
 

1 
 

TROLL 4.0: representing water and carbon fluxes, leaf phenology, 1 

and intraspecific trait variation in a mixed-species individual-based 2 

forest dynamics model – Part 2: Model evaluation for two Amazonian 3 

sites 4 

Sylvain Schmitt1,2,3, Fabian J. Fischer4, James G. C. Ball5, Nicolas Barbier3, Marion Boisseaux6, Damien 5 

Bonal7, Benoit Burban8, Xiuzhi Chen9, Géraldine Derroire1,2,10, Jeremy W. Lichstein11, Daniela 6 

Nemetschek4, Natalia Restrepo-Coupe12, Scott Saleska12, Giacomo Sellan10, Philippe Verley3, Grégoire 7 

Vincent3, Camille Ziegler6, Jérôme Chave13, Isabelle Maréchaux3  8 

1CIRAD, UPR Forêts et Sociétés, F-34398, Montpellier, France 9 
2Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France 10 
3AMAP, Univ Montpellier, INRAE, IRD, CIRAD, CNRS, F-34000 Montpellier, France 11 
4School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK 12 
5Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK 13 
6Univ. Bordeaux, INRAE, BIOGECO, 33612 Pessac, France 14 
7Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France 15 
8INRAE, UMR EcoFoG (Agroparistech, Cirad, CNRS, Université des Antilles, Université de la Guyane), Campus 16 
Agronomique, 97310 Kourou, French Guiana 17 
9School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China 18 
10Cirad, UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus 19 
Agronomique, 97310 Kourou, French Guiana 20 
11Department of Biology, University of Florida, Gainesville, Florida 32611, USA 21 
12University of Arizona, Ecology & Evolutionary Biology, Tucson, Arizona, United States of America 22 
13Centre de Recherche Biodiversité et Environnement, UMR5300, CNRS, Université Paul Sabatier, IRD, INPT, Toulouse 23 
Cedex 9, France 24 

Correspondence to: Sylvain Schmitt (sylvain.schmitt@cirad.fr)  25 

https://doi.org/10.5194/egusphere-2024-3106
Preprint. Discussion started: 10 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

2 
 

Summary. We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, 26 

diversity and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes 27 

between the forest and the atmosphere, and leaf area and canopy height from remote-sensing products. The model realistically 28 

predicts the structure and composition, and the seasonality of carbon and water fluxes at both sites. 29 

 30 

 31 

 32 

Abstract. TROLL 4.0 is an individual-based forest dynamics model that jointly simulates the structure, diversity and 33 

functioning of tropical forests, including their water balance, carbon fluxes and leaf phenology, while accounting for 34 

intraspecific trait variation for a large number of species. In a companion paper, we describe how the model represents the 35 

physiological and demographic processes that control the tree life cycle in a one-metre-resolution spatially-explicit scene and 36 

uses plant functional traits measurable in the field to parameterize such processes across species and individuals (Maréchaux 37 

et al., submitted companion paper). Here we evaluate the performance of  TROLL 4.0 for two Amazonian sites with contrasting 38 

soil and climate properties. We assessed the model's ability to represent forest structure and composition using lidar-derived 39 

canopy height distributions and forest inventories combined with information on plant functional traits. We also evaluated the 40 

model's ability to represent carbon and water fluxes, as well as leaf area variation, at daily and fortnightly resolution over a 41 

decade, using detailed information from on-site eddy covariance towers, satellite data and ground-based or air-borne lidar data. 42 

We finally compared the responses of carbon and water fluxes to environmental drivers between simulated and observed data. 43 

Overall, TROLL 4.0 provided a realistic representation of forests at both sites. The simulated canopy height distribution 44 

showed a high correlation coefficient (CC) with observed aerial and satellite data (CC>0.92), while the species and functional 45 

composition were well represented (CC>0.75). TROLL 4.0 also realistically simulated the seasonal variability of carbon and 46 

water fluxes (CC>0.46) and their responses to environmental drivers, while capturing temporal variations in leaf area 47 

(CC>0.76) and its partitioning in leaf age cohorts. However, TROLL 4.0 overestimated annual gross primary productivity at 48 

both sites (mean RMSEP=0.94 kgC m-2 yr-1) and evapotranspiration at one site (mean RMSEP=0.75 mm day-1), likely due to 49 

an underestimation of the soil water depletion and stomatal control during the dry season. This evaluation highlights the 50 

potential of TROLL 4.0 to represent ecosystem fluxes and the structure and diversity of plant communities at a fine resolution, 51 

paving the way for model predictions of the effects of climate change, fragmentation and forest management on forest structure 52 

and dynamics.  53 
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1 Introduction 54 

Tropical forests cover just 7% of the Earth's land surface, yet they play a disproportionately large role in the biosphere, store 55 

around 25% of terrestrial carbon and contribute to more than a third of global terrestrial productivity (Bonan 2008). Regionally, 56 

tropical forests recycle around a third of precipitation through evapotranspiration, contributing to the generation and 57 

maintenance of a humid climate (Harper et al., 2013), effects that extend well beyond the tropics (Lawrence & Vandecar 2015). 58 

However, tropical forests remain a major source of uncertainty in simulations of global biogeochemical cycles (Fisher et al., 59 

2014; Koch et al., 2020).  60 

 61 

As an illustration, for light-limited tropical forests, dynamic global vegetation models (DGVMs, Prentice et al., 2007) typically 62 

simulate a decrease in productivity with a seasonal decline in precipitation (Restrepo-Coupe et al., 2017, Chen et al., 2020), 63 

while observations from eddy covariance data point to an increase in gross primary productivity during the dry season (Guan 64 

et al., 2015; Aguilos et al., 2018). Similarly, simulated forest responses to experimental and natural droughts have highlighted 65 

large model-data discrepancies and variation across models (Powell et al., 2013; Joetzjer et al., 2014; Yao et al., 2023; Paschalis 66 

et al., 2022). Improving the representation of tropical forest functioning in models is needed to enhance our understanding and 67 

ability to predict biogeochemical cycles. 68 

 69 

One challenge is to better integrate the structure, diversity and functioning of forests into vegetation models (Purves and Pacala, 70 

2008; McMahon et al., 2011; Evans, 2012; Mokany et al., 2016). In spite of progress (Fisher et al., 2018), most models still 71 

adopt a coarse grained representation of vegetation, which makes it difficult to use field data to parameterize and evaluate the 72 

models. Also, several processes driving the variation of tropical forest productivity and water fluxes remain incompletely 73 

represented in vegetation models. These include water uptake by the root system and seasonal variation of leaf quantity and 74 

quality at the ecosystem-level, which are driven by leaf phenology and allocation processes at the individual-level (Chen et 75 

al., 2020; Wu et al., 2021; Restrepo-Coupe et al., 2017, Cusak et al., 2024).   76 

 77 

In a companion paper, we described the individual-based forest dynamics model TROLL 4.0 (Maréchaux et al., submitted 78 

companion paper). This model jointly simulates tropical forest structure, diversity and functioning, including forest water 79 

balance, carbon fluxes and leaf phenology, and accounts for intraspecific trait variation for a large number of species. TROLL 80 

4.0 represents the processes underlying ecosystem fluxes, such as leaf gas exchanges and their responses to environmental 81 

variation, and is thus similar to DVGMs in that respect, with its outputs comparable with data from eddy covariance towers. 82 

However, unlike DGVMs that are designed for global applications and typically represent plant diversity with a few functional 83 

types, TROLL 4.0 represents diversity at the species level (e.g., 10s to 100s of tropical tree species). TROLL 4.0 is spatially-84 

explicit and represents plant community structure and diversity at a spatial resolution of one metre, which is consistent with 85 

that used by field ecologists. Physiological and demographic processes are integrated using a parameterisation based on plant 86 

traits measurable in the field, relying on recent knowledge in plant physiology and functional ecology. The individual-based, 87 
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species-specific and spatially explicit representation of forest structure and composition enables TROLL 4.0 outputs to be 88 

directly compared with spatially explicit forest inventories, trait distributions or fine-scale remote sensing products. 89 

 90 

In this paper, we evaluate TROLL 4.0 for two Amazonian sites with contrasting soil and climate properties. We parameterized 91 

the model using functional trait and soil data at both sites. We first calibrated three major forest structure parameters using 92 

inventory data, and then the three parameters of the phenological module that control leaf shedding as a function of soil water 93 

availability using litterfall data. We then ran simulations and evaluated the model’s representation of forest structure and 94 

composition against independent data, including lidar-derived canopy height distribution, understory inventories and 95 

functional trait distribution. We also assessed the model ability to represent carbon and water fluxes at daily resolution, as well 96 

as leaf area variation at fortnightly resolution, against eddy covariance, satellite and terrestrial or drone lidar data. We finally 97 

compared the response of simulated and observed fluxes to incoming radiation, vapour pressure deficit, temperature, and wind 98 

speed. Finally, we discuss the potential model-data discrepancies and identify priorities for future developments. 99 

2 Methods 100 

TROLL represents individual trees explicitly in an aboveground voxelized space (1 m3), in which light diffusion is modelled, 101 

and in a belowground space, which consists of several layers with user-defined thickness and horizontal resolution (here 25 102 

m2). Belowground water flow is simulated using a bucket model. Each tree belongs to a species, and we provide as input 103 

species-specific mean plant trait values and intraspecific trait variances and covariances. At recruitment, individual trait values 104 

are randomly drawn from the intraspecific trait distribution. These traits parameterize the physiological and demographic 105 

processes that govern the life cycle of trees, from recruitment to growth, seed dispersal, and finally death. Carbon assimilation 106 

by trees is computed using the photosynthesis model of Farquhar, von Caemmerer and Berry (1980), coupled to the stomatal 107 

conductance model of Medlyn et al. (2011), as a function of leaf micro-environmental conditions, tree access to water, and 108 

leaf photosynthetic capacity and leaf respiration rate. Sugars produced during photosynthesis are used for tree respiration and 109 

allocation to plant tissues, including foliar production, carbon storage and woody growth.  110 

 111 

We conducted model calibration and evaluation at two lowland Amazon forest sites: the Paracou research station in French 112 

Guiana (5°28’N, 52°92’W), hereafter Paracou (Gourlet-Fleury et al., 2004; Bonal et al., 2008), and the Tapajos National Forest 113 

in Brazil in the K67 site also named BR-Sa1 (2°86’S, 54°96’W), hereafter Tapajos (Silver et al., 2000; Saleska et al., 2003). 114 

