
Response to Comments from Reviewer 1 

Principal criteria  

Scientific significance is excellent  

Scientific Quality is excellent  

Presentation quality Good 

The authors realize that Global observations of chlorophyll fluorescence (SIF) as first observed in 

ground reflected solar spectra measured by the Japanese GOSAT satellite can serve as a proxy for 

monitoring vegetation for photosynthetic activity as well as monitoring an significant part of the 

terrestrial carbon cycle.  

The paper deals with modeling the measurement parameters in support of the development of a new 

satellite, TanSat-2, that permits to more accurately map chlorophyll fluorescence and thereby obtain 

a more accurate inventory of terrestrial vegetation and its effect on the Carbon cycle.  

The paper is well organized. 

Part 1 provides an introduction and background to the current status of realization in the subject 

field. 

Part 2 Materials; provides the background to the work presented including the parameters of the 

planned TanSat-2 mission, simulation experiments and data, and an end to end orbit simulation 

dataset. 

Part 4 Results; explains clearly that the analysis method is based on empirical data. It includes an 

independent validation with data not used in the modeling. 

Part 5. Discussion. 

Thanks a lot for your encouraging words and helpful comments. We have carefully 

revised the manuscript according to your comments and suggestions, especially on the 

discussion of the limitations of our simulation framework and the shortcomings of the 

elliptical orbit for TanSat-2. The responses are in blue font, and the relevant revised parts 

of the manuscript are attached in purple font. 

Comments 1. The issue of cloud interference is of considerable importance. Especially 

over a wide swath as is planned for TanSat-2. The fraction of clear sky measurements 

gets to be quite small. Adding a cloud imaging camera could be beneficial to permit 

processing of identified cloud-free segments of each swath. The statement of not having 

incorporated rotational Raman scattering is probably not required since this occurs 

mainly at shorter wavelengths and is quite likely negligible in both regions of SIF. 

However, having made a statement about rotational Raman scattering, it is 

recommended that the authors make a cursory evaluation of its significance.  

Thank you for your valuable comments. The issue of cloud interference is indeed of 

significant importance. Cloud presence can substantially affect radiative transfer 



processes and, consequently, SIF retrievals. The CAPHI instrument onboard TanSat-2 will 

provide AOD and cloud coverage information, which will enhance our understanding of 

atmospheric conditions and support future SIF retrievals with TanSat-2.  

Regarding radiative transfer modeling limitations, our simulations explicitly exclude 

rotational Raman scattering (RRS) due to the coupled complexities arising from its 

interdependencies with Mie scattering and nonlinear interactions with other atmospheric 

parameters. This omission arises from algorithmic constraints in the MODTRAN-based 

radiative transfer framework, which struggles to resolve such multi-scale scattering 

synergies. The RRS effects will be relatively small in the spectral range of red and far-red 

bans (Vasilkov et al., 2013). In data-driven SIF retrieval frameworks, its influence can be 

modeled. Consequently, it is incorporated into the basis vectors (Joiner et al., 2016). This 

inherent limitation of our simulation framework was analyzed in the Section 5.1.  

In Section 5.1: 

It should be noted that our simulations did not account for radiative effects 

induced by RRS. The RRS intensity typically decreases with increasing wavelength 

(Vasilkov et al., 2013), and its spectral interference is statistically negligible within 

the red to far-red spectral bands. Moreover, the data-driven SIF retrieval 

framework inherently addresses potential RRS contamination through basis 

vector parameterization (Joiner et al., 2016). This approach enables the 

decoupling of RRS-induced spectral variations from SIF emission signals. 

Comments 2. The first part of the paper deals with the derivation of a mathematical 

model that permits accurate computation of the intensity of fluorescence validated with 

a subset of available satellite data. The derivation follows well established 

mathematical methods such principal component analysis and is verified with 

additional satellite data. The model is used to guide the development of Tansat-2 

including a planned elliptical orbit that, according to the authors, shall somewhat favor 

the more populated Northern hemisphere. This is a problematic part of the paper. The 

highly elliptical orbit suggested for Tansat-2A does not appear to me an optimal choice. 

