Variation of sediment supply by periglacial debris flows at Zelunglung

in the eastern syntaxis of Himalayas since the 1950 Assam Earthquake

- 3 Kaiheng Hu^{1, 2}, Hao Li^{1, 2, 3}, Shuang Liu^{1, 2}, Li Wei^{1, 2}, Xiaopeng Zhang^{1, 2, 3}, Limin Zhang⁴, Bo Zhang^{1, 2},
- Manish Raj Gouli^{1, 2, 3}
- 5 ¹Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences, Chengdu, 610041, China
- ²Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
- 7 Juniversity of Chinese Academy of Sciences, Beijing 100049, China
- 8 4Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water
- 9 Bay, Hong Kong, China
- 10 Correspondence: Kaiheng Hu (khhu@imde.ac.cn)

11 ABSTRACT. Periglacial debris flows boosted by strong earthquakes or climatic warming in alpine mountains play a crucial

- 12 role in delivering sediment delivery from hillslopes and downslope channels into rivers. Rapid and massive sediment supply
- 13 to rivers by the debris flows has profoundly influenced the evolution of the alpine landscape. Nonetheless, there is a dearth of
- 14 knowledge concerning the roles tectonic and climatic factors played in the intensified sediment erosion and transportation. In
- 15 order to increase our awareness of the mass wasting processes and glacier changes, five debris flows that occurred at the
- 16 Zelunglung catchment of the eastern Himalayan syntaxis-of the Himalayas since the 1950 Assam earthquake are investigated
- in detail by field surveys and long-term remote sensing interpretation. Long-term seismic and meteorological data indicate that
- the four events of 1950-1984 were the legacies of the earthquake, and recent warming events drove the 2020 event. The
- 19 transported sediment volume indexed with a non-vegetated area on the alluvial fan reduced by 91% to a stable low level nearly
- 40 years after 1950. It is reasonable to hypothesize that tectonic and climatic factors alternately drive the sediment supplies caused by the debris flows. High concentrations of coarse grains, intense erosion, and extreme impact force of the 2020 debris
- tuded by the debits nows. Then concentrations of course grains, means crossen, and extreme impact force of the 2020 debits.
- 22 flow raised concerns about the impacts of such excess sediment inputs on the downstream river evolution and infrastructure
- 23 safety. In regard to the hydrometeorological conditions of the main river, the time to evacuate the transported coarse sediments
- 24 is approximately two orders of magnitude <u>longer than of</u> the recurrence period of periglacial debris flows.

25 1 Introduction

- 26 Glacier-related hazards are widely developed in alpine regions around the world, such as the Alps, Himalayas, Caucasus,
- 27 Tianshan, and Andes (Huggel et al., 2004; Iribarren Anacona et al., 2015; Petrakov et al., 2007; Richardson and Reynolds,
- 28 2000; Shen et al., 2013). These hazards, including ice/rock avalanches, periglacial debris flows, glacial lake outburst floods
- 29 (GLOFs), and dammed lakes, have caused substantial huge economic and human losses in the high mountains and their
- 30 surrounding area (Bajracharya and Mool, 2009; Hu et al., 2019; Tian et al., 2017; Yu et al., 2021). Especially in the context of

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

climate change (rising temperatures and increased extreme precipitation events), the high-altitude regions such as European mountains, high-mountain Asia, and the Andes are undergoing rapid deglaciation that increases the magnitude and frequency of ice/rock avalanches and low-angle glacier detachments accordingly (Iribarren Anacona et al., 2015; Krautblatter et al., 2013). Earthquakes, climate warming, geothermal heating, rainfall, and meltwater all directly trigger glacier-related hazards (Haeberli and Whiteman, 2021; Huggel et al., 2004). The Himalayan mountains, which are tectonically active and sensitive to climate change, have experienced many glacier-related disasters triggered by large-magnitude earthquakes or climate warming in recent years. For example, on the 25 April 2015 Gorkha earthquake triggered a catastrophic, a disastrous ice-rock collapse in Nepal's Langtang Valley, causing over 350 casualties was triggered by the Gorkha earthquake and killed or left missing at least 350 people in the Langtang Valley of central Nepal (Kargel et al., 2016). Between From 2017 to-and 2018, multiple several ice-rock avalanches in the Sedongpu catchment, of Milin County, Tibet Autonomous Region (TAR), China, which triggered large-scale glacial debris flows events that twice dammedblocked the Yarlung Tsangpo River twice (Hu et al., 2019; Jia et al., 2019; Li et al., 2022). On 7 February 2021, about 27×10⁶ m³ of rock and ice collapsed and quickly transformed into a debris flow in Chamoli, Uttarakhand region of India, which killed more than 200 people and severely damaged two hydropower projects (Shugar et al., 2021). The rising frequency and magnitude of such The increased disasters have profound hydrogeomorphic and socio-economic impacts on the high-altitude and surrounding regions, including sediment yield and transportation, alpine landscape evolution, river management, food and water security, hydropower utilization, and infrastructure construction (Evans and Clague, 1994; Kääb et al., 2021), leading to the challenges of transboundary hazards and international collaboration. Periglacial debris flows triggereddriven by earthquake or climatic events are a major agent of sediment evacuation from steeplands to rivers in high-altitude mountains. These flows result in massive The volume of ice loss and sediment transportation via periglacial debris flows is huge and poses, causing long-term impacts effects on the high mountain environment. The Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (IMHE, CAS) reported that periglacial debris flows in the Guxiang catchment of southeastern Tibet transported a total volume of 200 Mm³ of sediment transported into an upstream tributary of the Brahmaputra River-by periglacial debris flows of the Guxiang catchment in southeastern Tibet between from 1953 to and 1999 (Wang et al., 2022). Similarly, The the ice-rock avalanches of the Sedongpu in October 2018 delivered approximately about 33.2 Mm³ of sediment into the Yarlung Tsangpo River (Hu et al., 2019). The total mass loss caused by glacier-rock avalanches in Sedongpu between 2014 and 2018 reached > 70 Mm³ of glacier and rock and > 150 Mm³ of moraine deposits (Li et al., 2022). Furthermore, after the glacier detachment of the Sedongpu in 2018, a huge volume of ~335 Mm³- material was eroded from its glacier bed and transported into the Yarlung Tsangpo (Kääb and Girod, 2023). Such, Sudden sudden, massiveenormous sediment inputs greatly influence sediment transport capacity, knickpoint formation, river water quality, downstream floods, and delta progradation. For instance, The the 2021 Chamoli

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

设置了格式: 字体: (默认) Times New Roman

批注 [hL1]: L47: Maybe "triggered by" rather than "driven by"?

Author's response:

Thank you for your suggestion. We agree that "triggered by" is more appropriate in this context. We have revised "driven by" to "triggered by" accordingly.

•Author's changes in manuscript:
We revised "driven by" to "triggered by"

event resulted in extremely suspended sediment as 80 times high as the permissible level in the Ganga River, ~900 km from

basins between the 1950s and 2010s (Zhang et al., 2022a). Until now, most of previous studies have focused on the residence time and transport of earthquake-triggered landslide sediment at an orogenic scale in no-glacierized environments (Dadson et al., 2004; Dai et al., 2021; Parker et al., 2011; Wang et al., 2015). Little attention has been given to Little attentions are paid on the sediment evacuation progress by post-seismic debris flows at a catchment in glacierized environments owing to relatively low likelihood of debris flows and absence of long-term site-specific data. In order to investigate the long-term effects of earthquakes on sediment evacuation in a glaciated catchment, the Zelunglung (ZLL) catchment, a tributary of the Yarlung Tsangpo river in southeastern Tibet that has large areas of temperate glaciers and disturbed intensely by the Ms 8.5 earthquake in 1950, is chosen as our study case. The catchment has long-term remote sensing imagery for interpreting interpretating glacier changes and associated debris flows and relatively well-documented records of at least four historical periglacial debris flows in 1950, 1968, 1972, and 1984 since the 1950 Assam earthquake (Zhang and Shen, 2011; Zhang, 1992). The most recent debris-flow event occurred on 10 September 2020, triggered by a small-scale icerock avalanche. It is believed that historical earthquakes and ongoing climate warming drove such these events (Bessette-Kirton and Coe, 2020; Deline et al., 2015; Stoffel et al., 2024; Zhang et al., 2022b). Field surveys were carried out before and after the 2020 event, including three periods of aerial photography sessions on 9 September, 11 September 2020, and 21 December 21, 2022, using a with DJI Unmanned Aerial Vehicle (UAV). Dynamic process and sediment characteristics of the 2020 event were examined with the details of aerial photos and field measurements. The Zelunglung's ZLL glacier and alluviation fan changes were interpreted with high-resolution optical remote sensing images from 1969 to 2022. The nonvegetated area of the alluvial fan was used as an index to reflect the variation of sediment supply caused by the periglacial debris flows. By Integrating integrating with historical data of on neighboring earthquakes, temperature, and precipitation, we analyzed demonstrate the trend of periglacial debris flows in over different periods. This case study is helpful for a better understanding of the controlling factors and sediment transportation of periglacial debris flows in High Mountain Asia (HMA).

2 Study area

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

The Zelunglung ZLL catchment (ZLL) (94°56′13.4″E, 29°36′25.6″N) at Zhibai Village in the China's TAR is a tributary on the right bank of the lower Yarlung Tsangpo River, originating from the west side of Namche Barwa massif (7782 m) in the easternmost part of the Himalayas. The main stream flows westward into the Yarlung Tsangpo at an elevation of 2810 m, with a local relief of 4972 m (Fig. 1b). It has a drainage area of 41.21 km² with a 17.9 km² glacier area. High lateral moraines on both sides of the main glacier divide the drainage network into the main channel, south branch, and north branch (Fig. 1c). The south branch, with a total length of 9.8 km and an average gradient of 275%, originates from the southern cliff at an elevation of ~5900 m. Hanging glaciers on the ridge and freeze-thawing in the cold region make the study area prone to ice and rock avalanches (Fig. 1d).

批注 [hL2]: Several of the new sections would benefit from review of the language (e.g.: "Little attentions are paid on" or "imagery for interpretating glacier changes")

Author's response

Thank you very much for your valuable comments and suggestions. We have carefully reviewed the language in the new sections and made the necessary corrections.

• Author's changes in manuscript:

We have revised "Little attentions are paid on" to "Little attention is paid to...", and "imagery for interpretating glacier changes" to "imagery for interpreting glacier changes".

We have made the necessary corrections in other sections.

批注 [hL3]: Several of the new sections would benefit from review of the language (e.g.: "Little attentions are paid on" or "imagery for interpretating glacier changes")

Author's response

Thank you very much for your valuable comments and suggestions. We have carefully reviewed the language in the new sections and made the necessary corrections.

Author's changes in manuscript;

We have revised "Little attentions are paid on" to "Little attention is paid to...", and "imagery for interpretating glacier changes" to "imagery for interpreting glacier changes".

批注 [hL4]: L71: "It is believed that historical earthquakes and ongoing climate warming drove these events" needs a citation or justification. Who believes that?

• Author's response:

Thank you for your suggestion. The driving factors behind the historical debris flow events in the ZLL catchment require further discussion in this manuscript. Therefore, we have revised "these events" to "such events" for greater precision. Additionally, we have included references to studies of similar hazards in other regions worldwide at the end of this sentence to provide proper justification.

• Author's changes in manuscript:

we revised the sentence as follows:

It is believed that historical earthquakes and ongoing climate warming drove such events(Bessette-Kirton and Coe, 2020; Deline et al., 2015; Stoffel et al., 2024; Zhang et al., 2022).

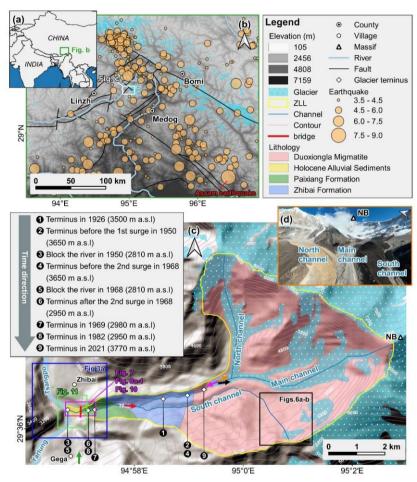
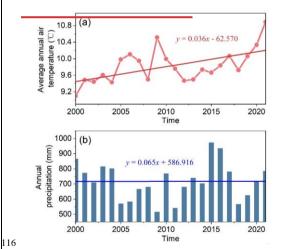



Figure 1: (a) Regional overview map of southeastern Tibet. (b) Regional settings and historical earthquakes of southeastern Tibet. (c) Topographic, geological and glacier terminus change maps of the Zelunglung catchment (the lithology refers to (Zhang and Shen, 2011)). The orange, rose-red, green, black and red coloured arrows represent the view angle direction of figures 1d, 4, 5, 6c and 6d. (d) Aerial photo of the Zelunglung glacier and channels on December 21, 2022 (NB denotes the Namche Barwa massif).