Both sites are covered by a high biomass and species rich lowland moist tropical forest, and they present contrasting soil 115 

characteristics and climate (Table 1). The two sites have been intensively monitored for several decades, mainly through 116 

repeated forest inventories and eddy flux tower measurements. 117 

 118 

At each site, we calibrated six global parameters, three parameters related to forest structure, to which TROLL is known to be 119 

sensitive: the reference background mortality rate m, and the intercept aCR  and slope bCR of the crown radius scaling relationship 120 
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(Table A1; Maréchaux and Chave, 2017; Fischer et al., 2019), and three parameters pertaining to the phenological module, 121 

new to TROLL 4.0 (𝑎𝑇,𝑜, 𝑏𝑇,𝑜 and 𝛿𝑜; Table A1). In TROLL 4.0, the shedding of old leaves is accelerated as soil water 122 

availability decreases (Maréchaux et al., submitted companion paper). When the leaf predawn water potential (𝜓𝑝𝑑, MPa) falls 123 

below a threshold 𝜓𝑇,𝑜 (MPa), the residence time of old leaves is decreased using a multiplicative factor f0 <1. The parameter 124 

𝜓𝑇,𝑜 varies with the tree leaf drought tolerance and its size as follows: 125 

𝜓𝑇,𝑜 = 𝑚𝑖𝑛(𝑎𝑇,𝑜 ×  𝜋𝑡𝑙𝑝 , − 0.01 × ℎ − 𝑏𝑇,𝑜) 126 

where 𝜋𝑡𝑙𝑝 is the leaf water potential at turgor loss point in MPa and h is the tree height in m. f0 is decremented (resp. 127 

incremented) by 𝛿𝑜 when 𝜓𝑝𝑑 < 𝜓𝑇,𝑜 (resp. 𝜓𝑝𝑑 > 𝜓𝑇,𝑜). The parameters 𝑎𝑇,𝑜, 𝑏𝑇,𝑜 and 𝛿𝑜 control the intensity and the 128 

timing of the peak of litterfall under drying soil conditions. This scheme is consistent with field observations (Maréchaux et 129 

al. submitted companion paper), uncertainties remain on the values of 𝑎𝑇,𝑜, 𝑏𝑇,𝑜 and 𝛿𝑜 however, and they need to be calibrated. 130 

After calibration, we compared model outputs with site-specific data for evaluation at each site. 131 

 132 

Table 1: Site overview with climate, vegetation and soil properties. 133 

Variables Units Paracou Tapajos References 

Climate     

Annual rainfall mm 3,041 2,075 P: Aguilos et al., 
2018; T: Silver et al., 
2000 

Average air temperature °C 25.7 26.1 

Vegetation     

Aboveground biomass 

(𝐷𝐵𝐻 ≥ 10) 

Mg ha-1 419 287 P: Rutishauser et al., 
2010; T: Rice et al., 
2004 

Abundance (𝐷𝐵𝐻 ≥ 10) ha-1 612 470 P: Derroire et al., 
2023; T: Rice et al., 
2004 

Basal area (𝐷𝐵𝐻 ≥ 10) m2 ha-1 31 24 P: Derroire et al., 
2023; T: Goncalves et 
al., 2018 

Soil     

Type - Sandy clay loam Clay - 

Depth m 2.50 16.10 P: Hiltner et al., 2021; 
T: Nepstad et al., 
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2002 

Layer thickness (top to 
bottom) 

m 0.10 / 0.23 / 0.40 / 
0.80 / 0.97 

0.10 / 0.40 / 1.00 / 
2.50 / 12.10 

- 

Sand % 65.25 37.27 P: Van Langenhove et 
al., 2021; T: Silver et 
al., 2000 

Clay % 21.50 60.09 

Silt % 13.25 2.64 

Soil Organic Content % 2.37 2.54 P: Van Langenhove et 
al., 2021; T:Quesada 
et al., 2010 

Dry Bulk Density g cm-3 1.040 1.125 P: Van Langenhove et 
al., 2021; T: Silver et 
al., 2000 

Cation Exchange Capacity mEq 100g-1 2.98 2.97 P: Sabatier et al., 
1997; T:Quesada et 
al., 2010 

pH  4.34 3.84 P: Sabatier et al., 
1997; T:Quesada et 
al., 2010 

2.1 Simulation inputs and climatic drivers 134 

TROLL 4.0 uses 35 global parameters defined by the user and provided as inputs. These parameters relate to atmospheric 135 

constants, light transmission, leaf carbon acquisition, leaf shedding, tree carbon allocation, tree shape, reproduction, and death, 136 

and intraspecific trait variability (Table A1). Except for the three parameters of forest structure mentioned above and the three 137 

parameters of the leaf shedding module that have been calibrated at each site, all values are assumed site independent.  138 

 139 

TROLL 4.0 requires trait parameters for each species:  values need to be provided as input for six functional traits and three 140 

scaling parameters. The scaling parameters are species maximum diameter at breast height (dbhmax, cm), and parameters 141 

defining the relationship between height and diameter at breast height (dbh), which are the asymptotic height (hlim, m) and the 142 

parameter ah (see Maréchaux et al. submitted companion paper, Eqs (16) and (62)). We used forest inventories from Paracou 143 

(Derroire et al., 2023) and Tapajos (Goncalves et al., 2018) to create a species list for each site, and computed dbhmax as the 144 

95th quantile of species diameter at breast height for species including more than 10 individuals. We used the TALLO global 145 

database of height and diameter measurements (Jucker et al., 2022) to infer species-specific values of hlim and ah for the 496 146 

species of the database that are present in Amazonia (latitude between 10°N and 18°S and longitude between 39°W and 78°W; 147 
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n = 24,609 trees with a mean of 49.62 ±730 trees per species). Parameters ah and hlim were inferred using Bayesian inference 148 

as follows: 149 

𝑙𝑜𝑔(ℎ) ~ 𝑁[𝑙𝑜𝑔(ℎ𝑙𝑖𝑚 ×
𝑑𝑏ℎ

𝑎ℎ + 𝑑𝑏ℎ
), 𝜎 2] | ℎ𝑙𝑖𝑚~ 𝑁(ℎ𝑙𝑖𝑚,0, 𝜎 2

ℎ) , 𝑎ℎ~ 𝑁(𝑎ℎ,0, 𝜎 2
𝑎) 150 

with the logarithm of height (ℎ, in m) following a normal distribution centred on the log of a Michaelis-Menten model with  151 

asymptotic height ℎ𝑙𝑖𝑚, height-dbh scaling parameter 𝑎ℎ, and variance 𝜎 2. The two species-specific parameters ℎ𝑙𝑖𝑚 and 𝑎ℎ 152 

are random parameters following a normal distribution centred respectively on ℎ𝑙𝑖𝑚,0 and 𝑎ℎ,0 with variances 𝜎 2
ℎ and 𝜎 2

𝑎.  153 

 154 

The functional traits used in the parameterization include leaf area (LA,  in cm2), leaf mass per area (LMA, g m-2), leaf nitrogen 155 

content per dry mass (N, mg g-1), leaf phosphorus content per dry mass (P, mg g-1), leaf water potential at turgor loss point 156 

(𝜋𝑡𝑙𝑝, MPa), and wood specific gravity (wsg, g cm-3). We used several datasets to retrieve species-specific mean values for 157 

these traits (Vleminckx et al. 2021, Boisseaux et al., submitted; Kattge, Bönisch, and al., 2020; Maréchaux et al., 2015; 158 

Maréchaux et al., 2019; Nemetschek et al., 2024; Ziegler et al., 2019). Finally, we used predictive mean matching (Van Buuren 159 

and Groothuis-Oudshoorn, 2011) to impute missing trait values for 𝑎ℎ, ℎ𝑙𝑖𝑚, dbhmax, and 𝜋𝑡𝑙𝑝 only. Overall, this procedure 160 

leads to a parameterization of 114 species for Paracou and 113 species for Tapajos. These species pools are representative of 161 

the functional trait spaces of the two sites (Fig. A1). 162 

 163 

TROLL 4.0 requests nine soil parameters to describe the texture, depth and chemistry. These were gathered from the literature, 164 

assuming a single soil type and depth per site for simplicity and setting the number of soil layers to five (Table 1). Testing the 165 

influence of horizontal and vertical soil heterogeneity on model outputs is left for future work.  166 

 167 

TROLL 4.0 simulations are forced with six climatic drivers. Two of them are daily: cumulative rainfall (mm), and average 168 

nighttime temperature (°C). The remaining four drivers are provided every half hour during the daytime (defined below): 169 

incoming shortwave radiation (SW, W m-2), temperature (T, °C), vapour pressure deficit (VPD, kPa), and wind speed (WS, m 170 

s-1). Historical time series for these climatic variables have been retrieved from the FLUXNET 2015 dataset (Pastorello et al., 171 

2020), which provides standardised data from eddy flux towers located at each site (2004-2014 for Paracou, and 2002-2011 172 

for Tapajos). However, at Tapajos, rainfall data from FLUXNET 2015 is not reliable due to issues with rain gauges (Restrepo-173 

Coupe et al., 2017). Instead, we used rainfall data from the ERA5-Land reanalysis dataset (Muñoz-Sabater et al., 2021) 174 

available at hourly resolution between 2002 and 2011. For other climatic variables, data from ERA5-Land showed high 175 

correlation with FLUXNET 2015 data. A more in-depth evaluation of ERA5-Land precipitation data is left for future. We used 176 

spline interpolation to derive half-hourly time series from the hourly FLUXNET 2015 data in Tapajos. The half-hourly net 177 

radiation time series was used to define daytime hours (i.e. with Snet > 0) which were set from 6 a.m. to 6 p.m. in Paracou, and 178 

from 7 a.m. to 7 p.m. in Tapajos. The dry season was defined as a period with fortnightly rainfall below 50 mm on average 179 

across years, consistent with the 100 mm per month used by Bonal et al. (2008). This leads to a 4-month dry season in Paracou 180 

(August 1st to December 1st), and a 4.5-month dry season in Tapajos (June 15 to November 1st). Dry seasons were defined 181 
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for illustration purposes only and have no effect on the model behaviour, which is driven by the meteorological inputs described 182 

above. 183 

2.2 Calibration and simulation set-up 184 

We calibrated the three forest structure parameters (m,  aCR  and bCR) for each site. aCR  and bCR are not independent, and we used 185 

the TALLO global database of crown radius (CR) and diameter (dbh) measurements (Jucker et al., 2022) to infer their 186 

relationship. To do so, we restricted the TALLO database to observations located within 10 km around sites from which we 187 

generated a thousand pairs of (aCR, bCR) values. Each pair of values was determined by randomly drawing 10 individuals per 10-188 

cm diameter class to generate a size-balanced dataset to which the following model was fitted:  𝑙𝑜𝑔(𝐶𝑅) ~ 𝑁[𝑎𝐶𝑅 +189 

𝑏𝐶𝑅 × 𝑙𝑜𝑔(𝑑𝑏ℎ), 𝜎 2]. This resulted in the following linear relationship between the two parameters:  𝑏𝐶𝑅 = −0.39 +190 