Whereas it will limit the global coverage to favor the Northern Hemisphere, and be 

Sun-synchronized around mid-day, it will seriously affect the uniformity of ground 

coverage. Near the apogee of the orbit, the swath size will be ten times larger than at 

perigee and the orbital motion will be significantly slower than at perigee.  

I feel that the sun-synchronous elliptical orbit with an apogee approximately 10x higher 

than the perigee is not efficient and may lead to field of view aberrations that could 

compromise the accuracy of measurements. As well the swath width at apogee is much 

wider than at perigee making its ground coverage incomplete and difficult to fill out. I 

recommend that the authors describe in more detail the observational consequences of 

their choice of orbit. It seems to me that a near circular sun-synchronous orbit is more 

advantageous despite the overpass of more territory that is of less interest. 

Thank you for your valuable comments. We truly appreciate your thorough analysis and 

well-considered concerns regarding the use of an elliptical orbit for TanSat-2. Your 



insights are highly relevant, and we totally agree your comments on the elliptical orbit, 

and add a paragraph on its shortcomings in the Section 5.1. Furthermore, we would like 

to add some details to clarify the scientific rationale behind our orbital choice in the 

response letter.  

TanSat-2 is designed to facilitate global carbon stocktaking. The choice of the inclined 

elliptical orbit is intended to ensure more frequent coverage of the densely populated 

Northern Hemisphere, particularly key regions such as Asia, North America, and Europe. 

These regions are of paramount scientific importance for global carbon inventory 

assessments, especially in the monitoring of atmospheric gases like carbon dioxide. The 

satellite's trajectory is optimized to ensure that the Northern Hemisphere benefits from 

more frequent and consistent data collection. 

However, as you pointed out, the use of such an elliptical orbit may present challenges. 

The efficiency of the sun-synchronous elliptical orbit is relatively low, as the apogee is 

approximately 10 times higher than the perigee. Although the imaging setting only allows 

observation for orbital altitudes above ~2,350 km, significant altitude disparity still 

persists. This results in a swath width variation exceeding twofold, causing uneven ground 

coverage and reduced efficiency in achieving uniform global sampling—particularly 

pronounced in equatorial zones. Additionally, this orbit may lead to field of view 

aberrations, which can impact the accuracy of measurements. These shortcomings must 

be carefully considered during the orbit design and satellite system design phases. 

In Section 5.1: 

For the end-to-end orbit simulation, we modeled TanSat-2’s Earth observations 

based on its orbital parameters. Designed to facilitate global carbon stocktaking, 

the inclined elliptical orbit enhances observational frequency over the Northern 

Hemisphere’s densely populated regions (e.g., Asia, North America, and Europe), as 

evidenced by the increased observation density shown in Figures 11 and A1. 

Continuous observations over four- or eight-day cycles ensure near-global coverage. 

However, this orbital architecture introduces inherent challenges. The efficiency of 

the sun-synchronous elliptical orbit is relatively low, as its apogee is approximately 

ten times higher than its perigee. Although the imaging setting only allow 

observation for orbital altitudes above ~2,350 km, significant altitude disparity still 

persists. This results in a swath width variation exceeding twofold, leading to 

uneven ground coverage and spatial resolution, which in turn reduces the efficiency 

of achieving uniform global sampling—particularly in equatorial regions. 

Furthermore, the orbit may induce field of view aberrations that could compromise 

measurement accuracy. These limitations necessitate systematic mitigation 

strategies during satellite system design and orbital parameter optimization. 

 

 

 



Response to Comments from Reviewer 2 

This study presents an evaluation of the TanSat-2 satellite's capabilities for dual-band solar-induced 

chlorophyll fluorescence (SIF) retrieval through spectral simulations and end-to-end orbit 

simulations. The research demonstrates a well-structured approach, rigorous methodological design, 

and scientifically valuable findings. It is recommended for acceptance after addressing the following 

revisions: 

Thanks a lot for your encouraging words and helpful comments. We have carefully 

revised the manuscript according to your comments and suggestions, especially on the 

analysis of the potential biases or regional variations in retrieval errors and the 

descriptions of the data preprocessing steps. The responses are in blue font, and the 

relevant revised parts of the manuscript are attached in purple font. 

Comments 1. Line numbers should be consistent in the whole manuscript not start with 

1 for each page. 

