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Short summary: We describe TROLL 4.0, a simulator of forest dynamics that represents trees in a virtual space at one-meter 12 

resolution. Tree birth, growth, death and the underlying physiological processes such as carbon assimilation, water 13 

transpiration and leaf phenology depend on plant traits that are measured in the field for many individuals and species. The 14 

model is thus capable of jointly simulating forest structure, diversity and ecosystem functioning, a major challenge in 15 

modelling vegetation dynamics. 16 

 17 

Abstract. TROLL 4.0 is an individual-based forest dynamics model that is capable of jointly simulating forest structure, 18 

diversity and ecosystem functioning, including the ecosystem water balance and productivity, leaf area dynamics and the tree 19 

community functional and taxonomic composition. It represents ecosystem flux processes in a manner similar to dynamic 20 

global vegetation models, while adopting a representation of plant community structure and diversity at a resolution consistent 21 

with that used by field ecologists. Specifically, trees are modeled as three-dimensional individuals with a metric-scale spatial 22 

representation, providing a detailed description of ecological processes such as competition for resources and tree demography. 23 

Carbon assimilation and plant water loss are explicitly represented at tree level using coupled photosynthesis and stomatal 24 

conductance models, depending on the micro-environmental conditions experienced by trees. Soil water uptake by trees is also 25 

modelled. Physiological and demographic processes are parameterized using plant functional traits measured in the field. Here 26 

we provide a detailed description and discussion of the implementation of TROLL 4.0. An evaluation of the model at two 27 

tropical forest sites is provided in a companion paper (Schmitt et al., submitted companion paper). TROLL 4.0’s representation 28 

of processes reflects the state of the art, and we discuss possible developments to improve its predictive capability and its 29 

capacity to address challenges in forest monitoring, forest dynamics and carbon cycle research. 30 
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1 Introduction 32 

Modelling vegetation dynamics remains a major challenge (Prentice et al., 2015; Song et al., 2021; Mahnken et al., 33 

2022), and the wide variety of modelling concepts that coexist depend on models’ initial objectives. Early versions of global 34 

vegetation models were developed to provide boundary conditions for energy, carbon and water budgets in global atmospheric 35 

models (Sellers et al., 1986, 1997). With the refinement of modeling concepts and computer power, feedback loops between 36 

the atmosphere and vegetation have gradually been taken into account (Charney, 1975; Cox et al., 2000; Meir et al., 2006), 37 

leading to an improved representation of fluxes of energy, carbon and water across the vegetation layer (Fisher et al., 2015; 38 

Moorcroft, 2003; Pitman, 2003). However, dynamic global vegetation models (DGVMs) typically adopt a simplified 39 

representation of floristic composition and vegetation structure (Fisher et al., 2014; Prentice et al., 2007). In many of these 40 

models, fluxes between vegetation and the atmosphere are still calculated in an average environment per grid cell (e.g. 1°*1°), 41 

for an average leaf of an individual drawn from a dozen of plant functional types (PFTs). The diversity of plant strategies is 42 

therefore typically represented by a small number of PFTs even in highly diverse tropical forests (Fisher et al., 2014; Poulter 43 

et al., 2011).  44 

In parallel, stand-scale process-based models have been developed to better understand the exchanges between 45 

vegetation and the atmosphere through an up-scaling of fine-scale ecophysiological processes, and to account for within-stand 46 

micro-environmental heterogeneity (Wang and Jarvis, 1990; Gu et al., 1999; Williams et al., 1996; Ogée et al., 2003; Duursma 47 

and Medlyn, 2012; Fyllas et al., 2014). These process-based models are conceptually close to DGVMs, but they implement a 48 

more detailed representation of plant structure at the stand scale, and they have nurtured some important advances in DGVM-49 

development over the past decades (e.g., Chen et al., 2016). Typically used to assimilate eddy-flux data, they do not include 50 

demographic processes however. 51 

Forest growth models have a different history as they were initially developed to predict successional dynamics and 52 

inform forest management (Watt, 1947; Botkin et al., 1972; Vanclay, 1994; Porté and Bartelink, 2002; Liang and Picard, 53 

2013). A key innovation have been gap models that represent recruitment, growth, mortality and competition between 54 

individual trees within forest patches. Forest patches are typically the size of a canopy opening created by the fall of a dominant 55 

tree (gap, or chablis, Bugmann 2001) and modelled as horizontally homogeneous, with a spatially implicit representation of 56 

tree positions. Through the simulation of a large number of patches, gap models can represent spatial heterogeneity due to gap 57 

dynamics within stands. Overall, these models adopt a finer representation of vegetation structure than classic DGVMs, but 58 

biogeochemical processes are generally modeled more coarsely, using ideal yield curves for tree growth rates combined with 59 

limiting factors imposed by the patch environment. Since these empirical relationships can only be parameterized on the basis 60 

of a large amount of data – readily available in plantations, but difficult to obtain elsewhere –, gap models typically also use 61 

plant functional types to simulate diverse forest stands. The number and definition of these groups has been much discussed 62 

in the literature, with no clear consensus (Botkin, 1975; Swaine and Whitmore, 1988; Vanclay, 1991; Köhler and Huth, 1998; 63 
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Köhler et al., 2000; Gourlet-Fleury et al., 2005; Kazmierczak et al., 2014), and these plant functional types are difficult to 64 

transfer from one site to another (Picard and Franc, 2003; Picard et al., 2012). 65 

Modelling vegetation from a completely different perspective and building upon flora distribution maps and 66 

biogeographic concepts (Humboldt, 1849; Grisebach, 1872), plant species distribution models have been developed for long 67 

(SDMs; Guisan et al., 2017). Generally, SDMs first estimate the envelope of environmental conditions for a species based on 68 

species occurrence data (Guisan and Thuiller, 2005; Hutchinson, 1957; Soberón, 2007), which is used to infer a probability 69 

distribution in space (Elith and Leathwick, 2009). These models require little knowledge on the processes underlying species 70 

distribution, which explains their widespread use. However, because these models are statistical in nature, their ability to 71 

project future states is unclear, and a great deal of research has been devoted to implementing process-based versions of these 72 

SDMs (Chuine and Beaubien, 2001; Ferrier and Guisan, 2006; Morin and Lechowicz, 2008; Morin and Thuiller, 2009; 73 

Kearney and Porter, 2009; Dormann et al., 2012; Journé et al., 2020). 74 

 From this brief and non exhaustive overview it emerges that each research community in vegetation modeling 75 

emphasizes one representation of vegetation dimension – functioning, structure or diversity -- to the detriment of the others 76 

(Maréchaux et al., 2021). Data availability and computing power partly explain such tradeoffs, and increasing model 77 

complexity does not necessarily translate into an increase in reliability and robustness (Mahnken et al., 2022; Prentice et al., 78 

2015). However, a consensus has emerged in the literature that a better integration of plant species diversity, structure and 79 

functioning should improve the predictive power of vegetation models (Purves and Pacala, 2008; Thuiller et al., 2008; 80 

McMahon et al., 2011; Evans, 2012; Dormann et al., 2012; Mokany et al., 2016; Fisher et al., 2018). For example, tree species 81 

diversity influences the productivity and resilience of forest ecosystems (Schnabel et al., 2019), and these biodiversity-82 

ecosystem functioning relationships result from local interactions where competition for resources is a key process (Fichtner 83 

et al., 2018; Guillemot et al., 2020; Jourdan et al., 2020; Yu et al., 2024; Nemetscheck et al. 2024). Similarly, the fine details 84 

of stand structure control the uptake of resources by vegetation (Braghiere et al., 2019, 2021; Brum et al., 2019; Ivanov et al., 85 

2012; De Deurwaerder et al., 2018), and they also determine the response to environmental stresses and disturbances 86 

(Blanchard et al., 2023; Jucker et al., 2018; Seidl et al., 2014; De Frenne et al., 2019). More generally, the contribution of 87 

vegetation in biogeochemical cycles, albeit typically quantified from stand to global scales (e.g. biomass, productivity), 88 

ultimately depends on individual processes (e.g. mortality, Johnson et al., 2016) controlled by fine-scale heterogeneity and the 89 

various ecological strategies of species (Poorter et al., 2015).  90 

Therefore, recent developments in DGVMs have sought to better represent plant community structure and diversity. 91 

Several cohort-based DGVMs have been developed to refine the representation of vegetation heterogeneity (Moorcroft et al., 92 

2001; Fisher et al., 2015; Longo et al., 2019; Smith et al., 2001). Continuous representations of functional diversity have also 93 

been proposed using the distribution and co-variation of traits at the individual level or trait-climate relationships (Sakschewski 94 

et al., 2015; Verheijen et al., 2015; Scheiter et al., 2013; Pavlick et al., 2013; Berzaghi et al., 2020; Van Bodegom et al., 2014). 95 

These developments represent major advances in vegetation modelling, but scale mismatches between field data and model 96 

representations limit the ability to assimilate data of various nature and resolution. While inverse modelling approaches can 97 
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partially alleviate these constraints (Hartig et al., 2012; Dietze et al., 2013; LeBauer et al., 2013; Fer et al., 2018; Lagarrigues 98 

et al., 2015), they rely heavily on confidence in the model structure, can therefore raise equifinality issues (Medlyn et al., 99 

2005), and increase rapidly in computational complexity in high-dimensional parameter sets. 100 

Finally, most of these challenges are exacerbated for tropical forests, as they are structurally complex (Doughty et al., 101 

2023), support a large number of tree species per hectare (up to several hundred, Wilson et al., 2012), and are more difficult 102 

to access for evaluation in the field (Schimel et al., 2015). Given that they provide a range of ecosystem services and play a 103 

major role in regional and global biogeochemical cycles (Beer et al., 2010; Bonan, 2008; Pan et al., 2011; Harper et al., 2013), 104 

tropical forests and their responses to changing environmental factors have been identified as one of the greatest sources of 105 

uncertainty in Earth system models (Koch et al., 2021; Powell et al., 2013; Restrepo-Coupe et al., 2017; Huntingford et al., 106 

2013). Thus, many advances in vegetation modelling have been, and still are, motivated by the challenge of tropical forests. 107 

Here we describe a major upgrade of the TROLL forest dynamics model (Chave, 1999; Maréchaux and Chave, 2017; 108 

Fischer, 2019), referred to here as TROLL 4.0. TROLL 4.0 brings together various modelling traditions, including elements 109 

of DGVMs, stand-scale process-based models and forest gap models while adopting a species-level representation of plant 110 

diversity, to jointly simulate the functioning, structure and diversity of forest ecosystems, and in particular tropical forests. 111 

TROLL is a spatially explicit forest dynamics model, with an individual- and trait-based representation (Fig. 1). Individual 112 

trees from 1cm diameter at breast height (dbh) are explicitly represented in a three-dimensional space discretized at a resolution 113 

of one meter, allowing a fine representation of stand structure and local interactions via explicit competition for resources. 114 

Each tree belongs to a species, with a list of mean traits per species provided as input. These traits control the physiological 115 

and demographic processes of the tree’s functioning and life cycle, from recruitment to growth, to seed dispersal and death. 116 

This type of trait-based parameterization is based on recent advances in plant physiology and functional ecology, has been 117 

facilitated by the expansion of large databases of functional traits (Díaz et al., 2016, 2022; Kattge et al., 2011, 2020), in 118 

particular for tropical trees (Baraloto et al., 2010a; Vleminckx et al., 2021).  119 

In TROLL 4.0, carbon assimilation and water loss by transpiration are represented explicitly using a photosynthesis 120 

model coupled with a stomatal conductance model. Both take into account variation in micro-environmental conditions 121 

between and within tree crowns, as well as the tree’s access to soil water. A water cycle is now simulated, with the state and 122 

dynamics of soil water explicitly represented and coupled with the vegetation dynamics. The influence of water availability 123 

on leaf-level gas exchanges, leaf phenology, tree recruitment and death is parameterized through the leaf water potential at 124 

turgor loss point (Bartlett et al., 2012) and mechanistic-based coordination with other hydraulic traits (Bartlett et al., 2016). 125 

