Answers to Reviewer 1: The changes have been done into the manuscript.

1. Scientific Scope and Fit for GMD:

While causal inference in environmental sciences is a relevant topic, the primary focus of this work is
software visualization, and its main contributions lie in user-interface design and graphical rendering
of beta coefficients. The paper does not deeply engage with geophysical model development or novel
methodological contributions to causal modeling itself. For this reason, the manuscript may be better
suited to journals such as EGUsphere preprints, or other open source software journal.

We thank the reviewer for raising this important point regarding the scope and positioning of
the manuscript. We agree that HMMLVis is primarily a methodological and software-oriented
contribution; however, we respectfully argue that it aligns with the aims of Geoscientific
Model Development by supporting the development, evaluation, and interpretation of models
applied to geoscientific data.

In the revised manuscript, we have clarified this positioning more explicitly. HMMLVis is not
presented as a generic visualization tool, but as a methodologically grounded framework
designed to support model-based causal inference in geoscientific applications, including
energy meteorology, surface radiation, and urban air quality. The tool builds directly on the
heterogeneous graphical Granger model (HGGM) and Minimum Message Length (MML)
principles, which are explicitly discussed in the context of geoscientific time series
characterised by non-Gaussian distributions, mixed variable types, and limited sample sizes.

We have strengthened this argument by:

1. Expanding the methodological motivation in Section 2.1 (Limitations of Classical
Granger Models and Advantages of HMML);

2. Explicitly linking HMMLVis to the evaluation and interpretation of geoscientific
models and datasets in Sections 2.2 and 6;

3. Demonstrating its use on multiple geoscientific case studies (wind power, PV power,
GHI, and urban air quality), where causal interpretation supports model
understanding rather than purely visual inspection.

We believe these revisions clarify that HMMLVis contributes to GMD’s core objective of
advancing methods for analysing, evaluating, and interpreting geoscientific models and data,
while the graphical interface serves as an enabling component rather than the primary
scientific contribution.

Manuscript changes:

— Section 2.1 (Limitations of Classical Granger Models and Advantages of HMML)
— Section 2.2 (Model Evaluation)

— Introductory paragraph of Section 6 (Applications)



2. Visualization and Readability:

Many of the figures (e.g., GUI screenshots, wind rose plots) have awkward scaling or inconsistent
proportions, which affects readability. It is recommended to resize and standardize image layouts,
especially in Figure 6 and others, to improve visual clarity.

Figures 1-7 have been recreated to improve visual clarity. In particular, GUI screenshots and
plots were resized and standardized to ensure consistent proportions and improved
readability.

3. Sections 5 and 6 — Placement:

These two sections are heavily focused on user-interface walkthroughs and technical instructions.
While informative, they resemble a user guide rather than scientific content and would be more
appropriate as supplementary material. The main paper should focus on the scientific rationale,
methodological innovations, and evaluation results.

We thank the reviewer for this comment and for highlighting the concern regarding the
presentation of Sections 5 and 6. We agree that a clear distinction between methodological
description and user guidance is important.

To address this, we have revised the introductory text of Section 5 to explicitly clarify the
purpose of these sections. We now frame the workflow description and accompanying
examples as a methodological illustration intended to document the data ingestion, causal
analysis, and visual exploration pipeline implemented in HMMLVis, rather than as a user
guide. The revised text emphasizes that the examples serve to support transparency,
reproducibility, and evaluation of the proposed method, in line with the scope of GMD.

Furthermore, Section 6 is now explicitly framed as a set of use cases that illustrate the types
of diagnostic insights that can be obtained when applying the tool to different meteorological
datasets, rather than as step-by-step instructions.

However, we remain open to moving selected technical details to the supplementary material
if the editor considers this more appropriate.