0.59 × 𝑎𝐶𝑅  + 𝜖𝑏𝐶𝑅  
, with 𝜖𝑏𝐶𝑅  

 the error around the relation. This relationship constrained the exploration of the three-191 

dimensional parameter space, so we only had to calibrate 𝑎𝐶𝑅 , 𝜖𝑏𝐶𝑅  
, and m. Based on preliminary exploratory analyses with 192 

the previous version of TROLL, we defined the range of calibration for each parameter and site as follows:  𝑎𝐶𝑅 varied from 193 

1.60 to 2.00 in Paracou and from 2.3 to 2.7 in Tapajos with a step of 0.05, 𝜖𝑏𝐶𝑅  
from -0.30 to 0.10 in both sites with a step of 194 

0.05, and m from 0.030 to 0.050 in both sites with a step of 0.0025. This resulted in 9 𝑎𝐶𝑅  × 5 𝜖𝑏𝐶𝑅
× 9 𝑚 × 2 𝑠𝑖𝑡𝑒 = 810 195 

triplets of parameter values.  196 

 197 

For each set of three parameter values, we performed a 600-year simulation from bare ground over a 4-ha area. Simulations 198 

were run with an external seed rain uniformly distributed across species, so that the simulated community structure is an 199 

emergent property resulting from the community assembly mechanisms embedded in the model. As succession unfolds and 200 

the number of mature trees increases in the simulation, internal seed production increases according to the assumed 201 

relationships between individual size and fecundity. An alternative to uniform seed rain across species would be to prescribe 202 

non-uniform seed rain based on species' regional abundances. This approach would tend to make the simulated species 203 

abundances more closely resemble the observed regional abundances. In contrast, uniform seed rain as simulated here, biases 204 

the simulated abundances towards evenness across species, and differences in simulated abundances reflect differences in 205 

demographic performance controlled by the model trait-based parameterization rather than prescribed differences in the seed 206 

rain. Each simulation was forced each year by randomly drawing a year among the ten years of climatic data. In doing so, we 207 

avoided applying a periodic climatic forcing or any potential trend linked to global warming. 208 

 209 

To evaluate the forest structure simulated with each triplet of parameter values, we compared simulated to observed total 210 

aboveground biomass (AGBtot, Mg ha-1), total tree abundance (Ntot, ha-1), and tree abundances per 5-cm diameter class (Ni, ha-211 

1 for dbh class i) at the end of the 600-year regeneration. The Paracou reference dataset was a 2015 inventory of trees with dbh 212 

>10 cm in six 6-ha plots (Derroire et al., 2023). The Tapajos reference dataset was a 1999 inventory of trees with dbh > 10 cm 213 
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in 19.75 ha along four 1-km transects (Rice et al., 2004). At both sites, we calculated the relative root mean squared error 214 

defined as: 215 

𝑅𝑅𝑀𝑆𝐸𝑃 =
𝐴𝐺𝐵 𝑜

𝑡𝑜𝑡 − 𝐴𝐺𝐵 𝑠
𝑡𝑜𝑡

𝐴𝐺𝐵 𝑜
𝑡𝑜𝑡

+
𝑁 𝑜

𝑡𝑜𝑡 − 𝑁 𝑠
𝑡𝑜𝑡

𝑁 𝑜
𝑡𝑜𝑡

+
√1

𝑛 × ∑𝑛
𝑖=1 (𝑁 𝑜

𝑖 − 𝑁 𝑠
𝑖 )2

|𝑁 𝑜
𝑖 |

 216 

 217 

where AGBtot
o, Ntot

o and Ni
o are observed values, and AGBtot

s, Ntot
s and Ni

s are the simulated values. n is the number of dbh 218 

classes and |Ni
o| is the mean tree abundances among dbh classes. We extracted the simulation with the lowest RRMSEP at each 219 

site and used the corresponding values for m,  aCR  and bCR in all subsequent simulations. 220 

 221 

After 600 simulated years of forest dynamics the system reached a mature forest stage with stable forest structure, composition, 222 

and functioning at both sites. This is referred to as the ‘spin-up phase’. We then used this mature forest stage to calibrate the 223 

three parameters of the phenological module. We performed an exhaustive search in the parameter space for  combinations of 224 

𝑎𝑇,𝑜 in [0.01, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5], 𝑏𝑇,𝑜 in [0.01, 0.015, 0.02, 0.05, 0.04, 0.06, 0.08, 0.10], and 𝛿𝑜 in [0.1, 225 

0.2, 0.3, 0.4, 0.5] resulting in 9 𝑎𝑇,𝑜  × 8 𝑏𝑇,𝑜 × 5 𝛿𝑜 × 2 𝑠𝑖𝑡𝑒𝑠 = 720 simulations. For each triplet, we ran a 20-year 226 

simulation with historical weather repeating the 10 years of data twice with the mature forest as an initial condition. Only the 227 

last 10 years were used for the calibration to allow the leaf dynamics to adjust to new parameter values.  228 

 229 

To evaluate each simulation, we used leaf litter data from litter traps at both sites (unpublished data at Paracou, Rice et al., 230 

2008 at Tapajos). Litter traps were typically collected fortnightly (although time intervals between consecutive litter trap 231 

collections were sometimes higher and up to 80 days in Paracou) between 2004 and 2023 in Paracou, and between 2000 and 232 

2005 in Tapajos. The litter collected from the traps was oven-dried until the mass stabilised, partitioned between leaves, fruits 233 

and woody debris, and then the fraction were weighed. We computed observed leaf litterfall flux in Mg ha-1 year-1 as the mean 234 

across traps converted from trap surface to hectare and time interval in days to year. We also recorded the time interval between 235 

consecutive trap collections to account for the smoothing effect of the longer time intervals in simulated data. Simulated leaf 236 

litterfall fluxes over the last 10 years of simulation for each triplet of parameter values were compared to the observed fluxes 237 

using the same observation dates and corresponding time intervals.  238 

 239 

To compare simulations against observations, we defined two yearly indices that quantify the timing and intensity of the 240 

litterfall peak. The two indices are (i) the day of the litterfall peak as the Julian day of the maximum annual litterfall flux value 241 

(day), and (ii) the ratio between the maximum value (computed as the average of litterfall flux over the two consecutive time 242 

intervals before and after the peak day) divided by the basal flux (computed as the yearly average between January and April) 243 

(ratio). Both indices are key features of litterfall patterns in tropical rainforests (Chave et al., 2010; Yang et al., 2021). For 244 

each simulation we calculated the root mean squared error defined as: 245 
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𝑅𝑀𝑆𝐸𝑃 = √
∑𝑦=𝑦𝑚𝑎𝑥

𝑦=𝑦0
(𝑟𝑎𝑡𝑖𝑜𝑦,𝑜 − 𝑟𝑎𝑡𝑖𝑜𝑦,𝑠) 2

𝑁𝑦𝑒𝑎𝑟

+
∑𝑦=𝑦𝑚𝑎𝑥

𝑦=𝑦0
(𝑑𝑎𝑦𝑦,𝑜 − 𝑑𝑎𝑦𝑦,𝑠) 2

𝑁𝑦𝑒𝑎𝑟

  246 

where dayy,o and ratioy,o are observed z-scores (i.e., standard deviations from the mean) for year y, and dayy,s and ratioy,s are 247 

simulated z-scores for year y. Thus a unit RMSEP corresponds to a ratio error of one standard deviation, i.e. 7.6 folds, or to a 248 

day error of one standard deviation, i.e. 45.5 days. The best-fit parameters were those corresponding to the lowest RMSEP at 249 

each site. 250 

 251 

Finally, to quantify the envelopes of stochastic simulation outputs, we ran ten replicates of 600-year simulations starting from 252 

bare ground with the six calibrated parameter values.  253 

2.3 Evaluation of forest structure and composition 254 

To assess the model’s ability to simulate forest structure, species and functional composition, we used airborne lidar scanning 255 

(ALS) and satellite data, as well as forest inventories combined with functional traits. Independently from the calibration, we 256 

evaluated the diameter distribution of the forest understory at Paracou using an independent 9-ha inventory of trees with dbh 257 

between 1 and 10 cm from 2020-2023 (unpublished data). We evaluated the structure of the simulated forest at the end of the 258 

600-year replicates against observed basal area (BA, m2 ha-1) and logarithm of tree abundance (ha-1) per 1-cm diameter class 259 

below 10 cm. We evaluated tree height distributions using ALS data from 2015 at Paracou (unpublished data) and from 2012 260 

at Tapajos (dos-Santos et al., 2019), which were processed into canopy height models with a standardised pipeline (Fischer et 261 

al., 2024). From both simulated and ALS-derived canopy height models, we derived the distribution of canopy height, 262 

expressed in proportion of 1-m2 pixels per 1-m height class. We evaluated the species composition after the 600-year replicates 263 

against the observed rank-abundance curve of the 114 most abundant species at both sites, and the functional composition 264 

against the observed density distribution of each trait for each site and each plot. Due to a lower taxonomic resolution of 265 

botanical identification at the Tapajos site, we used genus level functional trait data at Tapajos and species level functional 266 

trait data at Paracou. 267 

2.4 Evaluation of total leaf area dynamics 268 

We assessed the model's ability to represent the dynamics of total leaf area and its partitioning into three leaf age cohorts 269 

(Maréchaux et al., submitted companion paper). For evaluation, we gathered leaf area index (LAI) datasets as follows: LAI 270 

from MODIS satellites at both sites, LAI from terrestrial lidar at Tapajos (Smith et al., 2019), and LAI from UAV-borne lidar 271 

at Paracou (unpublished data; Vincent et al., 2017). The MODIS LAI product was at 8 day and 500 m resolution, and pre-272 

processed in PLUMBER2 (Ukkoloa et al., 2020). At Tapajos, plant area index (PAI) was derived from terrestrial lidar scanning 273 

(TLS) performed every 1-2 months in 2010, 2012, 2015 and 2017 along four 1-km long transects representing 0.4 ha with a 274 

spatial resolution of about 3 m to characterise canopy porosity (Smith et al., 2019). PAI was derived from lidar hits following 275 

Stark et al. (2012) and based on the MacArthur–Horn transformation (MacArthur & Horn, 1969). This PAI was then converted 276 
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to LAI using an annual mean LAI of 5.7 (Stark et al., 2012). In Paracou, the PAI was derived from repeated UAV-borne lidar 277 

surveys, resulting in PAI mapping at 21 day and 1 m resolution between 2020 and 2022 over a 2.5 ha forest area. This PAI 278 

derived from UAV lidar was obtained by vertical integration of Plant Area Density (PAD) profiles previously recalibrated to 279 

match a TLS-derived PAD profile of a common 1-ha plot scanned in October 2019. This was required because the limited 280 

penetration of the UAV lidar yielded overestimation of raw PAD values (Vincent et al., 2023). This PAI was converted to LAI 281 

variation with a factor of 0.68, where the conversion factor is derived from other products. 282 