 The regional tectonic units are the Lhasa terrane, the Indus-Yarlung Tsangpo suture, and the eastern syntaxis of the Himalayas from north to south (Hu et al., 2021). The catchment lies in the eastern syntaxis, which is uplifting at a rate of 5-10

mm/a (Ding et al., 2001). The exposed stratum in the Zelunglung ZLL is known as the Namche Barwa Group complex, which is composed of Duoxiongla migmatite, Zhibai group, and Paixiang group gneiss. The Quaternary deposits consist of Holocene alluvium at its outlet, thick layers of glacial till, and glacio-fluvial accumulation, especially hundreds of meters of huge thick moraine layers with large boulders accumulated on both sides of the main channel (Fig. 1c) (Han and Feng, 2018; Zhang and Shen, 2011). Many active faults are distributed around the study area, such as the Aniqiao-Medog Fault to the east, which is considered the seismogenic fault of the 1950 Ms=8.5 Assam earthquake, NW-SE Xixingla fault that is the seismogenic fault of the 2017 Ms=6.9 Milin earthquake, and Daduka Fault across the Zelunglung ZLL downstream (Hu et al., 2019). Neotectonic movement makes this area highly susceptible to intense and frequent earthquakes.

This catchment lies in the rain shadow area of Mt. Namche Barwa, and its precipitation is controlled by the Indian Ocean's humid monsoon through the Yarlung Tsangpo Gorge. The climate has a strong vertical difference: semi-humid climate zone beneath 3200 m, cold temperate climate zone between 3200-4000 m, and cold climate zone above 4000 m. According to the data recorded at the Linzhi meteorological station 46.2 km west of the ZelunglungZLL, the annual air temperature with a mean value of 9.8 °C increases at an average rate of 0.36 °C/10a from 2000 to 2021, which is much higher than the global average (Chen et al., 2015). Meanwhile, the The annual precipitation ranges from 514 mm to 972 mm, exhibiting notable inter-annual variation, with no distinct trend over the past 20 years and increases at an average rate of 0.65 mm/10a (Fig. 2).

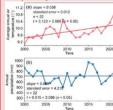
批注 [hL5]: L129: As I said before, I do not see an increase in precipitation rates here. The increase is so small it must surely be within the uncertainty of the scatter of the data. If you plotted the confidence bands of the regression or added the standard error of the slope of the line, I would bet it is way within uncertainty of 0 or a decreasing trend. Also, in the discussion, you say there is no significant trend in precipitation.

•Author's response:

We sincerely thank the Reviewer for their careful review. We agree with the Reviewer's point that the observed increase in precipitation rates may fall within the uncertainty range of the data. As suggested, we have re-analyzed the data by calculating the standard error of the slope (Fig. 2). The results show that the slope value is 0.065, the standard error is 4.215. The t-statistic value is approximately 0.0153, which is much smaller than the critical t-value of 2.086 at the significance level of α =0.05. This indicates that the trend is not statistically significant. In the revised manuscript, we have clarified that there is no significant trend in precipitation over the study period, aligning the discussion with the updated statistical analysis.

• Author's changes in manuscript:

We have replaced Figure 2 with Figure SS, and changed the L109 as: The annual precipitation ranges from 514 mm to 972 mm, exhibiting notable inter-annual variation, with no distinct trend over the past 20 years



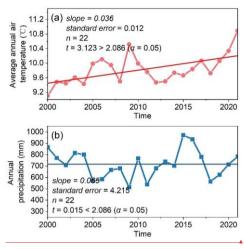


Figure 2: Annual temperature and precipitation data from 2000 to 2021 at Linzhi Meteorological Station (Data source: https://www.ncei.noaa.gov/maps/annual/).

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Figure 2: Annual temperature and precipitation data from 2000 to 2021 at Linzhi Meteorological Station. (Data source: https://www.ncei.noaa.gov/maps/annual/).

The ZLL basin catchment, characterized by with its unique geographical and climatic conditions, has hosted been a cradle for the extensive glaciation proliferation of glaciers and a hotbed of frequent glacial activity throughout over geological time. The Zelunglung ZLL has experienced at least three glaciations in the Last Glacial Maximum (LGM), Neoglaciation, and Late Holocene (Hu et al., 2020). The LGM moraine extended into the Yarlung Tsangpo and dammed the river (Huang et al., 2014; Liu et al., 2006; Montgomery et al., 2004; Zhu et al., 2012). The glacier surges/debris flows - dammed lake - outburst flood disaster events since the last glacial period also had an important impact on the landform and paleogeographical environment of the Yarlung Tsangpo Valley (Wang et al., 2021). The modern glaciers in this area are strongly influenced by the Indian monsoon and are highly sensitive to climate change. Hence, the Zelunglung ZLL glacier has advanced and retreated many times since the last century. The high instability and rapid changes of the glacier result in several glacier surges or calving events. As shown in Fig. 1c, the glacier snout was 3500 m a.s.l in 1926 (Ward, 1926). Since the 1950s, the Zelunglung ZLL glacier has experienced three surges or rapid advances (Zhang, 1985, 1992). The first surge occurred on August 15, 1950. Following the 1950 Assam earthquake, the terminus of Zelunglung ZLL Glacier advanced from 3650 m a.s.l to the Yarlung Tsangpo at 2810 m a.s.l with a horizontal displacement of up to 4.5 km. This event destroyed the Zhibai Village completely at the mouth of the Zhibai gully, killed 98 people, and formed an ice dam as high as tens of meters in the main river. The second surge occurred one afternoon in August or September of 1968 (corresponding to July 1968, in Tibetan calendar) when it was sunny (Zhang, 1985, 1992). The advance also resulted in a temporary ice dam in the Yarlung Tsangpo and deposited a glacial boulder of 4.0×5.0×5.5 m upstream of the dam (Zhang, 1985). It is worth noting that the position of the ice tongue

设置了格式: 非突出显示

before the second glacier surge has returned to the position before the first surge (3650 m a.s.l), and the peak velocityhighest speed of these the two glacier surges reached was up to 1.5 km/d. After the second surge, the main glacier split into 6 segments due to differential ablation, and the terminus of the lowest segment of the glacier was at 2950 m a.s.l. The terminus of the lowest segment was about 2980 m a.s.l in 1969 as shown by the Corona reconnaissance satellite images (Kääb et al., 2021). The terminus of the lowest part of the glacier had probably been at 2950 m a.s.l before 13 April 1984 when an ice mass of 80000 m³ detached at 3700 m a.s.l and traveled horizontally 150 m, which was the third rapid advance of the Zelunglung ZLL glacier (Zhang, 1992). After that, no glacier surges or detachments were recorded, but small-scale mountain torrents or debris flows occurred almost yearly (Zhang and Shen, 2011). At present, the glacier terminus is about 3770 m a.s.l.

3 Data and methodology

3.1 Data sources

We collected a total of 30 different remote sensing images from various sources dating back to 1969, with resolutions ranging from 1m to 15m (**Table 1**). The 1969 Keyhole image refers to Kääb et al. (2021) and the other images before 1982 were sourced from the Keyhole reconnaissance satellites (https://earthexplorer.usgs.gov/), originally serving as the primary data source for the United States Department of Defence and intelligence agencies for Earth imaging. These high-resolution images provide valuable visible data in the era without commercial satellite imagery. Images from 1988 to 2007 originated from the Centre National d'Études Spatiales (CNES) SPOT series data (https://regards.cnes.fr/user/swh/modules/60). Images from 2009 are sourced from the RapidEye series and Planet satellites (https://account.planet.com/), which are known for their short revisit periods and high resolution. To comprehensively document the historical debris flow activity in ZelunglungZLL, we diligently chose images captured after every rainy season (October to December) whenever feasible. Due to high cloud cover in the study area and limited availability of image resources, we substituted images from the following year before May for specific periods with significant image data gaps (e.g., before 2000) for those of the missing year (Li et al., 2017). Although the Landsat satellite series may offer more continuous observational records, their relatively coarse resolution makes them unsuitable for our study area.

Table 1: Data sources of the satellite images used in this study.

No.	Date	Data sources	Resolution (m)
1	1969/12/08	Keyhole	5 <u>1</u>
2	1972/2/28	Keyhole	1
3	1973/3/26	Keyhole	1
4	1975/12/21	Keyhole	4
5	1979/4/10	Keyhole	1
6	1982/10/15	Keyhole	1

7	1988/2/20	Spot1	15
8	1989/12/1	Spot1	15
9	1990/12/21	Spot2	12
10	1991/11/25	Spot3	12
11	2000/11/17	Spot4	10
12	2002/12/5	Spot5	6
13	2004/12/28	Spot5	6
14	2005/10/10	Spot5	6
15	2006/12/21	Spot5	6
16	2007/11/29	Spot5	6
17	2009/12/22	RapidEye	5
18	2010/12/15	RapidEye	5
19	2011/11/23	RapidEye	5
20	2012/12/15	RapidEye	5
21	2013/12/7	RapidEye	5
22	2014/12/13	RapidEye	5
23	2015/12/6	RapidEye	5
24	2016/12/13	Planet	3
25	2017/12/11	Planet	5
26	2018/12/13	Planet	3
27	2019/12/7	Planet	3
28	2020/12/10	Planet	3
29	2021/12/12	Planet	3
30	2022/12/10	Planet	3

3.2 Methodology

This study combinesutilizes a combination of field surveys, aerial drone photography, and satellite imagery analysis to investigate debris flow events in the Zelunglung ZLL regioncatchment. The hHistorical records of the four debris flows lackhave no volume data. High-resolution orthoimages and digital surface models are generated to assess terrain changes, while non-vegetated area (NVA) serves as a proxy for sediment volume for time series analysisanalyses. The integration of these methods providesoffers a detailed insight into the debris flow history and its influencing factors.

3.2.1 Field surveys

We conducted three field surveys in the Zelunglung ZLL between 2020 - 2022. During the initial two survey, we conducted two aerial drone photography works on September 9 and 11, 2020, using DJI MAVIC 2. Additionally, we measured downstream channel cross-sectional morphology, debris flow particle characteristics, and the extent of damage to the Zhibai Bridge, and sampled debris flow materials with size < 100 mm on the accumulation fan in the second survey. A full 3D view of the Zelunglung ZLL was captured with an unmanned aerial vehicle (UAV) in the third survey on December 21, 2022, a sunny winter day (Fig. 1d).

3.2.2 NVA interpretation

- The inundation of debris flow on the alluvial fan often destroys vegetation cover and causes the affected area desertification in a few years. Generally, the non-vegetated area NVA depends on the flow magnitude. So, the NVAnon-vegetated area of the alluvial fan shortly after a glacial debris flow can serve as a proxy of the volume of transported sediment. It should be noted that distinguishing fresh debris flow deposits on an alluvial fan from pre-existing exposed surfaces in the surrounding area is challenging in satellite images due to minimal color differences. Additionally, due to the slow vegetation recovery rate in high-altitude regions, our interpretation area likely includes exposed areas one year or several years before an event. Therefore, the NVA has some uncertainties in representing the real magnitude of the debris flows.
- We employed a visual interpretation approach to delineate NVAsnon-vegetated areas within the Zelunglung's-ZLL alluvial fan. Identifying the NVA-non-vegetated area is primarily based on differences in color, hue, texture, and shading between vegetated and unvegetated regions. The Keyhole black and white photos and the SPOT single-band black and white images show distinct tonal differences between vegetated and unvegetated areas. In the true-color images obtained from RapidEye and Planet, the boundaries of NVAs are highly conspicuous. The Zelunglung-ZLL interpretation zone is limited to the region between the two adjacent confluences of its upstream and downstream catchments with the main river.
- Due to potential misalignment between remote sensing images from different sources, image matching is performed before manual delineation of the NVAsnon vegetated areas (Cui et al., 2022). To eliminate the errors of geospatial locations of the images from different sources, we used the 2020 Planet image as the reference image and selected ground control points with clear markers on this image, such as road junctions, rivers, and typical topographic points. Third-order polynomial transformation is applied to match the images from other sources accurately with the 2020 image, ensuring a positional error of less than 20 m relative to the reference image. The original Keyhole images without geographical coordinates and projection system information are georeferenced with the 2020 Planet image with the ground control points. We assume that the visual interpretation error of NVAsnon-vegetated areas is approximately one grid cell on either side of the boundary. Moreover, we verified the interpretation results of the remote sensing images with the UAV orthoimages.

3.2.3 Drone image interpretation

We employed Pix4DMapper and Arcmap10.8 to generatedeal with the UAV digital orthophoto maps (DOMs) and digital surface models (DSMs), as well as to perform generation and DSMs differencing. Since we did not deployAs ground control points (GCPs) were not deployed during drone photography, we generated the DSM and DOM of for September 9 in Pix4DMapper, Subsequently, and then selected 20 relatively stable points, that were not unaffected by debris flow events, were selected as GCPs in Arcmap using the September 9 with DOM of September 9 as a reference. These control points were then applied used in Pix4DMapper to generate the September 11 DSM and DOM for September 11. Then the DSMs of difference (DoD) analysis differencing was subsequently conducted in Arcmap. To determine the uncertainty for in our DoD differencing result we follow methods outlined in Shugar et al. (2021). We identified a series of fifteen Fifteen stable areas on old debris flow terraces adjacent to the valley floor (Mainly, mainly roads and unseeded farmlands, were identified.) and retrieved the The standard deviation of DoD values within these areas was calculated and used these to estimate a two-sigma DoD uncertainty. The resulting uncertainty was estimated to be The uncertainty was ±0.493 m.

Utilizing post-event DOM captured on September 11, we visually interpreted the distribution of particles from the downstream channel to the depositional fan on Arcmap10.8. High resolution and accurate color representation of the drone aerial images enable us to reliably identify coarse particles (>50 cm). The interpretation results were compared with measurements obtained with a caliper during the 2022 field survey.