Thank you for bringing to our attention the need for consistent line numbering. We have 

applied uniform line numbering throughout the entire manuscript to ensure clarity and 

ease of reference. We appreciate your feedback and hope that this adjustment enhances 

readability. 

Comments 2. For section 4.2: The manuscript lacks detailed descriptions of data 

preprocessing steps, particularly in the end-to-end orbit simulations. For example, 

cloud contamination were not explicitly modeled, and the impact of cloud screening on 

SIF retrieval accuracy remains unclear. It is recommended to supplement details on 

cloud screening strategies and their implications for retrieval performance. 

Thank you for your valuable comments. We have provided a more detailed description 

of the data preprocessing steps in the simulation experiments section, specifically in 

Sections 2.2.1 and 2.2.3. The issue of cloud interference is indeed of significant importance. 

Cloud presence can substantially affect radiative transfer processes and, consequently, SIF 

retrievals. In our study, we did not explicitly model cloud contamination or use cloud cover 

products for screening. The atmospheric radiative transfer framework based on 

MODTRAN is not well-suited for accurately simulating the effects of cloud contamination. 

Our primary objective is to highlight the advantages of the TanSat-2 sensor’s enhanced 

spectral capabilities and its high temporal and spatial resolution for SIF retrieval. As such, 

our end-to-end orbital simulation assumes clear-sky conditions without incorporating 

cloud effects. Furthermore, the CAPHI instrument onboard TanSat-2 will provide aerosol 

optical depth (AOD) and cloud coverage information, which will enhance our 

understanding of atmospheric conditions and support future SIF retrievals with TanSat-

2. These considerations are also described in Section 2.2.3. 

In Section 2.2.1: 

The Soil Canopy Observation Photochemistry and Energy Flux (SCOPE) model 

(van der Tol et al., 2009) is capable of simulating vegetation canopy reflectance 

spectra and SIF under diverse canopy structures and leaf biochemical conditions, 



including leaf optical properties (e.g., chlorophyll content, dry matter) and canopy 

structural parameters (e.g., leaf area index, canopy height). Atmospheric radiative 

transfer functions were derived from the Moderate-resolution Atmospheric 

TRANsmission model (MODTRAN5; Berk et al., 1998, 2000) to generate TOA 

radiance. Critical processing steps included: (1) using the MODTRAN Interrogation 

Technique (MIT) (Verhoef and Bach, 2012; Verhoef et al., 2018) to extract 18 

spectral transfer functions parameterized by aerosol optical depth, water vapor 

content, and observation geometry from MODTRAN5 outputs; (2) using the RTMo 

module in SCOPE, which dynamically couples these functions with bidirectional 

reflectance distribution (BRDF) and SIF emission spectra to resolve surface-

atmosphere interactions. The simulated atmospheric parameters, canopy 

reflectance, and SIF signals were then integrated using the radiative transfer 

operator defined in Equation 1 to generate the TOA radiance spectra across the 

640–850 nm range. 

In Section 2.2.3: 

It should be noted that we did not explicitly simulate cloud contamination or 

utilize cloud cover products for screening purposes. As such, our end-to-end 

orbital simulation operates under the assumption of clear sky conditions, 

deliberately excluding the potential impacts of cloud cover. Furthermore, the 

CAPHI instrument aboard the satellite will supply data on AOD and cloud coverage, 

enhancing our understanding of atmospheric conditions and cloud dynamics, 

while also providing supplementary data for future SIF retrieval efforts with 

TanSat-2. Furthermore, our simulations exclude rotational Raman scattering (RRS) 

effects. The RRS effects will be relatively small in the spectral range of red and far-

red band (Vasilkov et al., 2013). Fig. 4 presents pseudo-color composites using the 

near-infrared, red, and green bands of MCD43C4, comparing surface reflectance 

reconstructions with simulated TOA radiances in seven geomorphologically distinct 

regions, including desert, boreal forest, and tropical rainforest ecosystems. 

Comments 3. For page 16: The manuscript mentions that differences between retrieved 

SIF and GOSIF inputs were generally within 0.15 mW m⁻² sr⁻¹ nm⁻¹, yet it does not 

explore potential biases or regional variations in retrieval errors. A more detailed 

discussion on possible sources of discrepancies (e.g., land cover types, atmospheric 

effects) would strengthen the validity of the results. 