 283 

Simulated LAI variation per leaf age cohort (Eqs 56-57, Maréchaux et al. submitted companion paper) were compared 284 

qualitatively against the one derived from phenological cameras by Wu et al., (2016) at Tapajos and from the reanalysis of 285 

Yang et al. (2023) at both sites. Wu et al. (2016) analysed 478 images collected over 24 months from 65 tree crowns and fitted 286 

the transition from young to mature and from mature to old leaf pools, assumed to occur at 1 and 3 months, respectively. Yang 287 

et al. (2023) used global satellite observations of the TROPOMI satellite Solar Induced Fluorescence (SIF) sensor as an 288 

indicator of leaf photosynthesis variation, validated by in situ measurements, and set the transition from young to mature and 289 

from mature to old leaf pools, occuring at 1.71 and 5.14 months, respectively. By comparison, simulated leaf age per cohort 290 

depends on the individual leaf lifespan in TROLL 4.0 (see Maréchaux et al. submitted companion paper). 291 

2.5 Evaluation of carbon and water fluxes 292 

To assess the model’s ability to simulate carbon and water fluxes, we evaluated gross primary productivity (GPP, kgC m -2 293 

year-1) and evapotranspiration (ET, mm day-1). We extracted GPP and latent heat flux (LE, W m-2 half-hour-1) from the 294 

FLUXNET 2015 dataset (Pastorello et al., 2020). ET was derived from LE and temperature (T, in °C) using 𝐸𝑇 =295 

𝐿𝐸×60×30×10 −6

𝜆(𝑇)
 𝑤𝑖𝑡ℎ  𝜆(𝑇) = 2.501 − (2.361 × 10 3) × 𝑇  (Allen et al., 1998). GPP was obtained from net ecosystem 296 

exchange with the nighttime partitioning method (Reichstein et al., 2005). We summarised half-hourly GPP and ET into daily 297 

values by calculating the daily mean and sum. TROLL 4.0 carbon fluxes were also compared with a remotely sensed product 298 

of GPP derived from TROPOMI SIF using the formula 𝐺𝑃𝑃 =  15.343 × 𝑆𝐼𝐹 (Chen et al. 2022). We compared how the 299 

fluxes depended on environmental drivers in both simulated and observed data. Using the FLUXNET 2015 dataset (Pastorello 300 

et al., 2020), daily values of cumulative photosynthetically active radiation (PAR, mol m-2), maximum vapour pressure deficit 301 

(VPD, kPa), mean temperature (T, °C), and mean wind speed (WS, m s-1) were calculated, and simulated and observed 302 

responses of GPP and ET to PAR, VPD, T and WS were compared. TROLL 4.0 water fluxes were assessed using the relative 303 

variation of soil water content (RSWC, %) of the top horizon from the Paracou eddy flux tower (Bonal et al., 2008) and the 304 

relative variation of soil water content of the top horizon reanalysed against the climatic water deficit at Tapajos (Restrepo-305 

Coupe et al., 2024). RSWC is defined as the daily mean of soil water content (m3 m-3) divided by the annual 95th quantile of 306 

the daily mean. 307 

 308 
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All simulations were run using TROLL 4.0 (Maréchaux et al., submitted companion paper) wrapped in the R package rcontroll 309 

(Schmitt et al., 2023) and encapsulated in a Singularity image (Kurtzer et al., 2017) leveraging a Python Snakemake workflow 310 

(Köster et al., 2012) on a high performance computing platform using 100 cores. 311 

3 Results 312 

3.1 Forest structure and composition 313 

We calibrated background mortality rate (m) and crown radius scaling parameters (aCR  and bCR) at Paracou and Tapajos against 314 

observed aboveground biomass, total abundance and abundance per 5-cm dbh classes, and found m=0.035, aCR=1.80 and 315 

bCR=0.3860 at Paracou, and m=0.040, aCR=2.45 and bCR=0.7565 at Tapajos. The modelled aboveground biomass, total 316 

abundance and abundance per 5-cm dbh classes were in good agreement with observations (correlation coefficient, CC>0.99 317 

at both sites, Fig. 1). The three parameter values were very similar across the five best simulations, i.e. the ones minimising 318 

RRMSEP (m±0.0025, aCR±0.1 and bCR±0.057 at Paracou and  m±0.01, aCR±0.1 and bCR±0.0285 at Tapajos), and we used the 319 

values of the best simulation in all subsequent simulations. 320 

 321 

 322 
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Figure 1: Tree size structure at Paracou and Tapajos, expressed in terms of tree abundances per 5 cm-dbh classes. Comparison 323 
between distributions simulated by TROLL 4.0 after calibration of m, aCR and bCR in blue and the ones derived from field inventories 324 
of trees with dbh >10 cm in black, at Paracou (left) and Tapajos (right). Observed (black) and simulated (blue) densities of trees 325 
with dbh > 10 cm, and aboveground biomass are also provided. All simulated values correspond to the end-state of a 600-year 326 
regeneration from bare ground with calibrated values for m, aCR and bCR at each site. 327 

After calibration, the canopy height distribution simulated by TROLL 4.0 matched that measured by lidar aerial scanning 328 

(ALS), with a root mean square error of prediction (RMSEP) of the proportion of 1-m2 pixels per 1-m height class below 0.8% 329 

and a correlation coefficient (CC) above 0.91, despite a slight overestimation of low canopy areas in Paracou, at heights below 330 

20 m, and a slight underestimation of high canopy areas, above 40 m in Tapajos (Fig. 2).  For example, in Paracou, 4% of the 331 

1-m2 pixels scanned by ALS had a canopy height around 25m. An RMSEP of 0.8% means that TROLL simulations could lead 332 

to 3.2 or 4.8% of pixels with a canopy height of 25m. TROLL 4.0 simulations also reproduced the forest understory structure 333 

characterised by basal area (BA) and tree abundance distribution per 1-cm diameter classes for trees < 10 cm dbh at Paracou 334 

(Fig. 3).  However, TROLL 4.0 underestimated the number of small trees (2,139 vs. 3,787 trees ha-1), resulting in an 335 

underestimation of basal area (BA = 2.9 vs. 3.7 m2 ha-1). 336 

 337 

 338 

Figure 2: Canopy height distribution at Paracou and Tapajos, expressed in proportion of 1-m2 pixels (%) per 1-m height classes. 339 
Comparison between distributions derived from a canopy height model simulated by TROLL 4.0 (blue lines), the ones derived from 340 
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a canopy height model from airborne laser scanning (black lines). Simulated values and their confidence intervals correspond to the 341 
end-state of simulations of ten 4-ha 600-year regeneration from bare ground for each site. 342 

 343 

Figure 3: Understory tree size structure at Paracou, expressed in terms of basal area distributions (left) and tree abundance (right) 344 
per 1 cm-dbh classes. The figures compare distributions simulated by TROLL 4.0 in blue and field inventory observations in black. 345 
Simulated values and their confidence intervals correspond to the end-state of simulations of ten 4-ha 600-year regeneration from 346 
bare ground. Confidence intervals at 95 % are shown with error bars and are based on variations among plots (9 plots of 1 ha) for 347 
the observations. Simulated (blue) and observed (black) total basal area (left) and densities (right) for trees with dbh >1 cm and < 348 
10 cm are also provided. To the best of our knowledge, similar data was not available in Tapajos. 349 

At Paracou, the simulated and observed species rank-abundance curves were similar (Fig. 4), with a RMSEP of 3.67 trees ha-350 

1 and a CC of 0.93, but with an underestimation in the abundance of dominant species and an overestimation in the 351 

abundance of rare species resulting in a higher evenness overall. At Tapajos, the simulated and observed rank-abundance 352 

curves displayed similar patterns as at Paracou (RMSEP=3.62 trees ha-1 and CC=0.94) but amplified , with a strong 353 

underestimation of the abundance of dominant species and an overestimation of the abundance of rare species. 354 
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 355 

Figure 4: Species-rank abundance curves at Paracou and Tapajos. Comparisons between curves simulated by TROLL 4.0 (blue) 356 
and derived from field inventories at both sites. Simulations included 114 and 113 species at Paracou and Tapajos respectively. 357 
Curves derived from inventories were cut at the 114th species. Simulated values and their confidence intervals correspond to the 358 
end-state of ten 4-ha 600-year regeneration from bare ground. Confidence intervals at 95 % are shown with error bars and are 359 
based on variations among plots for observations. 360 

Functional trait distributions simulated by TROLL 4.0 were consistent with empirical ones at Paracou and Tapajos (Fig. 5), 361 

with a CC from 0.91 to 1.00 for all traits at both sites, except for leaf area at Paracou (CC=0.74) and Tapajos (CC=0.87). 362 

However, abundances of low wood density trees, high LA trees, and high LMA trees were underestimated in simulations 363 

when compared to observations at Paracou. 364 
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 365 

Figure 5: Functional trait distributions at Paracou and Tapajos. Distributions derived from field inventories (black) were based on 366 
botanical identification at the species level in Paracou and the genus level in Tapajos. Simulated distributions (blue) were based on 367 
the final stage of ten 4-ha 600-year regeneration from bare ground. Confidence intervals are shown with repeated lines and are 368 
based on variations among plots for observations and among repetitions for simulations. dbhmax : maximum diameter in m, LA: leaf 369 
area in cm2, LMA: leaf mass per area in g cm-3, Nmass: leaf nitrogen content per dry mass in mg g-1, Pmass: leaf phosphorus content 370 

per dry mass in mg g-1, 𝜋𝑡𝑙𝑝: leaf water potential at turgor loss point in MPa, WSG: wood specific gravity in g cm-3. 371 

3.2 Leaf phenology 372 

The calibration of the three parameters of the leaf shedding module against observed litterfall illustrated how each parameter 373 

affects the simulated timing and intensity of the litterfall peak during the dry season, with no or little effect on the background 374 

litterfall rate (Fig. A2). Calibration resulted in a best-fit 𝑎𝑇,𝑜 value of 0.2, and a 𝑏𝑇,𝑜 value of 0.015 at both sites. The 375 

calibrated 𝛿𝑜 differed across sites ( 𝛿𝑜=0.1 at Paracou and  𝛿𝑜=0.2 at Tapajos). The simulated seasonal variation of litterfall 376 

at Paracou and Tapajos shows qualitative agreement with the observed data (Fig. 6). Both empirical and simulated data showed 377 

a marked peak in litterfall during the dry season, despite a clear under-estimation of simulated litterfall flux during both wet 378 

and dry seasons, particularly at Tapajos, and a delayed peak during the dry season, particularly at Paracou, in comparison to 379 

observations. 380 

 381 
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 382 

Figure 6: Litterfall annual cycle from fortnightly litterfall fluxes at Paracou and Tapajos. Each thin line represents one year with 383 
points showing values at sampling dates, the thick lines represent polynomial smoothing among years, and the vertical yellow bands 384 
in the background correspond to the site's climatological dry season. Simulated values correspond to the last 10 years of 20-year 385 
simulations starting from the end-state of 600-year regeneration from bare ground with calibrated parameters at each site. 386 