4 Debris-flow events and Sediment characteristics

4.1 Multi-periodic glacial debris flows

Glacier surges or ice-rock avalanches can be transformed into debris flows that deliver massive amounts of sediment into the river or deposit on the alluvial fan. Four large-magnitude debris flows accompanied by glacier instability occurred in 1950, 1968, 1973, and 1984 (Zhang, 1992; Peng et al., 2022). The 1968 event coused significant deposition in the alluvial fan, characterized by a rough surface and indistinct channels (Fig. 3-a2). The magnitude of the 1950 event is perhaps more significant than that of the 1968 event. According to Zhang (1992), the detached glacier in 1950 climbed over the ~80 meters lateral moraine on the north at an elevation 4000 m and traveled downstream along the Zhibai gully (Fig. 1e3-a1 and Fig. 4). Based on the erosional scar photo on the lateral moraine (Zhang, 1992) and the 2022 UAV photo, the residual depositional area of the 1950 event in the upstream gully is ~ 65,000 m² (Fig. 4). Although the glacier detachment happened in Zelunglung ZLL in 1950, most of the sediment deposited in the Zhibai channel and its alluvial fan. Fine sediment from the catchment can be quickly transported downstream by river flows, but most coarse sediment is still left on the bank or the alluvial fans. There are two terraces on the banks of the main river along the confluences of the Zelunglung ZLL ravinecatchment and Zhibai gully (Fig. 5a). Tl and T2 terraces are ~10 m and ~ 150 m above the river level, respectively (Fig. 5b). The 1950 and 1968 events completely dammed the Yarlung Tsangpo (Zhang, 1992). Compared with the 1969 Keyhole

设置了格式: 字体颜色: 红色

批注 [hL6]: We have adjusted the statement logic in Section 4.1, and added more details about the fan surface, channel and glacier changes in-between the major debris flows. The major debris flows in the 40 years after the 1950 earthquake were all associated with trunk glacier disturbances caused by the earthquake, which answered the questions of reviewers 1 and 2.

₩ 设置了格式: 字体: 加粗

设置了格式: 字体: 加粗

event eroded the T2 terrace (Fig. 3-a2), which implies that the T2 terrace formed before 1950. The residual inundation area of the 1950 event is ~0.78 km² (Fig. 5a). If the magnitude is proportional to the inundation area, the flow magnitude of the 1950 event could be larger than that of the 1968 event. From the 1972 and 1973 images, it is observed that fresh debris deposits inundated the north part of the fan and did not go beyond the 1968 accumulation zone (Fig. 3-a2, 3-b2 and 3-c2). The same lobes and deposition boundary and the marked collapse of the terminal glacier (Fig. 3-b3 and 3-c3) indicate that the so-called 1973 event mentioned by Peng et al. (2022) likely happened in 1972. The fan in December 1975 exhibits significant brightness variations (Fig. 3-d2), with pronounced channelization above the glacier (Fig. 3-d1), indicating possible debris flow activity prior to this time. Compared with 1975, the fan in 1979 displays a flatter terrain and more distinct channelization (Fig. 3-e2), indicating the modification of the rough fan surface by debris flow activity. This also implies that, due to limited information at the time, additional events during this period may have gone unrecorded. By 1982, noticeable vegetation had recovered in the middle part of the fan (Fig. 3-f2). Concurrently, accelerated glacier ablation exposed lateral moraines (Fig. 3-e3, and 3-f3), while the glacier terminus developed an extensive crevasse network (Fig. 3-f4 and 3-f5). These fractured ice bodies and moraine materials, under the impact of ice avalanche at 3700 m described by Zhang (1992), contributed to the formation of the 1984 large-scale debris flow. The magnitude of the 1950 event is perhaps more significant than that of the 1968 event. According to Zhang (1992), the detached glacier in 1950 elimbed over the ~80 meters lateral moraine on the north at an elevation 4000 m and traveled downstream along the Zhibai gully (Fig. 1c and Fig. 4). Based on the erosional sear photo on the lateral moraine (Zhang, 1992) and the 2022 UAV photo, the residual depositional area of the 1950 event in the upstream gully is ~ 65,000 m² (Fig. 4). Although the glacier detachment happened in Zelunglung in 1950, most of the sediment deposited in the Zhibai channel and its alluvial fan-Fine sediment from the catchment can be quickly transported downstream by river flows, but most coarse sediment is still left on the bank or the alluvial fans.

image (Fig. 3a), it is likely that the T1 terrace is the residual dam of the 1968 event. The debris flows in the 1950 glacier surge.

228

229

230

231

232

233

234

235

236237

238

239

240

241

242

243

244

245

246

247

248

设置了格式: 字体: 加粗
设置了格式: 字体: 加粗

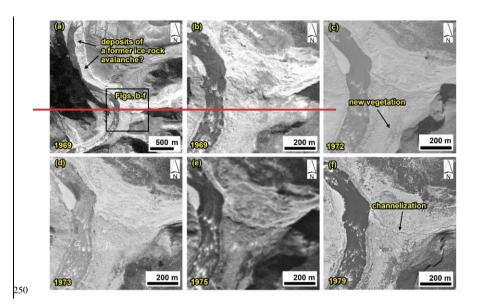


Figure 3: Variations of the Zelunglung alluvial fan and channel during 1969 – 19791982. The images are taken from Keyhole reconnaissance satellites (https://earthexplorer.usgs.gov/).

There are two terraces on the banks of the main river along the confluences of the Zelunglung ravine and Zhibai gully (**Fig. 5a**). T1 and T2 terraces are ~10 m and ~150 m above the river level, respectively (**Fig. 5b**). The 1950 and 1968 events completely dammed the Yarlung Tsangpo (Zhang, 1992). Compared with the 1969 Keyhole image (**Fig. 3a**), it is likely that the T1 terrace is the residual dam of the 1968 event. The debris flows in the 1950 glacier surge event croded the T2 terrace, which implies that the T2 terrace formed before 1950. The residual inundation area of the 1950 event is ~0.78 km² (**Fig. 5a**). If the magnitude is proportional to the inundation area, the flow magnitude of the 1950 event could be larger than that of the 1968 event.

Figure 4: Aerial photo of the Zelunglung main channel on December 21, 2022, and the old deposits in Zhibai gully left by the 1950 event (the view angle direction is denoted by green arrow in figure 1c, and the dashed rectangle indicates the location of Figure 5b).

批注 [hL7]: We replaced Figure 3 to show more details

设置了格式:字体颜色:自动设置

设置了格式:字体:加粗,字体颜色:自动设置

设置了格式:字体颜色:自动设置

Figure 5: Two terraces on the banks of the main river. (a) Century Space's satellite image on 9 February 2021. (b) Picture of the terraces on the opposite bank of the Zelunglung taken on 8 September 2020. (T1 and T2 represent the terraces formed in two different periods. The green arrow denotes the view angle direction of figure b)

An ice-rock avalanche triggered the recently documented glacial debris flow on Sep. 10, 2020. The 2020 ice-rock avalanche initiated on the top ridge of the south branch at an elevation of 5500 m. The scar area of initiated ice and rock was 1.35×10^4 m² on the upper cliff (**Figs. 6a-b**). The initiated volume is estimated to be 7.0×10^4 m³ by using the bedrock landslide area-volume empirical relationship ($V = \alpha A^{\gamma}$; $\alpha = 0.186$, $\gamma = 1.35$) (Larsen et al., 2010). In the Google image on December 4, 2017 (**Fig. 6-c2**), it can be seen that there is a protruding rock mass on the cliff below the unstable ice-rock block. The rock mass develops many lateral cracks, and the top is covered with fresh, weathered materials, indicating freezing severe weathering. The fallen ice-rock block partially disintegrated and impacted colluvial deposits on steep hillslope below the cliff at elevations 4570–4800 m, forming a muddy fresh area of 0.134 km² (**Fig. 6b**). This area is often covered by snow and ice, and the ice-snow melting water easily infiltrates into the debris-ice mixtures. Once the slope material was entrained into the mass flow, such a nearly saturated mixture could quickly turn into a debris flow. Peng et al. (2022) estimated a debris loss of 1.14 Mm³ in the scarp area except for the initiated ice and rock. But they mistake the hillslope below the cliff as the source area of the event. It is noted that there is an ice-rock residual of ~ 7.14×10³ m² left under the cliff (**Fig. 6-b3**). That means the volume of the debris mass flowed downward into the south channel should include half of the initiated ice-rock mass and the debris loss of 1.14 Mm³. The entrained volume is at least 16 times the initiated volume.

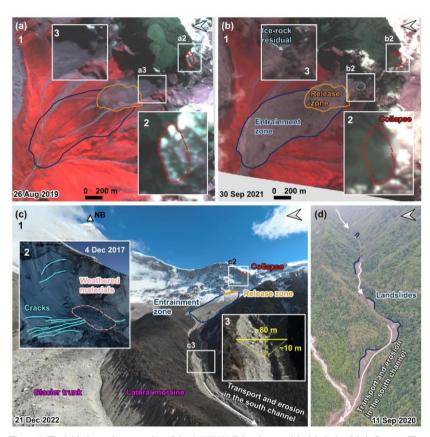


Figure 6: The initiation and propagation of the \$\frac{\text{\text{\cdot}}_200}{20}\$ Zelunglung periglacial glacier debris flow. (a) The planet image of the initiation area before the event. (a2) enlarged region over the pre-collapse site. (a3) Enlarge the region over the hillslope before the collapse. (b) The planet image of the initiation area after the event. (b2) enlarged region over the post-collapse site. (b3) enlarged region over the hillslope after the collapse. (base data of a-b: © 2024 Planet Labs PBC) (c) An aerial photo of the source area and the south channel on 21 December 2022 was taken by the UAV. (c2) Google Earth imagery of the initiation area on 2 December 2017 (base data: ©Google Earth). (c3) The region was enlarged over the south channel on 21 December 2022. (d) An aerial photo of the downstream channel on 11 September 2020 was taken by the UAV.

When the debris flows traveled downstream, parts of old channel sediment and lateral moraines were eroded while some of the flow mass was deposited on the banks. The flows also triggered many small landslides on both banks of the middle stream (**Fig. 6d**). The blockage by large boulders and the induced landslides on the narrow channel may enlarge the magnitude of the debris flows in the end (**Fig. 6d**) (Cui et al., 2013; Liu et al., 2020). The UAV photo shows the influx of debris flows that

transformed from the entrained sediment and melting water exceeded the average water level of the south channel. The flow cross-section is ~ 80 m wide at the top and ~ 10 m high in the thalweg based on the UAV photo and OpenCycle topographic map (Fig. 6-c3). The peak discharge and frontal flow velocity reached 4700 m³/s and 11.4 m/s at the outlet (Peng et al., 2022). According to the description of local villagers, the first debris flow surge arrived at Zelunglung's ZLL mouth outlet at about 5:00 pm on September 10, and the second larger one arrived about one hour later. Two ice-rock avalanches with different volumes probably happened on the ridge and were the corresponding trigger of the downstream debris-flow surges. But it is more likely that there was only one ice-rock avalanche during the event, but a synchronization of the ice-rock impacts in the scarp area, and the channel blockage caused two debris-flow surges.

4.2 Sediment characteristics of the 2020 event

4.2.1 Difference between the initiation and the downstream areas

Periglacial debris flows can transport rocks or boulders not only in midstream steep channels but also in gentle downstream channels or alluvial fans. The sediment transportation capacity of the flows depends on flow hydrodynamics, grain composition, and topographic conditions. The 2020 Zelunglung ZLL event provides first-hand information for examining such sediment characteristics of the flows. Next, we present on-site data such as the size distribution of coarse grains, their impact, and erosion. The field evidence shows some features of periglacial debris-flow transportation that differ from fluvial transport.

There is a big difference between the sediment composition in the source and depositional areas. The initiated ice-rock debris and colluvial deposits on steep hillslopes consisted of angular rocks of various sizes. However, we observe that the deposits in the downstream areas are sub-rounded stones, and the downstream banks and channel bed are composed of sands and boulders up to several meters in diameter (**Fig. 7**). That means most of the angular rocks resided in the upslope or upstream channel and did not move downward. The angularity of the fragmented rocks reduced their mobility, and the attenuated overland flow had less transport capacity. The large sub-rounded or sub-angular boulders in the lower reaches came from the middle of the downstream reaches. We guess that grain segregation happened initially, and only fine parts of the ice-rock mass and melting water traveled downward the midstream. The resident angular rocks would be rounded gradually by the periglacial stream and transported downward by the subsequent floods or debris flows. The transportation mode of coarse grains is a kind of "Relay-race style", one event by one event.

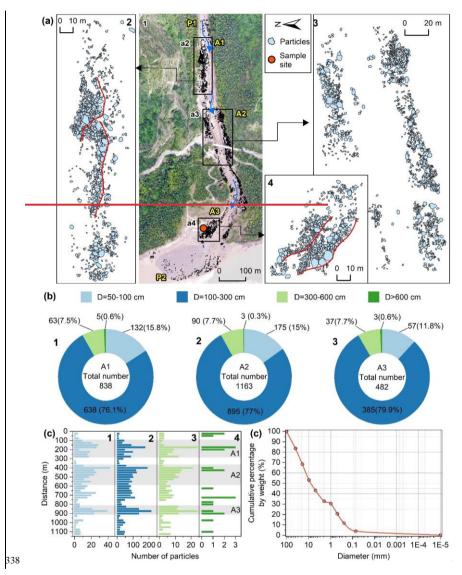

Numerous boulders were on the channel and banks before the 2020 event, as seen from the aerial photo on 9 September 2020 (**Fig. 7a**). The in situ boulders were mobilized by the upstream flows and reorganized spatially. The boulders were prone to move together on the flat banks such as a flat storage yard near the bridge and the fan middle (**Fig. 7b**). The slope and flow depth are critical for the boulder's transport. Interstitial slurry among the boulders could separate from the boulders when the debris flows moved on a gentle slope or spread over an open fan (**Fig. 7c**). The interstitial slurry provided buoyancy for the boulders and reduced resistance between them and the bed. Once there was no interstitial slurry, the boulders quickly stopped.

