 1248 Plikk, A., Engels, S., Luoto, T. P., Nazarova, L., Salonen, J. S., and Helmens, K. F.: Chironomid-based temperature
 - reconstruction for the Eemian Interglacial (MIS 5e) at Sokli, northeast Finland, J. Paleolimnol., 61, 355-371,
- 1250 https://doi.org/10.1007/s10933-018-00064-y, 2019.
- 1251 Płóciennik, M.: Zastosowanie subfosylnych szczątków ochotkowatych (Diptera: Chironomidae) w badaniach nad
- paleoklimatem i rekonstrukcją zmian w środowisku, Kosmos, 54, 401–406, 2005.
- 1253 Płóciennik, M., Self, A., Birks, H. J. B., and Brooks, S. J.: Chironomidae (Insecta: Diptera) succession in Zabieniec bog and
- 1254 its palaeo-lake (central Poland) through the Late Weichselian and Holocene, Palaeogeogr. Palaeoclimatol. Palaeoecol., 307,
- 1255 150–167, https://doi.org/10.1016/j.palaeo.2011.05.010, 2011.
- 1256 Płóciennik, M., Kruk, A., Michczyńska, D. J., and Birks, J. B.: Kohonen Artificial Neural Networks and the IndVal Index as
- 1257 Supplementary Tools for the Quantitative Analysis of Palaeoecological Data, Geochronometria, 42,
- 1258 https://doi.org/10.1515/geochr-2015-0021, 2015.
- 1259 Płóciennik, M., Pawłowski, D., Vilizzi, L., and Antezak-Orlewska, O.: From oxbow to mire: Chironomidae and Cladocera as
- $1260 \quad habitat \ palaeo indicators, Hydrobiologia, 847, 3257 3275, https://doi.org/10.1007/s10750-020-04327-6, 2020.$
- 1261 Pochocka-Szwarc, K., Żarski, M., Hrynowiecka, A., Górecki, A., Pidek, I. A., Szymanek, M., Stachowicz-Rybka, R.,
- 1262 Stachowicz, K., and Skoczylas-Śniaz, S.: Mazovian Interglacial sites in the Sosnowica Depression and the Parczew-Kodeń
- 1263 Heights (Western Polesie, SE Poland), and their stratigraphic, palaeogeographic and palaeoenvironmental significance, Geol.
- 1264 Q., 68, 68: 18-doi: 10.7306/gq.1746, https://doi.org/10.7306/gq.1746, 2024.
- 1265 Prokopenko, A. A., Bezrukova, E. V., Khursevich, G. K., Solotchina, E. P., Kuzmin, M. I., and Tarasov, P. E.: Climate in
- 1266 continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal,
 - SE Siberia, Clim. Past, 6, 31-48, https://doi.org/10.5194/cp-6-31-2010, 2010.
- 1268 Ralska-Jasiewiczowa, M., Nalepka, D., and Goslar, T.: Some problems of forest transformation at the transition to the
- 1269 oligocratic/ Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe, Veg. Hist.
- 1270 Archaeobotany, 13, 71–71, https://doi.org/10.1007/s00334-003-0027-2, 2004.
- 1271 Raymo, M. E. and Mitrovica, J. X.: Collapse of polar ice sheets during the stage 11 interglacial, Nature, 483, 453-456,
- 1272 https://doi.org/10.1038/nature10891, 2012.
- 1273 Reille, M. and de Beaulieu, J.-L.: Long Pleistocene Pollen Records from the Praclaux Crater, South-Central France, Quat.
- 1274 Res., 44, 205–215, https://doi.org/10.1006/qres.1995.1065, 1995.

