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Abstract. Atmospheric inverse modelling and ecosystem data assimilation are two complementary approaches to estimate

CH4 emissions. The inverse approach infers emission estimates from observed atmospheric CH4 mixing ratio, which provide

robust large scale constraints on total methane emissions, but with poor spatial and process resolution. On the other hand, in

the ecosystem data assimilation approach, the fit of an ecosystem model (e.g. a Dynamic Global Vegetation Model, DGVM) to

eddy-covariance (EC) flux measurements is used to optimize model parameters, leading to more realistic emission estimates.5

Coupled data assimilation frameworks capable of assimilating both atmospheric and ecosystem observations have been

shown to work for estimating CO2 emissions (e.g. Rayner et al. (2005)), however ecosystem data assimilation for estimation

CH4 emissions is relatively new. Kallingal et al. (2024) developed the GRaB-AM data assimilation system, which performs a

parameter optimization of the LPJ-GUESS against eddy-covariance estimation of CH4 emissions. The optimization improves

the fit to EC data, but the validity of the estimate at large scale remained to be tested.10

In this study, we used the LUMIA regional atmospheric inversion system (Monteil and Scholze, 2021) to confront wetland

emissions from the GRaB-AM approach to atmospheric CH4 measurements in Europe. We then perform inversions using the

information from GRaB-AM as prior. This let us infer a refined estimate for wetland emissions in Nordic Europe, and to

explore the potential for a fully coupled data assimilation framework.

1 Introduction15

Methane (CH4) is the second most important greenhouse gas after CO2, accounting for around 21% of the total effective

radiative forcing of the well-mixed greenhouse gases (Forster et al., 2023). Its presence in the atmosphere has more than

doubled since pre-industrialization era, with background mixing ratio at Mauna-Loa approaching the 2000 ppb (1931.91 ppbv

in April 2024, according tohttps://gml.noaa.gov/ccgg/trends_ch4 (last consulted: September 2024). After a stabilization from

1998 to 2007, the atmospheric CH4 concentration has started increasing again, at an accelerating pace. Although several recent20

studies attribute this renewed increase mainly to anthropogenic emissions (Nisbet et al., 2016; Thanwerdas et al., 2024), an

important contribution from wetlands has also been proposed (Qu et al., 2022; Peng et al., 2022; Christensen, 2024). While

for the global methane budget, tropical wetlands are most important, Arctic wetlands could constitute a potent positive climate
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feedback (Zhang et al., 2023) and there are indications that their emissions have been increasing in recent years (Yuan et al.,

2024; Ward et al., 2024).25

Emission estimates for natural wetlands can be obtained through process models, which calculate methane emissions accord-

ing to various environmental inputs (meteorological forcings, soil type, hydrology, etc.). The model simulates or approximates

known physical processes with various degrees of complexity. However, uncertainties on the existence or the importance of spe-

cific processes, lack of accuracy of some parameterizations, combined with the high non-linearity of the models leads to large

differences between the estimates at large scales. For example, a comparison of mean annual CH4 emissions from 16 models30

used in the Global Carbon Project (GCP) has shown that global estimates range from 118.7 TgCH4/year to 195 TgCH4/year

(Ito et al., 2023). Specifically for wetlands above 15◦N, the estimated emissions ranged between 10.5 TgCH4/year (SDGVM

model) and 40 TgCH4/year (ORCHIDEE). Similar ranges were also found during the WETCHIMP model intercomparison

project (Melton et al., 2013), which reported a ±40% spread of the estimates around the all-model mean of 190 TgCH4/year,

for global emissions.35

The Global Rao-Blackwellized Adaptive Metropolis (GRaB-AM) approach developed by Kallingal et al. (2024) is a data

assimilation (DA) system based on Bayesian statistics, in which parameters of the LPJ-GUESS model connected to the produc-

tion, transport and oxidation of CH4 pathways are adjusted to optimize the model fit to eddy-covariance flux measurements.

The optimized parameters can then be used to produce a gridded estimate of the methane emissions, which combine the pro-

cess knowledge embedded in the LPJ-GUESS model with the added information from in-situ flux observations. However, the40

quality of the resulting emission estimate remains difficult to formally assess. The optimization is done by performing site-

scale simulations, with local measurements of meteorological forcings and a good knowledge of the wetland types and their

spatial distribution. Scaling up to Northern hemispheric emissions is then done using forcings from meteorological reanalysis,

with hypothesis on the wetland type and fractions in each grid cell, which carry their own uncertainties. Total CH4 weltands

emissions for the region north of 45◦N as simulated by LPJ-GUESS are of the order of 43.09 TgCH4/year for the uncalibrated45

(prior) model and 37.54 TgCH4/year for the calibrated LPJ-GUESS model (posterior) (Kallingal et al., 2024).

An alternative approach is to infer methane emissions from their observed impact on atmospheric CH4 using inverse model-

ing approaches (Houweling et al., 2017). Atmospheric inversions leverage the fact that atmospheric observations are sensitive

to the emissions aggregated over a large area, owing to the long lifetime of atmospheric CH4, and therefore can provide large-

scale constraints on methane emissions. However, this also means that the observed atmospheric methane concentrations are50

the result from a mixture of emissions processes. The capacity of inversions to independently constrain emissions from a spe-

cific source is therefore limited to cases where there is a distinct spatial and/or temporal emission pattern that can be used to

isolate the contributions of that process to the net methane emissions. Emissions from natural wetlands dominate the methane

emission budget in the arctic region, which has been used by several recent studies to derive inversion-based estimates of arctic

wetlands (Wittig et al., 2023; Tsuruta et al., 2019; Ishizawa et al., 2023).55

The inverse and DA approaches assimilate complementary observations, and there could be a benefit in integrating them

further in a unified CH4 data assimilation system, on the model of what exists for CO2 (Rayner et al., 2005). In this study, we

take a step in that direction by confronting emissions estimates from the GRaB-AM data assimilation system of Kallingal et al.
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(2024) to inverse modelling estimates from the LUMIA (Lund University Modular Inversion Algorithm) regional inversion

system Monteil and Scholze (2021), focusing our analysis on high-latitude European wetland emissions. The confrontation60

between the approaches serves both as a form of cross-validation, but also to explore the potential for a joint data assimilation

setup.

2 Methods

We compare four main wetland emission estimates: two LPJ-GUESS, one from the default setup (LPJ-GUESS-unopt) and

one from the GRaB-AM optimized setup-GUESS (LPJ-GUESS-opt), and two LUMIA inversions, using these LPJ-GUESS65

simulations, and their uncertainties as prior: LUMIA-Lprior (using LPJ-GUESS-unopt as prior) and LUMIA-Lpost (using

LPJ-GUESS-opt as prior). These four simulations correspond respectively to a pure bottom-up estimate, a flux-observation

informed estimate, a atmospheric observation informed estimate, and an estimate informed both by flux and atmospheric data.

Two additional LUMIA inversions were performed as sensitivity simulations (LUMIA-Lprior+corr, LUMIA-Lpost+corr), with

a different prior error covariance structure (see also Section 3.1).70

The study covers the year 2018, for the LUMIA inversion domain represented in Figure 1, although we focus mainly on the

observations in the Nordic sub-domain (red box in Figure 1). The domain extent is based on that of a CH4 regional inverse

modelling intercomparison, jointly organised by WMOs Integrated Global Greenhouse Gas Information System (IG3IS) and

the Horizon-Europe CoCO2 project (https://coco2-project.eu, last consulted: 23/09/2024), to which this study contributes.