Figure 7: Comparison of pre-and post-event aerial photos on the downstream channel and alluvial fan. (a) the UAV photo on 9 September 2020; (b) the UAV photo on 11 September 2020; (c) On-site picture of the boulder clustering on 11 September 2020 (the camera angle direction is denoted by red arrow in figure b).

4.2.2 Grain-size distribution of coarse particles > 50 cm

In the downstream channel, with an average gradient of 13.8%, a relatively high velocity (11.4 m/s) enabled the flows to mobilize boulders of 5.0 meters in diameter (Costa, 1983). An 1125 m long straight reach from the first bend upstream of the bridge to the edge of the alluvial fan was chosen. Coarse particles > 50 cm on the deposition surface were visually interpreted from the orthophotos with a resolution of 0.17 m on September 11, 2020, after the debris-flow event. The long axis of the equivalent ellipse of these particles represents the particle size. Due to the limitation of resolution, only coarse particles with a long axis larger than 50 cm were counted (**Fig. 8**). A total of 3943 coarse particles were identified and divided into four size ranges of 50-100, 100-300, 300-600 and >600 cm. Spatial statistics of these particles were made every 25 m along the central flow line, and then 45 segments were divided.

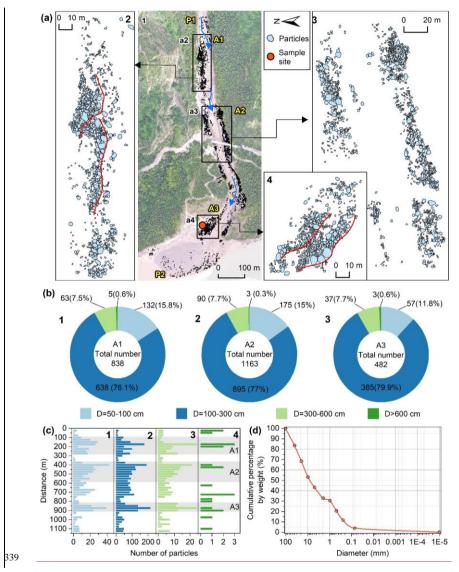


Figure 8: Distribution of the grain size. (a) The distribution of coarse particles along the channel and alluvial fan. P1 and P2 represent the places where the count starts and ends, respectively. A1-A3 are the three main deposition sites. The blue arrow is the direction of the debris flows. The bottom image is an orthographic image taken by a drone on September 10, 2020. The locations of the enlarged regions (a2)-(a4) are shown as black boxes. (a2)-(a4) enlarged region over the three main deposition sites A1-A3. Panels (b1)-(b3) show the counts of four groups of the particles in the three main deposition sites A1-A3. Panels (c1)-(c4) show the counts of four groups of the particles in the 45 segments along the channel from P1 to P2. Particles with diameters of 50-100 cm, 100-300 cm, 300-600 cm, and particles larger than 600 cm in panels b-c are shown in light blue, blue, light green, and green. (d) Cumulative grain size distribution of the on-site sample with size < 100 mm.

批注 [hL8]: We corrected the sequence number of the composite neutron diagram

63% of the particles are concentrated in three zones A1, A2, A3 (**Figs. 8a-b**). The three zones are gentle banks or floodplains. The large stones easily slowed down when the flow depth and the velocity decreased on the edges of the debris flows. The composition of the particles in A1-A3 exhibits similar grain size distribution (**Fig. 8b**). The size of the most numerous particles is between 100 and 300 cm. The stones with the size > 600 cm are the least. The number of particles with 100-300 cm size accounts for 77.4% of the total. Likewise, the particles with sizes of 50-100 cm, 300-600 cm, and >600 cm, accounted for 14.3%, 7.7%, and 0.6% of the total, respectively. If the particle volume is estimated with the equivalent ellipsoid volume, i.e. $V = (4\pi abc)/3$ (where a is major radius, b is short radius, c is polar radius and equal to b), the two groups of particles with the sizes of 100-300 cm and 300-600 cm have the largest volume.

The spatial distribution of these particles in the 45 segments is shown in **Figure 8c**. The same four size ranges are used (50-100 cm, 100-300 cm, 300-600 cm, and > 600 cm). The particles with the first three sizes have three peaks in A1, A2, and A3 (**Fig. 8c**). The first peak is located on the right bank highland of A1. When the debris flows moved to A1, the flow depth was far higher than the channel depth. Many coarse particles were left on the highland. The second peak is located on both channel sides above Zhibai Bridge. When the debris flow enters the bend at a high speed, a large velocity difference will be generated on the concave-convex bank, i.e., the super-elevation effect (Chen et al., 2009). The debris flows produced the super-elevation effect when they moved to A2, a partially curved channel. Then, some coarse particles overflowed the channel and deposited on the A2 banks. The third peak is at the top of the alluvial fan. When the debris flows moved out the **mouth_catchment outlet** and had no boundary constraint, the other coarse particles gradually deposited from the fan top to the fan edge due to loss of kinetic energy. In the A1 highland, the particle size decreased toward the outer edge of the channel (**Fig. 8-a2**), while the coarse particles in A2 were poorly sorted (**Fig. 8-a3**). In A3, the coarse particles on the surface show the parallel superposition of two depositional units, and the particle size of each depositional unit generally decreases toward the outer edge of the channel (**Fig. 8-a4**). It reflects the gradual accumulation of multiple debris-flow surges (Sohn, 2000; Major, 1998). The two depositional units may correspond to the two successive debris flow surges in Zelunglung ZLL at 5:00 pm and 6:00 pm.

4.2.3 Impact and erosion

Debris flows usually have steep coarse-grained surge fronts (snouts) and inter-surge watery flows (McCoy et al., 2013; Yan et al., 2023). The periglacial debris flows in Zelunglung-ZLL had similar spatial compositions. The granular flows (coarse-grained snouts) at the fronts exerted a powerful impact on obstacles, and the inter-surge watery flows or water-rich tails with relatively low sediment concentration played critical roles in erosion. The Zelunglung ZLL debris flows had a very high content

of coarse particles and wide distribution. The impact of the coarse particles witnessed by the damages of the Zhibai bridge, a 100m long cable bridge with a steel frame (**Fig. 9a**). The foundation of the bridge was exposed by the strong erosion capacity of the debris flows (**Fig. 9b**). The middle steel frame was intensely impacted by run-up boulders and highly deformed (**Fig. 9c**). The concrete bridge body displaced 16 cm in vertical direction and 36 cm in horizontal direction (**Figs. 9d and e**). The velocity of the largest boulder with a size of 9.9 m was $12.6 \frac{\text{m m/s}^4}{\text{m m/s}^4}$, and the impact force of the largest boulder was estimated to be $3.64 \times 10^6 \text{ kN}$. The velocity of the debris flow at the selected cross section near the Zhibai bridge was 9.65 m/s, the peak value of debris-flow runoff was $1743.4 \text{ m}^3/\text{s}$ (**Fig. 10**) (Li et al., 2024).

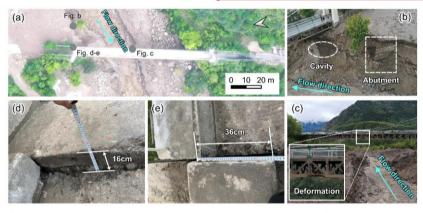


Figure 9: Damages to the Zhibai Bridge caused by debris flows (photos taken on 11 Sep 2020). (a) The overview of Zhibai Bridge taken by UAV and the locations shown in photographs (b)-(e) taken with handheld cameras are shown in gray circles. (b) The photo of the damaged bridge foundation. (c) The photo of the damaged steel frame. (d) Photo of on-site measurements of the vertical displacement of the bridge. (e) Photo of on-site measurements of the horizontal displacement of the bridge.

设置了格式: 字体: (默认) Times New Roman, (中文) Times New Roman

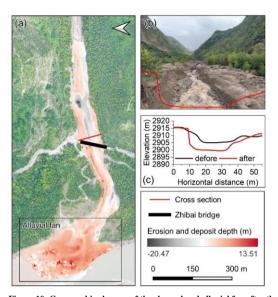


Figure 10: Geomorphic changes of the channel and alluvial fan after the debris flows of 2020. (a) Erosion and deposit depth caused by the debris flows. The base map is taken by UAV on 10 Sep 2020. (b) Photo of the channel after the debris flows. The red line represents the cross-section next to the Zhibai Bridge (photo taken on 11 Sep 2020). (c) Cross-sections before (black) and after (red) the debris flows.

A vibrating sieve measured one sample taken from the debris-flow deposits with the size < 100 mm. The concentration of sediment finer than 0.075 mm is low, only 3.8% of the whole sample's mass (**Fig. 8d**). D50 and D90 of the sample are 8.3 mm and 62.9 mm, respectively, as linearly interpolated from the sieve-measured data. The field evidence shows that the debris flows strongly eroded the downstream channel. Comparing the drone-obtained Digital Surface Model (DSMs) data before and after the 9.102020 event, the maximum erosive depth was up to 20.47 m, and the mean erosive depth was 4.17 m (**Fig. 10a**). Peng et al. (2022) numerically simulated the final erosion and deposition along the flow path. The maximum erosion depth was 7.41 m at the beginning of the downstream channel. We think the simulation underestimates the erosion depth because the final erosion accumulates several erosive watery flows. Lateral erosion happened nearly along the whole downstream channel. The channel width increased from 17 m to 33 m at 70 m upstream of the bridge. The lateral erosion exposed the bridge foundation, and a cavity formed below the pier (**Fig. 9b**). Concave bank erosion widened the channel by 14 m downstream. Based on the DoD, we estimated that at least 12.8×10^4 m³ ($\pm 1.85 \times 10^4$ m³) of debris was transported out of the catchment (**Fig. 10a**). However, compared with the study of Peng et al. (2022), the true volume may be seriously underestimated because part of the sediment may be submerged by the Yarlung Tsangpo River, which is a bias caused by the difference in data acquisition time and DEM/DSM resolution.

5 Multi-periodic Sedimentation in the confluence

Multi-periodic periglacial debris flows are strongly related to variations in the NVA of the alluvial fan. In practice, the NVA includes a fixed part of the area inundated by the river and then is larger than the debris-flow depositional or flooded area (**Fig. 11**). Technically, the NVA caused by the main river cannot be completely excluded from the total area. However, the river bank line was fixed from the 1980s to the 2010s when no <u>large</u> periglacial debris flows happened (**Figs. 11b and c**) (Zhang and Shen, 2011). So, it is reasonably assumed that the variation of the river water level has no significant influence on the NVA's change, and it represents the volume trend of the sediment transported by the debris flows.

From the Keyhole satellite image in 1969, the deposited debris from the 1968 event resided on the confluence and covered a

NVA's change, and it represents the volume trend of the sediment transported by the debris flows.

From the Keyhole satellite image in 1969, the deposited debris from the 1968 event resided on the confluence and covered a 2.5 km downstream reach of the Yarlung Tsangpo River from the junction (Fig. 3a) (Kääb et al., 2021). During 1969 – 1979, the area of the accumulated fan kept at about 0.28 km². The 1979-1972 image shows vegetation gradually developed from the edge of the accumulation fan (Fig. 3-b2). A new channel developed along the 1972 deposition boundary across the middle of the fan (Fig. 3f3b-2). Since then, the area without vegetation cover has reduced to 0.048 km² in 2005 and kept a slight fluctuation from 1985 to 2005. It indicates that only rainfall-induced small-scale flash floods or debris flows occurred during 1985-2005, which is confirmed by Zhang and Shen (2011). The NVA increased slowly, with a slight variation from 2005-2019. In 2020, the NVA abruptly increased to 0.112 km² due to the ice-rock avalanche that happened on September 10 (Fig. 11). The expansion of NVA in 2020 demonstrates it is the most enormous debris flow event in the Zelunglung ZLL since 1972. At the same time, the river channel narrowed down by more than 60 meters compared to before. The multi-periodic sedimentation in the Zelunglung ZLL and Zhibai fans leads to rapids in this reach, forming a knickpoint before the river enters the Yarlung Tsangpo Grand Canyon.