The empirical LAI datasets displayed strikingly different results, illustrating the challenge of estimating LAI with confidence 387 

in dense tropical forests (Fig. 7, Tab. A2). MODIS-derived LAI displayed almost no seasonality with mean LAI values 388 
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around 6.0 m2 m-2 at both sites. At Paracou, LAI derived from UAV-borne lidar showed a clear seasonality, with lowest 389 

values around  5.5 m2 m-2 from April to June and highest values of almost 6.0 m2 m-2 in December, at the end of the dry 390 

season. At Tapajos, LAI derived from terrestrial lidar showed no seasonality, around 5.8 m2 m-2 throughout the year, but LAI 391 

derived from phenological cameras (PhenoCams) did display some seasonality, with lowest values at  5.5 m2 m-2 in June and 392 

highest values above 6.0 m2 m-2 in December, at the end of the dry season. These observations were compared with 393 

simulations. At Paracou, simulated LAI matched the one derived from UAV-borne lidar, both showing an increase during 394 

the dry season (CC=0.84, RMSEP=0.11 m2 m-2). At Tapajos, simulated LAI matched the empirical LAI derived from 395 

PhenoCams (CC=0.91, RMSEP=0.15 m2 m-2; Table A2).  396 

 397 

The different datasets gathered to estimate LAI dynamics per cohorts also showed contrasted patterns (Fig. 8 and Fig. A3). 398 

At Tapajos, PhenoCams indicate a maximum young leaf LAI reached during the dry season and a minimum during the wet 399 

season, with inverse patterns for old leaf LAI. TROLL 4.0 simulations yielded patterns consistent with these observations 400 

(Fig. 8). However, Yang et al.’s (2023) reanalysis predicts the exact opposite trends for young and old leaves, with a 401 

maximum young leaf LAI during the wet season and a minimum during the dry season. At Paracou, we could only compare 402 

simulated trends against Yang et al. (2023)’s reanalysis and the match was relatively poor (Fig 8).  403 

 404 
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Figure 7: Mean annual cycle of leaf area index (LAI) at Paracou and Tapajos, derived from fortnightly means, from different sources 405 
(see methods). Bands are the intervals of means across years, and the vertical yellow bands in the background correspond to the 406 
site's climatological dry season. Simulated values correspond to 10 years of simulations starting from the end-state of 600-year 407 
regeneration from bare ground with calibrated parameters at each site. 408 

 409 

Figure 8: Mean annual cycle of normalised leaf area index per leaf age cohorts, derived from fortnightly means, at Paracou and 410 
Tapajos. Note that the three leaf age cohorts (young, mature and old leaves) are not defined the same way in the three sources. Leaf 411 
age per cohort depends on the individual leaf lifespan in TROLL 4.0 (see Maréchaux et al., submitted companion paper), while the 412 
transition from young to mature and mature to old are respectively fixed to 1.71 and 5.14 months in Yang et al. (2023) and fitted to 413 
1 and 3 months in Wu et al. (2016). The vertical yellow bands in the background correspond to the site's climatological dry season. 414 
See figure A3 for absolute variation per cohort, site and dataset. Simulated values correspond to 10 years of simulations starting 415 
from the end-state of 600-year regeneration from bare ground with calibrated parameters at each site. 416 

3.3 Water and carbon fluxes 417 

TROLL 4.0 captured the seasonality of gross primary productivity (GPP) observed at the two sites, with an increase before the 418 

onset of the dry season, reaching its maximum during the dry season, and a decrease starting before or at the onset of the wet 419 

season (Fig. 9 and see Fig. A4 for interannual variations, Tab. A2). Comparison with eddy flux estimates with simulations 420 

were high both at Paracou (CC=0.60) and Tapajos (CC=0.46). TROLL 4.0 overestimated GPP at both sites, particularly during 421 

the dry season, with a RMSEP of 0.75 and 1.12 kgC m-2 year-1 when compared with both eddy flux and TROPOMI SIF 422 

estimates at Paracou and Tapajos, respectively. 423 
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 424 

Figure 9: Mean annual cycle of gross primary productivity for Paracou and Tapajos, derived from fortnightly means. The red lines 425 
represent the gross primary productivity estimated from TROPOMI SIF while the black lines represent the one derived from eddy 426 
flux measurements, and the blue lines the simulated gross primary productivity with TROLL 4.0. Bands are the intervals of means 427 
across ten years, and the vertical yellow bands in the background correspond to the site's climatological dry season. Simulated values 428 
correspond to 10 years of simulations starting from the end-state of 600-year regeneration from bare ground with calibrated 429 
parameters at each site. Inter-annual variations are shown in Figure A4. 430 

The seasonality of water flux was captured by TROLL 4.0 (Fig. 10 and see Fig. A5 for interannual variations, Tab. A2), with 431 

a pronounced increase in evapotranspiration (ET) during the dry season at both sites, and leading to CC of 0.66 and 0.70 when 432 

compared with eddy flux estimates at Tapajos and Paracou respectively. Although intra-annual variations of simulated and 433 

observed values overlapped, TROLL 4.0 tended to overestimate ET in Tapajos during the dry season, leading to RMSEP 434 

values of 0.60 and 0.75 mm day-1 when compared with eddy flux estimates at Paracou and Tapajos respectively. TROLL 4.0 435 

also captured the seasonality in RSWC of the top soil layer at Paracou and Tapajos (Fig. A6, Table A2, see Fig. A7 for absolute 436 

variation with varying depth), with a high RSWC in the wet season close to 100% and a sharp decrease in RSWC in the dry 437 

season, although overall smoother in simulations than field estimates. 438 

 439 
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 440 

Figure 10: Mean annual cycle of evapotranspiration for Paracou and Tapajos, derived from fortnightly means. The black lines 441 
represent the evapotranspiration derived from eddy flux measurements and the blue lines the evapotranspiration simulated with 442 
TROLL 4.0. Bands are the intervals of means across years, and the yellow vertical bands in the background correspond to the site's 443 
climatological dry season. Simulated values correspond to 10 years of simulations starting from the end-state of 600-year 444 
regeneration from bare ground with calibrated parameters at each site. Inter-annual variations are shown in Figure A5. 445 

Both eddy flux-derived and simulated GPP showed a positive logarithmic relationship with cumulative incoming PAR and 446 

maximum VPD, and a positive linear relationship with mean temperature at daily scale (Fig. 11). TROLL 4.0 predicted a 447 

higher PAR conversion to carbon under high irradiance, high VPD and high temperature conditions when compared to eddy 448 

flux estimates, consistent with the higher dry-season GPP in simulations (Fig. 9). Responses of SIF-derived GPP to climatic 449 

variables were weak in comparison to simulated and eddy flux derived GPP. Simulated ET was positively correlated with 450 

maximum VPD, cumulative PAR and mean temperature, similarly to eddy flux derived ET (Fig. 12). At Paracou, the 451 

relationships between environmental drivers and simulated ET, closely aligned with  the ones obtained from eddy flux 452 

estimates. However, at Tapajos, simulated ET was overestimated under high irradiance, VPD, temperature and windy 453 

conditions in comparison to eddy flux estimates. Simulated GPP and ET at both sites were more strongly controlled by 454 

environmental variables (higher R2 in Figs. 11-12) than eddy flux derived GPP and ET. 455 
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 456 

Figure 11: Daily averages of gross primary productivity as a function of daily maximum vapour pressure deficit, total incoming 457 
photosynthetically active radiation, average temperature, and average wind speed for model-, satellite- and eddy flux-based 458 
estimates at Paracou (top) and Tapajos (bottom). Lines illustrate the linear regression of form y ~ log(x), and text the squared 459 
Pearson’s R correlation coefficient. 460 
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 461 

Figure 12: Daily total evapotranspiration as a function of daily maximum vapour pressure deficit, total incoming photosynthetically 462 
active radiation, average temperature, and average wind speed for model- and eddy flux estimates at Paracou and Tapajos. Lines 463 
illustrate the linear regression of form y ~ log(x), and text the squared Pearson’s R correlation coefficient. 464 

4 Discussion 465 

Here we tested the performance of TROLL 4.0 in reproducing observed forest structure and diversity, but also water and 466 

carbon fluxes, and leaf dynamics. We conducted a detailed model evaluation for two Amazonian rainforest sites, Paracou and 467 

Tapajos, presenting contrasting climate and soil properties. Both sites have been intensively monitored over the past decades, 468 

and we compared the model outputs with available data. We now discuss the consistencies and discrepancies between 469 

simulated and observed patterns, potential uncertainties in our results, and the advantages and possible improvements of 470 

TROLL 4.0.  471 

4.1 Forest structure and composition 472 

TROLL 4.0 was found to jointly simulate realistic forest structure and species composition (Maréchaux et Chave, 2017). The 473 

calibration of three global parameters led to simulated tree abundances across size classes and basal area or aboveground 474 

biomass in good agreement with observations from forest inventories. Also, aerial lidar data allowed forest structure to be 475 

assessed independently of calibration data. This revealed a good ability of TROLL 4.0 to simulate the horizontal and vertical 476 
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structure of both forests, which is promising for various applications, including biomass estimation (Knapp et al., 2018). 477 

Understory inventories at Paracou also allowed us to independently evaluate TROLL 4.0’s ability to simulate tree community 478 

structure in the 1 to 10-cm tree diameter range. TROLL 4.0 simulated the distribution of smaller trees reasonably well, although 479 

it underestimated individuals from the smallest cohorts. This underestimation of the density of small trees may be partly 480 

explained by the fact that the one-metre resolution of the voxel grid used in TROLL 4.0 only allows for one tree per square 481 

metre of ground, whereas smaller trees may be squeezed into certain areas of the understorey. However the number of 482 

simulated small stems remains lower than the maximal potential number in simulations. Another explanation could be the lack 483 

of light heterogeneity in the understorey in simulations in comparison to  observations (Montgomery and Chazdon, 2001), thus 484 

limiting the opportunities for recruitment of small stems. Explorations of simulated micro-environmental variations within the 485 

canopy (de Frenne et al., 2019) and inclusion of trait ontogenetic shifts (Fortunel et al., 2019) could further help understand 486 

and improve TROLL’s ability to simulate forest structure in the understory.  487 

 488 

TROLL 4.0 attributes individual trees to botanical species and it permits tree functional traits to vary within species. It thus 489 

provides a finer-grained description of biodiversity compared to models based on plant functional types (e.g. Longo et al., 490 

2018), and uses a description matching the one of ecologists, in contrast with taxonomy-free continuous trait spectrum 491 

approaches (e.g. Sakschewski et al., 2015). The simulated species composition presented classically observed L-shaped profile 492 

of species rank abundance distribution in the two sites, but with an over-estimated species evenness resulting in under-abundant 493 

dominant species and over-abundant rare species, as already observed in previous versions of the model (Maréchaux and 494 