2.1 Wetland emissions modelling75

2.1.1 LPJ-GUESS

LPJ-GUESS is a dynamic global vegetation model (DGVM), designed to simulate the interactions between vegetation, soil,

and their responses to environmental changes and management (Sitch et al., 2003; Smith et al., 2001, 2014). The model can

simulate vegetation dynamics, carbon and water cycles, and soil biogeochemistry from local to global scales, including the

simulation of methane fluxes from natural wetlands.80

For this study, we used the Arctic-enabled version 4.1 of the model (Smith et al., 2014), which differs from previous ver-

sions for having detailed representation of wetland CH4 emission. The process descriptions of the CH4 module were mostly

adopted from the LPJ-WHyMe model (Wania et al., 2010), and are described in detail in (McGuire et al., 2012). It is based on a

“potential carbon pool”, which is then decomposed to soil organic carbon distributed vertically in the soil layers. Methanogens

use this decomposed organic carbon and produce CH4. A part of this produced CH4 gets oxidized by O2 and the remainder85

is transported to the atmosphere by diffusion, ebullition, or plant-mediated transport (see Wania et al. (2010); Kallingal et al.

(2024) for more details). The model is driven by daily climate data including air temperature, precipitation, and shortwave

radiation taken from the Climatic Research Unit-Japanese Reanalysis (CRU-JRA; Harris et al. (2020) dataset. Annual atmo-

spheric CO2 concentrations, as additional model input for LPJ-GUESS, are obtained from the Global Monitoring Laboratory

3

https://doi.org/10.5194/egusphere-2024-3122
Preprint. Discussion started: 20 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. LUMIA inversion domain (cyan grid), the position of the observations used in the LUMIA inversions (blue dots, with the area

proportional to the number of assimilated observations); position of the eddy-covariance sites used in the GRaB-AM optimization (green

stars) and Nordic domain of interest (red box). The red dots mark the position of the sites used in Section 3.3.1.
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(https://gml.noaa.gov/ccgg/trends), and the soil property data was extracted from WISE5min, V1.2 Soil Property Database90

(Batjes, 2005).

Model simulations covering the area north of 45◦N are produced using PEATMAP (Xu et al., 2018), which combines

geospatial information from various sources to create a global map of wetland extent. PEATMAP has been used in several

studies mainly because it is an updated quantification of peat land extend, and it focuses on mapping peatlands, such as

marshes and swamps, which are the dominant wetlands in northern latitudes (Peltola et al., 2019; Aalto et al., 2024; Müller95

and Joos, 2020).

2.1.2 GRaB-AM flux data assimilation framework

To optimize the methane module of LPJ-GUESS, Kallingal et al. (2024) developed the GRaB-AM data assimilation frame-

work, which seeks to optimize the value of ten highly sensitive parameters in the methane module of LPJ-GUESS (connected

to production, transport and consumption pathways of CH4), based on the model fit to eddy-covariance (EC) flux observations.100

The minimization is performed using an adaptive scheme of the Markov Chain Monte Carlo Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970). In Kallingal et al. (2024), observations from 14 natural wetlands distributed across

the Northern Hemisphere above 40◦ and over a total period of 20 years (from 2000 to 2020 with individual sites contribut-

ing observations over different years within this time period) were assimilated. The number of sites used for the GRaB-AM

optimization exceeds the indicated sites shown in Figure 1 (a full list of the sites is given in Kallingal et al. (2024)).105

In this study we computed two ensembles of hundred gridded LPJ-GUESS simulations each, randomizing the values of the

LPJ-GUESS parameters adjusted by the GRaB-AM algorithm. In the first ensemble (LPJ-GUESS-unopt) the parameter values

were drawn based on their prior estimate and standard deviations of 40% of their assumed ranges. In the second ensemble

(LPJ-GUESS-opt), the ensemble members were drawn from the 90% confidence interval (1.645 time the standard deviations)

of the posterior distribution after the burn-in period of the MCMC chain.110

2.2 Atmospheric inverse modelling

The consistency of CH4 emission from LPJ-GUESS (LPJ-GUESS-unopt and LPJ-GUESS-opt) with atmospheric CH4 mixing

ratio measurements was tested using the LUMIA inversion framework. The comparison requires using an atmospheric transport

model, and accounting for contributions of other methane sources, and from lateral boundary conditions. The model data

mismatches then serve to infer a further correction to the emission estimates.115

2.2.1 Inversion approach

LUMIA Monteil and Scholze (2021) is a regional atmospheric inversion setup developed initially to estimate European CO2 in-

versions using in-situ concentration measurements such as those provided by the ICOS network (Monteil et al., 2020; Munassar

et al., 2023; Gómez-Ortiz et al., 2023). This study is the first application to a non-CO2 tracer.
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The inversion seeks to determine the set of regional CH4 emissions that is the most consistent with a dataset of observed120

in-situ CH4 mixing ratios. The impact of emissions outside the regional domain is provided through a prescribed background

term. The link between emissions and volume mixing ratio given by:

y + εo = Hx+ybg + εm (1)

with y the observations vector contains observations of the atmospheric CH4 mixing ratio, and x the control vector con-

tains the variables that we seek to optimise: in our case, the daily CH4 emissions, grouped in two categories (wetlands and125

non-wetlands), at a 0.25° resolution over a regional domain ranging from -15°W, 33°S to 35°W, 73°N (Figure 1). The regional

transport operator H contains the sensitivity of the observations y to the (regional) emissions x (Hi,j = ∂yi/∂xj). The back-

ground concentrations (ybg) are provided as timeseries of baseline concentrations directly at the observation sites, following

the two step approach of Rödenbeck et al. (2009) (see Section 2.2.3). The error terms εo and εm represent respectively the

measurement error and the model error.130

The optimal control vector x̂ is given as the one that minimises a cost function J (x), such that

J (x) =
1
2

(x−xb)T B−1 (x−xb) +
1
2

(Hx+ybg −y)T R−1 (Hx+ybg −y) (2)

The first part evaluates the goodness of fit of the estimated control vector x to its prior estimate xb, normalised by the

prior error-covariance matrix B, which contains the uncertainty of xb. The right hand side term evaluates the model fit to the

observations y, normalised by the observation error-covariance matrix R, which combines the model (εm) and measurement135

(εo) uncertainties (i.e. it is the total uncertainty on the model-data mismatch).

The optimal control vector x̂, which satisfies ∇xJ (x̂) = 0, is the set of CH4 emissions that represents the best compromise

between fitting the observations and limiting the departures from the prior estimate (which implicitly carries the knowledge of

the models and data used to construct the prior emissions).

The solution is searched for iteratively, using a conjugate gradient algorithm provided by the python “scipy.optimize” pack-140

age (which employs a nonlinear conjugate gradient algorithm by Polak and Ribiere, a variant of the Fletcher-Reeves method de-

scribed in (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#rdd2e1855725e-5) pp.120-122).