We have added text to cover these comments into Sections 2.1. and 2.2. The scientific
rationale, methodological innovations and evaluation are addressed. See below:

2.1 Limitations of Classical Granger Models and Advantages of HMML

Method HMML in general has the following advantages. It supports mixed data: HMML can
work with both continuous and discrete variables, which is a major advantage over classical
Granger causality methods that typically assume all variables are continuous and Gaussian.
HMML handles nonlinear and non-Gaussian data. Further, it allows for modelling interactions
between variables of different types without needing to transform or homogenize the data.
The MML criterion balances model complexity and goodness of fit, helping to avoid overfitting
and underfitting. HMML uses MML to infer the optimal graphical structure (i.e., causal graph),



which includes selecting relevant variables and lags without manual tuning. The graphical
output of HMML produces interpretable causal graphs. HMML is suitable for moderate high-
dimensional data (for p up to 20). Since some climatological processes are better fitted by
exponential distributions than by a Gaussian one, using HMML can be beneficial to inference
on our data set. As documented in (Hlavackova-Schindler and Plant, 2020b), HMML
demonstrated significantly higher precision of causal inference regarding the compared
methods on synthetic time series, particularly for short time series. This can be relevant in
many climatological applications that work with short time series, i.e., time series with a
number of observations on the order of up to a thousand times the number of involved
processes among which causal inference is sought.

2.2 Model Evaluation

(Hlavackova-Schindler and Plant, 2020b) examined the precision of the output causal graphs
obtained by HMML in comparison to benchmark methods on synthetic data, where the
ground truth, i.e. the target causal graph was known. F1- measure (or F-score, in other words)
was used as an evaluation metrics. Randomly generated processes having various exponential
distributions were examined together with the correspondingly generated target causal
graphs. The performance of HMML, as well as of the benchmark methods HGGM (Behzadi et
al., 2019), SFGC (Kim et al., 2011) and Linear Non-Gaussian Acyclic Model, i.e. LINGAM
(Shimizu et al., 2006), depends on various parameters including the number of time series
(features), the number of causal relations in Granger causal graph (dependencies), the length
of time series and finally on the lag parameter. HMML significantly outperformed in F1-
measure the comparison methods in all investigated cases. More details to the experiments
can be found in (Hlavackova-Schindler and Plant, 2020b).

4. Terminology and Acronyms:

The manuscript contains several instances where acronyms (e.g., EUMETNET) are introduced without
first spelling out the full name. This is not compliant with standard academic writing practices. Please
ensure that all acronyms are introduced in full upon first use, followed by the abbreviation in
parentheses.

We have explained the acronyms in full words upon their first use.

5. Motivation for HMML and MML:

The rationale for using heterogeneous Granger models and MML-based feature selection should be
articulated more clearly for readers unfamiliar with these frameworks. What concrete limitations of
classical Granger models does HMML overcome, especially in environmental data contexts?

We have added text to cover these comments into Section 2.1 (see the text above in
Comment 3).

6. Model Evaluation:
While the tool is applied across several datasets, the evaluation lacks clear performance metrics or
validation benchmarks. For example: How does the tool’s output compare with known or simulated



ground-truth causal structures? Are the inferred relationships stable across time windows and
locations? Could precision/recall, consistency, or information gain be reported?

We have added text to cover these comments into Section 2.2 (see the text above in
Comment 3).

7. Synthetic Data Use:

The paper uses semi-synthetic datasets (e.g., for PV and wind), but the construction process needs to
be described in more detail. How realistic are these datasets? What modelling assumptions underlie
their creation, and what uncertainties are introduced?

We thank the reviewer for this important comment. We agree that the original manuscript
did not sufficiently explain how the semi-synthetic datasets were constructed, validated, and
limited in scope. In the revised manuscript, we have substantially expanded the description of
all semi-synthetic datasets, clarified their purpose, and added an explicit validation figure
comparing semi-synthetic and operational data. Specifically, we have introduced a dedicated
subsection in the Data and Methods section (Section X.X: Semi-synthetic datasets) and added
a new multi-panel figure (Fig. X) that directly compares semi-synthetic and measured time
series for wind power, photovoltaic (PV) power, and global horizontal irradiance (GHI).

Wind power (onshore wind farm)

For the wind-energy case study, we start from ERAS reanalysis wind fields and downscale
them to turbine hub height at the wind-farm locations using standard vertical interpolation
and site-specific adjustments. The resulting hub-height wind speeds are converted to
electrical power using manufacturer-provided power curves and the installed nominal
capacity of each turbine.

The resulting ERA5-synthetic daily power time series is compared against anonymized
operational turbine data from the same wind farm for the period 2016—2020. Daily values are
used, days with obvious curtailment plateaus are excluded, and both measured and semi-
synthetic series are normalized to the range [0—1] for anonymization. Figure X (left column)
shows normalized monthly means, daily scatter plots, and probability density functions. The
correlation between daily measured and ERA5-synthetic wind power is r = 0.91, and the
distributions agree well over most of the range, indicating that the semi-synthetic data
reproduce the observed daily-to-seasonal variability sufficiently well for the purposes of this
methodological study.