Thank you for your comments. We have provided a more detailed description in the 

current version of the manuscript regarding potential biases in SIF retrieval errors, their 

regional variations, and possible sources of these errors (Section 4.2). 

In Section 4.2: 

The retrieval uncertainties manifest predominantly as spectrally structured 

noise coupled with pronounced sensitivity to atmospheric scattering processes. 

The former primarily varies with scene-specific radiance magnitudes within 

retrieval windows, while systematic SIF underestimation in high aerosol-loading 



regimes arises from unaccounted scattering effects within our forward model. In 

order to disentangle the error sources, we conducted a statistical analysis of the far-

red SIF retrieval errors (results for the red band are similar) in relation to AOD, the 

albedo within the fitting window, SZA, and VZA, as shown in Fig. 15. The results 

indicate that RMSE increases significantly with the increase in surface albedo and 

the decrease in SZA. Both changes enhance the background radiance, leading to a 

noticeable rise in retrieval uncertainty due to an increase in signal noise. Spatially, 

these retrieval errors dominate in bright surface areas, such as the Sahara Desert 

and the Congo Basin, as shown in Fig. 13. Meanwhile, retrieval bias exhibits 

substantial amplification under higher AOD and larger VZA. This phenomenon 

arises because the higher AOD strengthens atmospheric scattering efficiency, while 

larger VZA values extend the effective radiative path length. These factors 

collectively amplify atmospheric scattering effects, resulting in progressively larger 

underestimation of SIF. The spatial pattern of this bias prominently features 

regions with high aerosol, particularly Central and South Asia, as depicted in Fig. 13. 

Notably, red-SIF retrieval over aquatic environments necessitates distinct 

processing techniques compared to terrestrial environments. This technical 

disparity manifests as substantially exaggerated SIF estimates within specific 

watersheds, particularly those in northern/western Russia and the Great Lakes 

region of North America. 

 

Figure 15. Statistical analysis of far-red SIF retrieval errors with respect to (a) AOD, 

(b) far-red band albedo, (c) SZA, and (d) VZA. The bias represents the mean value 

of ΔSIF (retrieved SIF - true SIF).  

Comments 4. For appendix Figure A2 & A4: The mentioned figures showing 4-day and 

8-day composites. They are mentioned in the results but are not adequately described 

in the main text. It is recommended to integrate a brief discussion of their significance 

and ensure that all supplementary figures are clearly referenced. 



Thank you for your comments. The results of the 4-day and 8-day composites are 

described in more detail in Section 4.2 of the main text. Figures A1 to A4 have been 

combined into two figures, with clear references to them. 

In Section 4.2: 

Moreover, we evaluated the results of 4-day and 8-day composites, as shown in 

Fig A1 and A2. Compared to single-day observations, the global coverage is more 

comprehensive, and the composite method significantly reduces retrieval errors 

by increasing observation density and suppressing noise (the RMSE for the 4-day 

and 8-day composites decreased by 35% and 47%, respectively). This further 

demonstrates the performance of the instrument on the TanSat-2 satellite. 

However, several persistent systematic biases were detected: underestimation in 

high AOD regions (Central Asia/South Asia) due to enhanced atmospheric 

scattering, overestimation in bright surfaces (Sahara Desert, Congo Basin) caused 

by radiation saturation, and overestimation of red SIF near water bodies (Russian 

rivers, Great Lakes in North America) due to residual surface reflectance effects. 

Overall, the 4-day and 8-day composites achieved excellent accuracy, 

demonstrating TanSat-2 robust retrieval performance that balances spatial 

coverage and accuracy.  The R² values for the two channels were 0.95 and 0.79, and 

0.97 and 0.85, respectively, while the RMSE values were 0.053 and 0.041, and 0.043 

and 0.034 mW m-2 sr-1 nm-1. It should be noted that although the AOD product used 

partially accounts for cloud impacts, it does not explicitly model cloud contamination or 

apply cloud fraction products for screening. Consequently, our results assume clear-sky 

conditions. Additionally, these simulations do not incorporate RRS, as the filter only 

considers data with a SZA less than 70°, where the RRS effects are minimal. 