This solver is not optimal for our setup (a linear CG algorithm would be better suited, since our optimization problem is strictly

linear), but turned out to be more practical and I/O efficient than the Lanczos (1952) linear solver used in previous LUMIA

papers (e.g. Monteil et al. (2020); Munassar et al. (2023)), while giving qualitatively equivalent results.145

2.2.2 Regional transport model

The regional transport operator H was computed using the FLEXPART 10.4 Lagrangian particle dispersion model. FLEXPART

is not called directly within the inversion, but is used before, to pre-compute observation footprints, i.e. rows of the H matrix

from Equation 2. These footprints are stored on disk and simply read during the successive phases of the inversion. Each
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footprint was obtained by simulating the dispersion, backward in time starting from the observation time and position, of ten150

thousand virtual air particles, based on meteorological fields from the ECMWF ERA5 reanalysis (at a 0.25°, hourly resolution),

and limited to the aforementioned European domain: the particles are destroyed when they reach the edge of the domain. The

aggregated residence time of the particles near the surface (below 100 m above ground) is used as a proxy for the sensitivity of

the observations to the emissions.

2.2.3 Boundary conditions155

The background vector ybg accounts for all the contributions to the observed CH4 mixing ratio that are not adjusted by the

inversions: the impact of the initial condition, the impact of CH4 emissions from outside the regional domain, the impact of

European CH4 emissions having left the domain on the CH4 mixing ratio of air masses (re-)entering it, and the impact of the

various CH4 sinks (reactions with OH, and, in the stratosphere, with Cl and O(1D).

The background concentrations were taken from the CAMS v19r1 global CH4 reanalysis (Segers, 2020), which relies on the160

TM5-4DVAR global atmospheric inversion system. The concentrations baselines were extracted using the two-step scheme of

Rödenbeck et al. (2009) (see also Bergamaschi et al. (2022) for the CAMS implementation, and Monteil and Scholze (2021)

for the usage in LUMIA). These baselines were provided as part of the CoCO2 CH4 inversion intercomparison, therefore they

are purely an external input to our modeling setup.

2.2.4 Prior emissions and uncertainties165

The inversions solve for CH4 emissions grouped in two “super-categories”: wetland and non-wetlands. The latter groups the

contributions of all remaining categories, both anthropogenic (mainly agriculture, waste management and fossil fuel emissions),

and natural (geological emissions, termites, lakes and oceans). Anthropogenic emissions are taken from the EDGAR v6.0

emission inventory (Crippa et al., 2019), wetland emissions are taken from the LPJ-GUESS simulations described in Section

2.1.1, with or without the parameters optimization described in Section 2.1.2 (depending on the simulation). Natural emissions170

are taken from various climatological estimates, reported in Table 1. All the emissions were regridded from their original

resolution to the 0.25◦, daily resolution of the FLEXPART footprints.

The spatial distribution of the emissions is shown in Figure 3, while their temporal distribution is shown in Figure 2. Wetland

emissions are the only category that has exhibits a strong seasonality (biomass burning emissions are seasonal as well, but very

low overall, so their influence on the observations is negligible). There is also a geographical separation between emissions175

from wetlands, which are concentrated in Northern Europe, and emissions from the other categories, which are more significant

in the rest of the continent, and tend to overlap in time and space. This, and the fact that the observation network is relatively

dense in Northern Europe (Figure 1), where wetland emissions are important, justify resolving wetland emissions separately

from the other CH4 sources in the inversions.

The emission uncertainties are stored in the prior error-covariance matrix B, which is composed, for each category c, of180

four components: the vector σxc containing the standard deviations of the emission themselves, two correlation matrices, Ch
c

and Ct
c, storing respectively the prescribed correlations in the spatial and in the temporal dimension, and a scalar scaling factor
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Figure 2. Prior CH4 emissions used in the “LUMIA-Lprior” inversion

Table 1. Methane (prior) emissions used in the LUMIA inversions.

Category Annual total (TgCH4) Source Temporal resolution Spatial resolution Climatological

Wetlands 5.5-8.7 LPJ-GUESS (This study) daily 0.5◦

Agriculture and waste 22.6 EDGAR v6.0 (Crippa et al., 2019) monthly 0.1◦

Fossil 6.8 EDGAR v6.0 (Crippa et al., 2019) monthly 0.1◦

Biomass burning 1.1 GFED-4.1s (Randerson et al., 2017) 0.25◦ monthly

Oceans 0.6 Weber et al. (2019) 0.25◦ monthly yes

Inland water 0.4 Johnson et al. (2022) 0.1◦ monthly yes

Geology 3.5 Etiope et al. (2019) - annual yes

Termites 0.2 Saunois et al. (2020) - annual yes

γc, which is used to enforce a specified total annual uncertainty. No cross-category correlations are assumed, therefore the

error-covariance matrix is written, for each category, as:

Bc = (Ct
c⊗Ch

c )T σxc

T γ2
c σxc(C

t
c⊗Ch

c ) (3)185

For wetland emissions, the standard deviations σw are directly given by the standard deviation of the LPJ-GUESS ensembles

(Sections 2.1.1), whereas for non-wetland emissions, they are set proportional to the absolute value of the emissions. Note that

only their relative values matter, since the total uncertainty is determined by γc. The inversion-specific values used for γ, Ct

and Ch are provided in Section 3.1.

2.2.5 Observation and observational uncertainties190

The LUMIA inversions were constrained by in-situ observations from 43 European in-situ and flask measurement sites, from

various observation networks (see Table 2 and Figure 1), most of which are now part of the ICOS network of in-situ measure-
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Figure 3. Prior CH4 emission maps from natural wetlands, fossil fuels, agriculture and waste and “natural” sectors. The latter groups together

emissions from lakes and oceans, geological sources, biomass burning and termites, but is largely dominated by the geological emissions.

ments. The observation frequency is typically hourly, but we filtered the observations to avoid assimilating observations close

to the transition between the planetary boundary layer (PBL) and the free , as this is where model errors on the PBL height

would have the largest impact. For most sites, afternoon data was selected (from 11:00 to 17:00, local time), when the PBL195

is expected to be the most developed. For high altitude sites (above 1000 m altitude a.m.s.l), night time data was used instead

(from 0:00 to 4:00, local time), when the observations are expected to be well above the PBL. At a few sites (Hohenpeissenberg,

Hegyhatsal, Ispra, Mace Hear and Pallas), there are also a some observations from flask measurements, for these, no specific

filter was applied.

The uncertainties (diagonal of R in Equation 2) are set as the quadratic sum of the measurement uncertainty εobs and of200

the model uncertainty εmod. The measurement uncertainty is taken from the observation datasets (when available), with a
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minimum and default value of 20 ppb. The model uncertainty should in theory be set close to the random component of the

error that the model would make when simulating the observations based on the “true” emissions, and excluding systematic

component of that error. In practice, that true error is unknown. Here we constructed it as site-specific weekly uncertainty,

based on the mismatch between the observed and modelled short term CH4 variability. The procedure is conducted for each205

site, in four steps:

1. Compute the prior model estimate for the observations, yapri, corresponding to the prior emissions described in Section

2.2.4.

2. Separate the modelled (yapri) and observed (y) time series into baselines and anomalies. The baselines are computed as

weekly rolling weighted averages (with the inverse of the measurement uncertainties used as weights), and the anomalies210

are obtained by subtracting these baselines from their respective timeseries.

3. Compute the standard deviation (σsite
mod) of the difference between the anomalies in modelled (prior) and observed CH4

mixing ratios.