Photovoltaic (PV) power

For the PV case study, semi-synthetic PV production is constructed using ERA5 meteorological
fields combined with CAMS radiation and atmospheric composition products. These inputs
are processed through a simple PV performance model using known plant characteristics
(installed DC capacity and orientation). Daily semi-synthetic PV power is compared against
measured plant output, again normalized to [0—1]. As shown in Fig. X (right column), the daily
correlation between measured and ERA5+CAMS-synthetic PV power is r = 0.98, and both
seasonal cycles and daily variability are closely reproduced.



Global horizontal irradiance (GHI)

For GHI, ERA5+CAMS semi-synthetic irradiance is compared to long-term measurements at a
radiation reference station. The daily correlation is r = 0.99, and the probability distributions
are nearly indistinguishable (Fig. X, middle column), demonstrating that the semi-synthetic
irradiance series provide a highly realistic representation of observed surface radiation
conditions at this site.

Scope and limitations

We now explicitly state in both the Introduction and Discussion that the semi-synthetic
datasets are designed to be realistic but not perfect representations of operational data. Their
purpose is to provide controlled, anonymized, and physically plausible time series for
demonstrating HMMLVis, rather than to quantify the exact performance of individual energy
systems. Uncertainties arise from reanalysis biases, simplified power-conversion models, and
residual curtailment or data-quality effects, and these limitations are discussed in the revised
manuscript.

Overall, the expanded description and the new validation figure clarify how the semi synthetic
datasets are constructed, document their realism with respect to available operational data,
and clearly delimit the scope of the conclusions drawn from these case studies.

Changes in the manuscript:

1. New subsection additions to Section 6.1 and 6.3. describing the synthetic data generation
2. New Figure 8 comparing measured and semi-synthetic wind power, PV power, and GHI

3. Additional clarifying sentences in the Introduction and Discussion on the scope and
limitations of semi-synthetic data

8. Link Functions and GLMs:

More explanation is needed regarding the choice of link functions and distributions within the
exponential family. Were they selected empirically, or based on expert input? Was model fit
compared across different options?

To explain this, we added the following text into Section 2 before Eq.(2): The best- fitting
distribution of the target time series within each interval can be identified using the Residual
Sum of Squares (RSS) and the Kolmogorov—Smirnov (K-S) test.

9. Scalability and Runtime:

Please provide information on the computational cost of using HMIMLVis, particularly with sliding
windows and larger variable sets. How long does one window take to process?

We added subsection “Scalability and Computational Complexity of HMML” where we
present the theoretical upper bound on the complexity of method HMML into the
manuscript. We introduced a subsection on runtime 6.5., which includes Table 6
summarizing the per-window runtime for each dataset for which results are presented.



Minor Comments

1. Throughout the manuscript, some notations (e.g., 8\betaB, n\etan, indices i,jti, j, ti,j,t) are
inconsistently formatted—sometimes in plain text, sometimes in math mode. Ensuring typographic
and notational consistency across all equations and text would improve professionalism.

We have corrected this in the manuscript.

2.  While most figures are labelled, some captions could be more descriptive to help readers interpret
them without referring to the main text. For example, indicate clearly what variables or locations the
time series refer to, what colour scales represent, or whether the visualizations correspond to real or
synthetic datasets.

We updated description of all figures in Sections 5 and 6 to make them more readable
without referring to the main texts.

3. The abstract currently blends methodology and application without clearly delineating the main
contribution. Consider restructuring it into: (1) motivation, (2) method, (3) key results, (4) broader
implications—to improve clarity and impact for readers scanning the abstract alone.

We restructured the abstract based on your suggestion.

4. Some sentences are overly long or have ambiguous phrasing, particularly in Sections 2 and 4. For
instance, compound sentences mixing mathematical definitions and explanatory text can be split for
better readability. A careful language edit would improve clarity.

We have carefully revised Sections 2, 4, and 5 to improve their readability and clarity.

5. Check reference formatting for consistency (e.g., Behzadi et al. (2019) vs. Behzadi et al., 2019).
Ensure all references are cited in a consistent style and match the GMD citation standards.

We made the reference formatting consistent in the whole paper.