Chave, 2017). Several simulation factors could have resulted in the overestimation of species evenness. The species trait values 495 

were extracted from global databases and partially imputed and may therefore not represent the true trait values for the region 496 

concerned, which could affect the behaviour of individual species in the model. However, as this noise is random, it seems 497 

unlikely that the global values and imputation have led to the skewed species abundance. More likely, the simulations used an 498 

external seed rain representing immigration from a continuous forest matrix. We here implemented a homogeneous seed rain, 499 

in which all species are equally-abundant, as a conservative test of the model’s ability to represent community assembly. Here, 500 

the simulated composition after regeneration from bare ground is determined by species traits and their simulated effect on 501 

demographic processes and species fitness, rather than prescribed differences in seed rain. However, this homogeneous, and 502 

therefore unrealistic, seed rain maintains diversity in the simulated forest with a rescue effect, and can dampen species 503 

dominance by promoting less dominant species through a high immigration. The effects of the representation of seed 504 

production, dispersal and recruitment on simulated communities should be further explored in the future, especially for 505 

projections under disturbance scenarios where forest regeneration is key (Diaz-Yanez et al., 2024, Hanbury-Brown et al., 506 

2022). 507 

 508 

TROLL 4.0 also explicitly simulates forest functional diversity in the community. Simulated functional trait distributions 509 

matched well the observed distributions at both sites, as already observed in previous versions of the model (Maréchaux and 510 

Chave, 2017). In Paracou, the main discrepancies were the lack of individuals with high LMA (between 120 and 150 g m-2), 511 
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low wood specific gravity (below 0.4 g cm-3) and/or high leaf area (above 100 cm2). In contrast, in Tapajos, the model tended 512 

to simulate lower LMA and less negative turgor loss points on average. Since trait combinations are structured at the species 513 

level, and trait integration is high dimensional in tropical forests, with decoupled leaf and wood economic spectra (Baraloto et 514 

al., 2010) and weak associations between leaf turgor loss point and other leaf traits (Maréchaux et al., 2019), these 515 

discrepancies can be more easily interpreted at Paracou where the trait distributions are built on species-level (and not genus-516 

level) information. Regarding the lack of high LMA individuals, TROLL 4.0 underestimated the abundance of common species 517 

such as Lecythis persistens or Licania alba, which present high LMA. These species come from genera that are hyperdominant 518 

across the Amazon basin (ter Steege et al., 2013) but may be underrepresented in the simulations due to the overestimation of 519 

species evenness in TROLL 4.0 as discussed above. The lack of light wood and high leaf area individuals can be related to the 520 

underestimated abundances of light demanding and pioneer species with fast growth (Chave et al., 2009), such as the ones of 521 

the genus Cecropia. These species are known to quickly colonise forest gaps under high light conditions, thanks to fast carbon 522 

assimilation and growth, and the dispersal of a high number of small, potentially dormant, seeds, leading to an omnipresence 523 

of these species in the forest seed bank (Holthuijzen and Boerboom, 1982; Alvarez-Buylla and Martínez-Ramos, 1990). In 524 

TROLL 4.0, the seed-size mediated tolerance-fecundity trade-off (Muller-Landau et al., 2010) is assumed to be perfectly 525 

equalising, and all species present in the local seed bank and able to strive under the local light availability have the same 526 

probability of being  recruited per seed. However, this assumption likely disadvantages gap-affiliated species with a 527 

colonisation strategy, and could easily be revisited in future model developments.  528 

4.2 Leaf phenology 529 

We calibrated and evaluated the new phenology module of TROLL 4.0. The calibration of the three module parameters (𝑎𝑇,𝑜, 530 

𝑏𝑇,𝑜 and 𝛿𝑜), which together control the variation of old leaf fall under drying conditions, was conducted using litterfall trap 531 

data. This resulted in a realistic litterfall seasonality with a peak during the dry season as already documented (Manoli et al., 532 

2018, Chave et al., 2010, van Langenhove et al., 2020). Interestingly, the calibration resulted in the same values for two 533 

parameters at the two sites (𝑎𝑇,𝑜, 𝑏𝑇,𝑜) and close values for the third one (𝛿𝑜) to which the simulated litterfall pattern is less 534 

sensitive (Fig. A2). At both sites, simulations with the mean value of the third parameter resulted in similar evaluations (not 535 

shown). This suggests a good transferability of the phenology module across sites without the need for site-specific calibration, 536 

although this remains to be further tested at additional sites and in contrasted conditions (e.g. Restrepo-Coupe et al., 2017). A 537 

faster shedding of old leaves was assumed to depend on soil water potential in the root zone, rather than soil water content, on 538 

individual leaf water potential at turgor loss point, and on tree size. These are biologically reasonable hypotheses and this 539 

supports a good generality of the module. However, the current implementation of leaf dynamics in TROLL 4.0 leads to an 540 

underestimation of the flux of litterfall in wet and dry seasons and, as a result, of total annual litterfall at both sites. In TROLL 541 

4.0, leaf lifespan was parameterized based on an empirical relationship with leaf structure (leaf mass per area; Maréchaux et 542 

al., companion paper). Previous relationships provided in the literature (Reich et al., 1991; Reich et al., 1997; Wright et al., 543 

2004) provided contrasting leaf lifespan estimates, with the one implemented in TROLL 4.0 providing among the highest 544 

values, calling for a more in-depth exploration of the reliability and transferability of these empirical relationship. Alternative 545 
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representations, such as the ones based on optimality principles (Kikuzawa 1991, Franklin et al., 2020, Manzoni et al., 2015), 546 

and their combination with the environmentally-driven old leaf shedding acceleration implemented in the new module could 547 

be explored in the future.  548 

 549 

The evaluation of leaf area index (LAI) and its dynamics was difficult due to the number of products that yield inconsistent 550 

time series. Remotely sensed MODIS LAI showed a very small seasonal variation with a slight increase of LAI starting at the 551 

beginning of the dry season at both sites. However, MODIS LAI data products are known to be susceptible to the uncertainty 552 

affecting the bidirectional reflectance, and to saturate at high LAI values (Petri and Galvão, 2019). Local measurements of 553 

LAI through UAV-borne lidar in Paracou showed a stronger increase of total LAI of 0.5 m2 m-2 starting at the beginning of 554 

the dry season, and leading to a maximum in the dry season. This pattern of variation was in strong agreement with that 555 

simulated for LAI by TROLL 4.0. Similarly, local measurements of top canopy LAI derived from phenological cameras in 556 

Tapajos (Wu et al., 2016) also showed a high increase of total LAI in the dry season, above 0.5 m2 m-2, also in good agreement 557 

with the seasonal LAI variation simulated by TROLL 4.0 at that site. By contrast, the LAI derived from terrestrial vertical 558 

lidar in Tapajos showed almost no variations (Smith et al., 2019), and such differences with both the patterns derived from 559 

phenological cameras and simulations need to be further scrutinised. Among potential explanations, LAI from TLS in Tapajos 560 

was adjusted to the annual mean of 5.7 (Stark et al., 2012), leading to lower absolute variations than what was obtained 561 

elsewhere, and used coarse spatial and temporal resolutions over small spatial and temporal extents (see material and methods). 562 

The discrepancy with simulated patterns could also be linked to uncertainties in LAI variations in the understory in our 563 

simulations. Recent studies have suggested opposite variations in LAI between the canopy and the understorey (Nunes et al., 564 

2022), which should be further explored with TROLL 4.0. Overall, while obtaining a robust estimate of LAI temporal variation 565 

in tropical forests remains a challenge (Vincent et al., 2023; Bai et al., 2023), the relative variation of LAI simulated by TROLL 566 

4.0 matched the most reliable products at each site, providing an encouraging assessment of this model’s ability. Importantly, 567 

while total LAI variation remains limited on average within a year in tropical rainforests, this hides important turnover across 568 

leaf ages and species, and to ensure robust  predictions models should endeavour to represent such turnover and its underlying 569 

processes (Wu et al., 2017). 570 

 571 

The dry-season increase in total LAI simulated in TROLL 4.0 corresponds to a rejuvenation of the canopy leaf cover associated 572 

with a decrease in the LAI of old leaves at the beginning of the dry season, directly followed by an increase in the LAI of 573 

young leaves during the dry season. This turnover is in very good agreement with the one captured by phenological cameras 574 

at Tapajos (Wu et al., 2016) and documented in other studies (Yang et al., 2021; Doughty and Goulden, 2008), while the SIF-575 

derived young LAI pattern (Yang et al., 2023) showed an opposite pattern at this site. The main difference in simulated cohorts 576 

between the two sites is the continuous dominance of old LAI in Tapajos while mature leaves dominated at the end of the dry 577 

season in Paracou. This dominance of older (and less efficient) leaves in Tapajos simulations may be linked to the 578 

underestimated litterfall flux and soil water depletion during the dry season at this site. However, the relative proportion of 579 

leaf area across the different leaf age pools within and across datasets strongly depends on the definition of the leaf age pools 580 
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themselves. These pools depend on the individual leaf lifespan in TROLL 4.0 (see section 2.6.2 in Maréchaux et al., submitted 581 

companion paper), while the transition from young to mature and mature to old are respectively fixed to 1.71 and 5.14 months 582 

in Yang et al. (2023) and fitted to 1 and 3 months in Wu et al. (2016). These contrasting approaches may explain the higher 583 

relative importance of old leaves in Wu et al. (2016) compared to Yang et al. (2023) and the intermediate values of TROLL 584 

4.0 (Fig. 6). The seasonal dynamics of leaf cohorts remains poorly known in tropical forests and additional high-resolution 585 

optical imagery, e.g. by drones or phenological cameras, would be extremely useful to better document these patterns. 586 

4.3 Water and carbon fluxes 587 

At Tapajos, DGVMs simulated opposite seasonal trends in carbon and water fluxes compared to the observed ones (e.g. Fig. 588 

1 in Chen et al., 2020; Fig. 5 in Longo et al., 2019b; Fig. 3 in Restrepo-Coupe et al., 2017). In contrast, TROLL 4.0 showed a 589 

good ability to represent the dynamics of both carbon and water fluxes estimated with eddy covariance data. In particular, 590 

TROLL 4.0 captures the dry season increase in gross primary productivity (GPP) and evapotranspiration (ET) documented for 591 

light-limited forests (Guan et al. 2017, Wagner et al. 2016, Aguilos et al. 2018). Simulated GPP and ET also presented realistic 592 

daily responses to environmental drivers, namely vapour pressure deficit (VPD), temperature, incident radiation and wind 593 

speed, both in direction and relative magnitude.  594 

 595 

However, at Tapajos, we found that TROLL 4.0 overestimated ET during the dry season in comparison to eddy flux-derived 596 