4. The model uncertainty of a single observation is finally given by εi
mod = σsite

mod×
√

nobs, where nobs is the number of

observations in a ± 3.5 days interval surrounding the observation i.215

The rationale behind this approach is that the inversions should be able to efficiently reduce the mismatch between the

baselines by adjusting the CH4 emissions, but will likely struggle more with reducing the model-data mismatches between the

modelled and observed sub-weekly variability. In practice this results in a larger uncertainty at sites close to large CH4 emitters,

such as Ispra, Saclay and Norunda, reducing their relative weight in the inversion. The last step (4) ensures that the weight of

a site doesn’t depend on the observation frequency (if there are more observations within a given week, the individual weight220

of each observation will be reduced accordingly).

3 Results

The LUMIA inversions use wetland emission estimates and uncertainties computed in the two LPJ-GUESS ensembles. We

therefore first present the results from these two ensembles, then compare the four CH4 emission estimates and analyze their

consistency with observations.225

3.1 Model-derived CH4 emission uncertainties

The prior error-covariance matrix in LUMIA (B in Equation 2) is constructed, for each emission category, based on three

components (see Section 2.2.1):

1. an estimation of the error correlations (in the form of a pair of temporal and spatial correlation matrices),

2. a vector of (normalized) prior uncertainties,230
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Table 2. Observation time series assimilated in the LUMIA inversions. The number of observations assimilated is reported in the “nobs”

column. The “Model error” column shows the assumed model representation error in the LUMIA-Lprior inversion (the numbers differ

slightly in the LUMIA-Lpost inversion, since they are calculated based on the prior fit to the data). When available, the DOI or PID of the

data are shown in their corresponding entry in the bibliography.

Station Latitude Longitude Elevation Inlet height Reference nobs Model error (ppb)

code

bir Birkenes, Norway 58.39 8.25 215 3 Lunder and Platt 3562 13.77

bis Biscarosse, France 44.38 -1.23 73 47 Lopez and Ramonet (2024) 339 3.96

cmn Mt Cimone, Italy 44.17 10.68 2165 7 Arduini 2025 11.81

fkl Finokalia, Greece 35.34 25.67 150 15 Delmotte et al. (2024b) 970 12.38

hei Heidelberg, Germany 49.42 8.68 113 30 Hammer and Levin (2024) 3784 23.80

hpb Hohenpeissenberg, Germany 47.80 11.01 934 131 Kubistin et al. (2024b) 3899 25.53

hpb Hohenpeissenberg, Germany 47.80 11.02 936 5 Lan et al. 49 3.59

htm Hyltemossa, Sweden 56.10 13.42 115 150 Heliasz and Biermann (2024) 3857 16.59

hun Hegyhatsal, Hungary 46.95 16.63 248 96 Lan et al. 47 26.14

hun Hegyhatsal, Hungary 46.96 16.65 248 96 Haszpra 3772 1.68

ipr Ispra, Italy 45.81 8.64 210 16 Scheeren et al. (2007) 3845 32.32

jfj Jungfraujoch, Switzerland 46.55 7.99 3570 10 Steinbacher 1999 7.77

kas Kasprowy Wierch, Poland 49.23 19.98 1987 2 Chmura et al. (2024) 1783 14.88

kre Kresin u Pacova, Czech Republic 49.57 15.08 534 250 Marek et al. (2024) 3696 13.63

lin Lindenberg, Germany 52.17 14.12 73 98 Kubistin et al. (2024c) 3747 15.50

lmp Lampedusa, Italy 35.51 12.61 45 5 Lan et al. 47 14.51

lut Lutjewad, Netherlands 53.40 6.35 1 60 Chen and Scheeren (2024) 3859 43.66

mhd Mace Head, Ireland 53.31 -9.90 5 21 Lan et al. 5 1.19

mhd Mace Head, Ireland 53.33 -9.90 5 0 Prinn et al. (2018) 2467 6.62

nor Norunda, Sweden 60.09 17.48 46 100 Lehner and Mölder (2024) 3859 31.52

ope Observatoire pérenne de l’environnement, France 48.56 5.50 390 120 Ramonet et al. (2024a) 3835 17.10

pal Pallas, Finland 67.96 24.11 565 5 Lan et al. 32 12.97

pal Pallas, Finland 67.97 24.12 560 7 Hatakka 3925 50.61

pdm Pic du Midi, France 42.94 0.14 2877 10 Delmotte et al. (2024a) 148 4.33

puy Puy de Dome, France 45.77 2.97 1465 10 Colomb et al. (2024) 2009 12.73

rgl Ridge Hill, United Kingdom 52.00 -2.54 204 90 O’Doherty et al. (2024) 3668 16.59

sac Saclay, France 48.72 2.14 160 100 Ramonet et al. (2024b) 3903 38.51

smr Hyytiala, Finland 61.85 24.29 181 125 Levula and Mammarella (2024) 3883 25.53

ssl Schauinsland, Germany 47.90 7.92 1205 6 Meinhardt 3959 14.42

tac Tacolneston Tall Tower, United Kingdom 52.52 1.14 56 185 O’Doherty and Pitt (2024) 3620 17.80

toh Torfhaus, Germany 51.81 10.54 801 147 Kubistin et al. (2024a) 3841 20.98

trn Trainou, France 47.96 2.11 131 180 Ramonet et al. (2024c) 3178 17.72

uto Uto, Baltic Sea 59.78 21.37 8 57 Hatakka and Laurila (2024) 3151 12.40

wao Weybourne, United Kingdom 52.95 1.12 10 0 Forster and Manning (2024) 3610 22.19

zsf Zugspitze-Schneefernerhaus, Germany 47.42 10.98 2667 3 Couret and Schmidt (2024) 2142 9.08
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Figure 4. Wetland emission uncertainties, as per the LPJ-GUESS-unopt ensemble (left) and percentage uncertainty reduction in the LPJ-

GUESS-opt ensemble (right).

3. a total, category-specific annual uncertainty estimate

The emission uncertainties corresponding to the LPJ-GUESS-unopt and LPJ-GUESS-opt simulations were estimated by

through two ensemble simulations of 100 members each (see Section 2.1.2). The ensemble standard deviation drops from

6.40 TgCH4/year in LPJ-GUESS-unopt to 0.45 TgCH4/year in LPJ-GUESS-opt. In the LPJ-GUESS-unopt ensemble, the un-

certainties are concentrated in regions with strong CH4 emissions: Northern Finland, Scandinavian Arctic, Southern Sweden,235

Southern Poland and North-West coasts of Ireland and Scotland (Figure 4). The GRaB-AM optimization reduces the uncer-

tainties everywhere, but predominantly at high-latitudes, with the strongest reduction (≈-95%) being obtained in the Nordic

region.

The error correlations are arguably more important for the LUMIA inversions: large error correlations effectively reduce

the dimensionality of the problem, making it in turn easier to resolve the contributions from separate categories. Full error240

covariance matrices can be computed from the ensemble but are too large to fit in memory and be of practical use in the

inversions. Instead, in Figure 5, we show the average error correlations as function of distance (in space and time).

The error correlations are generally larger in the prior ensemble (LPJ-GUESS-unopt) than in the posterior one. In the spatial

dimension, there is a lot of variability, but overall, there is a very rapid drop in correlation values, which stabilize around 0.55

in LPJ-GUESS-unopt and around 0.35 in LPJ-GUESS-opt, after approximatively 250 km. The correlations decline further245

with increased distance, but at a very slow pace. Temporally, correlations decrease almost instantly in LPJ-GUESS-unopt, but

remain in a 0.55-0.65 range after that, whereas they decrease more gradually in LPJ-GUESS-opt, reaching below 0.4 after 200

days.