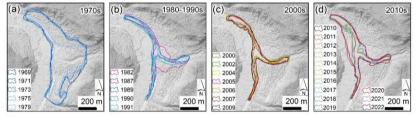


Figure 11: Evolution of the non-vegetated area in the Zelunglung alluvial fan from 1969 to 2022

6 Discussions

6.1 The dominant factor for debris flows and sediment yield

Strong ground vibrations caused by earthquakes can intensify cracking within the ice/rock mass, ultimately leading to the formation of substantial failure surfaces (Kilburn and Voight, 1998). Additional loading by earthquakes and coseismic-ice/rock

设置了格式: 字体颜色: 红色

设置了格式: 字体: 加粗

设置了格式: 上标

avalanches could damage destruct the englacial conduit and subglacial drainage system. These changes can cause dynamic alterations to the glacier's thermal sensitivity, exacerbating its instability (Zhang et al., 2022b). As critical solid material sources, these highly active ice/rock masses caused by seismic disturbance are prone to avalanches, calving, detachment and remobilization to form glacial debris flows (Deng et al., 2017; Zhang et al., 2022b). The data of seismic events since 1940 are collected from the United States Geological Survey (USGS) National Earthquake Center (NEIC) (https://earthquake.usgs.gov/earthquakes/search/) (Fig. 12a). It is observed that the four events in the Zelunglung ZLL in 1950, 1968, 1984, and 2020 were preceded by significant seismic activity. Nearly 30 earthquakes with Mw ≥ 4.5 occurred within one year before the 2020 debris flow event (10 September 2019 - 10 September 2020) whose epicentres are less than 200 km away from the Zelunglung. However, not all earthquakes influenced the instability of Zhelunglung's ZLL glaciers and hillslopes. Keefer (1984) presented an upper bound curve of maximum distance from epicenter to disrupted slide or fall (Fig. 13). Since 1940, only 12 earthquakes within a 420-km radius of ZLL fall below the bound curve, including the 1947 earthquake, the 1950 Assam earthquake and its aftershocks, the 1985 earthquake, and the 2017 Milin earthquake. If including the inundated area of -0.78 km² in 1950, the alluvial area disturbed by debris flows or floods decreased until 1990 and then kept at a low value before 2020 (Fig. 12d). If the 1950 debris-flow event was directly triggered by the 1950 Assam earthquake, as Zhang (1992) suggested, the earthquake effect becomes negligible 40 years later, as the understability of the glacier/materials caused by the earthquake may have improved... Notably, the impact distance of a large earthquake can reach hundreds of kilometers. For example, the co-seismic landslides triggered by the 2015 Gorkha Mw 7.8 earthquake extended to a distance of over 130 km from the epicenter (Martha et al., 2017)the epicenter of the 1950 earthquake is about 195 km away from the ZLL basin. The 1950 Assam earthquake, with its epicenter approximately 199 km from the ZLL, had a very high magnitude (Mw 8.6) and occurred in the tectonically active eastern Himalayan syntaxis. Coupled with subsequent high-magnitude aftershocks near the ZLL (Fig., 13), the seismic impact on the ZLL was significantly amplified despite the distance. This seismic event also triggered a prolonged period of debris flow activity, persisting for decades, in Guxianggou, approximately 50 kilometers northeast of the ZLL Valley (Du and Zhang, 1981). Although 13 earthquakes of Mw > 5.1 occurred in 1968 and 6 earthquakes of Mw \geq 4.5 occurred in 1984, none of these seismic events fell within the range of influence as defined by the Keefer curve (Fig. 13)the Keefer curve did not detect any of these seismic events. This suggests that these earthquakes did not have a significant influence on the debris flow events of 1968 and 1984. The 1950 debris-flow event was directly triggered by the 1950 Assam earthquake (Zhang, 1992), and the root causes of the 1968, 1972 and 1984 events were the structural damage to the glacier and its exposure to lower altitudes with higher temperatures, both resulting from the 1950 earthquake. If including the inundated area of ~0.78 km² in 1950, the alluvial area disturbed by debris flows or floods decreased by 91% until 1990 and then kept at a low value before 2020 (Fig. 12d). If the 1950 debris flow event was directly triggered by the 1950 Assam earthquake, as Zhang (1992) suggested, This means the earthquake effect becomes negligible 40 years later, as the understability of the glacier/materials caused by the earthquake may have improved.. While the highest frequency of earthquakes occurred near the time of the 2020 event, they could be ignored due to their small magnitude (Mw≤5.2) and long

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

设置了格式:字体颜色:深红

设置了格式;字体颜色:深红

批注 [hL9]: Reviewer #2

One of the problems is that the authors do not present any higher resolution imagery between the 1950 event and 1969 (first image). The conclusions about the influence of the 1950 Assam earthquake on debris flow activity from the glacial area over 40 years are based on weak data (first manuscript version). The increasing influence with time of climatic triggers is not enough taken into consideration. Also the stats-graphs are not clear about that influence As such, defenders of the pure climatic influence on high-mountain hazards (see some recent papers about this analysis in the Andes) will continue to believe that those types of hazards are influenced by earthquakes only immediately after the event

Additionally, I think that without modelling this long-term effect of earthquakes on natural hazards (and see .. site located more than 100! km away from the Assam epicentral region!), especially on such high-mountain hazards, will not be proved especially if no highquality image material is available for the time before and after the earthquake (as in this case, with the main seismic event in 1950!). Even for the Wenchuan earthquake, the longterm influence on increased geohazard activity is considered to have finished after 10years (as indicated by the authors as well), even for sites very close to the activated fault.

Concluding: as the authors present a very detailed study, I would still recommend a major revision (and not rejection) - but the discussion should more highlight the extreme uncertainty affecting this 'exteme long-term' effect of a major earthquake in high-mountain areas (which are obviously the most strongly affected by climatic variations), especially as the zone is located so far from the epicentral area, and also of the fault (if I see well).

• Author's response:

Thank you very much for your insightful comments.

Unfortunately, we were unable to obtain high-resolution remote sensing imagery for the period between the 1950 event and 1969, which indeed would provide the most direct evidence. However, the 1950, 1968, and 1984 events are well-documented in the literature (Zhang and Shen, 2011; Zhang, 1985, 1992). The 1950 event occurred immediately following the Assam earthquake and is considered to be directly associated with the seismic activity. Notably, the earthquake triggered simultaneous debris flows in as many as 13 gullies in the Yarlung Tsangpo Grand Canyon area (Liu, 1984). During the 1950 event, the terminus of the ZLL trunk glacier advanced from 3650 m a.s.l to the Yarlung Tsangpo at 2810 m a.s.l, forming a glacial dam in the Yarlung Tsangpo River. During the 1968 event, the ZLL Glacier again formed a dam over 50 m high in the Yarlung Tsangpo River, while the 1972 event was similarly caused by the local collapse of the glacier terminu

设置了格式: 字体: 加粗

设置了格式: 字体: 加粗

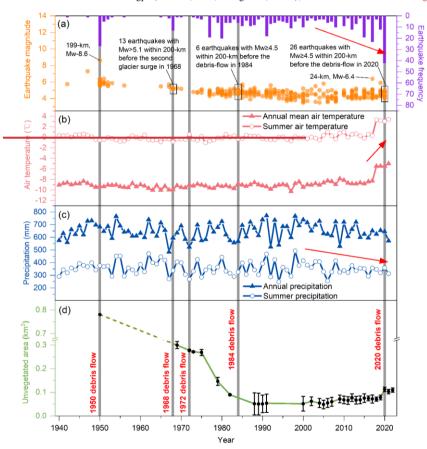
批注 [hL10]: L414: What do you mean by "the Keefer curve did not detect any of these seismic events"? A curve cannot detect anything.

Author's response:

Thank you for pointing out this unclear statement. The phrase "the Keefer curve did not detect any of these seismic events is indeed poorly worded and could be misleading. The statement "the Keefer curve did not detect any of these seismic events" is a metaphoric

设置了格式: 字体: 加粗

distance (>30km) (Fig 13). This is because even The the 2017 Mw 6.4 Milin earthquake, of which thewith an epicenter is 24 km from the ZelunglungZLL, had a very limited impact area (310 km², ~10 km impact radius) (Hu et al., 2019), probably has limited influence on its glacial activity because and there is were no report or sign on of such glacier-related hazards in the ZelunglungZLL. However, there are direct proofs that the Milin earthquake caused the 2018 glacier surges and extra large-scale debris flows in the Sedongpu (Hu et al., 2019; Zhang et al., 2022b), 25 km dowstream of the ZelunglungZLL.


465

466

467

468

469

设置了格式: 字体: 加粗

批注 [hL11]: Reviewer #2

One of the problems is that the authors do not present any higher resolution imagery between the 1950 event and 1969 (first image). The conclusions about the influence of the 1950 Assam earthquake on debris flow activity from the glacial area over 40 years are based on weak data (first manuscript version). The increasing influence with time of climatic triggers is not enough taken into consideration. Also the stats-graphs are not clear about that influence. As such, defenders of the pure climatic influence on high-mountain hazards (see some recent papers about this analysis in the Andes) will continue to believe that those types of hazards are influenced by earthquakes only immediately after the event.

Additionally, I think that without modelling this long-term effect of earthquakes on natural hazards (and see .. site located more than 100! km away from the Assam epicentral region!), especially on such high-mountain hazards, will not be proved especially if no high-quality image material is available for the time before and after the earthquake (as in this case, with the main seismic event in 1950!). Even for the Wenchuan earthquake, the longterm influence on increased geohazard activity is considered to have finished after 10years (as indicated by the authors as well), even for sites very close to the activated fault.

Concluding: as the authors present a very detailed study, I would still recommend a major revision (and not rejection) - but the discussion should more highlight the extreme uncertainty affecting this 'externe long-term' effect of a major earthquake in high-mountain areas (which are obviously the most strongly affected by climatic variations), especially as the zone is located so far from the epicentral area, and also of the fault (if I see well).

Author's response:

Thank you very much for your insightful comments.

Unfortunately, we were unable to obtain high-resolution remote sensing imagery for the period between the 1950 event and 1969, which indeed would provide the most direct evidence. However, the 1950, 1968, and 1984 events are well-documented in th literature (Zhang and Shen, 2011; Zhang, 1985, 1992). The 1950 event occurred immediately following the Assam earthquake and is considered to be directly associated with the seismic activity. Notably, the earthquake triggered simultaneous debris flows in as many as 13 gullies in the Yarlung Tsangpo Grand Canyon area (Liu, 1984). During the 1950 event, the terminus of the ZLL trunk glacier advanced from 3650 m a.s.l to the Yarlung Tsangpo at 2810 m a.s.l, forming a glacial dam in the Yarlung Tsangpo River. During the 1968 event, the ZLL Glacier again formed a dam over 50 m high in the Yarlung Tsangpo River, while the 1972 event was similarly caused by the local collapse of the glacier terminus (Fig. S7-b3 and c3). The images from 1979 also show significant glacier fragmentation and differential ablation (Fig. S7-e3). Compared to 1979, glacier ablation intensified in 1982, exposing lateral moraines (Fig. S7-e2 and S7-f3), and the lowest section of the glacier developed numerous crevasses (Fig. S7-f4 and S7-f5). These fractured ice bodies and moraine materials, under the impact of the 1984 ice avalanche at 3700 m observed by the First Qinghai-Tibet Scientific Expedition (Zhang, 1992), contributed to the formation of the 1984 large-scale debris flow. By 1989, three of the glacier segments had melted, detached from the main glacier, and were buried under thick moraine deposits. These events clearly indicate that the frequent ruptures, collapses, and differential melting of the ZLL Glacier were associated with disturbances caused by the 1950 earthquake. While rising temperatures likely contributed to the melting and instability of

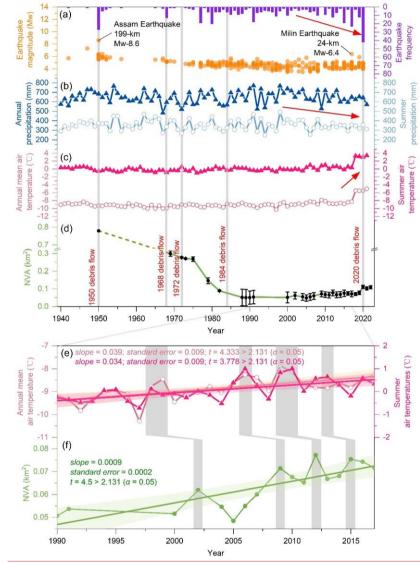
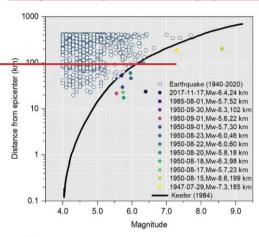



Figure 12: (a) Seismic events within a 200 km distance to the Zelunglung from 1940 to the present. (b) Changes in the annual mean and summer air temperatures in the Zelunglung from 1940 to the present. (c) Changes in the annual and summer precipitation in the Zelunglung from 1940 to the present. (d) Changes in the non-vegetated area of the Zelunglung alluvial fan from 1969 to the present (although the deposition of the 1950 event did not happen at the Zelunglung's outlet like the later events, we plot the NV4 of the 1950 event as the starting point). (e) Changes in the annual and summer precipitation in the Zelunglung from 1990 to 2017.

(f) Changes in the non-vegetated area of the Zelunglung alluvial fan from 1990 to 2017.

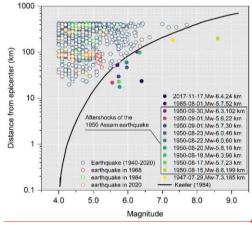


Figure 13: Distance from epicenters of the collected seismic events to the Zelunglung vs. the seismic magnitude (the black solid curve refers to Keefer (1984)).

批注 [hL12]: We included magnified charts depicting the temperature and NVA data spanning from 1990 to 2017.

设置了格式:字体:(中文)+中文正文(宋体)

设置了格式:字体:(中文)+中文正文(宋体)

批注 [hL13]: In the figure, we highlight the earthquakes preceding the 1968, 1984, and 2020 events.