ET values, under high irradiance, high VPD and high temperature. Simulated ET consists in tree transpiration summed over 597 

simulated individuals, water evaporation from the topsoil layer, and the direct evaporation of the rainfall intercepted by the 598 

canopy (Kunert et al., 2017). TROLL 4.0 may underestimate the stomatal control of transpiration during the dry season at 599 

Tapajos. Accordingly, the control of ET by atmospheric conditions in Tapajos was overestimated in simulated data in 600 

comparison to observations, suggesting a stronger coupling of vegetation and atmosphere at that site than simulated (de Kauwe 601 

et al., 2017). Underestimation of stomatal control can result from the representation of stomatal conductance and its responses 602 

to soil water availability. These are active areas of research and alternative representations could be considered in the future 603 

(Wolf et al. 2016; Anderegg et al. 2018; Sabot et al., 2022, Lamour et al., 2022; see sections 2.5.2 and 2.5.3 and Appendix B 604 

in Maréchaux et al. submitted companion paper). Alternatively, during the dry season, a lack of stomatal control can be due to 605 

an overestimation of soil water availability in the model. Soil water content dynamics depend on both the soil depth (Fig. A7) 606 

and on the soil hydraulic properties. The two sites are known to present heterogeneity in soil properties but we here performed 607 

simulations with homogenous soil properties, both horizontally and vertically. For instance in Paracou, the topsoil layer is 608 

sandier than the 15-30 cm layer (Van Langenhove et al., 2021). Although TROLL 4.0 quantitatively captures the soil water 609 

depletion observed during the dry season, it appears to underestimate this depletion compared to empirical estimates at both 610 

sites (Fig. A6). This underestimation occurs in spite of the agreement between simulated and eddy covariance-derived ET 611 

during the dry season in Paracou, and of the higher simulated than eddy-covariance-derived ET during the dry season at 612 

Tapajos. Testing the model’s sensitivity to soil layer thickness and properties will be important to perform prior to forest 613 

projections under drier future conditions and model spatial up-scaling (Meunier et al., 2022). For example, simulations with 614 
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the ED2 model suggested that forest responses to drier conditions at Tapajos strongly depended on soil texture (Longo et al., 615 

2018). Finally, the greater disagreement between simulated and eddy-covariance-derived ET at Tapajos than Paracou also calls 616 

for an in-depth evaluation of the global reanalysis precipitation data at this site. More generally, climate of the Amazon is 617 

notoriously challenging for models and it is important to further explore climate forcings in vegetation models. 618 

 619 

TROLL 4.0 tended to overestimate empirical GPP estimates, particularly during the dry season, in comparison to both eddy 620 

covariance- and SIF-derived GPP. GPP is driven by the photosynthetic activity of the canopy, which depends on multiple 621 

processes (Diao et al., 2023; Slot et al., 2024) and further work would be needed to precisely discriminate among them, while 622 

accounting for eddy covariance uncertainties (Cui and Chui, 2019). Among others, simulated GPP is sensitive to the parameters 623 

that control light transmission and absorbance (light extinction coefficient, apparent quantum yield; Maréchaux & Chave, 624 

2017). Both are assumed fixed and constant in simulations, but are known to vary with leaf angle distribution and leaf optical 625 

properties, depending on micro-environmental conditions and species (Long et al., 1993; Poorter et al., 1995; Meir et al., 2000; 626 

Kitajima et al., 2005). Also, the response of leaf-level gas exchanges to soil water availability shows no clear consensus across 627 

models (Powell et al, 2013; Trugman et al., 2018), and could be underestimated during the dry season in TROLL 4.0 628 

simulations. Simulated GPP was higher than inferred from eddy covariance data, which was itself higher than GPP inferred 629 

from SIF satellite data (Chen et al., 2022). The eddy covariance-derived GPP were obtained from the net ecosystem exchanges 630 

using the nighttime partitioning method (Reichstein et al., 2005). This method was developed for temperate forests with greater 631 

temperature variations than tropical forests, which could therefore bias the empirical estimates. In addition, the eddy flux 632 

method has long been reported to underestimate CO2 fluxes (Baldocchi, 2003; Gao et al., 2019). Similarly, even though solar 633 

induced fluorescence offers a great potential for the evaluation or the calibration of seasonal carbon fluxes in vegetation 634 

models, especially as the tropics are underrepresented by eddy flux tower networks (Villarreal et Vargas, 2021), current SIF 635 

products should be used with care (Marrs et al., 2020).  636 

5 Conclusions 637 

Here we evaluated the TROLL 4.0 individual-based forest dynamics model, which is capable of jointly simulating forest 638 

structure, diversity and functioning. To this end, we assembled data from forest inventories, eddy flux towers, litterfall traps, 639 

UAV-borne and terrestrial lidar, phenological cameras, and satellite products at two Amazonian forest sites and found that 640 

TROLL 4.0 was able to realistically simulate the forest structure and composition, water and carbon fluxes, and leaf area 641 

dynamics. In using data of different nature and under the control of different processes, we limited the emergence of equi-642 

finality issues (Medlyn et al., 2005), suggesting a good transferability and robustness of TROLL 4.0. 643 

 644 

Comparison with field inventories, aerial and satellite data confirm TROLL 4.0’s ability to realistically simulate the structure 645 

and composition of tropical forests, without imposing constraints beyond the species pool and calibrating more than three 646 

parameters. Discrepancies between observed and simulated tree abundances in small size classes and abundance of trait values 647 
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specific to colonising species suggest further developments of regeneration processes are needed, a worthy endeavour in the 648 

context of increased disturbance regimes. TROLL 4.0 was further able to simultaneously simulate the seasonality of 649 

productivity, evapotranspiration and leaf area in these two light-limited forests, as opposed to many current DGVMs (Chen et 650 

al., 2020; Restrepo-Coupe et al., 2017; Longo et al., 2019). The model’s ability to simulate ecosystem fluxes is further shown 651 

by the responses of carbon and water fluxes to environmental drivers, whose direction and relative importance were well 652 

aligned with observations at both sites despite contrasting climate and soil properties. Additionally, the dynamics of total leaf 653 

area appeared realistically partitioned into different leaf pools, as shown by the leaf rejuvenation during the dry season in these 654 

systems (Wu et al., 2016; Yang et al., 2021). However, further inspection of the leaf area dynamics across the canopy vertical 655 

profile would be useful. Also, the model overestimation of productivity and evapotranspiration during the dry season calls for 656 

a more in-depth exploration of the model representation of respiration, plant hydraulics (e.g., stomatal control), and soil 657 

hydrology. 658 

 659 

Overall, our analyses establish the suitability of TROLL 4.0 for simulating forest structure, diversity and ecosystem functioning 660 

in short- and long-term studies of tropical forest dynamics, paving the way for multiple applications (Maréchaux et al., 2021). 661 

TROLL 4.0 could thus be used for projections of the effects of climate change on tropical forests, and exploration of the effect 662 

of biodiversity on forest resilience to these changes (Sakschewski et al., 2016). Similarly, as TROLL 4.0 retains the species-663 

level taxonomic description, it can also help explore the effects of management practices such as timber production, for which 664 

half of tropical forests are designated (Blaser et al., 2011). While the development of TROLL 4.0 will continue, in light of 665 

knowledge improvement, novel data collection and identification of uncertainties and discrepancies, we believe it represents 666 

a valuable tool for addressing the major challenges tropical forests are currently facing.  667 

Code and data availability 668 

The TROLL version 4.0 and further developments are publicly available on GitHub as a C++ standalone at 669 

https://github.com/TROLL-code/TROLL or wrapped into an R package at https://github.com/sylvainschmitt/rcontroll/. All the 670 

code associated with the analyses described in this paper are available at https://github.com/sylvainschmitt/troll_eval and 671 

permanently stored at add a zenodo doi after acceptance with corresponding analyses notebook at 672 

https://sylvainschmitt.github.io/troll_eval/. Inventories data for Paracou trees over 10 cm are available through request on the 673 

CIRAD dataverse: https://dataverse.cirad.fr/dataverse/paracou. Paracou trees understory trees are available through request, 674 

PI: GS, GD, JC. Aerial Lidar Scanning from Paracou are available through request (PI: GV) and from dos-Santos et al. (2019) 675 

for Tapajos. Species data are available from Jucker et al., (2022), Maréchaux et al., (2015), Guillemot et al., (2022), Vleminckx 676 

et al., (2021), Maréchaux et al., (2019), Nemetschek et al., (2024), Schmitt and Boisseaux (2023), Boisseaux et al., (submitted), 677 

Ziegler et al., (2019), Baraloto et al., (2010), and from TRY  (Kattge, Bönisch, et al., 2020). Soil data have been collected from 678 

Van Langenhove et al., (2021), Silver et al., (2000), Quesada et al., (2010), Sabatier et al., (1997), and Nepstad et al., (2002). 679 

Eddy covariance data from Paracou and Tapajos sites are available on FLUXNET at https://fluxnet.fluxdata.org (last access: 680 
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6 September 2023). ERA5-Land data are available on the Climate Data Store: 681 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview. TROPOMI SIF satellite data are 682 

available in Chen et al., (2022). Litterfall data at Tapajos are available online through the Oak Ridge National Laboratory 683 

(ORNL) Distributed Active Archive Center (DAAC): https://daac.ornl.gov/LBA/guides/CD10_Litter_Tapajos.html and upon-684 

request at Paracou, PI: DB.  MODIS LAI data are available online and were extracted from PLUMBER2 on Research Data 685 

Australia: https://researchdata.edu.au/plumber2-forcing-evaluation-surface-models/1656048. Terrestrial LAD data from 686 

Tapajos are available in Smith et al., (2019). Lidar PAD data from Paracou are available upon-request, PIs: NB and GV. LAI 687 

variations among young, mature and leaf cohorts are available from the reanalysis of Yang et al. (2023) at: 688 

https://figshare.com/articles/dataset/Leaf_age-dependent_LAI_seasonality_product_Lad-689 

LAI_over_tropical_and_subtropical_evergreen_broadleaved_forests/21700955/4 and from the phenological camera of Wu et 690 

al., (2016) at: https://datadryad.org/stash/dataset/doi:10.5061/dryad.8fb47. Tapajos soil moisture data from Restrepo-Coupe et 691 

al. (2024) are available at: https://datadryad.org/stash/dataset/doi:10.5061/dryad.d51c5b08g. 692 
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Appendix 1153 

Table A1: TROLL 4.0 global parameters. 1154 

Abbreviation Definition Units Value Nature* Reference 

ca Carbon free air concentration µmol mol-1 375 Constant  

Press Atmospheric pressure kPa 101 Constant  

kgeom Light extinction coefficient, 

reflecting leaf geometric 

arrangement 

unitless 0.5 Constant Ross 1981 

absorptancelea

ves 

leaves absorptance unitless 0.83 Literature Long et al., 1993; 
Poorter et al., 1995 