The interpretation of spatial correlations is further complexified by the fact that the number of active CH4 emission grid cells

is not constant throughout the year, and therefore the correlation-distance relationship is not constant. For computing Figure250

5, we ignored the time dimension for the spatial correlations plot, and the space dimension for the temporal correlation plot
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(therefore, the averaged correlation for two points distant by e.g. 500 km includes the correlation between emission components

at different times of the year). This somewhat mimics the way the prior error-covariance matrix B is constructed in LUMIA

(i.e. with correlations based on as a Kronecker product of spatial and temporal correlation matrices).

We performed an ensemble of sensitivity tests to determine the most appropriate formulation for the error-covariances in255

LUMIA. The two main inversions, LUMIA-Lprior and LUMIA-Lpost, use the wetland error distributions (σx in Equation 3),

but correlation matrices based on more traditional exponential correlation-decay functions (corr(x) = e−x/L), with correlation

lengths Lh of 1000 km in Ch (shown in Figure 5), and Lt = 30 days in Ct, and their annual uncertainty γwetland was set to 0.5

TgCH4/year.

In addition, two sensitivity inversions were computed, LUMIA-Lprior+corr and LUMIA-Lpost+corr, which take their an-260

nual uncertainty (γwetland) directly from the standard deviation of the annual emissions in their corresponding LPJ-GUESS

ensemble, and use the ensemble-based correlation-distance relationships shown in Figure 5. The results were very similar in

the Nordic region of interest, therefore for most of the analysis, we choose to rely on LUMIA-Lprior and LUMIA-Lpost. This

also acknowledges the fact that ensemble-derived uncertainty estimates ignore errors from the driving data of LPJ-GUESS,

and from the processes incorrectly modelled in it. Also, the spatial correlations in the ensembles are not constant through265

time, therefore the decomposition in a spatial and a temporal correlation matrices is not a very accurate approximation of the

actual correlations of the ensemble. Finally, setting the annual uncertainty to the same value in both inversion facilitates the

interpretation of the results.

3.2 CH4 emission

3.2.1 Annual CH4 emissions270

The non-optimized LPJ-GUESS model (LPJ-GUESS-unopt) points to an emission total of 8.7 TgCH4/year, including 4.3

TgCH4/year in the Nordic sub-domain. The GRaB-AM optimization suggests lowering these values to 5.5 TgCH4 (-37%) and

2.5 TgCH4 (-42%), respectively. The two LUMIA inversions point to further reductions, down to 4.2 TgCH4/year, including

1.3 TgCH4/year in the Nordics, in LUMIA-Lprior (respectively -52% and -70% compared to LPJ-GUESS-unopt), and down

to 3.0 TgCH4/year (-65%) with 1.1 TgCH4/year (-74%) in the Nordics, in LUMIA-Lpost (Figure 5). The two sensitivity275

inversions also lead to very similar results (Figure 6).

In contrast, the inversions lead to much lower adjustments to non-wetland emissions, both in relative and absolute terms.

The priors (i.e. LPJ-GUESS-unopt and LPJ-GUESS-opt in Figure 6) are 35 TgCH4 for the full domain, and 35.3 TgCH4/year

(+0.85%) and 36 TgCH4/year (+2.9%) respectively in LUMIA-Lprior and LUMIA-Lpost. The contribution of the Nordic

region to this is very small, with 3.3 TgCH4/year in the prior (comparable in magnitude to the wetland emissions in that re-280

gion). The inversions reduce these to 2.4 TgCH4/year (-27%) and 2.6 TgCH4/year (-21%), respectively in LUMIA-Lprior and

LUMIA-Lpost. Here again, the difference between the reference inversions and their sensitivity run counterparts is insignifi-

cant.
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Figure 5. Spatial (top) and temporal (bottom) correlation-distance relationships for the two LPJ-GUESS ensembles. The black line represents

the correlation settings used in the LUMIA simulations.

3.2.2 Seasonal cycle of the wetland emissions

Temporal emission adjustments are shown in Figure 7 (note the different y-ranges in the figure). For the figure clarity, results285

from the LUMIA-Lprior+corr and LUMIA-Lpost+corr inversions are shown in SI Figure 1.

For wetlands, the patterns are very similar between the full-domain and the Nordic region (which reflects the fact that this

region accounts for more than half of the European wetland emissions). In LPJ-GUESS-unopt, the emissions remain close to

zero in the first quarter of the year, except for two small peaks at the end of January and of March. The emissions then follow a

“double-peak” pattern, with a first peak around late may, particularly pronounced in the Nordics, and the main peak in August,290

after which the emissions decline steadily to reach nearly zero at the end of the year.

The assimilation of in-situ flux data in LPJ-GUESS-opt leads to roughly a halving of the emissions, mainly during the

May to October period. Within the Nordic region, the May emission peak is almost fully preserved, whereas the remaining
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Figure 6. Annual emission estimates (in TgCH4/year) for the wetland and non-wetland emission categories. LPJ-GUESS-unopt and LPJ-

GUESS-opt are respectively the priors of LUMIA-Lprior(+corr) and LUMIA-Lpost(+corr).

part of the summer variability is smoothed. Outside the Nordics, the temporal structure of the emissions is better preserved.

LPJ-GUESS-opt points to a reduction of the amplitude of the emission peaks in January-February (mostly visible outside the295

Nordics). On the other hand, the emissions after October remain similar to LPJ-GUESS-unopt.

The two main LUMIA inversions lead to very consistent results within the Nordic region, only with more short-term variabil-

ity in LUMIA-Lprior. Both inversions point to a nearly complete reduction of the May emission peak found in the LPJ-GUESS

simulations, and to summer emissions further reduced compared to LUMIA-Lpost, especially after September.

Outside the Nordics, LUMIA-Lpost leads to a further reduction of the emissions compared to LPJ-GUESS-opt (i.e. its prior),300

except during June-July where the two simulations are nearly identical. On the other hand, the emissions in LUMIA-Lprior

closely follow those in LPJ-GUESS-opt from March to August, which is remarkable because these two emission products have

been optimized using two independent techniques, using two completely independent observation datasets.

The two sensitivity inversions LUMIA-Lprior+corr and LUMIA-Lpost+corr lead to comparable results, on multi-day aver-

ages. However, LUMIA-Lprior+corr displays an extremely high short-term variability (much more that LPJ-GUESS-unopt, its305

prior). We hypothesize that this is due to the very high uncertainty on wetland emissions used in that simulation (6.4 TgCH4,

i.e. ≈ 13 times more than in the other inversions), which, associated to the fact that LPJ-GUESS-unopt tends to alternate (at

the grid cell level) between days with strong emissions and days with near zero emissions, makes that inversion very under-

constrained. However, on a multi-day average, it is remarkably similar to LPJ-GUESS-opt within the Nordic region, until

August, and to LUMIA-Lprior for the rest of the year, and also in the rest of Europe. The difference between LUMIA-Lpost310

and LUMIA-Lpost+corr is mainly in extra-Nordic wetlands, where LUMIA-Lpost+corr infers a further reduction of the esti-

mate. This is a consequence of the longer spatial correlations in that inversion (see Figure 5), which propagate the emission

adjustments over larger distances.
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3.2.3 Temporal variability of the other emissions

The temporal adjustments of the non-wetland emissions groups contributions from many source processes, mainly anthro-315

pogenic, which makes them difficult to interpret at the domain-scale. In the Nordics, the LUMIA inversions infer a 11%

(LUMIA-Lprior) and 20% (LUMIA-Lpost) reduction of the non-wetland monthly emissions from January to June. In July

both inversions point to a modest increase (+4-7%) compared to the prior, after which the emissions are progressively reduced,

to reach near zero towards the end of the year. This is unrealistic, however the amplitude of the non-wetland emissions reduc-

tion is too large to just result from a flux misattribution: if re-attributed entirely to the wetland category, this would lead to320

(significantly) negative wetland emissions. A possible alternative (or complementary) explanation could be error in the CAMS

boundary condition: the background concentrations (ybg in Equation 2) explains nearly 100% of the observed mixing ratio on

several days towards the end of the year, especially at Hyytiälä (SMR) and Birkenes (BIR). The situation is also similar in the

two sensitivity inversions.