Furthermore, we extracted the gridded mean values of annual mean air temperature, summer air temperature, annual precipitation, and summer precipitation within the Zelunglung-ZLL catchment during 1940 - 2021 from a dataset for China (1901-2021) (Peng, 2019) and 1-km monthly precipitation dataset for China (1901-2021) (Peng, 2020), respectively (Fig. 12b and c). These data were validated using 496 independent meteorological observation points (Peng et al., 2019). From 1940 to 2017, the annual mean and summer air temperatures at the Zelunglung ZLL kept relatively stable. However, in 2018, there was a sudden and significant increase in the annual mean and summer air temperatures, with an amplitude exceeding 2.5 °C. Since then, the temperatures have maintained at a high level. There has been no significant change in annual and summer precipitation since 1940, but a slight decreasing trend has been observed since 2000. The rates of atmospheric warming in the Tibetan and Himalayan regions are far higher than the general global warming rate since 1960, which accelerates the rates of most glaciers shrinking and ice mass loss across the regions (Shugar et al., 2021; Zhang et al., 2020). Undoubtedly, the ongoing warming increases the frequency of such glacier related slope failures Recent studies have shown that the on-going climate warming increases the frequency of such glacier-related slope failures. For instance, The the number of rockfalls per decade show a similar growing trend with mean annual air temperature in Chamonix, Mont Blanc massif, France since 1934 (Deline et al., 2015). The frequency of non-seismic rock avalanches in the glaciated Saint Elias Mountains of Alaska was associated with above-average temperatures and is expected to continue increasing with ongoing climate warming (Bessette-Kirton and Coe, 2020). Shugar et al. (2021) suggested that the 2021 Chamoli catastrophic ice-rock avalanche and subsequence mass flow resulted from a complex response of the geologic and topographic settings to regional climate change. Figure 12f highlights four distinct NVA peaks, which likely correspond to small mountain torrent or debris-flows, as suggested by Zhang and Shen (2011), These NVA peaks exhibit a lag of 2-4 years relative to annual mean or summer air temperature peaks (Figure 12e and 12f). Similarly, the sharp increase in NVA caused by the 2020 debris flow event occurred two years after the 2018 warming anomaly (Fig. 12b and 12d). This lag phenomenon has also been observed in other comparable regions (Stoffel et al., 2024). Even though there is no direct observation data of surface temperature in the Zelunglung-ZLL highland, the three years of intense warming may change the thermal and hydrological conditions of the Zelunglung's ZLL glaciers, such as the thermal regime at the rock-ice contact surface, melting rate of the surface ice and snow, englacial drainage system, fostering the instability of ice-rock blocks on the top. Previous intense seimic shaking could widen rock fractures and reduce the icerock strength. It is no doubt that the 2020 Zelunglung ZLL event is the product of the interplay among geological movement, steep topography, and climate warming. However, based on the fact that the lag relationship between the fluctuation peaks of NVAs and temperature fluctuations from 1990 to 2020 the trend of the 1990-2020 NVAs shows a good agreement with that of the air temperature in the same period, it is likely that the 2020 event was triggered driven by the recent local warming rather than by geological events such as the mass flow event in 1950. It is evident that either earthquakes or climate change may increase the occurrence of periglacial debris flows and their sediment

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

批注 [hL14]: 说一下前几次峰值小于 2018,说明更有可能引发 大规模泥石流

批注 [hL15]: L440: "show a similar growing trend". Similar to what?

Author's response.

There is an important increase in the frequency of rock falls and a strong correlation between the warmest periods and the occurrence of 58 rock falls in the Mont Blanc massif. As shown in Figure S6, the number of rockfalls per decade show a similar growing trend with mean annual air temperature in Chamonix, Mont Blanc massif France since 1934 (Deline et al., 2015).

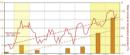


Figure S6: Meanannualair temperature in Chamonix (1,040 masl) since 1934 and number of rock falls per decade in the West face of the Drus and on the North side of the Aiguilles de Chamonix, Mont Blanc massif, France. Dashed lines: linear regressions.

设置了格式: 字体颜色: 深红

设置了格式:字体颜色:深红

批注 [hl16]: (iii) There are also suggestions in the manuscript in places that the climate change increases the frequency of debris flow events. (e.g. 1439: "Undoubtedly, the on-going warming increases the frequency of such glacier-related slope failures".). I am not convinced the data in this work speak to the presence or absence of such a link, and the link between climate change and glacier-related natural hazards can be complex. For example, the frequency of GLOFs does not necessarily just simply increase with climate warming (Veh et al., 2019; Veh et al., 2023)

Author's response

Thank you very much for your insightful comments. It is important to clarify that the statement in L439 is not derived directly from the data in this study. We agree that the wording in its current form is overly absolute. A more appropriate revision would be: "Recent studies have shown that the on-going climate warming increases the frequency of such glacier-related slope failures "Following this statement, we have cited case studies from similar regions globally to support the argument that the 2020 event in the ZLL basin was very likely driven by warming.

• Author's changes in manuscript:

To clarify, we revised the sentence as follows:

Recent studies have shown that the on-going climate warming increases the frequency of such glacier-related slope failures.

设置了格式:字体颜色:深红

设置了格式:字体颜色:深红

设置了格式: 字体颜色: 深红

设置了格式: 字体: 加粗

设置了格式;字体颜色:深红

批注 [hL17]: L448: "the trend of the 1990-2020 NVAs shows a good agreement with that of the air temperature in the same period".

•Author's response:

yield in southeastern Tibet (Du and Zhang, 1981; Deng et al., 2017; Wang et al., 2023). In the case of Zelunglung ZLL, the

NVA closely related to the debris flows decreased until 1990 and slightly fluctuated increased around a low level until 2020.

That means the effects of the 1950 earthquake were decaying; meanwhile, the local air temperature and precipitation had no significant variation until 2018. The response of hillslopes or glaciers to earthquakes is immediate. Had the 2017 Milin earthquake strongly impacted the glaciers in the ZelunglungZLL, ice-rock failures would have happened a few months later, like in the Sedongpu catchment. By contrast, the response of glaciers to warming will take longer. Meanwhile, approximately one month prior to the 2020 debris flow event, the maximum temperature recorded was 27°C, withaccompanied by a peak precipitation of only merely-17.5mm. Notably, on the day the 2020 debris flow occurred, the steel bridge deck remained was dry, indicating suggesting that the precipitation was very light (Peng et al., 2022). On the other hand, the magnitude of the warming-driven debris flows is smaller than that of the earthquake-driven. We believe the abrupt 2.5 °C warming in 2018-2020 is dominant in initiating the 2020 ice-rock avalanche.

6.2 The future risk

Zhang et al. (2022a) predicted that cryosphere degradation driving the increasing sediment yield in cold regions is likely to shift from a temperature-dependent regime toward a rainfall-dependent one in the next century. But in tectonically active high-altitude areas, the temperature-dependent and the earthquake-dependent regimes will alternate in the future.

The period of the Zelunglung-ZLL glacier surges is getting shorter. Zhang (1985) supposed that the surging cycle of the Zelunglung-ZLL glacier was about 20 years. According to the latest research by Guillet et al. (2022), the Zelunglung-ZLL glacier showed signs of surge in 2004, 2005, and 2006. Moreover, there are more obvious signs of a surge in 2016-2015 (Fig. 14). The interval between the last two surges is ten years, which shows that the surging cycle of the Zelunglung-ZLL glacier may be decreasing, and the next large-scale surge may happen in the next ten years. Furthermore, changes in the speed of glacier movement can strongly impact channel side moraines or terminal moraines and lead to slope failures (Richardson and Reynolds, 2000). The potential ice collapse area in the formation area of the Zelunglung-ZLL catchment is 2.4 km², the rock collapse area reaches 0.96 km², and the loose moraine accumulation reaches 5.2 km² (Li et al., 2021; Liu et al., 2022). However, the "9.10"2020 debris flow was caused by a relatively small area of ice-rock collapses in the formation area, which is only the tip of the iceberg compared to the overall high-risk provenances in the formation area of the Zelunglung-ZLL catchment. That means if intense earthquakes or extreme warming events happen not far away from the catchment, the risk of slope failures or glacier detachment on the steep slopes and ridges is high and huge amounts of sediment will bey transported into the river by large-scale debris flows.

批注 [hL18]: L459: Unclear which of the debris flows "the debris flow" corresponds to (presumably the 2020 one, but it's unclear from this paragraph).

•Author's response:

Thank you for your suggestion. Yes, the term "the debris flow" in this paragraph refers to the debris flow that occurred in 2020. We have revised the text to replace "the debris flow" with "the 2020 debris flow" for clarity.

Author's changes in manuscript:

We have revised the text to replace "the debris flow" with "the 2020 debris flow".

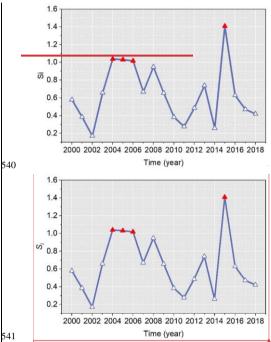


Figure 14: Surge-index (S_i) of Zelunglung Glacier from 2000 to 2018. S_i is a quantitative index of the surge magnitude, calculated by the formula $S_i = \frac{IPR_i}{k \cdot V_0}$, where IPR_i is the inter-percentile range for year i, k is a threshold for surge identification, and V_0 is the error-weighted mean velocity for the study year. The years with $S_i > 1$ are marked with red triangles. (Data source: https://doi.org/10.5281/zenodo.5524861 (Guillet et al., 2022)).

6.3 Effects on river geomorphology

The moraine and old deposits on both channel sides provided numerous boulders for debris flows. The number of coarse particles transported by the Zelunglung ZLL periglacial debris flows is very high, and there is no obvious particle sorting along the flow path. Most of the boulders are gneiss with high hardness, and the wearing and disintegration effects are not significant during the movement along the channel. Coarse particles are deposited on the platform at the bend and the top of the alluvial fan, where the channel suddenly widens. Such phenomenon demonstrates that the movement, deposition, and particle size distribution of the debris flow are not only related to the type of debris flow (Bardou et al., 2003) but also to topographic conditions (Ghilardi et al., 2001; Zhou et al., 2019).

批注 [hL19]: Fixed the vertical axis title by changing Si to S_i

设置了格式:字体:(中文)+中文正文(宋体)

The deposition of the "9.10" 2020 debris flow narrowed the Yarlung Tsangpo River at the mouth-outlet of the Zelunglung ZLL, and the river bed was significantly elevated. The river flow hardly transports the boulders on the alluvial fan. The peak discharge of the largest flood in the Yarlung Tsangpo recorded by the hydrologic station at Nuxia, 40 km upstream of the Zelunglung ZLL, is 16800 m³/s. The maximum size of the particles in such a flood is about 150 cm. The floods capable of moving the coarsest boulders (> 600 cm) deposited on the Zelunglung ZLL fan should be on the order of 106 m³/s of peak discharge (Lang et al., 2013). Such high-magnitude floods in the Yarlung Tsangpo were caused by catastrophic breaching of landslide or glacial dams, e.g., several Quaternary megafloods in the middle and downstream of Yarlung Tsangpo (Hu et al., 2018; Liu et al., 2015; Yang et al., 2022), rather than caused by monsoonal runoffs. Modern outburst floods higher than 105 m³/s only happened on the Yigong River, a downstream tributary of the Yarlung Tsangpo Gorge (Hu et al., 2021). Therefore, the time to evacuate the coarse sediments on the alluvial fan is two orders of magnitude of the recurrence period of periglacial debris flows. The long-lived protruding fan forms a knickpoint at the confluence. The repeated glacial and landslide dams in the margin of the Tibetan Plateau play significant roles in reducing the river incision into the plateau interior together with the moraine dams in the glaciation ages (Hu et al., 2021).

7 Conclusions

- High-magnitude sediment evacuation by periglacial debris flows is a crucial surface process that links sediment yield from high-altitude slopes to river sediment transportation. The ongoing glacier degradation in the Himalayan mountains in response to recent earthquakes and climate change increases the frequency of the debris flows and their sediment volume. The Zelunglung ZLL catchment in the tectonically active eastern Himalayan syntaxis with a high uplift rate has recorded five periglacial debris flow events since 1950. These events delivered huge volumes of sediment into the Yarlung Tsangpo River. We examine the history of the five events and their sediment characteristics, especially the ice-rock-avalanche-triggered event in 2020, through field investigations and remote sensing interpretations. Some findings are concluded as follows:
- a) The periglacial debris flows have great capacities to erode channels, transport sediment, and impact obstacles. The maximum values of the erosion depth, the erosion width, and the impact force near the Zelunglung's-ZLL outlet are about 20 m, 14 m, and 3.64×10⁶ kN, respectively, in the 2020 event. The debris flows transported a high concentration of coarse grains with the size > 50 cm. The 100-300 cm grains account for 77.4% of the coarse grains.
- b) Most of the angular rocks moved by the 2020 avalanche were not delivered downward further. The boulders transported by subsequent debris flows probably originated from the middle of the downstream reaches. The grain size segregation was not observed between the middle reach and the alluvial channel.
- c) The non-vegetated areaNVA of the Zelunglung's-ZLL fan reduced from 0.78 km² in 1950 to 0.067 km² in 1990, and kept at a stable low value until 2020, indicating the influence of the 1950 earthquake on the debris-flow sediment transportation could last 40 years. Compared with the 1999 Chi-chi earthquake and the 2008 Wenchuan earthquake in non-glaciated areas, the influence period of the 1950 earthquake is much longer.

d) The seismic and local meteorological data show that the recent warming events drove the 2020 debris-flow event during 2018-2020. The surging cycle of Zelunglung's-ZLL glaciers is getting short due to climate change. The correspondence between the recent increases in the local air temperature and the NVA implies that the debris flow occurrences in ZLL transfer from the tectonic-driven to the climatic-driven, with debris flows exhibiting a lagged response of 2-4 years to rising temperatures.