Carbon that is not consumed by the respiration of living tissues is then allocated to leaf production, carbon storage and tree 126 

growth through allometric relationships. Compared to TROLL version 2.3.2 (Maréchaux and Chave, 2017), TROLL 4.0 127 

includes other improvements: plant functional traits can vary among trees of the same species; tree crown shapes can be more 128 

realistic than cylinders; and leaf density can vary within the tree crowns.  129 

In this contribution, we provide a detailed description of the structure and objectives of the TROLL 4.0 model, 130 

discussing how new modeling representations are an outcome of the state of knowledge and the availability of data. Finally, 131 
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we discuss the limitations of the model and future developments. An evaluation of the model’s ability to simulate forest 132 

structure, diversity and functioning for two Amazonian forest sites is reported in a companion paper (Schmitt et al., submitted 133 

companion paper). The model is written in C++ and wrapped in the R environment through a dedicated package named 134 

rcontroll (Schmitt et al. 2023). 135 

 136 

 137 
Figure 1: Representation of individual trees in a spatially explicit environment in TROLL 4.0 (right) allowing direct comparison 138 
with data of various nature (left). In TROLL 4.0, each tree is composed of a trunk, a crown, whose shape evolves from a cylinder to 139 
an umbrella as the tree grows, and root biomass that decreases exponentially with soil depth. Tree dimensions are updated at each 140 
timestep, depending on the net assimilated carbon that is allocated to growth, and following allometric relationships depending on 141 
tree diameter at breast height (dbh). Each tree has a species label associated with plant functional traits, which, together with an 142 
individual effect randomly attributed at tree birth, determines the tree’s functional traits. These traits are used to parameterize 143 
physiological and demographic processes that govern tree functioning throughout its life cycle. Light diffusion is computed explicitly 144 
at each time step and within each voxel from the canopy top to the ground. Water balance is also computed at each timestep, and 145 
the resulting water availability across soil voxels influence tree functioning. With this representation of forest structure, composition 146 
and functioning, model outputs can be directly compared with a wide range of data, including carbon and water fluxes provided by 147 
eddy-flux towers, field inventories, and 3D structure estimates from remote sensing (left). In TROLL 4.0, aboveground voxels 148 
typically have a finer horizontal resolution than belowground voxels, but the latter are vertically finer and increasing in thickness 149 
with depth (right). This resolution matches the one of fine-scale remote-sensing products or soil water content monitoring (left). 150 
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 151 

2 Model description 152 

2.1 Environmental conditions 153 

TROLL 4.0 simulates an idealized forest stand with a typical size of 1 to 100 ha. Parallel computing may be used to simulate 154 

several times the same stand, or to simulate several forest stands with different environmental conditions. Climatic drivers are 155 

similar to those represented in many DGVMs (air temperature, vapor pressure deficit, wind speed, and light intensity above 156 

the canopy, as well as precipitation). The forest ecosystem is divided into an above-ground and below-ground part. Soil is 157 

explicitly represented as a water reservoir, but soil nutrients are not modeled. The topography within a stand is assumed to be 158 

flat.  159 

2.2 Light availability and aboveground variation in micro-climate 160 

Above ground, the simulated forest stand is represented as a discrete grid of 1m3 cubic voxels. Light diffuses through the 161 

forest’s leaf layers from the top of the canopy to the ground, with one recalculation each day. In a given voxel, light availability 162 

is the photosynthetic photon flux density in 𝜇mol photons m-2 s-1 and is computed as a function of the incident light intensity 163 

at top canopy (PPFDtop, see Table A1 for a list of symbols), the cumulated leaf density of voxels above and the (constant) leaf 164 

density within the voxel itself. The Beer-Lambert extinction of light within the canopy allows to calculate the incident PPFD 165 

(per unit ground area) above any layer at vertical extent 𝑣 as:  166 

𝑃𝑃𝐹𝐷(𝑣) = 𝑃𝑃𝐹𝐷!"# × 	exp[−	𝑘	 × 	𝐿𝐴𝐼(𝑣)]        (1) 167 

where 𝐿𝐴𝐼(𝑣) is the cumulated leaf area above height 𝑣, and k is the extinction coefficient. We here define 𝑘 =168 

𝑘$%"& ×	absorptance'()*(+, where kgeom reflects the geometric arrangement of leaves in the voxel (a value of 0.5 reflecting 169 

spherical leaf distribution; Ross, 1981) and absorptanceleaves, the fraction of absorbed light within a single leaf (Long et al., 170 

1993; Poorter et al., 1995). The absorbed light in a layer 𝑎 of thickness ∆𝑎  is then  171 

𝑃𝑃𝐹𝐷,-.(𝑎) = 𝑃𝑃𝐹𝐷!"# × exp[−𝑘	 × 	𝐿𝐴𝐼(𝑎)] −	𝑃𝑃𝐹𝐷!"# × exp[−𝑘	 × 	𝐿𝐴𝐼(𝑎 + ∆𝑎)]   (2) 172 

Assuming that leaf area per unit ground area (m2 m-2), or dens(𝑎), is constant within the layer, this simplifies to: 173 

𝑃𝑃𝐹𝐷,-.(𝑎) = 	𝑃𝑃𝐹𝐷!"# × exp[−𝑘	 × 	𝐿𝐴𝐼(𝑎)] 	×	(1 −	exp[−𝑘	 × 	𝑑𝑒𝑛𝑠(𝑎)])    (3) 174 

For photosynthesis calculations, absorbed PPFD per unit ground area is converted into absorbed PPFD per unit leaf area by 175 

dividing 𝑃𝑃𝐹𝐷,-.(𝑎) by 𝑑𝑒𝑛𝑠(𝑎). 176 

Air microenvironmental variation within the canopy is represented as follows. Nighttime temperature (Tnight) is 177 

assumed constant throughout the night and within the canopy, while temperature (T) and vapor pressure deficit (VPD) vary 178 

across voxels depending on the variable 𝜆(𝑣) = /01(3)
/01!"#

 with 𝐿𝐴𝐼.,! a threshold LAI and LAI(𝑣) the LAI above voxel 𝑣. At 179 

height 𝑣 above ground, we calculate temperature and VPD as follows:  180 
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𝑇(𝑣) = 𝑇!"# − ∆𝑇 × 𝜆(𝑣)           (4) 181 

𝑉𝑃𝐷(𝑣) = 𝑉𝑃𝐷!"# ×	H𝐶5678 + (1 − 𝐶5678)	J(1 − 	𝜆(𝑣))K       (5) 182 

where ∆𝑇  and 𝐶5678 are set parameters and Ttop and VPDtop are values at the top of canopy. For any given layer a of depth 183 

∆𝑎, temperatures and VPDs are then calculated by averaging both functions from 𝑎 to 𝑎 + ∆𝑎 : 184 

𝑇&%,9(𝑎) =
:
∆, ∫ (𝑇!"# −	

∆<
/01!"#

× 𝐿𝐴𝐼(𝑣)	)d𝑣,=∆,
,         (6) 185 

𝑉𝑃𝐷&%,9(𝑎) =
:
∆, ∫ 𝑉𝑃𝐷!"# ×	N𝐶5678 +	

(:>?$%&')

@/01!"#
	J(𝐿𝐴𝐼.,! − 	𝐿𝐴𝐼(𝑣))O d𝑣

,=∆,
,     (7) 186 

Equations 6 and 7 can then be simplified using the assumption of constant leaf density within a layer and redefining 𝑣 with 187 

respect to the current layer a, so that 𝐿𝐴𝐼(𝑣) = 	𝐿𝐴𝐼(𝑎) 	+ 	𝑑𝑒𝑛𝑠(𝑎) 	× 	𝑣. 188 

This representation of variation of T and VPD within the canopy is in qualitative agreement with empirical 189 

observations of microclimate gradients within tropical forest canopies (Camargo and Kapos, 1995; Shuttleworth, 1985; 190 

Shuttleworth et al., 1989, Tymen et al. 2017), with a consistent buffering effect of forest canopies on understory micro-191 

environment (De Frenne et al., 2019), and a strong control by forest structure (Gril et al., 2023b, a; Tymen et al., 2017; 192 

Zellweger et al., 2019).  193 

Wind speed attenuation inside the canopy is simulated as described in Rau et al. (2022), who explored the effect of 194 

wind speed on forest structure in a forest exposed to cyclones using TROLL. Wind speed is usually measured above the canopy 195 

and decreases as one approaches the canopy top layer, so wind speed at the top of the canopy is (Monteith & Unsworth 2008): 196 

𝑢(𝑧) = A∗
B
ln SC>D

C'
T , 𝑖𝑓	𝑧 ≥ 𝐻               (8) 197 

where 𝑢(𝑧) is the horizontal wind speed in m s-1 at a height z (in m) above ground, H the height of the top of the canopy (in 198 

m), 𝑢∗ is the friction velocity, 𝜅 the von Karman constant (𝜅=0.40), d the zero-plane displacement height, here assumed to be 199 

equal to 0.8H, and 𝑧8 the aerodynamic roughness, here assumed to be equal to 0.06H (Rau et al., 2022). Within the canopy, 200 

wind speed decreases as (Inoue 1963): 201 

𝑢(𝑧) = 𝑢(𝐻) exp [−𝛼 S1 − C
F
T] , 𝑖𝑓	𝑧 < 𝐻          (9) 202 

with 𝛼 ≈ 3 (Raupach et al., 1996). Wind speed was not computed at the voxel scale, but using the coarser horizontal resolution 203 

of the belowground field (see section 2.3 below, e.g. 25x25 m), and a mean top canopy height H was computed as input to Eqs 204 

(8) and (9). 205 

2.3 Soil water availability 206 

In TROLL 4.0, the belowground part of the ecosystem is explicitly represented, and its discretization is specified by the user, 207 

including the number and depth of layers, and horizontal dimensions of the cells. Belowground voxels are typically coarser 208 

horizontally (e.g. 25m x 25m, as commonly implemented in gap models Bugmann, 2001), but finer vertically, than 209 

aboveground 1-m3 voxels. Metric-scale lateral water fluxes are difficult to parameterize and evaluate, and neglecting them 210 
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here limits the computational burden. Soil layers typically increase in thickness with depth, as in most DGVMs or forest 211 

physiological models (Prentice et al., 2015) and in standard soil assessments (e.g. Hengl et al., 2017). In this representation, 212 

contrasting root depth and access to water can be represented across individual trees together with potential variation in soil 213 

properties and hydraulic state. This approach contrasts with some forest dynamics models that use a single-layer belowground 214 

representation (e.g. Gutiérrez et al., 2014; Christoffersen et al., 2016; Fyllas et al., 2014). 215 

The water content in each belowground voxel is simulated using a bucket model, which relies on the vertical water 216 

balance for each voxel. Neglecting horizontal lateral fluxes, the water balance for a given soil column amounts to: 217 

∆𝑆𝑊𝐶 = 𝑃 − 𝐼 − 𝑄 − 𝐸 − 𝑇 − 𝐿          (10) 218 

where SWC is the soil water content, P the incident rainfall, I the canopy interception, Q the run-off, E the evaporation from 219 

the soil, T the transpiration, i.e. the plant water uptake, and L the leakage. This water balance is established for each soil layer, 220 

with inputs from upwards and outputs downwards starting from the top layer (l=1): outputs of layer l are inputs for layer l+1, 221 

with L corresponding to the output of the deepest layer, and P-I-Q to the input of the top layer. Note that this downward 222 

iteration neglects: (i) potential hydraulic lift (upward water redistribution, see e.g. Dawson, 1993; Burgess et al., 1998; Oliveira 223 

et al., 2005); and (ii) potential interaction with the water table (Costa et al., 2023; Sousa et al., 2022). Further developments 224 

could account for these two mechanisms where they are expected to play a significant role. In particular, flooded areas could 225 

be easily represented, with a shallower soil depth and a prescribed boundary condition, i.e. a shallower water table. We now 226 

describe and discuss each term of the water balance and the corresponding modeling choices. 227 

Rainfall. Rainfall (P, in mm) is a model input. It is assumed that the total daily rainfall corresponds to a single event 228 

of rain per day (one storm, as in, e.g., Rodriguez-Iturbe et al., 1999; Laio et al., 2001; Fischer et al., 2014; Gutiérrez et al., 229 

2014). 230 

Interception. Rainfall interception by the canopy is simulated using a model where interception depends on LAI, as 231 

proposed by Liang et al. (1994): 232 

𝐼 = min(𝑃, 𝐾 × 𝐿𝐴𝐼)           (11) 233 

where K=0.2mm and LAI corresponds to the leaf area index at ground level, averaged across the ground-level aboveground 234 

voxels that contribute to a single belowground voxel (typically 625=252 aboveground voxels contribute to one belowground 235 

voxel). Similar simple formulations of canopy interception have been used elsewhere (e.g. Liu et al., 2017), and this choice is 236 

justificed by the lack of relevant data to properly parameterize more complex formulations at most field sites. More complex 237 

models of rainfall interception also exist however (Rutter and Morton, 1977; Gash, 1979; Gash et al., 1995).  238 