 

Figure A1. Global maps of TanSat-2 observation counts (top panels) and retrieval 



errors (retrieved SIF minus reference SIF) for Channel l (middle panels) and Channel 

2 (bottom panels). Results derive from 4-day (left column) and 8-day (right column) 

composites at 0.05° grid resolution.  

 

Figure A2. Retrieved versus reference SIF relationships for TanSat-2's two channels 

derived from 4-day composites (a, b) and 8-day composites (c, d). Black lines denote 

the 1:1 relationship, while red lines indicate linear regression fits. 

Comments 5. While the manuscript is well-structured, some sections contain lengthy 

technical descriptions that could benefit from clearer segmentation. Additionally, minor 

grammatical inconsistencies exist, particularly in the descriptions of retrieval equations. 

Comprehensive language polishing is advised to improve readability and ensure 

consistency in technical terminology. 

Thank you for your comments. We have reorganized the lengthy technical descriptions 

into more coherent sections and performed a thorough language revision throughout the 

manuscript. The following are examples of our revisions in Sections 2.2.3 and 3.1. 

In Section 2.2.3: 

Before revisions: 

Reflectance spectra calculations utilized the green, red, and near-infrared bands from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43C4 product (Huete 

et al., 2002). To accurately reflect real-world conditions, different simulation strategies for 

vegetation and non-vegetation surfaces were implemented. Global screening employed 

NDVI data from the MODIS MOD13C1 product (Huete et al., 2002), using a threshold of 

0.2 to differentiate between non-green and green vegetation. Non-vegetation reflectance 

spectra were fitted using quadratic polynomials. Meanwhile, vegetation reflectance 

spectra, due to their complexity in these bands, were simulated using the data from 

Section 2.1. A singular value decomposition (SVD) was performed, and the first two basis 



vectors were extracted to fit the spectral data, as illustrated in Fig. 3, with interpolation 

across the 640-800 nm range. For SIF spectra, the global OCO-2 SIF dataset (GOSIF) (Li et 

al., 2018) was used to map the global SIF distribution, filling data gaps through 

interpolation and depicting SIF spectral shape with a typical profile shown in Fig. 1. 

After revisions: 

The spectral reflectance characterization leveraged multi-band observations 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43C4 

product (Huete et al., 2002), incorporating green (555 nm), red (659 nm), and near-

infrared (858 nm) spectral bands. To account for surface heterogeneity, distinct 

spectral simulation approaches were developed for vegetated and non-vegetated 

surfaces. Vegetation coverage was delineated using the MODIS MOD13C1 

Normalized Difference Vegetation Index (NDVI) product (Huete et al., 2002), with a 

NDVI threshold of 0.2 discriminating non-photosynthetic vegetation from active 

canopies.  

Non-vegetated surface reflectance spectra were parameterized through 

quadratic polynomial fitting, while vegetation spectra required advanced spectral 

decomposition due to their complex radiative interactions. As demonstrated in Fig. 

3, vegetation reflectance characteristics between 640-800 nm were reconstructed 

through singular value decomposition (SVD) of the reference spectra described in 

Section 2.1, retaining the first two orthogonal basis vectors that collectively 

explained >95% of spectral variance. SIF spatial patterns were derived from the 

global OCO-2-based SIF product (GOSIF v2, Li et al., 2018), with spectral continuity 

achieved through adaptive gap-filling interpolation and depicting SIF spectral 

shape with a typical profile shown in Fig. 1. 

Before revisions: 

Datasets representing the global distribution of atmospheric conditions were 

assembled, incorporating water vapor data sourced from the ERA5, the fifth generation 

reanalysis of global climate and weather by the European Centre for Medium-Range 

Weather Forecasts (ECMWF) (Hersbach et al., 2020), and aerosol information from 

ECMWF's Atmospheric Composition Reanalysis 4 (EAC4), provided by the Copernicus 

Atmosphere Monitoring Service (CAMS) (Inness et al., 2019). Additionally, the 60-

arcsecond resolution DEM data from Earth TOPOgraphy (ETOPO), furnished by the 

National Oceanic and Atmospheric Administration (NOAA) (Amante and Eakins, 2009), 

was resampled to a spatial resolution of 0.02 degrees to align with the satellite payload 

specifications. To accommodate the atmospheric conditions data, we expanded the range 

of atmospheric parameters outlined in Table 4, with further details provided in Table 5. 