3.2.4 Spatial distribution325

The emission adjustments inferred in GRaB-AM and LUMIA optimizations are shown in Figure 8 (and SI Figure 2 for the

sensitivity runs). To facilitate the comparison, wetland adjustments in LUMIA-Lpost are shown relative to the unoptimized

LPJ-GUESS estimate (LPJ-GUESS-unopt).

The spatial distribution of wetland emission adjustments is very similar in the five data-informed products, and largely

proportional to the LPJ-GUESS-unopt emission estimate itself. The long error-correlations imposed on the LUMIA inversions330

(and intrinsic to the GRaB-AM optimization), combined with the relative concentration of wetland emissions in Northern

Europe, ensure a convergence between the localization of flux corrections.

Among the most marked features in the adjustment to the “non-wetland” category, we note a doubling of the emissions in

the Bretagne region of France, and in the Northern part of the Netherlands. This could point to underestimated agricultural

emissions, which are important in these two regions. Another marked feature is an important (≈ 80%) reduction of the emis-335

sions in Northern Italy, which is well correlated with both high natural emissions (mainly geological) and high agricultural

emissions.

We, however, need to ascertain a level of care when interpreting these emission adjustments: For instance emissions in the

west of the continent can also result from the need to correct an inaccurate boundary condition. There can also be compensating

effects between adjustments of emission hotspots, such as the city of Paris or the Po Valley, and their surroundings. These340

emission corrections should be investigated, but fall outside the scope of our study.

3.3 Fit to observed data

A classical diagnostic in data assimilation is to compare results (optimized emissions or concentrations) to independent mea-

surements. For GRaB-AM, such a validation has been conducted in Kallingal et al. (2024). For atmospheric inversions, the
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Figure 7. Daily emissions in the entire domain (top), in the Nordic region (middle) and outside it (bottom), for the wetland (left) and non-

wetland (right) CH4 emissions.

comparison is generally made with independent observations of the atmospheric composition, keeping in mind that biases due345

to the transport model would likely affect similarly the fit to assimilated data and to validation data.

For this study however, most of the available data in the Nordics has been assimilated, either in the LUMIA inversions (for

concentration data), or in the GRaB-AM assimilation (for in-situ flux measurements). The aim of the model-data comparisons

in this section is therefore not to derive an objective metric of the respective qualities of each emission estimates, but rather to

gain insights on the forcings that lead the two optimizations system to adjust the emissions the way they did.350

3.3.1 Eddy-covariance flux estimations

CH4 emissions can be estimated locally on wetland scales using flux measurement techniques such as Eddy-covariance mea-

surements, which involve capturing the covariance between the vertical wind speed and the concentration of methane, providing

high-resolution data on gas exchange over wetlands. Such observations are for instance provided by the ICOS network in Eu-
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Figure 8. Emission adjustments for wetlands (left) and non-wetlands (right) in the three data-informed simulations, compared to the unopti-

mized LPJ-GUESS model (LPJ-GUESS-unopt).
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Table 3. percentage RMSE reduction, compared to the LPJ-GUESS-unopt site simulation, at the three eddy-covariance sites represented in

Figure 9

Simulation Siikaneva Degero Zarnekow

LPJ-GUESS-opt (site) 93 % 98 % 60 %

LPJ-GUESS-unopt (gridded) -140 % 43 % 38 %

LPJ-GUESS-opt (gridded) 43 % 83 % 45 %

LUMIA-Lprior -3 % 66 % 21 %

LUMIA-Lpost 93 % 91 % 40 %

LUMIA-Lprior+corr -20 % 67 % 35 %

LUMIA-Lpost+corr 77 % 91 % 30 %

rope (ICOS RI et al., 2024), and the FLUXNET-CH4 dataset globally (Pastorello et al., 2020; Delwiche et al., 2021), which355

offers aggregates of high-quality CH4 fluxes from wetlands. These networks try to offer a comprehensive coverage of the

different types of wetlands (with differences in physiological features such as hydrology, soil characteristics, vegetation types,

etc., and in spatial features, such as geographical distribution, size, landscape position and topography).

However, a direct comparison with gridded emissions is difficult, as the latter accounts for average conditions over the grid

cells, which can be very different from the local ones. This is illustrated in Figure 9, which shows a comparison between our360

four main emission estimates and in-situ flux measurements at three sites in the Nordic region (Zarnekow is slightly outside

the Nordic domain used for the emission comparisons, see Figure 1), along with the site-level LPJ-GUESS simulations which

were used to train the GRaB-AM optimization (see Section 2.1.2).

The fit of the modelled emissions against the observations is improved for most sites (clearly shown for e.g. Siikaneva and

Degero) but since the GRaB-AM optimization is seeking for an optimal parameter set fitting multiple sites simultaneously it is365

not surprising that there are still larger differences between simulated emissions and observations for any given individual site

(as is the case for Zarnekov where the calibrated LPJ-GUESS model fails to simulate the observed peak values during August

2018).

The site-level simulations achieve systematically a better fit to the observations than the gridded products. Among the

gridded products, the best fit is obtained by LUMIA-Lpost, at Siikaneva and Degero, with RMSE reduction above 90% (Table370

3), whereas the error reduction is lower at Zarnekow, with all the data-informed product in a 40% to 45% error reduction range.

The two sensitivity inversions using ensemble-derived covariances lead to slightly worse fit than the base LUMIA inversions.

We also note a tendency of the LUMIA inversions using LPJ-GUESS-unopt as a prior to infer significant negative emissions

on some days (SI figure 4): LUMIA adjusts the emissions but preserves most of their original day-to-day variability, which

results in days with negative emissions.375
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Figure 9. Modelled (solid lines) and observed (dots) methane emissions at three sites within the Nordic region. For clarity of the figure, a

weekly rolling average has been applied to the modelled data. A version of this figure without smoothing can be found in supplementary

materials.