Run-off and infiltration. As in most bucket models coupled with a forest dynamics model, the temporal propagation 239 

of the wetting front into the soil is not explicitly simulated here, because of the daily timestep and the vertically lumped 240 

representation of soil moisture dynamics (e.g., Laio et al., 2001, Guimberteau et al., 2014). When the soil top layer has enough 241 

available storage to absorb the totality of the throughfall (i.e. when throughfall is smaller than the layer water content at field 242 

capacity minus the current soil water content), it is assumed that the increment in soil water content of that top layer is equal 243 

to the throughfall. Otherwise, the excess water percolates to the next layer below. In the absence of an explicit wetting front, 244 
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runoff occurs only when the superficial layer is already saturated, which is similar to Dunne run-off (Dunne and Black, 1970). 245 

More complex formulations of run-off exist (d’Orgeval et al., 2008; Guimberteau et al., 2014; Horton, 1933), but because of 246 

the high porosity of many tropical forest soils (Hodnett and Tomasella, 2002; Sander 2002) and the lack of explicit topography 247 

in this version, our choice is parsimonious. 248 

Soil evaporation. We assumed that water evaporates from the top soil layer only, a reasonable assumption if the top 249 

soil layer is not too thin. We followed Sellers et al. (1992) under which evaporation from the soil is expressed as (see Merlin 250 

et al., 2016 for a review of alternatives): 251 

𝐸 = G)
H<!
	× %!>%"

I!*+,=I"-.*
           (12) 252 

where E is in kg m-2 s-1, 𝑀J is the molar mass of water vapor (𝑀J=18 kg mol-1), R is the ideal gas constant (R=8.31 J mol-1 253 

K-1), 𝑇. is the temperature at soil surface in K, 𝑒. is the vapor pressure of the soil surface in Pa, 𝑒, is the vapor pressure of air 254 

above the soil surface in Pa,  𝑟."KL is the soil surface resistance in s m-1, and 𝑟,%I" is the aerodynamic resistance to heat transfer 255 

in s m-1. Soil water pressure 𝑒. is a function of the water potential of the top soil belowground voxel (𝜓."KL,!"#, in MPa; Jones, 256 

2013, Eq. (5.14) therein): 257 

𝑒. =	𝑒.,!(𝑇.) × expS
5)
H<!

× 𝜓."KL,!"#T = 𝑒.,!(𝑇.) × exp S2.17 ×
N!*+,,#*0

<!
T     (13) 258 

Where 𝑉J is the partial molal volume of water (𝑉J = 18 × 10>O m3 mol-1), and 𝑒.,!(𝑇.) is the saturated vapor pressure at 𝑇. 259 

computed following the Buck equation (Jones, 2013, Appendix 4 therein). 𝑒, is by definition equal to 𝑒.,!(𝑇.) − 𝑉𝑃𝐷$I"A9D, 260 

where the latter is the VPD at ground level in Pa. 𝑟."KL is computed following Sellers et al. (1992, Eq. (19) therein, see also 261 

Merlin et al., 2016, Eq. (12)): 262 

𝑟."KL = exp [8.206 − 4.255 × P#*0
P12,#*0

]         (14) 263 

where 𝜃!"# is the water content of the top soil belowground voxel and 𝜃QR,!"# is its water content at field capacity (in m3). 264 

Aerodynamic resistance 𝑟,%I" is computed as follows (Merlin et al., 2016, Eq. (B10) therein): 265 

𝑟,%I" =
:

B3×A(T)
ln S T

T4
T
U
           (15) 266 

with 𝜅 again the von Karman constant (𝜅=0.40), 𝑢(𝑍) is the wind seed (in m s-1) at reference height Z, here taken at 1m above 267 

ground, and 𝑍& is the momentum soil roughness in m, set to 0.001m. 268 

Transpiration. Trees transpire soil water from the belowground voxel they are rooted in (see section 2.4.3). For a 269 

given tree, the total daily soil water uptake is the sum of the water transpired by leaves across its crown and across day-time 270 

half hours (see section 2.5.2). Soil layers contribute to water uptake as a function of tree-dependent weights, 𝑤L (see Eq. (21), 271 

section 2.4.3), which depend on root biomass and on the soil hydraulic state in each layer. 272 

For each belowground voxel in layer l, the soil water potential (𝜓L)	and the soil hydraulic conductivity (𝐾L) are 273 

computed at each time step from the soil water content in the focal voxel using the van Genuchten-Mualem soil characteristic 274 

and hydraulic conductivity curves (Mualem, 1976; van Genuchten, 1980; see Table 1 in Marthews et al., 2014). Parameters of 275 
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these curves are estimated using regression models (pedotransfer functions) for tropical soils (Hodnett and Tomasella, 2002), 276 

except the saturated hydraulic conductivity, which is computed following Cosby et al. (1984; see Table 2 in Marthews et al., 277 

2014). In practice, when only soil texture data is available, TROLL 4.0 contains a default option to apply the texture-based 278 

only pedotransfer function provided by Tomasella and Hodnett (1998), coupled to the soil characteristic and hydraulic 279 

conductivity curves of Brooks and Corey (1964) (see Tables 1 and 2 in Marthews et al., 2014). 280 

2.4 Representation of trees in the model 281 

2.4.1 Species affiliation and intra-specific trait variability 282 

In TROLL 4.0, each tree (and seed) is attributed a botanical species defined by a taxonomic binomial. It is assumed that the 283 

user has sufficiently good knowledge of the tree species growing in the study area so that a list of species-specific mean plant 284 

functional trait values can be provided as input. These are the leaf mass per area (LMA, in g m-2), the leaf area (LA, cm2), the 285 

leaf nitrogen content per dry mass (N, in mg g-1), the leaf phosphorous content per dry mass (P, in mg g-1), the wood specific 286 

gravity (wsg, in g cm-3), the leaf water potential at turgor loss point (𝜋!L#, in MPa), and three allometric parameters (dbhthres, 287 

hlim, ah, all in m; see section 2.4.2). The number of species provided in input is not limited. In addition to mean plant functional 288 

trait values, it is possible to input individual trait values from which a trait variance-covariance matrix is computed 289 

(alternatively the trait variance-covariance matrix can be prescribed). With this option, for each recruited tree, the trait values 290 

are drawn from a distribution rather than attributed the species-specific mean value. For each trait i and tree j, the species-291 

specific mean value is multiplied by a factor 𝑒V+,5 where 𝜀K,W 	~	𝑁(0, 𝜎K) where 𝜎K the trait-specific standard deviation on a 292 

logarithmic scale (lognormal variation). The sole exception is wood specific gravity, which we assume to be normally 293 

distributed around the mean with 𝜀J.$,W 	~	𝑁(0, 𝜎J.$). Trait covariance is only considered for leaf N, leaf P and LMA, and 294 

other traits are assumed to be decoupled (Baraloto et al., 2010b). Note that with this implementation, intraspecific variation is 295 

not structured in space or time nor heritable, and is thus a surrogate for variability emerging from genetic variation or plasticity 296 

(Girard-Tercieux et al., 2023; 2024). A more realistic representation of the latter is left for future version. 297 

2.4.2 Aboveground structure  298 

Above ground, the tree geometry is represented as a three-dimensional object within the voxelized space and consists of a 299 

trunk and a crown filled with leaves. The trunk is assumed to be a cylinder characterized by its total height and its diameter 300 

(dbh, for diameter at breast height, by analogy with forest inventories). The aboveground dimensions of trees are predicted 301 

from their dbh via scaling rules. For tree j with dbhj, we calculate its height hj, its crown radius crj, and its crown depth cdj as 302 

follows: 303 

ℎW =
X,+4	×	D-X5
Z,6=D-X5[

	× 	𝑒V6,5           (16) 304 

𝑐𝑟W = 𝑒,2. × 𝑑𝑏ℎ-2. ×	𝑒V2.,5          (17) 305 
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𝑐𝑑W = min	(X5
U
	 , (𝑎RD +	𝑏RD × ℎW) × 𝑒V27,5)         (18) 306 

where hlim and ah are species-specific coefficients of the Michaelis-Menten function, and acr, bcr, acd, and bcd allometric 307 

coefficients that are species independent. 𝜀X,W, 𝜀RI,W and 𝜀RD,W are variance terms to simulate intraspecific variation with 308 

𝜀X,W 	~	𝑁(0, 𝜎X), 𝜀RI,W 	~	𝑁(0, 𝜎RI),  and 𝜀RD,W 	~	𝑁(0, 𝜎RD). Tree crown architecture is known to depend on species ecological 309 

strategies (Bohlman and O’Brien, 2006; Iida et al., 2012; Poorter et al., 2006; Laurans et al., 2024), but given that crown 310 

extents are difficult to measure reliably in the dense canopies of tropical forests, we used a single set of parameters for all the 311 

species.  312 

In the previous published version (Maréchaux and Chave, 2017), tree crowns were represented as cylinders with 313 

homogeneous leaf densities. Since v.3.0, TROLL can also model tree crowns as flexible, umbrella-like shapes with 314 

heterogeneous leaf density distributions. Small tree crowns are simulated as cylinders, but consist of up to three separate 1-m 315 

layers of leaves (top, intermediate and bottom layer). Each layer can be assigned a percentage of the total leaf area (e.g., 50%, 316 

30%, 20%) to reflect gradients in leaf densities from the upmost to lower crown layers (Kitajima et al., 2005), but the default 317 

is an equal distribution (33%, 33%, 33%) across all layers. Once a tree surpasses 3 m in crown depth, no new layers are added. 318 

Instead, the treetop grows quicker in height than the outer crown parts. As a result, the three 1-m layers are folded around the 319 

tree trunk like an umbrella at various stages of opening (see Fig. 1b in Schmitt et al., 2023, and similar tree representations in 320 

Strigul et al., 2008). Different functional forms are available to describe height variation from treetop to crown edge, but here 321 

we chose a simple linear decrease between the radius at the top of the crown to the radius at the bottom of the crown. The ratio 322 

between both radii is controlled through the global parameter shape_crown, which varies between 0 (conical shape) and 1 323 

(cylinder), and thus allows for various “conifer-like” and “broadleaf-like” shapes in between. 324 

We also relax the assumption that tree crowns are homogeneously filled across their horizontal extent. In TROLL 325 

4.0, crowns have small 1-m2 openings (or gaps) in their crowns, parameterized as percentage of total crown area that is not 326 

filled with leaves, fgap. This allows for the modelling of a spatially heterogeneous light environment in the understory (Tymen 327 

et al., 2017), with a theoretical range from fgap = 0% (full crown cover, no openings) to fgap = 100% (a hypothetical crown with 328 

no leaf area). When calibrating TROLL for tropical forests with airborne laser scanning (Fischer et al., 2019), we found a value 329 

of fgap = 15% to be a good approximation for this within-crown gap fraction. If intraspecific variation in crown extent is 330 

explicitly modelled, the fraction of crown gaps is rescaled so that the absolute crown cover stays constant (i.e., the fraction of 331 

crown gaps is divided by 𝑒UV2.,5). Within species, variation in crown extent is thus assumed as decoupled from variation in leaf 332 

area, i.e., reflecting variation in branch angles and directions, but not branch number or biomass.  333 

2.4.3 Belowground structure 334 

TROLL 4.0 makes the common assumption that total fine root biomass is equal to leaf biomass. Future developments should 335 

endeavor to represent a more explicit belowground allocation scheme (Merganičová et al., 2019; Huaraca Huasco et al., 2021).  336 

Direct estimates of individual tree root depth and root distribution are rare in moist tropical forests (Canadell et al., 1996; 337 
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Jackson et al., 1996, 1999; Nepstad et al., 1994; Cusack et al., 2024; Guerrero-Ramírez et al., 2021). Some studies have 338 

quantified the depth of tree water uptake using indirect methods, such as predawn leaf water potential, or isotope labeling 339 

(Brum et al., 2019; Stahl et al., 2013), but this does not give access to the actual rooting depth. Tree root depth was here 340 

assumed to increase with tree size, and was computed as a function of tree dbh as follows (Kenzo et al., 2009, Fig. 4 therein): 341 