591 592 593

594

595

596

586

587

588

589

590

Acknowledgments. This research was funded by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0902) and the National Natural Science Foundation of China (91747207, 41790434). MRG acknowledges the 'ANSO Scholarship for Young Talents' for his postgraduate study.

597 Data availability. All raw data can be provided by the corresponding authors upon request.

598 599

600

601

604

605

Author contributions. KHH conceptualized the study, interpreted the images, wrote and edited the manuscript. HL analyzed the data and wrote the manuscript draft. KHH, HL, SL, LW, XPZ, and BZ performed the field surveys. HL and MRG collected satellite and background data. LMZ provided constructive suggestions. All authors contributed to the preparation and editing of the paper.

602 603

Competing interests. The authors declare that they have no conflict of interests.

References

- Bajracharya, S. R. and Mool, P.: Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal,
- 607 ANN GLACIOL, 50, 81–86, https://doi.org/10.3189/172756410790595895, 2009.
- 608 Bardou, E., Ancey, C., Bonnard, C., and Vulliet, L.: Classification of debris-flow deposits for hazard assessment in alpine
- 609 areas, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, The Third International Conference on
- 610 Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Davos, Switzerland, 10-12 September 2003, 799—
- 611 808. ISBN 90-77017-78-X. 2003.
- 612 Bessette-Kirton, E. K. and Coe, J. A.: A 36-Year Record of Rock Avalanches in the Saint Elias Mountains of Alaska, With
- 613 Implications for Future Hazards, FRONT EARTH SC-SWITZ, 8, https://doi.org/10.3389/feart.2020.00293, 2020.
- 614 Chen, D., Xu, B., Yao, T., Guo, Z., Cui, P., Chen, F., Zhang, R., Zhang, X., Zhang, Y., Fan, J., Hou, Z., and Zhang, T.:
- Assessment of past, present and future environmental changes on the Tibetan Plateau, Chinese Science Bulletin, 60, 3025-
- 616 3035, https://doi.org/10.1360/n972014-01370, 2015.

- 617 Chen N., Yang C., Li Z., and He J.: Research on the Relationship between the Calculation of Debris flow Velocity and Its
- 618 Super Elevation in Bend, Advanced Engineering Sciences, 41, 165–171, https://doi.org/1009-3087(2009)03-0165-07, 2009.
- 619 Costa, J. E.: Paleohydraulic reconstruction of flash-flood peaks from boulder deposits in the Colorado Front Range, GEOL
- 620 SOC AM BULL, 94, 986, https://doi.org/10.1130/0016-7606(1983)94<986:PROFPF>2.0.CO;2, 1983.
- 621 Cui, P., Zhou, G. G. D., Zhu, X. H., and Zhang, J. Q.: Scale amplification of natural debris flows caused by cascading landslide
- 622 dam failures, GEOMORPHOLOGY, 182, 173–189, https://doi.org/10.1016/j.geomorph.2012.11.009, 2013.
- 623 Cui, Y., Hu, J., Xu, C., Miao, H., and Zheng, J.: Landslides triggered by the 1970 Ms 7.7 Tonghai earthquake in Yunnan,
- 624 China: an inventory, distribution characteristics, and tectonic significance, J MT SCI-ENGL, 19, 1633-1649,
- 625 https://doi.org/10.1007/s11629-022-7321-x, 2022.
- Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J.-C., Hsu, M.-L., Lin, C.-W., Horng, M.-J., Chen, T.-C., Milliman, J.,
- and Stark, C. P.: Earthquake-triggered increase in sediment delivery from an active mountain belt, GEOLOGY, 32, 733,
- 628 https://doi.org/10.1130/G20639.1, 2004.
- 629 Dai, L., Scaringi, G., Fan, X., Yunus, A. P., Liu-Zeng, J., Xu, Q., and Huang, R.: Coseismic Debris Remains in the Orogen
- 630 Despite a Decade of Enhanced Landsliding, GEOPHYS RES LETT, 48, https://doi.org/10.1029/2021GL095850, 2021.
- 631 Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino, M., Hasler, A., Kirkbride, M., Krautblatter, M.,
- Magnin, F., McColl, S., Ravanel, L., and Schoeneich, P.: Ice Loss and Slope Stability in High-Mountain Regions, in: Snow
- and Ice-Related Hazards, Risks, and Disasters, edited by: Shroder, J. F., Haeberli, W., and Whiteman, C., Academic Press,
- 634 Boston, USA, 521–561, https://doi.org/10.1016/B978-0-12-394849-6.01001-5, 2015.
- Deng, M., Chen, N., and Liu, M.: Meteorological factors driving glacial till variation and the associated periglacial debris flows
- in Tianmo Valley, south-eastern Tibetan Plateau, Nat. Hazards Earth Syst. Sci., 17, 345-356, https://doi.org/10.5194/nhess-
- 637 17-345-2017, 2017.
- Ding, L., Zhong, D., Yin, A., Kapp, P., and Harrison, T. M.: Cenozoic structural and metamorphic evolution of the eastern
- 639 Himalayan syntaxis (Namche Barwa), EARTH PLANET SC LETT, 192, 423-438, https://doi.org/10.1016/S0012-
- 640 821X(01)00463-0, 2001.
- 641 Du R. and Zhang S.: CHARACTERISTICS OF GLACIAL MUD-FLOWS IN SOUTH-EASTERN QINGHAI-XIZANG
- 642 PLATEAU, Journal of Glaciology and Geocryology, 10–16, 81–82, 1981.
- 643 Evans, S. G. and Clague, J. J.: Recent climatic change and catastrophic geomorphic processes in mountain environments, in:
- 644 Geomorphology and Natural Hazards, edited by: Morisawa, M., Elsevier, Amsterdam, The Netherlands, 107-128,
- 645 https://doi.org/10.1016/B978-0-444-82012-9.50012-8, 1994.
- 646 Ghilardi, P., Natale, L., and Savi, F.: Modeling debris flow propagation and deposition, Physics and Chemistry of the Earth,
- 647 Part C: Solar, Terrestrial & Planetary Science, 26, 651–656, https://doi.org/10.1016/S1464-1917(01)00063-0, 2001.

- 648 Guillet, G., King, O., Lv, M., Ghuffar, S., Benn, D., Quincey, D., and Bolch, T.: A regionally resolved inventory of High
- Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach, The Cryosphere, 16, 603-623,
- 650 https://doi.org/10.5194/tc-16-603-2022, 2022.
- 651 Haeberli, W. and Whiteman, C. A. (Eds.): Snow and ice-related hazards, risks, and disasters, Elsevier, Amsterdam, The
- 652 Netherlands, 755pp., https://doi.org/10.1016/C2018-0-00970-6, 2021.
- 653 Han L. and Feng Q.: Analysis of Development Characteristics and Genetic Mechanisms of Glacier Debris Flows in the
- 654 Zelongnong, MT. Namjagbarwa, Inner Mongolia Science Technology & Economy, 58-5
- 655 https://doi.org/CNKI:SUN:NMKJ.0.2018-04-029, 2018.
- 656 Hu, G., Yi, C.-L., Liu, J.-H., Wang, P., Zhang, J.-F., Li, S.-H., Li, D., Huang, J., Wang, H., Zhang, A., Shi, L., and Shui, X.:
- 657 Glacial advances and stability of the moraine dam on Mount Namcha Barwa since the Last Glacial Maximum, eastern
- 658 Himalayan syntaxis, Geomorphology, 365, 107246, https://doi.org/10.1016/j.geomorph.2020.107246, 2020.
- 659 Hu, H.-P., Feng, J.-L., and Chen, F.: Sedimentary records of a palaeo-lake in the middle Yarlung Tsangpo: Implications for
- 660 terrace genesis and outburst flooding, QUATERNARY SCI REV, 192, 135-148,
- 661 https://doi.org/10.1016/j.quascirev.2018.05.037, 2018.
- 662 Hu, K., Zhang, X., You, Y., Hu, X., Liu, W., and Li, Y.: Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin
- 663 earthquake in the Tsangpo gorge, Landslides, 16, 993–1001, https://doi.org/10.1007/s10346-019-01168-w, 2019.
- 664 Hu, K., Wu, C., Wei, L., Zhang, X., Zhang, Q., Liu, W., and Yanites, B. J.: Geomorphic effects of recurrent outburst
- superfloods in the Yigong River on the southeastern margin of Tibet, SCI REP-UK, 11, 15577, https://doi.org/10.1038/s41598-
- 666 021-95194-1, 2021.
- Huang, S., Chen, Y., Burr, G. S., Jaiswal, M. K., Lin, Y. N., Yin, G., Liu, J., Zhao, S., and Cao, Z.: Late Pleistocene sedimentary
- 668 history of multiple glacially dammed lake episodes along the Yarlung-Tsangpo river, southeast Tibet, QUATERNARY RES,
- 82, 430–440, https://doi.org/10.1016/j.yqres.2014.06.001, 2014.
- 670 Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S.: An assessment procedure for glacial hazards in the Swiss
- 671 Alps, CAN GEOTECH J, 41, 1068–1083, https://doi.org/10.1139/t04-053, 2004.
- 672 Iribarren Anacona, P., Mackintosh, A., and Norton, K. P.: Hazardous processes and events from glacier and permafrost areas:
- lessons from the Chilean and Argentinean Andes, EARTH SURF PROC LAND, 40, 2–21, https://doi.org/10.1002/esp.3524,
- 674 2015
- 675 Jia, H., Chen, F., and Pan, D.: Disaster Chain Analysis of Avalanche and Landslide and the River Blocking Dam of the Yarlung
- Zangbo River in Milin County of Tibet on 17 and 29 October 2018, IJERPH, 16, 4707, https://doi.org/10.3390/ijerph16234707,
- 677 2019
- 678 Kääb, A. and Girod, L.: Brief communication: Rapid ~ 335 × 10⁶ m³ bed erosion after detachment of the Sedongpu Glacier
- 679 (Tibet), CRYOSPHERE, 17, 2533–2541, https://doi.org/10.5194/tc-17-2533-2023, 2023.

- 680 Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets,
- 681 S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain
- 682 glaciers more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021.
- 683 Kargel, J. S., Leonard, G. J., Shugar, D. H., Haritashya, U. K., Bevington, A., Fielding, E. J., Fujita, K., Geertsema, M., Miles,
- E. S., Steiner, J., Anderson, E., Bajracharya, S., Bawden, G. W., Breashears, D. F., Byers, A., Collins, B., Dhital, M. R.,
- Donnellan, A., Evans, T. L., Geai, M. L., Glasscoe, M. T., Green, D., Gurung, D. R., Heijenk, R., Hilborn, A., Hudnut, K.,
- Huyck, C., Immerzeel, W. W., Liming, J., Jibson, R., Kääb, A., Khanal, N. R., Kirschbaum, D., Kraaijenbrink, P. D. A.,
- Lamsal, D., Shiyin, L., Mingyang, L., McKinney, D., Nahirnick, N. K., Zhuotong, N., Ojha, S., Olsenholler, J., Painter, T. H.,
- Pleasants, M., Pratima, K. C., Yuan, Q. I., Raup, B. H., Regmi, D., Rounce, D. R., Sakai, A., Donghui, S., Shea, J. M., Shrestha,
- 689 A. B., Shukla, A., Stumm, D., van der Kooij, M., Voss, K., Xin, W., Weihs, B., Wolfe, D., Lizong, W., Xiaojun, Y., Yoder,
- 690 M. R., and Young, N.: Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake,
- 691 SCIENCE, 351, aac8353, https://doi.org/10.1126/science.aac8353, 2016.
- 692 Keefer, D. K.: Landslides caused by earthquakes, Geol Soc America Bull, 95, 406, https://doi.org/10.1130/0016-
- 693 7606(1984)95<406:LCBE>2.0.CO;2, 1984.
- 694 Kilburn, C. R. J. and Voight, B.: Slow rock fracture as eruption precursor at Soufriere Hills Volcano, Montserrat, GEOPHYS
- 695 RES LETT, 25, 3665–3668, https://doi.org/10.1029/98GL01609, 1998.
- 696 Krautblatter, M., Funk, D., and Günzel, F. K.: Why permafrost rocks become unstable: a rock-ice-mechanical model in time
- 697 and space, EARTH SURF PROC LAND, 38, 876–887, https://doi.org/10.1002/esp.3374, 2013.
- 698 Lang, K. A., Huntington, K. W., and Montgomery, D. R.: Erosion of the Tsangpo Gorge by megafloods, Eastern Himalaya,
- 699 GEOLOGY, 41, 1003-1006, https://doi.org/10.1130/G34693.1, 2013.
- 700 Larsen, I. J., Montgomery, D. R., and Korup, O.: Landslide erosion controlled by hillslope material, NAT GEOSCI, 3, 247-
- 701 251, https://doi.org/10.1038/ngeo776, 2010.
- 702 Li, H., Hu, K., Zhang, X., Liu, S., and Wei, L.: Causes and Damage of the 2020 Periglacial Debris Flows at Zelunglung
- 703 Catchment in the Eastern Syntaxis of Himalaya, in: Engineering Geology for a Habitable Earth: IAEG XIV Congress 2023
- 704 Proceedings, IAEG 2023, Chengdu, China, 21–27 September 2023, 161–171, https://doi.org/10.1007/978-981-99-9061-0_12,
- 705 2024.
- 706 Li, J., Chu, H., Li, B., Gao, Y., Wang, M., Zhao, C., and Liu, X.: Analysis of development characteristics of high-
- 707 elevationchain geological hazard in Zelongnong, Nyingchi, Tibet based on high resolution image and InSAR interpretation,
- The Chinese Journal of Geological Hazard and Control, 32, 42-50, https://doi.org/10.16031/j.cnki.issn.1003-8035.2021.03-
- 709 06, 2021
- 710 Li, W., Zhao, B., Xu, Q., Scaringi, G., Lu, H., and Huang, R.: More frequent glacier-rock avalanches in Sedongpu gully are
- blocking the Yarlung Zangbo River in eastern Tibet, LANDSLIDES, 19, 589-601, https://doi.org/10.1007/s10346-021-01798-
- 712 z, 2022.