3.3.2 Atmospheric CH4 observations

The CH4 concentrations corresponding to the four methane emission estimates are shown in Figure 10, for the six sites in

the Nordic region. These sites are also among the ones where the relative contribution of wetland emissions to the foreground

concentrations (i.e. the part of the concentrations that can be adjusted by LUMIA) is the highest. For figure clarity, the modelled

timeseries have been averaged weekly. SI Figures 4 and 5 show the data without weekly averaging.380

LPJ-GUESS-unopt leads to a strong overestimation of the concentrations throughout the summer (with a mean bias of up to

40.9 ppb at Norunda, and peak model-data mismatches exceeding 300 ppb). The fit obtained using LPJ-GUESS-opt emissions

is much more in line with the observations, with mean biases ranging from -1.8 ppb at Hyltemossa to 6.6 ppb at SMR. However,

the CH4 concentrations are still significantly overestimated during the summer months, in particular at Norunda and Pallas.
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Table 4. RMSE (in ppb) of the LUMIA simulations, for the six sites shown in Figure 10

Simulation Hyltemossa Utö Pallas Birkenes Norunda Hyytiälla

LPJ-GUESS-unopt 26.00 39.69 80.26 25.50 92.95 46.97

LPJ-GUESS-opt 25.22 34.44 39.30 21.42 54.10 38.21

LUMIA-Lprior 19.23 15.76 27.63 15.92 30.52 18.06

LUMIA-Lpost 19.13 15.32 15.90 15.57 15.64 16.17

The LUMIA inversions lead to comparable results in terms of mean bias, but LUMIA-Lpost performs better in terms of385

RMSE, in particular at Norunda and Pallas (Table 4). At these two sites, the emissions inferred in LUMIA-Lprior lead to

modelled CH4 concentrations well below the background values on some days. This is a consequence of the negative CH4

emissions inferred by that inversion, already discussed in Section 3.3.1

The better fit of the LUMIA inversions is expected, since they assimilated these data. However, the overestimation of the

observations in the LPJ-GUESS-unopt simulation is very large and a clear indication that the emissions modelled by the non-390

optimized LPJ-GUESS in the summer are refuted by the atmospheric observations. Other sources of uncertainties (transport

model error, uncertainty on the background concentrations, uncertainty in non-wetland emissions) don’t seem large enough to

account for such an overestimation of the observed data.

4 Discussion

At the global level, methane emissions are relatively well constrained by the observed growth rate of CH4 background sites,395

despite uncertainties on the magnitude and trends of the OH sink (Turner et al., 2019). However, significant uncertainties

remain on regarding both anthropogenic and natural emissions in bottom-up approaches (Saunois et al., 2020). Concerning

wetlands emissions specifically, the bottom-up estimates lead to a 40% to 50% uncertainty range (Kirschke et al., 2013;

Melton et al., 2013). Inverse modeling can be used to infer constraints on the emissions at large scales (Bruhwiler et al.,

2014; Houweling et al., 2017), but can only robustly constrain the net methane emissions, since this is what atmospheric400

CH4 observations are sensitive to. Satellite observations, such as TROPOMI XCH4 retrievals (Nesser et al., 2024; Tsuruta

et al., 2023), or retrievals from the upcoming CO2-M (Sierk et al., 2021) or MERLIN instruments (Ehret et al., 2017), can

help increase the resolution at which the emissions are optimized, but their coverage is not constant (cloudiness, short day

length at high latitudes in winter, etc.), and their signal-to-noise ratio is lower than that of in-situ observations for detecting

emissions (because satellite XCH4 retrievals quantify the column-averaged CH4 mixing ratio, therefore they incorporate a405

stronger background contribution than surface observations). Some implementations of the inverse approach use observations

of the isotopic composition of atmospheric methane (δ13C-CH4, δD-CH4) as a constraint on the source process distribution

(Basu et al., 2022; Thanwerdas et al., 2024; Drinkwater et al., 2023), but the low amount of available data and the uncertainties

on the isotopic signatures of methane emissions have limited the practicality of that approach.
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Figure 10. Modelled (solid lines) and observed (dots) CH4 mixing ratio at the six observation sites within the Nordic region. Modelled time

series are shown with as weekly rolling average. A non-smoothed version of the figure can be found in supplementary materials.

Our study combines two data-informed, in principle complementary: the DA approach (GRaB-AM) is process-specific and410

can lead to improvements in the prognostic capabilities of the underlying process model (LPJ-GUESS), but remains subject

to possible large scale biases, both because of the lack of representativity of the assimilated data and the inaccuracy of LPJ-

GUESS. The inverse approach (LUMIA) s arguably more reliable at large scales, but lacks spatial and process resolution.

In this context, the development of a full CH4 emission data assimilation system (CH4-DAS), combining a vegetation

and an atmospheric transport model and capable of assimilating both eddy-covariance measurements and atmospheric CH4415

observations appears as the next logical step. Such systems have been developed successfully for CO2 (Rayner et al., 2005)

and have shown promising results. For methane however, the development is complicated by the need to account for non-

wetland methane emissions, which although less uncertain in relative terms, dominate the emission and emission uncertainty

budget in absolute terms (Saunois et al., 2020), and by the complexity of wetland models, which can be highly non linear

(Kallingal et al., 2024).420
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As an intermediate solution, our study explores a two-step approach, with an atmospheric inversion informed by emis-

sion estimates and error correlations from a CH4 DA approach. In the following section we further discuss the potential and

limitations of both approaches, and how they can help us improve the LPJ-GUESS model.

4.1 LPJ-GUESS parameter estimation (GRaB-AM)

The GRaB-AM approach aims at optimizing specifically wetland emissions, by fitting the emissions of a DGVM (LPJ-GUESS)425

to eddy-covariance (EC) measurements. Indeed, the assimilation of EC yields a clear improvement in the fit not only to ecosys-

tem data, but also to atmospheric CH4 observations. The resulting emission estimates inherits the spatio-temporal structure

from the process parametrizations implemented in the model. This ensures that the emissions remain consistent with their as-

sumed relationships to factors such as climate and environmental forcings. Overall, it should improve the predictive capacity of

the model but can also lead to large systematic errors if the aforementioned parametrizations are insufficiently accurate (such430

as assumption of zero wind speed above wetlands, the lack of detailed representation of ebullition, and inadequate represen-

tation of wintertime emissions in the case of LPJ-GUESS), and/or if the sites used for training are not representative enough.

A specific difficulty encountered in GRaB-AM is the high non-linearity of LPJ-GUESS which makes it very challenging to

design a minimization algorithm that avoids getting local minima and/or parameter equifinality issues.

The comparison to atmospheric data however shows that LPJ-GUESS is likely still overestimating CH4 emissions, even after435

having assimilated EC measurements. This could be related to the lack of emissions from wet mineral soils in LPJ-GUESS,

which hence are attributed to wetlands emissions in this LPJ-GUESS version. The DA (GRaB-AM) improves on this but still

results in too high emissions. This essentially points to required improvements in the model formulation such as for example

for the somewhat simplistic representation of ebullition in LPJ-GUESS.

4.2 Atmospheric inversion (LUMIA)440

This study is the first application of LUMIA inversions to a non-CO2 tracer. Compared to the latest CO2 applications Munassar

et al. (2023); Gómez-Ortiz et al. (2023), the inversion setup has been simplified: the inversions adjust the emissions directly,

instead of offsets to the prior emissions in these studies. This is permitted by the comparatively lower temporal resolution of

the methane emissions. The uncertainties are of two orders: First, inversions rely on a transport model to establish the link

between observed CH4 mixing ratio and emissions, which can bring systematic errors. Secondly, the source attribution of the445

emission adjustments depends for a large part of the prescribed emission uncertainties and error correlations.