𝑅𝐷 = 0.35 ×	𝑑𝑏ℎ8.]^           (19) 342 

with root depth, RD, in m, and diameter at breast height, dbh, in cm. As in Xu et al. (2016), the exponent was based on Kenzo 343 

et al. (2009), who reported on data from excavated trees in secondary forests in Malaysia. The first parameter (0.35, root depth 344 

at dbh=1cm) was adjusted to avoid unrealistic water depletion of the top soil layer. In the absence of relevant species-specific 345 

data, this allometric equation was assumed to hold for all species, even if root depth is known to be highly plastic (e.g. Rowland 346 

et al., 2023). Correlations between rooting depth and leaf phenological habit have been reported, but in drier or more seasonal 347 

sites than Amazonian rainforests (Brum et al., 2019; Hasselquist et al., 2010; Smith‐Martin et al., 2020), and trait coordination 348 

are known to be typically stronger under harsher environmental conditions (Dwyer and Laughlin, 2017; Delhaye et al., 2020). 349 

We assumed that vertical tree root distribution follows an exponential profile, as observed empirically at the stand 350 

scale (Fisher et al., 2007; Humbel, 1978; Jackson et al., 1996). The fine root biomass in layer l, at depths ranging from 𝑧L to 351 

𝑧L=:(> 𝑧L) is computed as: 352 

𝑅𝐵L = 𝑅𝐵! × Sexp S−3
C,
H7
T − exp S−3 C,89

H7
TT        (20) 353 

where RBt is the total tree fine root biomass (in g), RBl the fine root biomass in layer l (in g), RD the tree rooting depth (in m). 354 

The factor 3 was determined so that about 95% of the tree biomass is contained between soil surface and RD (note that -355 

log(0.05)≈3) (Arora and Boer, 2003). Tree roots are distributed across vertical layers, but do not spread across belowground 356 

voxels horizontally. As a result, trees only deplete the water content of the belowground voxels located below their trunk 357 

position (see section 2.3). 358 

The soil water potential in the root zone, 𝜓I""! (in MPa), captures how the plant equilibrates with the soil water state 359 

across its root profile. It is computed as the weighted mean of the belowground voxel water potentials across layers. We used 360 

the weighting scheme proposed by Williams et al. (2001; see also Bonan et al., 2014; Duursma and Medlyn, 2012), which 361 

accounts for the variation of soil water availability and conductance across layers as follows: 362 

𝜓I""! = ∑ 𝑤L × 𝜓LL  with 𝑤L =
ZN,>N:,4+;[×	_,

∑ ZN,,>N:,4+;[×	_,,,,
        (21) 363 

where 𝜓L is the soil water potential in layer l, and 𝜓H,&K9 is the root water potential below which there is no water uptake 364 

within the layer (minimal root water potential, assumed to be -3 MPa as in Duursma and Medlyn, 2012). Gl, the soil-to-root 365 

water conductance in layer l, in mmol H20 m-2 s-1 MPa-1, computed as follows (Gardner, 1964): 366 

𝐺L =	
Ua/",,b,
'cde.!..

f
	 	 	 	 	 	 	 	 	 	 	 	 (22) 367 

In Eq (22), La,l is the total root length per unit area in the layer (in m m-2), with the total root length in the layer computed as 368 

𝑅𝐵L × 𝑆𝑅𝐿	where SRL is the specific root length, here assumed to be constant (10 m g-1, Bonan et al., 2014; Metcalfe et al., 369 
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2008; Weemstra et al., 2016). Kl is the soil hydraulic conductivity of layer l (in mmol H20 m-1 s-1 MPa-1, see section 2.3), rr is 370 

the mean fine root radius, here set at 1mm, and rs is half the mean distance between roots, calculated with the assumption of 371 

uniform root spacing in a given layer (Newman, 1969): 372 

𝑟. =	
:

@a/<,,
	 	 	 	 	 	 	 	 	 	 	 	 (23) 373 

where Lv,l is the total root length per unit soil volume in the layer (in m m-3), computed in the same way as La,l, but also divided 374 

by layer depth. 375 

A range of other models have been used to infer 𝜓I""! using the relative tree root biomass in each layer directly as 376 

weights (De Kauwe et al., 2015; Naudts et al., 2015; Powell et al., 2013; Schaphoff et al., 2018; Sakschewski et al., 2021; 377 

Verbeeck et al., 2011). However, trees do not uptake water simply as a proportion of root density, but can equilibrate with the 378 

wettest soil layers (Schmidhalter, 1997; Duursma and Medlyn, 2012): the contrasting temporal variations in water availability 379 

across layers result in seasonal changes in the depth of active water withdrawal (Bruno et al., 2006; Joetzjer et al., 2022). For 380 

instance, cavitation in the driest part of the soil disconnects roots from the soil (Sperry et al., 2002; see also Fisher et al., 2006). 381 

This is likely why deeper roots, although often very rare, disproportionately contribute to sustain forest productivity during 382 

dry seasons. 383 

2.5 Leaf physiology 384 

The carbon assimilated and the water transpired by a tree within a day are the sum of the leaf-level carbon and water fluxes 385 

across day-time half hours. Leaf-level carbon assimilation is computed per crown layer of each tree, using the Farquhar-von 386 

Caemmerer-Berry model of C3 photosynthesis (Farquhar et al., 1980, see section 2.5.1), coupled to the model of stomatal 387 

conductance of Medlyn et al. (2011; see section 2.5.2) as in Maréchaux and Chave (2017). In TROLL 4.0 the dependences on 388 

leaf temperature (Tl), vapor pressure deficit at the leaf surface (VPDs), and CO2 concentration at the leaf surface (cs) are now 389 

determined iteratively at the leaf surface, starting from air temperature (T), air vapor pressure deficit (VPDa) and air CO2 390 

concentration (ca) averaged across the tree crown layer (see sections 2.2 and 2.4.2) and with transpiration computed using the 391 

Penman-Monteith equation (see section 2.5.4). 392 

2.5.1 Photosynthesis 393 

In Farquhar et al. (1980), leaf-level net carbon assimilation rate (𝐴9, μmol CO2 m-2 s-1) is limited by either Rubisco activity 394 

(𝐴3, μmol CO2 m-2 s-1), or RuBP regeneration (𝐴W, μmol CO2 m-2 s-1): 395 

𝐴9 = 𝑚𝑖𝑛�𝐴3, 𝐴W� 	− 𝑅#(𝑇L)			; 						𝐴3 =	𝑉R&,g�𝑇L , 𝜓#D� ×
R+	–	i∗

R+	=	b4(<,)
							 ; 				𝐴W =	

j
^
	 R+>	i

∗(<,)
R+=	Ui∗(<,)

	   (24) 396 

where 𝑅# is the photorespiration rate (μmol C m-2 s-1), 𝑉R&,g is the maximum rate of carboxylation (μmol CO2 m-2s-1), ci the 397 

CO2 partial pressure at carboxylation sites, 𝛤∗ the CO2 compensation point in the absence of dark respiration, 𝐾& the apparent 398 
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kinetic constant of the Rubisco (von Caemmerer, 2000), and J the electron transport rate (μmol e- m-2 s-1), which depends on 399 

PPFD through: 400 

𝐽 = :
UP
	�𝛼 × 𝑃𝑃𝐹𝐷 +	𝐽&,g�𝑇L , 𝜓#D� −	�S𝛼 × 𝑃𝑃𝐹𝐷 +	𝐽&,g�𝑇L , 𝜓#D�T

U
− 4𝜃 × 𝛼 × 𝑃𝑃𝐹𝐷 × 𝐽&,g�𝑇L , 𝜓#D��     (25) 401 

Jmax is the maximal electron transport capacity (μmol e- m-2 s-1),	𝜃 the curvature factor (unitless), and	𝛼 the apparent quantum 402 

yield to electron transport (mol e- mol photons-1), computed following von Caemmerer (2000) as 𝛼 = (1 − 𝐿𝑆𝑄) × 0.5, with 403 

LSQ the effective spectral quality of light, fixed at 0.15, and the factor 0.5 accounts for the fact that each photosystem absorbs 404 

half of the photons.  405 

The	𝑉R&,g and 𝐽&,g parameters depend on leaf properties, leaf temperature (𝑇L) and water state (through the leaf 406 

predawn water potential, 𝜓#D, see Eq. (37)) and represent a large source of uncertainty in vegetation models (Zaehle et al., 407 

2005; Mercado et al., 2009; Rogers et al., 2017). In tropical forest environments, Domingues et al. (2010) suggested that 𝑉R&,g 408 

and 𝐽&,g are co-limited by the leaf concentration of nitrogen and phosphorus as follows (see also Walker et al., 2014): 409 

𝑉R&,g>G	(25°𝐶) = 𝑚𝑖𝑛{−1.56 + 0.43 × 𝑁	 − 0.37 × 𝐿𝑀𝐴		; 		−0.80 + 0.45 × 𝑃 − 0.25 × 𝐿𝑀𝐴			}  (26) 410 

𝐽&,g>G	(25°𝐶) = 𝑚𝑖𝑛{−1.50 + 0.41 × 𝑁	 − 0.45 × 𝐿𝑀𝐴	;		−0.74 + 0.44 × 𝑃	 − 0.32 × 𝐿𝑀𝐴		}   (27) 411 

with 𝑉R&,g>G and 𝐽&,g>G  the photosynthetic capacities at 25°C of unstressed mature leaves on a leaf dry mass basis, in μmol 412 

CO2 g-1 s-1 and μmol e- g-1 s-1, respectively. N and P are leaf nitrogen and phosphorus concentrations in mg g-1, and LMA is the 413 

leaf mass per area in g cm-2. 𝑉R&,g>G and 𝐽&,g>G can be converted into area-based 𝑉R&,g and 𝐽&,g  by multiplying by LMA. 414 

We used this leaf trait-based parameterization of 𝑉R&,g(25°𝐶) and 𝐽&,g(25°𝐶) in the absence of water stress (as in Fyllas et 415 

al., 2014; Mercado et al., 2011). The dependence of 𝑉R&,g and 𝐽&,g  with temperature was given by equations in Bernacchi et 416 

al. (2003), and the dependence with water availability was modelled by a function of 𝜓#D (𝑊𝑆𝐹9., see section 2.5.3, Eq. (40)): 417 

𝑉R&,g�𝑇L , 𝜓#D� = 𝑉R&,g(25°𝐶) × 𝑒
(UO.k]> =>.@@

:×BC,83D@.9>E
)
×𝑊𝑆𝐹9.�𝜓#D�      (28) 418 

𝐽&,g�𝑇L , 𝜓#D� = 𝐽&,g(25°𝐶) × 𝑒
(:l.]l> F@.>F

:×BC,83D@.9>E
)
×𝑊𝑆𝐹9.�𝜓#D�      (29) 419 

where R is the molar gas constant (0.008314 kJ K-1 mol-1), and 𝑇L is the internal leaf temperature in Celsius degrees. The 420 

temperature dependence of 𝛤∗and 𝐾& followed von Caemmerer (2000): 421 

𝛤∗(𝑇L) = 37 × 𝑒
Uk.^×

BC,G3>E
3HI×:×B3D@8C,E          (30) 422 

𝐾&(𝑇L) = 404 × 𝑒
]m.kO×

BC,G3>E
3HI×:×B3D@8C,E × (1 + U:8

U^n×%
@>.HF×

C,G3>
3HI×:×B3D@8C,E

)      (31) 423 

Temperature dependencies in Eqs (28)-(31) are consistent with Domingues et al. (2010), following recommendations from 424 

Rogers et al. (2017). 425 

Leaf photorespiration rate 𝑅o was assumed to be a fixed fraction (40%) of leaf dark respiration rate (Atkin et al., 426 

2000). We used Atkin et al. (2015) ‘broadleaved trees’ empirical model to estimate mature leaf dark respiration rates as a 427 

function of plant functional traits: 428 
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𝑅D>G(25°𝐶) = 8.5341 − 0.1306 × 𝑁 − 0.5670 × 𝑃 − 0.0137 × 𝐿𝑀𝐴 + 11.1 × 𝑉R&,g>G + 0.1876 × 𝑁 × 𝑃 (32) 429 

with Rd-M the leaf dark respiration rate on a dry mass basis and at reference temperature of 25°C (in nmol CO2 g-1s-1). 430 

Multiplying Rd-M by LMA gives the area-based leaf dark respiration Rd (in μmol C m-2 s-1). The temperature dependence of 431 

mature leaf dark respiration rates was calculated as (Atkin et al., 2015, Eq. (1) therein; see also Heskel et al. 2016): 432 