- 1275 Reyes-Maldonado, R., Marie, B., and Ramírez, A.: Rearing methods and life cycle characteristics of Chironomus sp. Florida
- 1276 (Chironomidae: Diptera): A rapid-developing species for laboratory studies, PLOS ONE, 16, e0247382,
- 1277 https://doi.org/10.1371/journal.pone.0247382, 2021.
- 1278 Rigterink, S., Krahn, K. J., Kotrys, B., Urban, B., Heiri, O., Turner, F., Pannes, A., and Schwalb, A.: Summer temperatures
- 1279 from the Middle Pleistocene site Schöningen 13 II, northern Germany, determined from subfossil chironomid assemblages,
- 1280 Boreas, bor.12658, https://doi.org/10.1111/bor.12658, 2024.
- 1281 Roberts, J., Kaczmarek, K., Langer, G., Skinner, L. C., Bijma, J., Bradbury, H., Turchyn, A. V., Lamy, F., and Misra, S.:
 - Lithium isotopic composition of benthic foraminifera: A new proxy for paleo-pH reconstruction, Geochim. Cosmochim. Acta,
- 236, 336–350, https://doi.org/10.1016/j.gca.2018.02.038, 2018.
- 1284 Roberts, M.: Investigation into the population dynamics and key life history characteristics of non-biting midge (Diptera:
- 1285 Chironomidae) which can be utilised to improve nuisance control at Lake Joondalup, Western Australia, Theses Honours,
- 1286 2003.

- 1287 Robinson, A., Alvarez-Solas, J., Calov, R., Ganopolski, A., and Montoya, M.: MIS-11 duration key to disappearance of the
- 1288 Greenland ice sheet, Nat. Commun., 8, 16008, https://doi.org/10.1038/ncomms16008, 2017.
- 1289 Rodrigues, T., Voelker, A. H. L., Grimalt, J. O., Abrantes, F., and Naughton, F.: Iberian Margin sea surface temperature during
- 1290 MIS 15 to 9 (580-300 ka): Glacial suborbital variability versus interglacial stability, Paleoceanography, 26,
- 1291 https://doi.org/10.1029/2010PA001927, 2011.
- 1292 Rohling, E. J., Braun, K., Grant, K., Kucera, M., Roberts, A. P., Siddall, M., and Trommer, G.: Comparison between Holocene
- 1293 and Marine Isotope Stage-11 sea-level histories, Earth Planet. Sci. Lett., 291, 97–105,
- 1294 https://doi.org/10.1016/j.epsl.2009.12.054, 2010.
- 1295 Rohrig, R., Beug, H., Trettin, R., and Morgenstern, P.: Subfossil chironomid assemblages as paleoenvironmental indicators in
- 1296 lake faulersee (Germany), Stud. Quat., 117–127, 2004.
- 1297 Rylova, T. and Savachenko, I.: Reconstruction of palaeotemperatures of pleistocene interglacial intervals of Belarus from
- palynological evidences, Pol. Geol. Inst. Spec. Pap., Vol. 16, 2005.
- 1299 Saether, O. A.: Chironomid communities as water quality indicators, Ecography, 2, 65-74, https://doi.org/10.1111/j.1600-
- 1300 0587.1979.tb00683.x, 1979.
- 1301 Sageman, B. B. and Hollander, D. J.: Cross correlation of paleoecological and geochemical proxies: A holistic approach to the
- 1302 study of past global change, Spec. Pap. Geol. Soc. Am., 332, 365–384, https://doi.org/10.1130/0-8137-2332-9.365, 1999.
- 1303 Samartin, S., Heiri, O., Kaltenrieder, P., Kühl, N., and Tinner, W.: Reconstruction of full glacial environments and summer
- 1304 temperatures from Lago della Costa, a refugial site in Northern Italy, Quat. Sci. Rev., 143, 107-119,
- 1305 https://doi.org/10.1016/j.quascirev.2016.04.005, 2016.
- 1306 San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., and Mauri, A.: European atlas of forest tree species.
- 1307 Publication Office of the EU, Luxembourg, 2022.

- 1308 Sassoon, D., Lebreton, V., Combourieu-Nebout, N., Peyron, O., and Moncel, M.-H.: Palaeoenvironmental changes in the
- southwestern Mediterranean (ODP site 976, Alboran sea) during the MIS 12/11 transition and the MIS 11 interglacial and 1309
- implications for hominin populations, Quat. Sci. Rev., 304, 108010, https://doi.org/10.1016/j.quascirev.2023.108010, 2023. 1310
- Sassoon, D., Combourieu-Nebout, N., Peyron, O., Bertini, A., Toti, F., Lebreton, V., and Moncel, M.-H.: Pollen-based climatic 1311
- 1312 reconstructions for the interglacial analogues of MIS 1 (MIS 19, 11, and 5) in the southwestern Mediterranean: insights from
- 1313 ODP Site 976, Clim. Past, 21, 489-515, https://doi.org/10.5194/cp-21-489-2025, 2025.
- 1314 Schmid, P. e.: Random patch dynamics of larval Chironomidae (Diptera) in the bed sediments of a gravel stream, Freshw.
- 1315 Biol., 30, 239-255, https://doi.org/10.1111/j.1365-2427.1993.tb00806.x, 1993.
- 1316 Shumilovskikh, L. S., Shumilovskikh, E. S., Schlütz, F., and van Geel, B.: NPP-ID: Non-Pollen Palynomorph Image Database
- as a research and educational platform, Veg. Hist. Archaeobotany, 31, 323-328, https://doi.org/10.1007/s00334-021-00849-8, 1317
- 1318 2022.