- 713 Li Y., Yan C., Hu K., and Wei L.: VARIATION OF HAZARD AREAS OF TYPICAL RAINSTORM DEBRIS FLOW
- 714 ALLUVIAL FANS, Resources and Environment in the Yangtze Basin, 26, 789-796,
- 715 https://doi.org/10.11870/cjlyzyyhj201705017, 2017.
- 716 Liu, M., Zhang, Y., Tian, S., Chen, N., Mahfuzr, R., and Javed, I.: Effects of loose deposits on debris flow processes in the
- 717 Aizi Valley, southwest China, J MT SCI-ENGL, 17, 156–172, https://doi.org/10.1007/s11629-019-5388-9, 2020.
- 718 Liu, W., Lai, Z., Hu, K., Ge, Y., Cui, P., Zhang, X., and Liu, F.: Age and extent of a giant glacial-dammed lake at Yarlung
- Tsangpo gorge in the Tibetan Plateau, GEOMORPHOLOGY, 246, 370–376, https://doi.org/10.1016/j.geomorph.2015.06.034,
- 720 2015.
- 721 Liu, W., Wang, M., Song, B., Yu, T., Huang, X., Jiang, Y., and Sun, Y.: Surveys and chain structure study of potential hazards
- 722 of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet, Remote Sensing for Natural
- 723 Resources, 34, 265–276, https://doi.org/10. 6046/zrzyyg.2021076, 2022.
- 724 Liu, Y., Montgomery, D. R., Hallet, B., Tang, W., Zhang, J., and Zhang, X.: QUATERNARY GLACIER BLOCKING
- 725 EVENTSAT THE ENTRANCE OF YARLUNG ZANGBO GREAT CANYON, SOUTHEAST TIBET, Quaternary Sciences,
- 726 52–62, https://doi.org/10.3321/j.issn:1001-7410.2006.01.007, 2006.
- 727 Major, J. J.: Pebble orientation on large, experimental debris-flow deposits, SEDIMENT GEOL, 117, 151-164,
- 728 https://doi.org/10.1016/S0037-0738(98)00014-1, 1998.
- 729 Martha, T. R., Roy, P., Mazumdar, R., Govindharaj, K. B., and Kumar, K. V.: Spatial characteristics of landslides triggered
- 730 by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal, LANDSLIDES, 14, 697-704,
- 731 https://doi.org/10.1007/s10346-016-0763-x, 2017.
- 732 McCoy, S. W., Tucker, G. E., Kean, J. W., and Coe, J. A.: Field measurement of basal forces generated by erosive debris flows,
- 733 J GEOPHYS RES-EARTH, 118, 589–602, https://doi.org/10.1002/jgrf.20041, 2013.
- Montgomery, D. R., Hallet, B., Yuping, L., Finnegan, N., Anders, A., Gillespie, A., and Greenberg, H. M.: Evidence for
- Holocene megafloods down the tsangpo River gorge, Southeastern Tibet, QUATERNARY RES, 62, 201-207,
- 736 https://doi.org/10.1016/j.yqres.2004.06.008, 2004.
- Parker, R. N., Densmore, A. L., Rosser, N. J., de Michele, M., Li, Y., Huang, R., Whadcoat, S., and Petley, D. N.: Mass wasting
- 738 triggered by the 2008 Wenchuan earthquake is greater than orogenic growth, Nature Geosci, 4, 449-452,
- 739 https://doi.org/10.1038/ngeo1154, 2011.
- 740 Peng, D., Zhang, L., Jiang, R., Zhang, S., Shen, P., Lu, W., and He, X.: Initiation mechanisms and dynamics of a debris flow
- 741 originated from debris-ice mixture slope failure in southeast Tibet, China, Engineering Geology, 307, 106783,
- 742 https://doi.org/10.1016/j.enggeo.2022.106783, 2022.
- 743 Peng, S.: 1-km monthly mean temperature dataset for china (1901-2023), National Tibetan Plateau Data Center [data set],
- 744 https://doi.org/10.11888/Meteoro.tpdc.270961, 2019.

- 745 Peng, S.: 1-km monthly precipitation dataset for China (1901-2023), National Tibetan Plateau / Third Pole Environment Data
- 746 Center [data set], https://doi.org/10.5281/zenodo.3114194, 2020.
- Peng, S., Ding, Y., Liu, W., and Li, Z.: 1 km monthly temperature and precipitation dataset for China from 1901 to 2017,
- 748 EARTH SYST SCI DATA, 11, 1931–1946, https://doi.org/10.5194/essd-11-1931-2019, 2019.
- 749 Petrakov, D. A., Krylenko, I. V., Chernomorets, S. S., Tutubalina, O. V., Krylenko, I. N., and Shakhmina, M. S.: Debris flow
- 750 hazard of glacial lakes in the Central Caucasus, in: Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment,
- 751 The Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Chengdu,
- 752 China, 10-13 September 2007, 703–714, ISBN 9789059660595, 2007.
- 753 Richardson, S. D. and Reynolds, J. M.: An overview of glacial hazards in the Himalayas, Quaternary International, 65-66, 31-
- 754 47, https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
- 755 Shen, Y., Su, H., Wang, G., Mao, W., Wang, S., Han, P., Wang, N., and Li, Z.: The Responses of Glaciers and Snow Cover to
- 756 Climate Change in Xinjiang (II): Hazards Effects, Journal of Glaciology and Geocryology, 35, 1355–1370, 2013.
- 757 Shugar, D. H., Jacquemart, M., Shean, D., Bhushan, S., Upadhyay, K., Sattar, A., Schwanghart, W., McBride, S., de Vries, M.
- 758 V. W., Mergili, M., Emmer, A., Deschamps-Berger, C., McDonnell, M., Bhambri, R., Allen, S., Berthier, E., Carrivick, J. L.,
- 759 Clague, J. J., Dokukin, M., Dunning, S. A., Frey, H., Gascoin, S., Haritashya, U. K., Huggel, C., Kääb, A., Kargel, J. S.,
- 760 Kavanaugh, J. L., Lacroix, P., Petley, D., Rupper, S., Azam, M. F., Cook, S. J., Dimri, A. P., Eriksson, M., Farinotti, D., Fiddes,
- 761 J., Gnyawali, K. R., Harrison, S., Jha, M., Koppes, M., Kumar, A., Leinss, S., Majeed, U., Mal, S., Muhuri, A., Noetzli, J.,
- 762 Paul, F., Rashid, I., Sain, K., Steiner, J., Ugalde, F., Watson, C. S., and Westoby, M. J.: A massive rock and ice avalanche
 - caused the 2021 disaster at Chamoli, Indian Himalaya, Science, 373, 300–306, https://doi.org/10.1126/science.abh4455, 2021.
- 764 Sohn, Y. K.: Coarse-grained debris-flow deposits in the Miocene fan deltas, SE Korea: a scaling analysis, SEDIMENT GEOL,
- 765 130, 45–64, https://doi.org/10.1016/S0037-0738(99)00099-8, 2000.
- 766 Stoffel, M., Trappmann, D. G., Coullie, M. I., Ballesteros Cánovas, J. A., and Corona, C.: Rockfall from an increasingly
- 767 unstable mountain slope driven by climate warming, NAT GEOSCI, 17, 249–254, https://doi.org/10.1038/s41561-024-01390-
- 768 9, 2024.

- 769 Tian, L., Yao, T., Gao, Y., Thompson, L., Mosley-Thompson, E., Muhammad, S., Zong, J., Wang, C., Jin, S., and Li, Z.: Two
- 770 glaciers collapse in western Tibet, J GLACIOL, 63, 194–197, https://doi.org/10.1017/jog.2016.122, 2017.
- Wang, J., Jin, Z., Hilton, R. G., Zhang, F., Densmore, A. L., Li, G., and West, A. J.: Controls on fluvial evacuation of sediment
- 772 from earthquake-triggered landslides, Geology, 43, 115–118, https://doi.org/10.1130/G36157.1, 2015.
- 773 Wang, P., Wang, H., Hu, G., Qin, J., and Li, C.: A preliminary study on the development of dammed paleolakes in the Yarlung
- Tsangpo River basin, southeastern Tibet, Earth Science Frontiers, 28, 35–45, https://doi.org/10.13745/j.esf.sf.2020.9.18, 2021.
- 775 Wang, Z., Hu, K., and Liu, S.: Classification and sediment estimation for debris flow-prone catchments in the Parlung Zangbo
- 776 Basin on the southeastern Tibet, Geomorphology, 413, 108348, https://doi.org/10.1016/j.geomorph.2022.108348, 2022.

- 777 Wang, Z., Ma, C., Hu, K., Liu, S., and Lyu, L.: Investigation of initiation conditions of periglacial debris flows in Sanggu
- 778 watershed, Eastern Himalayas, Tibet Plateau (China), LANDSLIDES, 20, 813-827, https://doi.org/10.1007/s10346-022-
- 779 02003-5, 2023.
- 780 Ward, F. K.: Explorations in South-Eastern Tibet, GEOGR J, 67, 97, https://doi.org/10.2307/1783136, 1926.
- 781 Yan, Y., Tang, H., Hu, K., Turowski, J. M., and Wei, F.: Deriving Debris-Flow Dynamics From Real-Time Impact-Force
- 782 Measurements, J GEOPHYS RES-EARTH, 128, e2022JF006715, https://doi.org/10.1029/2022JF006715, 2023.
- 783 Yang, A., Wang, H., Liu, W., Hu, K., Liu, D., Wu, C., and Hu, X.: Two megafloods in the middle reach of Yarlung Tsangpo
- 784 River since Last-glacial period: Evidence from giant bars, GLOBAL PLANET CHANGE, 208, 103726,
- 785 https://doi.org/10.1016/j.gloplacha.2021.103726, 2022.
- 786 Yu, G.-A., Yao, W., Huang, H. Q., and Liu, Z.: Debris flows originating in the mountain cryosphere under a changing climate:
- A review, Progress in Physical Geography: Earth and Environment, 45, 339–374, https://doi.org/10.1177/0309133320961705,
- 788 2021.
- 789 Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., Bolch, T., Yi, S., Allen, S., Jiang, L., Chen, W., and Ke, C.:
- 790 Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms, EARTH-SCI REV, 208, 103269,
- 791 https://doi.org/10.1016/j.earscirev.2020.103269, 2020.
- 792 Zhang, J. and Shen, X.: Debris-flow of Zelongnong Ravine in Tibet, J. Mt. Sci., 8, 535–543, https://doi.org/10.1007/s11629-
- 793 011-2137-0, 2011.
- 794 Zhang, T., Li, D., East, A. E., Walling, D. E., Lane, S., Overeem, I., Beylich, A. A., Koppes, M., and Lu, X.: Warming-driven
- erosion and sediment transport in cold regions, NAT REV EARTH ENV, 3, 832–851, https://doi.org/10.1038/s43017-022-
- 796 00362-0, 2022a

- 797 Zhang W.: Some features of the surge glagier in the MT. Namjagbarwa, Mountain Research, 234-238, 1985.
- 798 Zhang, W.: Identification of glaciers with surge characteristics on the Tibetan Plateau, Ann. Glaciol., 16, 168-172,
- 799 https://doi.org/10.3189/1992AoG16-1-168-172, 1992.
- 800 Zhang, X., Hu, K., Liu, S., Nie, Y., and Han, Y.: Comprehensive interpretation of the Sedongpu glacier-related mass flows in
- 801 the eastern Himalayan syntaxis, J. Mt. Sci., 19, 2469–2486, https://doi.org/10.1007/s11629-022-7376-8, 2022b.
- 802 Zhou, G. G. D., Li, S., Song, D., Choi, C. E., and Chen, X.: Depositional mechanisms and morphology of debris flow: physical
- 803 modelling, LANDSLIDES, 16, 315–332, https://doi.org/10.1007/s10346-018-1095-9, 2019.
- 804 Zhu, S., Wu, W., Zhao, X., Li, J., and Wang, H.: Middle-Late Pleistocene Glacial Lakes in the Grand Canyon of the Tsangpo
- 805 River, Tibet, Acta Geologica Sinica (Eng), 86, 266–283, https://doi.org/10.1111/j.1755-6724.2012.00627.x, 2012.