𝑅D(𝑇L) = 𝑅D(25°𝐶) × �3.09 − 0.043 ×
(<,=U])

U
�
BC,G3>E

9'        (33) 433 

Long-term acclimation to temperature is not considered in TROLL 4.0 (Kattge and Knorr, 2007; Smith and Dukes, 2013). 434 

2.5.2 Stomatal conductance 435 

Carbon assimilation by photosynthesis is limited by the CO2 partial pressure at carboxylation sites, which is controlled by 436 

stomatal transport as modeled by the diffusion equation: 437 

 𝐴9 = 𝑔.(𝑐. − 𝑐K)            (34) 438 

with 𝑔. the stomatal conductance to CO2 (mol CO2 m-2 s-1). The representation of stomatal conductance varies greatly across 439 

vegetation models (Damour et al., 2010; Bonan et al., 2014; Rogers et al., 2017; see Appendix B, Table B1) and remains an 440 

active research topic (Anderegg et al., 2018; Dewar et al., 2018; Lamour et al., 2022; Sperry et al., 2017; Wolf et al., 2016; 441 

Sabot et al., 2022). In TROLL 4.0, stomatal conductance to water vapor is simulated as (Medlyn et al., 2011): 442 

𝑔.J = 𝑔8 + 1.6 × [1 +
$9

@567!
] × 0;

R!
         (35) 443 

where gsw is the stomatal conductance to water vapor in mol H20 m-2 s-1, 1.6 is the factor needed to convert one mole of CO2 444 

into one mole of H20, 𝑉𝑃𝐷. is the vapor pressure deficit at the leaf surface in kPa, 𝐴9 is the assimilation rate in μmol CO2 m-445 
2 s-1 (Eq. (24) above), cs is the CO2 concentration at the leaf surface in ppm, 𝑔8 is the minimum conductance for water vapor 446 

in mol H20 m-2 s-1 (Duursma et al., 2019), and 𝑔: is a model parameter in kPa1/2. Equations 24, 34 and 35 taken together lead 447 

to two quadratic equations for ci, one when Rubisco activity is limiting and one when RuBP regeneration is limiting, and the 448 

solution is the highest root. 449 

The parameter 𝑔: varies with species ecological strategies and carbon cost of water use (Domingues et al., 2014; 450 

Franks et al., 2018; Héroult et al., 2013; Lin et al., 2015; Wolz et al., 2017). Consequently, it is expected that 𝑔: should differ 451 

across plant functional types (e.g. Xu et al., 2016). Here we assumed a dependence of 𝑔: with wood density (wsg, in g cm-3) 452 

as in Lin et al. (2015). We also assumed a dependence with water availability, modelled by a function of 𝜓#D (𝑊𝑆𝐹.; see 453 

section 2.5.3): 454 

𝑔: = (−3.97 × 𝑤𝑠𝑔 + 6.53) ×𝑊𝑆𝐹.�𝜓#D�         (36) 455 

This parameterization of 𝑔: based on wood density is a matter of debate however, and alternatives have been proposed (Wu 456 

et al., 2020; Lamour et al., 2023).  457 

The parameter 𝑔8 quantifies water fluxes through the leaf cuticle (cuticular conductance) and from stomatal leaks. 458 

Although it is increasingly recognized as a key parameter explaining tree water loss in drought conditions (Cochard, 2021; 459 
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Martin-StPaul et al., 2017), its values and variation with other functional traits is poorly documented (Duursma et al., 2019; 460 

Slot et al., 2021; Nemetschek et al., 2024), and we here assumed a fixed value. Note that some previous studies have defined 461 

𝑔8 as cuticular conductance only, ignoring stomatal leak effects, and thus underestimating 𝑔8.  462 

Both 𝑔8 and 𝑔: were assumed not to depend on temperature in the absence of clear empirical evidence for tropical 463 

forest trees (Duursma et al., 2019; Slot et al., 2021; Rogers et al., 2017), but this may be further explored in the future through 464 

measurement and experiment (Cochard, 2021). 465 

2.5.3 Effect of water availability on leaf-level gas exchange 466 

Under water stress, leaf-level gas exchanges and photosynthesis are impaired, but how this is represented varies greatly across 467 

models (Appendix B, Table B1; Powell et al., 2013; Trugman et al., 2018; Verhoef and Egea, 2014). A common approach is 468 

to define a single integrative water stress factor cumulating all effects along the soil-plant-atmosphere pathway, some of which 469 

being difficult to evaluate empirically (e.g. Fischer et al., 2014; Gutiérrez et al., 2014; Krinner et al., 2005; Clark et al., 2011). 470 

This factor is then used to modify the parameters of the stomatal conductance and/or photosynthesis models (Egea et al., 2011; 471 

Verhoef and Egea, 2014). Depending on models, water stress factors have been assumed to depend on soil water content or on 472 

soil water potential in the root zone (De Kauwe et al., 2015; Drake et al., 2017; Joetzjer et al., 2014; Powell et al., 2013; 473 

Trugman et al., 2018). Alternatively, some models have implemented a water stress factor as a function of leaf water potential 474 

(𝜓L%,Q; Christoffersen et al., 2016; Duursma and Medlyn, 2012; Kennedy et al., 2019; Xu et al., 2016; see also the pioneer 475 

work of Tuzet et al., 2003) or used optimization approaches (Williams et al., 1996; Anderegg et al., 2018; Sabot et al., 2020; 476 

Sperry et al., 2017; Wolf et al., 2016), to account for the cost of water uptake and transportation in the plant water column. 477 

The shape of such functions remains contentious however (Table B1), resulting in substantial differences in model predictions. 478 

Also, there is no consensus on the relative role of stomatal and non-stomatal limitations on leaf CO2 assimilation 479 

under drying conditions, reflecting contrasted experimental results (Drake et al., 2017; Zhou et al., 2014; Keenan et al., 2010; 480 

Appendix B, Table B2). Under stomatal limitation, stomatal closure reduces leaf gas exchanges, and the water stress factor is 481 

applied on stomatal conductance, or stomatal conductance model parameters (e.g. g1). Under non-stomatal limitations, drought 482 

(leading to increased leaf temperature and/or decreased leaf water potential) impairs the biochemical photosynthesis apparatus, 483 

which results in a reduction of photosynthetic capacities, and/or mesophyll conductance (Flexas et al., 2004, 2012). In this 484 

latter case, the water stress factor is applied on Vcmax and Jmax (Drake et al., 2017; Keenan et al., 2010). Some models consider 485 

only one limitation, and others both (Appendix B, Table B1). 486 

In TROLL 4.0, two water stress factors are used, one for stomatal limitation, modifying the g1 parameter (𝑊𝑆𝐹.; Eq. 487 

(36)), and one for non-stomatal limitations, modifying the Vcmax and Jmax parameters of the photosynthesis model (𝑊𝑆𝐹9.; Eq. 488 

(28) and (29)). Both water stress factors are assumed to depend on the leaf predawn water potential (𝜓#D; De Kauwe et al., 489 

2015; Verhoef and Egea, 2014), which is a function of the soil water potential in the root zone (𝜓I""!, Eq. (21)) (Stahl et al., 490 

2013, but see Bucci et al., 2004; Donovan et al., 2003) as follows (Jones, 2013; Eq. (4.9) therein): 491 
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𝜓#D =	𝜓I""! − 	𝜌𝑔ℎ ≃ 𝜓I""! − 	0.01 × ℎ          (37) 492 

where 𝜌 is the density of water, 𝑔 the gravitational force (g=9.81 m s-2), and h total tree height in m. Here, 𝑊𝑆𝐹. was computed 493 

as (Zhou et al., 2013; De Kauwe et al., 2015): 494 

𝑊𝑆𝐹. = exp�𝑏 × 𝜓#D�           (38) 495 

where b is a parameter. To parameterize b, we used the relationship between the leaf water potential at turgor loss point (𝜋!L# 496 

in MPa) and the water potential causing 90% of stomatal closure (𝜓$.m8, in MPa): 𝜋!L# = 0.97 × 𝜓$.m8 (P<0.01, R2=0.4; Fig. 497 

1 in Martin-StPaul et al. 2017), and assumed that 𝑊𝑆𝐹. ≈ 0.1 at 𝜓$.m8 (an approximation given the shape of Eq. (35)), leading 498 

to: 499 

𝑊𝑆𝐹. = exp[−2.23 × N07
a#,0

]          (39) 500 

The link between the leaf water potential at stomatal closure and the leaf water potential at turgor loss point is supported by 501 

several studies (Bartlett et al., 2016b; Brodribb et al., 2003; Farrell et al., 2017; Martin-StPaul et al., 2017; Meinzer et al., 502 

2016; Rodriguez-Dominguez et al., 2016; Trueba et al., 2019). The formulation of 𝑊𝑆𝐹. in Eq (39) was preferred over 503 

alternatives, such as a linear relationship between 𝑊𝑆𝐹. and 𝜓#D (Oleson et al., 2008; Powell et al., 2013; Verhoef and Egea, 504 

2014). The latter is less supported by data and leads to threshold responses as soil water content declines and similar responses 505 

across species, in contrast with empirical evidence (Kursar et al., 2009; Zhou et al., 2013). 506 

The water stress factor for non-stomatal limitation (𝑊𝑆𝐹9.) was computed following Xu et al. (2016): 507 

𝑊𝑆𝐹9. =	[1 + [
N07
a#,0

]
,
]
>:

          (40) 508 

with a=6 estimated from data reported in Brodribb et al. (2003). In this formula, 𝑊𝑆𝐹9. = 	½ when 𝜓#D = 𝜋!L#, in agreement 509 

with empirical findings (Brodribb et al., 2002; Manzoni, 2014).  510 

The parameterization of 𝑊𝑆𝐹. and 𝑊𝑆𝐹9. based on 𝜋!L# is supported by the fact that leaf cells need to maintain turgor 511 

to sustain functioning (Hsiao, 1973). These functions do not depend on 𝜋!L# when 𝜓#D = 𝜋!L#, so there is a simple link between 512 

the leaf drought tolerance, as informed by 𝜋!L#, and the response of leaf-level gas exchange to water availability. Also, these 513 

equations predict that the decline of stomatal conductance as water availability decreases precedes that of photochemistry, 514 

consistent with observations (Fig. 2; Fatichi et al., 2016; Trueba et al., 2019).  515 

Note that, since mesophyll conductance is not explicitly represented here, the effect of water stress on photosynthetic 516 

capacities (𝑊𝑆𝐹9.) includes both direct effects on the photosynthetic machinery and indirect effects from the reduction of 517 

mesophyll conductance (Drake et al., 2017; Keenan et al., 2010). Alternative shapes of water stress factors could be explored 518 

in the future, and a more explicit representation of the water flow through the plant water column could be implemented 519 

(Paschalis et al., 2024). In the absence of a clear consensus on the effect of water stress on respiration, TROLL 4.0 does not 520 

assume that respiration depends on water availability (Flexas et al., 2006, 2005; Rowland et al., 2018, 2015; Santos et al., 521 

2018; Stahl et al., 2013b). 522 
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 523 

 524 
Figure 2: Responses of leaf-level gas exchange to water stress, depending on the leaf drought tolerance. Water stress factors for the 525 
stomatal conductance parameter g1 (stomatal limitation, WSFs, Eq. (39); solid lines) and for the photosynthetic capacities Jmax and 526 
Vcmax (non-stomatal limitation, WSFns, Eq. (40); dashed lines) as a function of leaf predawn water potential (𝛙𝐩𝐝, in MPa). WSFs 527 
are shown for a a drought vulnerable species (𝝅𝒕𝒍𝒑=-1.41 MPa, the least negative value reported in Maréchaux et al., 2015; blue 528 
lines), and for a drought tolerant species (𝝅𝒕𝒍𝒑=-3.15 MPa, the most negative value reported in Maréchaux et al., 2015). Vertical 529 
dotted lines: 𝝅𝒕𝒍𝒑, horizontal dotted black lines: WSFs and WSFns at 𝝅𝒕𝒍𝒑. 530 

2.5.4 Leaf energy balance  531 

In TROLL 4.0, leaf temperature (Tl), vapor pressure deficit (VPDs) and CO2 concentration (cs) at the leaf surface are computed 532 

through an iterative scheme that solves the leaf energy balance (Medlyn et al., 2007; Wang and Leuning, 1998; Duursma, 533 