- 1319 Stockmarr, J.: 1971: Tablets with spores used in absolute pollen analysis, Pollen et Spores 13, 615-621, 1971.
- Stuchlik, L.: Atlas of pollen and spores of the Polish Neogene, W. Szafer Institute of Botany, Polish Acadamy of Sciences, 1320
- 2001. 1322
 - Stuchlik, L.: Atlas of Pollen and Spores of the Polish Neogene: Gymnosperms, W. Szafer Institute of Botany, Polish Acadamy
- 1323
- 1324 Stuchlik, L.: Atlas of pollen and spores of the Polish Neogene. 3. Angiosperms (1), W. Szafer Inst. of Botany, Polish Academy
- 1325 of Sciences, 2009.
- 1326 Szal, M., Kupryjanowicz, M., Wyczółkowski, M., and Tylmann, W.: The Iron Age in the Mragowo Lake District, Masuria,
- 1327 NE Poland: the Salet settlement microregion as an example of long-lasting human impact on vegetation, Veg. Hist.
 - Archaeobotany, 23, 419-437, https://doi.org/10.1007/s00334-014-0465-z, 2014.
- 1329 Szymanek, M.: Elemental geochemistry of freshwater snail shells: palaeolimnology of a Holsteinian (MIS 11) deposit from
- 1330 eastern Poland, Boreas, 47, 643-655, https://doi.org/10.1111/bor.12283, 2018.
- 1331 Takagi, S., Kikuchi, E., Doi, H., and Shikano, S.: Swimming Behaviour of Chironomus acerbiphilus Larvae in Lake Katanuma,
- Hydrobiologia, 548, 153-165, https://doi.org/10.1007/s10750-005-5196-9, 2005. 1332
- 1333 Tarkowska-Kukuryk, M.: Spatial distribution of epiphytic chironomid larvae in a shallow macrophyte-dominated lake: effect
- of macrophyte species and food resources, Limnology, 15, 141-153, https://doi.org/10.1007/s10201-014-0425-4, 2014. 1334
- 1335 Tarr, T. L., Baber, M. J., and Babbitt, K. J.: Macroinvertebrate community structure across a wetland hydroperiod gradient in
- southern New Hampshire, USA, Wetl. Ecol. Manag., 13, 321-334, https://doi.org/10.1007/s11273-004-7525-6, 2005. 1336
- 1337 Tokeshi, M.: Life cycles and population dynamics, in: The Chironomidae: Biology and ecology of non-biting midges, edited
- by: Armitage, P. D., Cranston, P. S., and Pinder, L. C. V., Springer Netherlands, Dordrecht, 225-268, 1338
- https://doi.org/10.1007/978-94-011-0715-0_10, 1995. 1339

- 1340 Tye, G. J., Sherriff, J., Candy, I., Coxon, P., Palmer, A., McClymont, E. L., and Schreve, D. C.: The δ18O stratigraphy of the
- 1341 Hoxnian lacustrine sequence at Marks Tey, Essex, UK: implications for the climatic structure of MIS 11 in Britain, J. Quat.
- 1342 Sci., 31, 75–92, https://doi.org/10.1002/jqs.2840, 2016.
- 1343 Tzedakis, P. C.: The MIS 11 MIS 1 analogy, southern European vegetation, atmospheric methane and the "early
- anthropogenic hypothesis," Clim. Past, 6, 131–144, https://doi.org/10.5194/cp-6-131-2010, 2010.
- 1345 Tzedakis, P. C., Hooghiemstra, H., and Pälike, H.: The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy
- 1B46 and long-term vegetation trends, Quat. Sci. Rev., 25, 3416–3430, https://doi.org/10.1016/j.quascirev.2006.09.002, 2006.
- 1847 Ustrnul, Z., Wypych, A., Marosz, M., Biernacik, D., Czekierda, D., Chodubska, A., Wasielewska, K., Kusek, K., and
- 1348 Kopaczka, D.: Climate of Poland 2021, IMGW-PIB, n.d.
- 1349 Velle, G., Brooks, S. J., Birks, H. J. B., and Willassen, E.: Chironomids as a tool for inferring Holocene climate: an assessment
- based on six sites in southern Scandinavia, Quat. Sci. Rev., 24, 1429-1462, https://doi.org/10.1016/j.quascirev.2004.10.010,
- 1351 2005.