These data are essential for calculating parameters such as 𝜌0, 𝑆, 𝑇↓↑, and 𝑇↑ in Equation 1, 

which are crucial for simulating TOA radiance. To optimize simulation times, we eschewed 

the use of MODTRAN 5 for per-pixel atmospheric parameter simulation, opting instead 

for a random forest model. We sampled 10% of the atmospheric conditions from Table 

5—a total of 7,680 data points—and input them into MODTRAN 5 to simulate key 

atmospheric parameters. These parameters were then used to train the random forest 



model, which was subsequently employed to simulate the atmospheric parameters for 

each pixel. These simulations were incorporated into Equation 1 to compute TOA radiance. 

Additional processes, including convolution and noise addition, were applied. Fig. 4 

illustrates a pseudo-color image synthesized using the near-infrared, red, and green bands 

of MCD43C4, displaying the fitted reflectance and TOA radiances across seven 

representative geomorphic areas. 

After revisions: 

The atmospheric parameterization framework was constructed using a synthesis 

of global datasets to characterize key environmental variables. Total column water 

vapor data were obtained from ERA5 (the fifth generation ECMWF reanalysis; 

Hersbach et al., 2020), while aerosol information was acquired from the EAC4 

reanalysis (Copernicus Atmosphere Monitoring Service; Inness et al., 2019). 

Topographic elevation data were derived from the ETOPO digital elevation model 

(NOAA; Amante and Eakins, 2009). Atmospheric temperature profiles were 

partitioned according to latitude. The atmospheric parameter space outlined in 

Table 4 was expanded (see Table 5) to compute critical radiative transfer variables 

(𝝆𝟎, 𝑺, 𝑻↓↑, and 𝑻↑ in Equation 1) required for simulating TOA radiance. To address 

computational constraints associated with full-resolution MODTRAN 5 radiative 

transfer modeling, a machine learning surrogate strategy was implemented. A 

representative subset of 7,680 atmospheric scenarios (10% of parameter 

combinations in Table 5) was simulated using MODTRAN 5. These simulations 

trained a random forest regressor to predict atmospheric parameters across the 

global domain at 0.02° resolution. These simulations were incorporated into 

Equation 1 to compute TOA radiance. Additional processes, including convolution 

and noise addition, were applied.  

It should be noted that we did not explicitly simulate cloud contamination or 

utilize cloud cover products for screening purposes. As such, our end-to-end orbital 

simulation operates under the assumption of clear sky conditions, deliberately 

excluding the potential impacts of cloud cover. Furthermore, the CAPHI instrument 

aboard the satellite will supply data on AOD and cloud coverage, enhancing our 

understanding of atmospheric conditions and cloud dynamics, while also providing 

supplementary data for future SIF retrieval efforts with TanSat-2. Furthermore, our 

simulations exclude rotational Raman scattering (RRS) effects. The RRS effects will 

be relatively small in the spectral range of red and far-red band (Vasilkov et al., 

2013). Fig. 4 presents pseudo-color composites using the near-infrared, red, and 

green bands of MCD43C4, comparing surface reflectance reconstructions with 

simulated TOA radiances in seven geomorphologically distinct regions, including 

desert, boreal forest, and tropical rainforest ecosystems. 

In Section 3.1: 

Before revisions: 

For spectral characterization of SIF, the parameters 𝜆0 and 𝜎ℎ  for the far-red band are 

set at 740 nm and 21 nm, respectively. The red band utilizes a combination of two 



Gaussian functions to depict a more intricate spectral shape, with 𝜆0 being 740 nm and 

685 nm, and 𝜎ℎ  being 21 nm and 10 nm, respectively (Joiner et al., 2016; Zou et al., 2022). 