2015; Vezy et al., 2018). This is an important step because the leaf boundary layer plays a key role on gas exchanges, and 534 

especially so in dense tropical moist forests, given the large size of tropical tree leaves and the low wind speeds within canopies 535 

(De Kauwe et al., 2017; Jarvis and McNaughton, 1986; Meinzer et al., 1997). The iterative scheme is as follows. Initially, Tl, 536 

VPDs and cs are set equal to surrounding air values (T, VPD and ca). Leaf photosynthesis (𝐴9) and stomatal conductance (𝑔.J) 537 

are computed using Eqs (24), (34) and (35); next, the boundary layer conductance and radiation conductance are computed; 538 

and finally leaf-level transpiration rate is deduced from the Penman-Monteith equation (Eq. (41) below). After these steps, 539 

new values for Tl, VPDs and cs are computed, and the above steps are repeated until leaf temperature converges, i.e., when the 540 

absolute difference between the Tl of two consecutive iteration is lower than 0.01°C.  541 

Leaf-level transpiration rate El (in mol H20 m-2 s-1) is calculated as: 542 
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𝐸L =
:
s
× .H;+=567"$J?0G"

.=	tKJK)
           (41) 543 

where 𝜆 is the latent heat of water vapor (in J mol-1), s is the slope of the (locally linearized) relationship between saturated 544 

vapor pressure and temperature (in Pa K-1, see Jones, 2013, Eq. (5.15) therein), 𝑅9K is the isothermal net radiation (in J m-2 s-545 
1), 𝑔F is the total leaf conductance to heat (in mol m-2 s-1), 𝐶# is the heat capacity of air (1010 J kg-1 K-1), 𝑀, is the molecular 546 

mass of air (28.96× 10>k kg mol-1), 𝛾 the psychrometric constant (in Pa K-1), and 𝑔J the total conductance to water vapor 547 

(mol H20 m-2 s-1). The latent heat of water vapor 𝜆 depends on air temperature as follows: 548 

𝜆 = (2.501 × 10k − 2.365 × T) × 18         (42)  549 

The isothermal net radiation	𝑅9K has two components, the absorbed solar radiation (𝑆,-.), including both PAR and NIR 550 

wavebands, and the net longwave radiation (Leuning et al., 1995; Appendix D therein): 551 

𝑅9K =	𝑆,-. −	𝐵9,8 × 𝑘D exp(−𝑘D𝐿𝐴𝐼)         (43) 552 

where 𝐵9,8 is the net longwave radiation at the top of the canopy, and 𝑘D exp(−𝑘D𝐿𝐴𝐼) accounts for its extinction within the 553 

canopy, with 𝑘D set equal to 0.8. To account for the absorbed NIR radiation at a given height within the canopy in 𝑆,-., we 554 

used the relationship reported by Kume et al. (2011; Fig. 4 therein) that links the transmitted NIR to the transmitted and incident 555 

PAR, and assumed a leaf absorptance in the NIR equal to 0.1. 𝐵9,8 is then computed as the absorbed minus the emitted 556 

longwave radiation: 557 

𝐵9,8 = 𝜀L(1 − 𝜀,)𝜎𝑇!"#^            (44) 558 

where 𝑇!"# is the top canopy air temperature in K,	𝜎 is the Stefan-Boltzmann constant (𝜎 = 5.67 × 10>n	W m-2 K-4), 𝜀L is the 559 

emissivity of the canopy leaves, here assumed to be 1, and 𝜀, the emissivity of the atmosphere. Several models exist for 𝜀,, 560 

with varying performance depending on the sky conditions (Marthews et al., 2012). We here used Dilley and O’Brien (1998), 561 

which compromises between parsimony and performance across sky conditions (Marthews et al., 2012; Tables 2 and 5 therein). 562 

𝑔F, the total leaf conductance to heat, has three components, the boundary layer conductance for free convection	𝑔-FQ, 563 

the boundary layer for forced convection	𝑔-FA, and the radiation conductance	𝑔I (Leuning et al., 1995; Jones, 2013): 564 

𝑔F = 2 × �	𝑔-FQ + 	𝑔-FA + 	𝑔I�          (45) 565 

where the factor 2 accounts for the two sides of the leaves.	𝑔-FQ, the boundary layer conductance for free convection, is given 566 

by: 567 

	𝑔-FQ = 0.5 × 𝐷F × S
:.O×:8I×|<,>v|

J,
T
8.U]

× 6.-!!
Hv

        (46) 568 

where 𝐷F is the molecular diffusivity to heat (𝐷F = 21.5 × 10>O m2 s-1), Press the atmospheric pressure (in Pa), R the universal 569 

gas constant (R=8.314 J mol-1 K-1) and T the temperature of surrounding air in K. Leaf width 𝑤L  (in m) is estimated as the 570 

square root of leaf area (𝑤L = √𝐿𝐴). 	𝑔-FA, the boundary layer for forced convection (in mol m-2 s-1), is given by: 571 

	𝑔-FA = 0.003 × �
A
J,
× 6.-!!

Hv
          (47) 572 
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where u is the wind speed in m s-1 (see Eq. (9)). 	𝑔I, the radiation conductance in mol m-2 s-1 varies with Ta as follows (Jones, 573 

2013, p.101 therein): 574 

	𝑔I =
^×V,w<@

?0G"
            (48) 575 

𝑔J the total conductance to water vapor has two components that represent hydraulic resistances in series: the stomatal 576 

conductance (𝑔.J, in mol H20 m-2 s-1, Eq. (35)) and the boundary layer conductance (𝑔-J in mol H20 m-2 s-1) to water vapor: 577 

𝑔J =
$L)×$!)
$L)=$!)

             (49) 578 

with 𝑔-J = 1.075 × �	𝑔-FQ + 	𝑔-FA�         (50) 579 

where 1.075 accounts for the relative diffusivities of heat and water vapor in air. Equations (49) and (50) assume that all leaves 580 

are hypostomatous (stomates on the ground-facing side of the leaves only), a reasonable assumption in tropical forests (Drake 581 

et al., 2019; Muir, 2015).  582 

2.6 Carbon allocation 583 

2.6.1. Net carbon uptake: whole-tree integration and respiration 584 

At each daily timestep, the individual tree net primary productivity of carbon, 𝑁𝑃𝑃K9D (in gC), is obtained by the following 585 

balance equation (Fig. 3): 586 

𝑁𝑃𝑃K9D =	𝐺𝑃𝑃K9D −	𝑅&,K9!%9,9R% −	𝑅$I"J!X        (51) 587 

𝐺𝑃𝑃K9D (in gC) is computed each half hour as the carbon assimilation rate 𝐴9 (Eq. (19)), multiplied by the leaf area in each 588 

tree crown layer (𝐿𝐴L, in m2), then summed over tree crown layers and cumulated across the day.  589 

Young leaves and old leaves have been reported to have lower photosynthetic capacities and activities than mature 590 

leaves (Doughty and Goulden, 2008; Kitajima et al., 2002, 1997b; Wu et al., 2016; Albert et al., 2018; Menezes et al., 2021). 591 

For each tree, total leaf area (LAt) is partitioned into three leaf age pools: young, mature and old leaves, so that LAt= LAyoung 592 

+ LAmature + LAold (all in m2). These three leaf age pools are assumed to be uniformly distributed within the tree crown. In 593 

young and old leaves, net assimilation rate is a fraction 𝜚 < 1 of that of mature leaves, so that: 594 

𝐺𝑃𝑃K9D = 𝐶_66 ×
Zx×/0M*N;K=	/04"#N.-=x×/0*,7[

/0#
∑ ∑ 𝐴9(𝑡, 𝑙)! × 𝐿𝐴LL       (52) 595 

where the factor 𝐶_66 is a conversion factor, t depicts the daytime half-hours and l the tree crown layers. Here we assume that 596 

the carbon uptake efficiency 𝜚 relative to mature leaves is the same in young and old leaves and 𝜚 = 0.5, a value consistent 597 

with observations. 598 

TROLL 4.0 partitions autotrophic respiration into maintenance respiration and growth respiration, even if both come 599 

from the same biochemical pathways (Amthor, 1984; Thornley and Cannell, 2000). Maintenance respiration (Rmaintenance) has 600 

seldom been documented for stem and roots and is inferred empirically (Cavaleri et al., 2008; Meir et al., 2001; Slot et al., 601 

2013; Weerasinghe et al., 2014). Nighttime leaf maintenance respiration is computed using Eqs (32) and (33), using the mean 602 

20

https://doi.org/10.5194/egusphere-2024-3104
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



nighttime temperature. As stomatal conductance and dark respiration vary less with leaf age than carbon assimilation rate 603 

(Albert et al., 2018; Kitajima et al., 2002; Villar et al., 1995), we assumed that young and old leaves have respiration and 604 

transpiration rate equal to 𝜚y = 0.75 that of mature leaves, leading to lower water use efficiency than mature leaves. Tree-level 605 

nighttime leaf respiration and daytime transpiration are computed as follows at each timestep: 606 

𝑋K9D = 𝐶z ×
ZxO×/0M*N;K=	/04"#N.-=xO×/0*,7[

/0#
	∑ (∑ X(𝑖, 𝑙)K ) × 𝐿𝐴LL       (53) 607 

where Xind is either the carbon respired by leaves during the night or the total water transpired by the tree, in gC or m3 608 

respectively, 𝑋 being the leaf dark respiration (Eqs. (32) and (33)) or the leaf-level transpiration rate (Eq. (41)) respectively, 609 

and CX is a conversion factor.  610 

Stem maintenance respiration (𝑅.!%&, in μmol C s-1) was modeled assuming a constant respiration rate per volume of 611 

sapwood (39.6	𝜇mol m-3 s-1, Ryan et al., 1994), so that:  612 

𝑅.!%& = 𝐶.I%.# 	× 	39.6	 × 	𝑆𝐴	 ×	(ℎ − 𝑐𝑑)         (54) 613 

where SA is the tree sapwood area (in m2) and 𝐶.I%.# is a conversion factor. Stem respiration response to temperature was 614 

modeled using a Q10 value of 2.0 (Meir and Grace, 2002; Ryan et al., 1994), and using mean daytime and nighttime 615 

temperatures. Stahl et al. (2011) reported that 𝑅.!%& varies among individual trees, even when controlling for sapwood volume. 616 

However, in absence of a clear understanding of the drivers, Eq. (54) is a parsimonious choice. In TROLL 4.0, sapwood area 617 

is computed dynamically. We used an inversion of the pipe model to derive sapwood area from the tree’s leaf area (LAt, in 618 

m2), height (h, in m) and wood density following Fyllas et al. (2014; Eqs (7) and (8) therein): 619 

𝑆𝐴 =	𝐶{0 	
U×/0#

s9=s3×X=|9=|3×J.$
          (55) 620 

with 𝜆:= 0.066 m2 cm-2, 𝜆U=0.017 m cm-2, 𝛿:=-0.018 m2 cm-2, and 𝛿U =1.6 cm3 g-1, and CSA a conversion factor. In addition 621 

to Eq. (55), there are both lower and upper limits on sapwood extent. Sapwood has a minimum thickness of 0.5 cm and any 622 

newly grown wood is always considered sapwood, irrespective of leaf area. TROLL 4.0 also imposes an upper limit on 623 

sapwood growth based on stem diameter growth, so that increases in living tissue cannot exceed increases in total tissue.   624 

Other contributions of maintenance respiration were prescribed as proportions of leaf and stem maintenance 625 

respiration. Fine root maintenance respiration was assumed to be half of leaf maintenance respiration (Malhi, 2012), and coarse 626 

root and branch maintenance respirations were assumed to account for half of stem respiration (Asao et al., 2015; Cavaleri et 627 

al., 2006; Meir and Grace, 2002).  628 

Growth respiration (Rgrowth) was assumed to account for 30% of the carbon uptake by photosynthesis (gross primary 629 

productivity) minus the maintenance respiration (Cannell and Thornley, 2000). These assumptions are commonly made in the 630 

literature, but remain a major source of uncertainty in the carbon flux modeling (Atkin et al., 2014; Huntingford et al., 2013). 631 

Contrary to the last published version of TROLL, in which the allocation of NPPind to plant organs was fully prescribed 632 

by fixed factors (fcanopy= fleaves + ffruit + ftwigs and fwood, Maréchaux and Chave, 2017), the allocation scheme implemented in 633 

TROLL 4.0 can now be additionally modulated depending on the current tree state and it includes an explicit carbon storage 634 

compartment (sections 2.6.2 and 2.6.3; Fig. 3).  635 

21

https://doi.org/10.5194/egusphere-2024-3104
Preprint. Discussion started: 17 October 2024
c© Author(s) 2024. CC BY 4.0 License.