- 1352 Vera-Polo, P., Sadori, L., Jiménez-Moreno, G., Masi, A., Giaccio, B., Zanchetta, G., Tzedakis, P. C., and Wagner, B.: Climate,
 - vegetation, and environmental change during the MIS 12-MIS 11 glacial-interglacial transition inferred from a high-resolution
- 1354 pollen record from the Fucino Basin of central Italy, Palaeogeogr. Palaeoclimatol. Palaeoecol., 655, 112486,
- 1355 https://doi.org/10.1016/j.palaeo.2024.112486, 2024.
- 1356 de Vernal, A. and Hillaire-Marcel, C.: Natural Variability of Greenland Climate, Vegetation, and Ice Volume During the Past
- 1357 Million Years, Science, 320, 1622–1625, https://doi.org/10.1126/science.1153929, 2008.
- 1358 Walker, I. R. and Mathewes, R. W.: LATE-QUATERNARY FOSSIL CHIRONOMIDAE (DIPTERA) FROM HIPPA LAKE,
- 1359 QUEEN CHARLOTTE ISLANDS, BRITISH COLUMBIA, WITH SPECIAL REFERENCE TO CORYNOCERA ZETT.,
- 1360 Can. Entomol., 120, 739–751, https://doi.org/10.4039/Ent120739-8, 1988.
- 1361 Walker, I. R. and Mathewes, R. W.: Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera:
- analysis of the fauna across an altitudinal gradient, J. Paleolimnol., 2, 61–80, https://doi.org/10.1007/BF00156985, 1989.
- 1363 Walker, I. R., Fernando, C. H., and Paterson, C. G.: The chironomid fauna of four shallow, humic lakes and their representation
- by subfossil assemblages in the surficial sediments, Hydrobiologia, 112, 61–67, https://doi.org/10.1007/BF00007667, 1984.
- 1365 Wiederholm, T.: Chironomidae of the holarctic region. Keys and diagnoses. Part 1: larva, Ent Scand Suppl, 19, 1–457, 1983.
- 1366 Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., Hofreiter, M., Bunce, M., Poinar,
- 1367 H. N., Dahl-Jensen, D., Johnsen, S., Steffensen, J. P., Bennike, O., Schwenninger, J.-L., Nathan, R., Armitage, S., de Hoog,
- 1368 C.-J., Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert,
- 1369 M. T. P., Casoli, A., Campani, E., and Collins, M. J.: Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern
- 1370 Greenland, Science, 317, 111–114, https://doi.org/10.1126/science.1141758, 2007.
- 1371 Wörner, S. and Pester, M.: The Active Sulfate-Reducing Microbial Community in Littoral Sediment of Oligotrophic Lake
- 1372 Constance, Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.00247, 2019.

1373	Yin, Q. Z. and Berger, A.: Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years,
1374	Clim. Dyn., 38, 709–724, https://doi.org/10.1007/s00382-011-1013-5, 2012.
1375	Żarski, M., Nita, M., and Winter, H.: Nowe stanowiska interglacjalne w rejonie dolin Wilgi i Okrzejki na Wysoczyźnie
1376	Żelechowskiej (Polska południowo-wschodnia), Przegląd Geol., 53, 137–144, 2005.
1377	Żarski, M., Hrynowiecka, A., Górecki, A., Winter, H., and Pochocka-Szwarc, K.: The maximum extent of the Odranian
1378	Glaciation (Saalian, MIS 6) in the South Podlasie Lowland (SE Poland) in the light of sites with lacustrine deposits of the
1379	Mazovian Interglacial, Acta Geol. Pol., e14-e14, https://doi.org/10.24425/agp.2024.150006, 2024.