𝜃 Curvature factor (Farquhar model 

parameter) 

unitless 0.7 Literature Farquhar et al., 1980 

𝑔0 leaf minimum conductance for 

water vapor 

mmol H20 m-2 s-1 5 Literature Duursma et al., 

2019 

𝑎𝑇,𝑜 Phenological parameter that  

modulates old leaf drought 

tolerance  

unitless  Calibrated  

𝑏𝑇,𝑜 Phenological parameter that 
modulates the height dependence 
of leaf susceptibility to drought  

MPa  Calibrated  

𝛿𝑜 Phenological parameter that 

controls the pace of old leaf 

shedding acceleration  

unitless  Calibrated  

𝑓𝑤𝑜𝑜𝑑 Fraction of carbon allocated to 

wood 

unitless 0.35 Literature Aragão et al., 2019; 
Malhi et al., 2011 
 

𝑓𝑐𝑎𝑛𝑜𝑝𝑦 Fraction of carbon allocated to 

canopy 

 0.25 Literature Aragão et al., 2019; 
Malhi et al., 2011 
 

fgap Fraction of gaps in the tree crown  0.15 Literature  Fischer et al., 2019 
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aCR Crown radius intercept unitless  Calibrated  

bCR Crown radius slope unitless  Calibrated  

aCD Crown depth intercept m 0 Literature Chave et al., 2005 

bCD Crown depth slope unitless 0.2 Literature Chave et al., 2005 

𝑠ℎ𝑎𝑝𝑒𝑐𝑟𝑜𝑤𝑛 Crown shape parameter  0.72 Calibrated  

Ntot Intensity of the external seed rain seeds ha-1 50,000 Assumed  

ns Number of reproduction 

opportunities per mature tree  

seeds tree-1 10 Assumed  

𝑚 refeReference background mortality 

rate 

death year-1  Calibrated  

𝑣𝑇 Variance of the flexion moment 

for treefall 

 0.021 Calibrated  

𝜎ℎ  Intraspecific variation in height 

(log scale) 

m 0.19 Inferred Baraloto et al.,  2010 

𝜎𝑐𝑟  Intraspecific variation in crown 

radius (log scale) 

m 0.29 Calibrated Fischer et al., 2019 

𝜎𝑐𝑑 Intraspecific variation in crown 

depth (log scale) 

m 0   

𝜎𝑑𝑏ℎ𝑚𝑎𝑥  Intraspecific variation in 

maximum diameters (log scale) 

m 0.05 Inferred Baraloto et al.,  2010 

𝑐𝑜𝑟𝑟𝑐𝑟−ℎ  Intraspecific correlation between 
crown radius and height 

 0   

𝜎𝑃 Intraspecific variation in 

phosphorus (log scale) 

mg g-1 0.24 Inferred Baraloto et al.,  2010 

𝜎𝑁 Intraspecific variation in nitrogen 

(log scale) 

mg g-1 0.12 Inferred Baraloto et al.,  2010 

𝜎𝐿𝑀𝐴 Intraspecific variation in leaf 

mass per area (log scale) 

g  m-2 0.24 Inferred Baraloto et al.,  2010 

https://doi.org/10.5194/egusphere-2024-3106
Preprint. Discussion started: 10 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

46 
 

𝜎𝑤𝑠𝑔 Intraspecific variation in wood 

specific gravity 

g cm-3 0.06 Inferred Baraloto et al.,  2010 

𝜎𝐿𝐴  Intraspecific variation in leaf area 

(log scale) 

cm2 0.48 Inferred Schmitt and 

Boisseaux 2023 

𝜎𝑡𝑙𝑝 Intraspecific variation in turgor 

loss point (log scale) 

MPa 0.10 Inferred Schmitt and 

Boisseaux 2023 

𝑐𝑜𝑟𝑟𝑁−𝑃 Intraspecific correlation between 
nitrogen and phosphorous 

 0.65 Inferred Baraloto et al.,  2010 

𝑐𝑜𝑟𝑟𝑁−𝐿𝑀𝐴 Intraspecific correlation between 
nitrogen and leaf mass per area 

 -0.43 Inferred Baraloto et al.,  2010 

𝑐𝑜𝑟𝑟𝑃−𝐿𝑀𝐴 Intraspecific correlation between 
phosphorus and leaf mass per 
area 

 -0.39 Inferred Baraloto et al.,  2010 

*Assumed is a value that is supposed; Calibrated is a value that was previously calibrated; Constant is a fundamental physic constant; 1155 
Literature is a value prescribed from the literature. 1156 
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Table A2: Evaluation of forest structure, composition and fluxes explored at Paracou and Tapajos. Evaluations include the goodness-1158 
of-fit R2 from the linear regression with a null intercept, the Pearson’s r correlation coefficient CC, the root mean square error of 1159 
prediction RMSEP, the standard deviation of the error of prediction SD.  1160 

Site Variable Unit Observati
ons 

Temporal 
resolution 

R2 CC RMSEP SD 

Paracou height % Plane single 0.93 0.95 0.76 0.76 

Tapajos height % Plane single 0.94 0.94 0.56 0.55 

Paracou height % Satellite single 0.95 0.96 0.55 0.55 

Tapajos height % Satellite single 0.92 0.91 0.69 0.62 

Paracou BA 
understory 

m2 ha-1 Inventory single 0.94 0.90 0.12 0.08 

Paracou Abundance 
understory 

ha-1 Inventory single 0.99 1.00 342.15 309.81 

Paracou Rank-
abundance 

ha-1 Inventory single 0.85 0.93 3.67 3.58 

Tapajos Rank-
abundance 

ha-1 Inventory single 0.74 0.94 3.63 3.48 

Paracou GPP kgC m-2 year-1 eddy flux day 0.97 0.60 0.75 0.67 

Tapajos GPP kgC m-2 year-1 eddy flux day 0.97 0.45 1.12 0.67 

Paracou GPP kgC m-2 year-1 Satellite day 0.95 0.45 1.18 0.80 

Tapajos GPP kgC m-2 year-1 Satellite day 0.96 0.22 1.54 0.28 

Paracou LAI m2 m-2 Satellite 15 days 1.00 0.69 0.29 0.13 

Tapajos LAI m2 m-2 Satellite 15 days 1.00 0.55 0.26 0.17 

Paracou LAI m2 m-2 Drone 15 days 1.00 0.84 0.11 0.11 

Tapajos LAI m2 m-2 Terrestrial 15 days 1.00 0.25 0.32 0.20 

Tapajos LAI m2 m-2 Phenocam 15 days 1.00 0.91 0.11 0.08 

Paracou ET mm day-1 eddy flux day 0.96 0.69 0.60 0.60 

Tapajos ET mm day-1 eddy flux day 0.96 0.75 0.75 0.63 

Paracou RSWC % eddy flux day 0.97 0.77 0.24 0.13 

Tapajos RSWC % eddy flux day 0.99 0.39 0.20 0.11 

 1161 
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 1162 

Figure A1: Representativity of imputed functional traits values (red) against raw functional trait values (blue) from various datasets 1163 

(see methods). Traits were imputed using predictive means matching for dbhmax, hlim, and 𝜋𝑡𝑙𝑝 only. The number in each subplots 1164 
represents the number of species with a trait value in the raw data and after imputation composing respectively the blue and red 1165 
curves.  1166 
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 1167 

Figure A2. Effect of each parameter of the new leaf shedding module on the simulated timing and intensity of the litterfall peak 1168 
during the dry season. Top panels illustrate simulated variations of litterfall at both sites for varying 𝒂𝑻,𝟎, 𝒃𝑻,𝟎, and 𝛿𝟎 with the other 1169 
parameters fixed to a calibrated value. Bottom panels illustrate the corresponding timing and intensity of the dry season litterfall 1170 
peak: (i) the day of the litterfall peak as the julian day of the maximum annual value (day), and (ii) the ratio between the peak value 1171 
(computed as the average of litterfall flux over the two consecutive time intervals before and after the peak day)  divided by the basal 1172 
flux (computed as the average between January and April) (ratio). 𝒂𝑻,𝟎 mainly limited the intensity of the peak with a peak up to 60 1173 
times the wet season base litter flux with small parameter values close to 0.01 and no peak with values greater than 0.3, when 1174 
𝒃𝑻,𝟎=0.02 and 𝛿𝟎 =0.2. Values of 𝒂𝑻,𝟎 greater than 0.1 also resulted in a later peak during the dry season. 𝒃𝑻,𝟎 mainly influenced the 1175 
date of the simulated peak during the dry season, as well as the intensity of the simulated peak for values greater than 0.1. Indeed, 1176 
low values of 𝒃𝑻,𝟎 , close to 0.01, resulted in a peak starting in September, while high values showed a peak starting in December, 1177 
when 𝒂𝑻,𝟎=0.2 and 𝛿𝟎=0.2. Finally, 𝛿𝟎 appeared to have a smaller influence on the intensity and timing of the simulated litter peaks. 1178 
Higher values of 𝛿𝟎 increased the duration of the simulated peaks or the litter flux between two peaks during the same dry season. 1179 
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 1181 

Figure A3: Mean annual cycle of leaf area index per leaf age cohorts, derived from fortnightly means, at Paracou and Tapajos. Note 1182 
that the three leaf age cohorts (young, mature and old leaves) are not defined the same way in the three sources. Leaf age per cohort 1183 
depends on the individual leaf lifespan in TROLL 4.0 (see Maréchaux et al., submitted companion paper), while the transition from 1184 
young to mature and mature to old are respectively fixed to 1.71 and 5.14 months in Yang et al. (2023) and fitted to 1 and 3 months 1185 
in Wu et al. (2016). Bands are the intervals of means across years, and the vertical yellow bands in the background correspond to 1186 
the site's climatological dry season.  1187 
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 1188 

 1189 

 1190 

Figure A4: Daily and monthly means of gross primary productivity for Paracou and Tapajos. Dark lines are the monthly means, 1191 
semi-transparent lines are the daily means variations with the exception of satellite data for which data are available only every 8 1192 
days.  1193 
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 1194 

 1195 

Figure A5: Daily and monthly total of evapotranspiration for Paracou and Tapajos. Dark lines are the monthly means, semi-1196 
transparent lines are the daily means variations. 1197 

 1198 
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 1199 

Figure A6: Mean annual cycle from daily means of relative soil water content for Paracou and Tapajos for the topsoil layer up to 10 1200 
cm. Dark lines are the daily mean across years, semi-transparent lines are the daily means per year. The vertical yellow bands in 1201 
the background  correspond to the site's climatological dry season. 1202 
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https://doi.org/10.5194/egusphere-2024-3106
Preprint. Discussion started: 10 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 

54 
 

 1204 

Figure A7: Mean annual cycle from daily means of soil water content for Paracou and Tapajos at different depths. The depth value 1205 
indicates the maximum depth of the layer. Dark lines are the daily means across years, and bands are the intervals of means across 1206 
ten years The vertical yellow bands in the background  correspond to the site's climatological dry season. 1207 
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