 636 

 637 
Figure 3: Diagram of structures and processes driving individual and community dynamics, as investigated under the modeling 638 
approach adopted in TROLL 4.0. Elements in bold letters refer to novel implementation in comparison to the previous published 639 
version, while italic letters refer to elements still not included in this present version. Abiotic environment is modeled at the voxel 640 
scale and drive C assimilation in the leaves (gross primary productivity, GPP) and maintenance respiration rates of the different 641 
plant organs (RMAINTENANCE). The C amount resulting from the balance between GPP and RMAINTENANCE can be used for tissue 642 
production (NPPFRUITS, NPPLEAVES, NPPWOOD and NPPROOTS) or stored (CARBON RESERVES) in the different tree organs. Both 643 
allocations induce metabolic costs (RGROWTH and RSTORAGE; but the latter is not represented nor included). CARBON RESERVES 644 
represents non-structural carbohydrates (NSC), mainly stored as sugar or starch, and its maximal storage capacity is given by NSCr. 645 
Allocation to these different compartments follows a hierarchical scheme initialized by default proportions (ffruits, fleaves, fwood). If the 646 
tree leaf area (LAt) exceeds the optimal leaf area (LAopt, a function of both tree properties and its micro-environment), then the 647 
surplus of NPPLEAVES is allocated to carbon reserves. If the tree leaf area is lower than optimal, then NPPWOOD, and if further needed, 648 
carbon reserves, are mobilized for leaf production. If carbon reserves surpasse storage capacity (NSCr), then stored carbohydrates 649 
are used for woody growth. C allocated to tissue production leads to an increment of trunk diameter and height following allometric 650 
relationhips, and the production of new young leaves and roots. Simultaneously with tissue turnover, this leads to the update of leaf 651 
density and root biomass distribution, influencing both abiotic environment (eg. light diffusion and water interception) and light 652 
and element acquisition, and thus carbon assimilation and metabolism. C allocated to reproduction leads to the production of seeds, 653 
which are dispersed randomly. This generates a spatially-explicit seedling bank, from which winners are locally recruited depending 654 
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on both light and water availability. Tree death may be triggered by environmental or mechanical constraints, or carbon starvation. 655 
In a future version, litter decomposition, wood decay and nutrient mineralization, could lead to soil nutrient availability for plant 656 
uptake, and take place through the action of soil microorganisms, which activity, and hence respiration (RHETEROTROPHIC), depends 657 
particularly on temperature and soil moisture. 658 

 659 

2.6.2 Leaf production and leaf shedding 660 

Leaf phenology is a key driver of the variation of tropical forest productivity (Manoli et al., 2018; Restrepo-Coupe et al., 2013; 661 

Wu et al., 2017). However, its underlying drivers remain poorly understood, and its representation in vegetation models 662 

remains challenging (Chen et al., 2020; Restrepo-Coupe et al., 2017). In ORCHIDEE, Chen et al. (2020, 2021) proposed a leaf 663 

phenological scheme in which the production of young leaves is partly controlled by incident shortwave radiation, while the 664 

shedding of old leaves is controlled by vapor pressure deficit. This scheme reproduces the simultaneous increase in leaf 665 

production and litterfall observed in many Amazonian rainforest sites where productivity increases during the dry season 666 

(Chave et al., 2010; Wagner et al., 2016; Yang et al., 2021), but not the observed seasonality in productivity at some sites (e.g. 667 

GUYAFLUX eddy-flux site in French Guiana, Chen et al., 2020). Additionally, this scheme overlooks the contrasted leaf 668 

phenological patterns observed across canopy individuals within and across species within communities (Nicolini et al., 2012; 669 

Loubry, 1994). In ED2, Xu et al. (2016) implemented a leaf phenological scheme driven by water availability in the root zone 670 

in a seasonally dry tropical forest. Since leaf shedding is often triggered by drought-induced loss of leaf turgor in these systems 671 

(Sobrado, 1986), leaf shedding and production are assumed to depend on the difference between leaf predawn water potential 672 

and leaf water potential at turgor loss point. However, such a scheme cannot simulate the simultaneous leaf production and 673 

shedding observed in moist tropical forests. 674 

In TROLL 4.0, we propose an alternative approach. At each timestep, the optimal tree total leaf area (LAopt) is 675 

estimated as the leaf area beyond which producing more leaves leads to a net carbon loss due to self-shading and respiration 676 

costs. LAopt depends on tree crown size and leaf area density (section 2.4.2), leaf photosynthetic capacities and respiration rate 677 

(section 2.5.1), and local light environment. At each timestep, the amount of carbon allocated to the production of new young 678 

leaves, 𝑁𝑃𝑃L%,3%., and to woody growth, 𝑁𝑃𝑃J""D, are determined by default as: 𝑁𝑃𝑃L%,3%. = 𝑓L%,3%.	 ×	𝑁𝑃𝑃K9D, with 679 

𝑓L%,3%. = 0.68 × 𝑓R,9"#} (Chave et al., 2008, 2010; Maréchaux and Chave, 2017), and 𝑁𝑃𝑃J""D = 0.6 × 𝑓J""D	 ×	𝑁𝑃𝑃K9D, 680 

where the factor 0.6 accounts for the fact that about 40% of woody NPP is actually used for branch fall repair (Malhi et al., 681 

2011). When leaf area LAt exceeds LAopt, 𝑁𝑃𝑃L%,3%. is reduced so that LAt= LAopt. Second, if the carbon allocated to leaf 682 

production is not sufficient to compensate leaf loss, then the carbon attributed by default to tree woody growth is mobilized 683 

for leaf production until leaf loss is compensated. If not sufficient, the tree carbon storage (see section 2.6.3) is then also 684 

mobilized. Hence this scheme prioritizes the maintenance of the assimilating tissues over woody growth (Schippers et al., 685 

2015). The variation of leaf area for each leaf age pool is then computed as follows:  686 

∆𝐿𝐴}"A9$ =	
U×	~66,-"<-!

/G0
−	/0M*N;K

�M*N;K
  687 
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∆𝐿𝐴&,!AI% =	
/0M*N;K
�M*N;K

−	/04"#N.-
�4"#N.-

  688 

∆𝐿𝐴"LD =	
/04"#N.-
�4"#N.-

−	/0*,7
�*,7

          (56) 689 

where τyoung, τmature, τold are the residence times in each class (in yr), so that LL= τyoung+τmature+τold with LL the maximal tree 690 

leaf lifespan (in yr). LL is inferred from the tree LMA, using the following empirical relationships (Schmitt, 2017): 691 

𝐿𝐿 = :
:U
max(3, 12.755 × exp(0.007 × 𝐿𝑀𝐴 − 0.565 × 𝑁)	)       (57) 692 

τyoung was fixed to min(LL/3, 1/12) yr (Doughty and Goulden, 2008; Wu et al., 2016), and τmature as a third of total leaf lifespan. 693 

The loss term LAold/τold corresponds to the rate of leaf litterfall at each timestep. In the previous TROLL version, 694 

litterfall resulted from the dynamics of leaf biomass with τold= LL - τyoung- τmature. This leaf shedding scheme is passive and 695 

does not simulate the observed seasonality in leaf litterfall. Here we propose a new approach to simulate leaf shedding. We 696 

first observed that within species and sites, canopy trees can shed their leaves at different times, suggesting that causal 697 

environmental drivers should display fine-scale heterogeneity in space (unlike atmospheric shortwave radiation and vapor 698 

pressure deficit). In addition, old leaves display nutrient resorption before abscission (Albert et al., 2018; Kitajima et al., 1997a; 699 

Urbina et al., 2021); similarly, solute translocation from older to younger leaves can lower osmotic potential and leaf water 700 

potential at turgor loss point, thus increasing the drought tolerance of younger leaves to the detriment of older leaves (Pantin 701 

et al., 2012). We therefore used predawn leaf water potential as a trigger of leaf shedding as in Xu et al., (2016), but with 702 

different thresholds for leaves of different ages, older leaves being more susceptible to a small decrease in tree water 703 

availability, while younger leaves can maintain turgor and grow at the same time. More specifically, we defined the following 704 

threshold: 705 

𝜓<," = min�𝑎<," ×	𝜋!L#, −	0.01 × ℎ − 𝑏<,"�        (58) 706 

The first term in 𝜓<," with 𝑎<," < 1	represents old leaves’ lower ability to maintain turgor as soil dries. The second term 707 

modulates this susceptibility to drought depending on tree height (Bennett et al., 2015):  it induces a susceptibility to a (small) 708 

decrease 𝑏<," > 0 in soil water availability for large trees, while preventing them from constantly shedding their old leaves at 709 

fast pace (see Eq. (37)). 𝜏"LD is then updated using a multiplying factor 𝑓" (0.001 ≤ 𝑓" ≤ 1). Initially, 𝜏"LDy = 𝑓"𝜏"LD with 𝑓" =710 

1	, which is updated daily as follows: 𝑓"y = 𝑓"−𝛿" when 𝜓#D < 𝜓<," and 𝑓"y = 𝑓"+𝛿" when 𝜓#D > 𝜓<,", always assuming that 711 

𝑓" has 0.001 as a lower bound, and 1 as an upper bound.  712 

We assumed no variation of 𝜋!L#	with tree height (Maréchaux et al., 2016). The threshold 𝜓<," jointly depends on 713 

𝜋!L# and tree height ℎ to account for drought tolerance and tree height on leaf-level water stress. Practically, the tree height 714 

above which old leaves becomes susceptible to a small decrease in soil water availability is 𝐻<," = −100 × �𝑎<,"𝜋!L# + 𝑏<,"� 715 

in m: 28 m at 𝜋!L#=-1.5 MPa and 58m at 𝜋!L#=-3 MPa (when 𝑎<,"= 0.2 and 𝑏<," = 0.02). While this scheme is based on 716 

process-based observations, parameters 𝑎<,", 𝑏<,", and 𝛿" are currently calibrated (see Schmitt et al., submitted companion 717 

paper). 718 
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2.6.3 Carbon storage 719 

In TROLL 4.0, trees can store carbon explicitly in non-structural carbohydrates. The maximal amount of carbon a tree can 720 

store and remobilize is determined as follows:   721 

𝑁𝑆𝐶I = 1000 × 0.5 × 0.05 × 1.25 × 𝐴𝐺𝐵         (59) 722 

where 𝑁𝑆𝐶I stands for non-structural carbohydrates (in gC), AGB is the tree aboveground biomass (in kg), and 1000 × 0.5 723 

converts biomass in kg into C in g (Elias and Potvin, 2003). It is assumed that NSC can account for 10% of the tree biomass, 724 

half of which is mobilizable (Martínez-Vilalta et al., 2016), hence the factor 0.05. The other half of NSC supports critical 725 

metabolic functions or is no longer accessible. The factor 1.25 accounts for an additional 25% biomass storage in coarse roots, 726 

so 1.25 × 𝐴𝐺𝐵 is total tree biomass (Ledo et al., 2018). AGB is computed following (Chave et al., 2014; Eq. (5) therein): 727 

𝐴𝐺𝐵 = 0.0559 × 𝑤𝑠𝑔 × 𝑑𝑏ℎU × ℎ         (60) 728 

where dbh is in cm, h in m and wsg in g cm-3. The NSC storage compartment is filled by the potential carbon surplus resulting 729 

from the allocation to leaf production, i.e. 𝑓L%,3%.	 ×	𝑁𝑃𝑃K9D −	𝑁𝑃𝑃L%,3%. , if positive. If the storage compartment has reached 730 

its maximal capacity 𝑁𝑆𝐶I, then the surplus is allocated to woody growth. 731 

2.6.4 Growth 732 

The net primary production allocated to woody growth, 𝑁𝑃𝑃J""D, depends on the outcome of allocation to leaf 733 

production and carbon reserves (see sections 2.6.2 and 2.6.3; Fig. 3). In TROLL 4.0, hydraulic control on carbon assimilation 734 

and leaf phenology both influence carbon allocation to trunk growth (e.g. Doughty et al., 2014; Farrior et al., 2013; 735 

Friedlingstein et al., 1999), but turgor-mediated processes are not explicitly modeled (Coussement et al., 2018; Peters et al., 736 