The original aim was to construct the wetland emission error-covariance matrices based on the variability of the LPJ-GUESS

ensembles. However, the ensemble correlations could not be (in a practical manner) approximated and inverted for using in

LUMIA (in part because the spatial error correlations are not constant through time). We therefore opted for a more conven-

tional approach to constructing the error-covariance matrices, using the ensemble variability only to distribute a prescribed450

annual uncertainties in time and space. Results within the Nordic region of interest were very similar to those obtained in

the “+corr” sensitivity runs (at least LUMIA-Lpost+corr), which is an indication that, in this region, the observations provide

robust enough constraints on the emissions.
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The uncertainty associated to transport is difficult to assess independently. Comparisons to independent (i.e. non assimi-

lated) observations rely on the same model to estimate the link between concentrations and emissions, therefore they don’t455

constitute a totally independent validation of the source-concentration relationships themselves. Model intercomparisons, such

as TRANSCOM for global models (Gurney et al., 2004), and EUROCOM for regional models (Monteil et al., 2020) can help

identifying divergences between models and inversion approaches. A detailed intercomparison was conducted between the LU-

MIA and CarboScope-Regional (CSR) inversion systems to quantify the importance of model biases in regional CO2 inversions

(Munassar et al., 2023), which highlighted a stronger sensitivity to emissions in LUMIA. While this could lead to overestimat-460

ing the methane concentrations (given the correct emissions), the amplitude of the mismatches in LPJ-GUESS-unopt, and the

fact that they occur specifically in regions with important wetland emissions rather plead for a significant overestimation of the

methane emissions by LPJ-GUESS.

Both inversions pointed to a reduction of non wetland emissions in the Nordic region towards the end of the year, which

seems unrealistic: fossil-fuel emissions (which dominate non-wetland emissions in the Nordic region) are not expected to dis-465

play such intra-annual variability. However, it cannot be entirely a mis-attribution error, since the reduction in non-wetland

emissions is an order of magnitude larger than the (posterior) wetland emission themselves. We noted that the CAMS back-

ground concentrations were very close to (or even higher than) the observed values in winter, especially at Pallas and Hyytiälä

(Figure 10): as widespread negative emissions of CH4 are unrealistic, this points to an overestimation of the background con-

centrations by the CAMS concentration baselines. This could lead to a widespread bias in the inferred emissions, but it is470

difficult to determine whether it affects the whole inversion period or just the winter months.

Some inversion systems allow the boundary condition to be adjusted (e.g. Steiner et al. (2024)), but this is risky in the absence

of a proper quantification boundary condition uncertainty and of its variability. Here, the non-wetland emission category partly

acts as a bias correction, but we must acknowledge this issue as a remaining source of uncertainty.

4.3 Refined estimate of European methane emissions at high latitude475

We have refined the wetland emission estimate in the Nordic region to a range of 1.1 TgCH4/year (LUMIA-Lpost) to 2.5

TgCH4/year, significantly down from 4.3 TgCH4/year in the original LPJ-GUESS-unopt estimate. While the difference be-

tween the LPJ-GUESS-unopt and the other estimates is large, the relative qualities of the three data-informed products are

more difficult to assess.

The inversions lead to an improved representation of atmospheric observations, while not significantly degrading the fit to EC480

data compared to LPJ-GUESS-opt. Furthermore, we can speculate that a portion of the flux corrections to Nordic non-wetland

emissions inferred by the inversions should in fact be attributed to wetlands: the comparison with in-situ flux measurements

shows a tendency of LPJ-GUESS to model emissions in winter which are not confirmed by observations. Emission peaks are

modelled in December at Siikaneva and Degero, and in March at Zarnekow (and are likely much more widespread since they

are visible in the domain-aggregated emission timeseries shown in Figure 7), but are not present in the EC data. The inversions485

correct these peaks, but in part through an adjustment of the non-wetland emissions. On the other hand, the potential issues
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with the background concentrations, highlighted in the previous section, could indicate an underestimation of the emissions in

our inversions.

Wetland emission estimates from Arctic wetlands derived from six different vegetation models were compared in Aalto

et al. (2024). They found that LPJ-GUESS was clearly at the high end of the range but not a complete outlier. Our inversion-490

optimized estimates, on the other hand, are well in line with the average of that ensemble. In Kallingal et al. (2024), the

GRaB-AM optimization adjusted emissions from wetlands located above 45 degrees latitude from 43.09 TgCH4/year to 37.54

TgCH4/year. While the inversion part of the study concerns only a small portion of that domain, the reasonable agreement

between LPJ-GUESS-opt and the LUMIA inversions reinforces our confidence in the GRaB-AM results.

4.4 Towards a coupled flux-concentration CH4 data assimilation system495

The initial aim of the study was the implementation of a two-step estimation approach, with a transmission of uncertainty

between the flux DA (GRaB-AM) and the atmospheric inversion (LUMIA) parts. Two main complications were encountered:

first, the error structure from the DA step could not be easily approximated in a form usable by the inversion (i.e. as a set

of standard deviations and spatial and temporal correlation matrices). This purely technical limitations could be overcome,

e.g. by using an ensemble minimization approach in LUMIA, which usually don’t need an explicit representation of the error500

covariance matrices (e.g. Bisht et al. (2023)).

A more fundamental issue is the complexity of the LPJ-GUESS model (and of dynamic global vegetation models in general),

which makes their optimization against eddy-covariance data arduous (e.g. Famiglietti et al. (2021)). This could be overcome

by the development of diagnostic models for wetland methane emissions, similar to those existing for CO2 (Mahadevan et al.,

2008; Knorr and Heimann, 1995; Potter et al., 1993).505

In the past years, subsequent work has also been conducted by the anthropogenic emission inventory compilers to produce

uncertainty estimates (e.g. Solazzo et al. (2021)), which should lead to a better representation of the anthropogenic emission

uncertainties in inversions, and in turn improve the reliability of their source attribution.

5 Conclusions

We have implemented European CH4 inversions using the LUMIA inversion system, making use of wetland emission estimates510

and associated uncertainties from a CH4 emission data assimilation (DA) system (GRaB-AM), based on the LPJ-GUESS model

Kallingal et al. (2024). We focused our analysis on the estimation of wetland emissions in the Nordic region, since wetlands

emissions are the most uncertain term in the methane budget, and since they dominate the emission budget in that region.

We compared several data-informed wetland emission estimates: DA of eddy-covariance flux measurements (GRaB-AM),

inversion constrained by atmospheric CH4 observations (LUMIA), and inversion constrained by atmospheric observations,515

and, indirectly, by eddy-covariance data (through the EC data informed GRaB-AM prior). All simulations clearly point to a

strong (by a factor 2 to 3) overestimation of the CH4 emissions by the LPJ-GUESS model. The GRaB-AM approach leads

to significant improvement of the fit to atmospheric data (which it didn’t assimilate), which constitutes a form of additional
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validation for the approach. The inversion using emissions from the GRaB-AM data assimilation as a prior also leads to the

best overall fit to observations.520

We have explored using model-based error covariances in the LUMIA inversions, to improve their capacity to resolve

contributions of wetlands to the total methane emissions. The impact was relatively negligible within the Nordic region, but

more significant in regions where wetlands contribute a smaller fraction of the uncertainty. Making full use of these model-

based error covariance would require adaptations in the inversion approach (by e.g. using an ensemble-based optimization

technique). It also implies relying on the specific wetlands CH4 emissions processes as implemented in the LPJ-GUESS525

DGVM. Nonetheless, these obstacles could be overcome, and our study shows the potential for a joint flux-concentration CH4

data assimilation system, which we will explore in future studies.

Code and data availability. The source code for this project, as well as a selection of the data (fit to observations, monthly prior and posterior

emissions) will be made available on a public repository once the study is accepted. The full datasets and code can be obtained by contacting
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