This spectral region encapsulates numerous solar Fraunhofer lines and atmospheric 

absorption features, enhancing the retrieval capabilities of SIF. Specifically, the spectral 

domain of TanSat-2 encompasses absorption lines such as the O2-A at 758-772 nm and 

the O2-B at 682-692 nm, which are integral for retrieving far-red and red SIF, respectively 

(Joiner et al., 2013; Guanter et al., 2015). Surrounding solar Fraunhofer and atmospheric 

absorption lines also play a crucial role in the SIF retrieval process in satellites with 

refined spectral resolution (Frankenberg et al., 2011; Joiner et al., 2011). As part of a semi-

empirical approach, the performance of data-driven algorithms heavily relies on the 

empirical parameters used in the model. To optimize these parameters, different window 

settings were applied for each channel. The window settings for the far-red band were 

747-758 nm, 759-772 nm, and 747-777 nm; for the red band, they were 672-686 nm, 682-

697 nm, and 672-702 nm. Moreover, the permissible ranges for the parameters np (0-7) 

and nv (1-50) were established for SIF retrieval (Ko hler et al., 2015; Zou et al., 2022). 

Ultimately, only the parameters 𝛽𝑗 , 𝛾𝑘 , and 𝐹𝑠 remained as variables, with FS determined 

through resolving the linear least squares problem. 

SVD efficiently transforms a large set of correlated variables into a streamlined set of 

uncorrelated components, known as singular vectors. These vectors are strategically 

arranged such that each successive vector accounts for progressively less signal variability, 

enabling a hierarchical representation of data. By leveraging the principal singular vectors, 

we can reconstruct similar signals and effectively filter out noise. The implementation of 

SVD was carried out on the training dataset from spectral simulations. Fig. 5 illustrates 

the first six basis vectors for two distinct channels. Each subplot also quantifies the 

explained variance associated with each basis vector in the simulations. Predominantly, 

the spectral variations within the fitting window arise from Fraunhofer lines and 

atmospheric absorption features. It is evident that the initial set of singular vectors 

encapsulates the majority of the spectral variance across all simulations, while none of the 

vectors correspond to the SIF spectral shape. 

After revisions: 

The spectral parameterization of SIF employed Gaussian functions with band-

specific configurations. For the far-red band, a single Gaussian function was 

adopted with 𝝀𝟎 of 740 nm and 𝝈𝒉 of 21 nm. The red band required a dual Gaussian 

representation to capture its complex spectral features, characterized by 𝝀𝟎 values 

of 685 nm and 740 nm with corresponding 𝝈𝒉  values of 10 nm and 21 nm, 

respectively (Joiner et al., 2016; Zou et al., 2022). These spectral regions encompass 

critical atmospheric absorption bands—specifically, the O2-A band (758–772 nm) 

for far-red SIF and the O2-B band (682–692 nm) for red SIF retrieval (Guanter et al., 

2015; Joiner et al., 2013). Surrounding solar Fraunhofer and atmospheric 

absorption lines also play a crucial role in the SIF retrieval process in satellites with 

refined spectral resolution (Frankenberg et al., 2011; Joiner et al., 2011). 

As a semi-empirical approach, the performance of data-driven algorithms heavily 

depends on the empirical parameters employed in the model. To optimize these 



parameters, different retrieval windows were selected for each channel. Specifically, 

the far-red band employed window settings of 747–758 nm, 759–772 nm, and 747–

777 nm, while the red band used 672–686 nm, 682–697 nm, and 672–702 nm. 

Additionally, the permissible ranges for the parameters 𝒏𝒑  (0–7) and 𝒏𝒗  (1–50) 

were defined for SIF retrieval (Köhler et al., 2015; Zou et al., 2022). Through 

variable reduction, the final retrievals retained only 𝜷𝒋 , 𝜸𝒌 , and 𝑭𝒔 , resolved via 

linear least squares optimization. 

SVD was applied to spectral simulation datasets to disentangle dominant signal 

components from noise. These vectors are strategically arranged such that each 

successive vector accounts for progressively less signal variability, enabling a 

hierarchical representation of data. The first six basis vectors accounted for over 

98% of cumulative spectral variance, as quantified in Fig. 5. Predominantly, the 

spectral variations within the fitting window arise from Fraunhofer lines and 

atmospheric absorption features. Notably, none of the basis vectors exhibited 

correlation with intrinsic SIF spectral shapes, confirming the method’s capability 

to isolate fluorescence signals from background radiative processes.  

 

 