2023; Muller et al., 2011; Körner, 2015). 𝑁𝑃𝑃J""D is converted into an increment of stem volume, ΔV in m3, as follows: 737 

∆𝑉 = 10>O × ~66)**7
8.]×J.$

	× 𝑆𝑒𝑛𝑒𝑠𝑐(𝑑𝑏ℎ)         (61) 738 

where the factor 0.5 converts dry biomass units into carbon units (Elias and Potvin, 2003). The function 𝑆𝑒𝑛𝑒𝑠𝑐(𝑑𝑏ℎ) is 739 

designed so that the largest trees cannot allocate carbon as efficiently into growth, reflecting empirical evidence of a size-740 

related relative growth decline in trees (Yoda et al., 1965; Ryan et al., 1997; Mencuccini et al., 2005; Woodruff and Meinzer, 741 

2011; Stephenson et al., 2014). We assumed that trees cannot exceed a trunk diameter of 𝑑𝑏ℎ&,g =
k
U
𝑑𝑏ℎ!XI%.X, where 742 

𝑑𝑏ℎ!XI%.X depends on species-specific information provided by the user (see section 2.4.1), so that: 743 

𝑆𝑒𝑛𝑒𝑠𝑐(𝑑𝑏ℎ) = 1 𝑤ℎ𝑒𝑛	𝑑𝑏ℎ ≤ 𝑑𝑏ℎ!XI%.X
𝑆𝑒𝑛𝑒𝑠𝑐(𝑑𝑏ℎ) = maxS0; 	3	– 	2 D-X

D-X#6.-!6
	T 𝑤ℎ𝑒𝑛	𝑑𝑏ℎ > 𝑑𝑏ℎ!XI%.X

      (62) 744 

Trunk diameter growth increment Δdbh (in m), is computed from ΔV as follows. 𝑉 = 𝐶	𝜋(D-X
U
)Uℎ, where C is a form 745 

factor (Chave et al. 2014, Eq. (5) therein). The term h (in m) is total tree height inferred from the dbh following Eq. (16), this 746 

leads to an expression of V as a function of dbh only. This function can be inverted to estimate Δdbh as a function of ΔV, 747 

which is known from Eq. (61). Tree height and crown dimensions are then updated using Eqs (16), (17) and (18). 748 
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2.7 Tree demography  749 

2.7.1 Seed production, dispersal and recruitment 750 

The starting point for a tree life cycle, as represented in TROLL 4.0 is an event of seed dispersal into the seed bank. On each 751 

1x1 m ground site and for each species s, a ‘seed’ bank stores all the seeds dispersed from the mature trees as well as from an 752 

external seed rain. The seed bank is updated once a year. Here, our conceptual ‘seeds’ represent opportunities of seedling 753 

recruitment rather than as true seeds, since not all seed dispersal events are modeled explicitly, and the seed-to-seedling 754 

transition is implicit. 755 

In TROLL 4.0 trees are assumed to become fertile above a diameter threshold dbhmature that depends on the tree 756 

maximal size (Visser et al., 2016) as follows: 757 

𝑑𝑏ℎ&,!AI% = 	0.5	 ×	𝑑𝑏ℎ!XI%.X          (63) 758 

This relationship is drawn from direct observations of reproductive status of tree species in the tropical forest of Barro Colorado 759 

Island, Panama, with maximal tree dbh spanning a range of 0.05 to 2 m (see Fig. S9 in Visser et al., 2016; R2=0.81, n= 60 760 

species). The number of reproduction opportunities per mature tree, ns, is assumed fixed and equal for all individuals, and its 761 

value is user-defined. This assumption of a fixed reproductive opportunity per tree is predicated on the fact that there is a trade-762 

off between seed number and seed size, itself related to seed and seedling survival. Thus, the probability of germination does 763 

not depend strongly on seed size or on the number of produced seeds and can be assumed a zero-sum game (Coomes and 764 

Grubb, 2003; Moles et al., 2004; Moles and Westoby, 2006). Each of the ns events is scattered away from the tree in a random 765 

direction and at a distance randomly drawn from a Rayleigh distribution, thus allowing for potential long-dispersal events. 766 

Although seed dispersal distance is known to vary depending on dispersal syndrome and plant traits (Tamme et al., 2014; 767 

Seidler and Plotkin, 2006; Muller-Landau et al., 2008), the scale parameter 𝜎DK.# of the distribution is here fixed across species 768 

and individuals.  769 

The intensity of the external seed rain is quantified by Ntot (in number of incoming seeds per hectare) and its species 770 

composition is defined by the relative abundances of species freg,s, both being user-defined. Hence, for each species s, next,s 771 

events of dispersal due to seeds immigrating from the outside occurred, with: 772 

𝑛%g!,. = 𝑁!"! 		× 	𝑓I%$,. 	× 	𝑛X,          (64) 773 

with nha the number of hectares of the simulated plot. These reproduction opportunities are uniformly distributed within the 774 

simulated area.  775 

If several species are competing for recruitment in a local seed bank, one of the species is picked at random as the 776 

winner out of all the seeds present, as in a lottery model (Chesson and Warner, 1981). The recruitment event occurs only if 777 

ground-level light availability is sufficiently high. To test if this condition is met, the seedling is first attributed individual trait 778 

values depending on the species-specific averages (see section 2.4.1). These traits values are then used to determine the 779 

maximum LAI (LAImax) the seedling would support under average environmental conditions, with LAImax defined as the 780 
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threshold beyond which the seedling leaf assimilation would be less than respiration (see section 2.6.2). The seedling can be 781 

recruited if the site LAI at ground level is lower than LAImax.  782 

Water availability is also key to seedling performance (Engelbrecht et al., 2006; Johnson et al., 2017; Kupers et al., 783 

2019), hence TROLL 4.0 now implements an additional water-dependent dependence on seedling establishment (Craine et al., 784 

2012; Paine et al., 2018). Seedling recruitment is possible only if top-layer soil water potential is less negative than half the 785 

turgor loss point (𝜋!L#/2). Such parameterization is motivated by the fact that, at turgor loss point, the seedlings would not 786 

germinate, and a certain level of turgor is needed for germination and growth (Bradford, 1990; Daws et al., 2008; Coussement 787 

et al., 2018; Hsiao, 1973; Fatichi et al., 2016).  788 

If both conditions on light and water availability are met, the newly recruited tree is initialized with a dbh=0.01m, a 789 

total leaf area 𝐿𝐴! = 0.25 × 𝐿𝐴"#! distributed across the three leaf age pools in proportion to their relative span (τyoung/LL, 790 

τmature/LL, τold/LL; see section 2.6.2), and a carbon storage compartment filled at half its maximum NSCr (see section 2.6.3). 791 

The assumptions here made on tree reproduction largely reflect limited knowledge on these processes, which remains 792 

major sources of uncertainty in current models (König et al., 2022; Hanbury-Brown et al., 2022; Díaz-Yáñez et al., 2024).  793 

2.7.2 Mortality 794 

Mortality processes also play a key role in forest structure and carbon balance (Sevanto et al., 2014; Friend et al., 2014; Johnson 795 

et al., 2016; Esquivel-Muelbert et al., 2020; McDowell et al., 2022). TROLL 4.0 explicitly represents several important 796 

mechanisms of tree mortality. At each timestep, individual tree death rate (in events yr-1; Sheil et al. 1995) is:  797 

𝑑 = 𝑑- + 𝑑.!,I3 + 𝑑!I%%Q,LL + 𝑑DI"A$X!         (65) 798 

where 𝑑- is a background death rate, 𝑑.!,I3 represents death due to carbohydrate shortage (carbon starvation), 𝑑!I%%Q,LL 799 

represents death due to treefall (including trees indirectly killed by neighboring fallen trees), and 𝑑DI"A$X! the drought-induced 800 

tree mortality. 801 

Background mortality 𝑑- encapsulates death events that are not attributed to any specific mechanism in the model. 802 

Mortality rate is known to vary greatly among species, and we here assume that it is negatively correlated with tree wood 803 

density, as observed pan-tropically (King et al., 2006; Kraft et al., 2010; Poorter et al., 2008; Wright et al., 2010). This 804 

dependence illustrates a trade-off between investment into construction costs and risk of mortality (Chave et al., 2009). We 805 

assumed the following relationship: 806 

𝑑- = 𝑚	 ×	S1 − J.$
J.$,+4

T           (66) 807 

where m (in events yr-1) is the reference background mortality rate for a species with low wood density and is user-specified. 808 

wsglim is a value large enough so that 𝑑- always remains positive (here set at 1 g cm-3).  809 
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A tree can also die because of carbohydrate shortage in case of prolonged stress (𝑑.!,I3 in Eq. (65)). In TROLL 4.0 810 

that includes an explicit carbohydrate storage compartment, the tree dies of carbon starvation when this compartment is empty 811 

and 𝑁𝑃𝑃K9D ≤ 0 (Eq. (51)). 812 

 Tree death may be caused by treefalls (term 𝑑!I%%Q,LL in Eq. (65)). To simulate this process, we first define a stochastic 813 

threshold 𝛩, depending on the tree maximal height, and prescribed at tree birth. Then, the tree can fall with a probability equal 814 

to 1 − �
X
 (Chave, 1999) each month. As TROLL 4.0 uses a daily timestep, this probability is uniformly distributed across the 815 

days of one month. The parameter 𝛩 is computed for each tree, as follows: 816 

𝛩 =	ℎ&,g 	× 	(1 − 𝑣< × |𝜁|)          (67) 817 

where hmax is maximal tree height (i.e. the tree height computed using Eq. (16) at dbhmax), vT is a variance term, |𝜁| is the 818 

absolute value of a random Gaussian variable with zero mean and unit standard deviation. vT is modified at tree level so that 819 

high risks of treefall (> 99.5th percentile of the Gaussian variable) occur at the same height for all individuals of the same 820 

species. This implicitly introduces a growth-mortality trade-off, as more slender trees (larger ratio of height to trunk diameter) 821 

should reach this height threshold quicker. The orientation of tree falls is random. Trees on the trajectory of the falling tree can 822 

be damaged, especially if they are smaller than the fallen tree (van der Meer and Bongers, 1996). To model this effect, an 823 

individual variable hurt is defined. If a tree is within the trajectory of the fallen stem or of the fallen crown, its variable hurt is 824 

updated to h and X>?H
U

 , respectively, if it was lower, where h and CR are the tree height and crown radius of the fallen tree, 825 

respectively. The probability to die due to another treefall is then 1 −	:
U

X
XAI!×%P6,5 	

, where h is the height of the focal tree and 826 

𝑒V6,5 (see Eq. (16)) accounts for the fact that slender individuals (higher tree height deviation) would be more vulnerable to 827 

treefall. Such tree can either fall and itself damage other trees or dies standing, depending on the user choice. The hurt variable 828 

is reset to zero at each timestep.  829 

Finally, prolonged drought is also a source of mortality. Drought-induced mortality is triggered when the leaf predawn 830 

water potential 𝜓#D is below a lethal level (𝜓L%!X,L), and 𝜓L%!X,L 	is computed from the leaf water potential at turgor loss point, 831 

using the relationship provided by the global meta-analysis of Bartlett et al. (2016; P=0.03, R2=0.31, n=15 species from tropical 832 

dry and moist biomes), as follows: 833 

𝜓L%!X,L =	−0.9842 + 3.1795	 ×	𝜋!L#         (68) 834 

3 Modelling protocol 835 

3.1 Model inputs  836 

TROLL 4.0 requires five input files to run a simulation: (i) global parameters, (ii) species parameters, (iii) soil characteristics, 837 

and finally, meteorological drivers varying at (iv) half-hour and (v) daily step. 838 
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The global input file contains parameters that define the simulation set-up (e.g. the number of timesteps, size of the 839 

simulated plot and of the belowground voxels), and values for biophysical parameters that remain constant throughout the 840 

simulation and are not species- or tree-specific. These include the light attenuation coefficient, allocation parameters, minimal 841 

death rate, and more (see Table A1). Parameter values can be varied across simulations, to test model sensitivity, transfer 842 

across sites, or any other reason. The species input file contains mean functional traits for at least one species and with no 843 

upper bound (see Table A1). Functional trait values can be prescribed from local field measurements, or retrieved from global 844 

trait databases (e.g. Kattge et al., 2020; Díaz et al., 2022).  845 

The soil input file contains the soil variables needed for the pedotransfer functions, i.e. soil texture (proportion of silt, 846 

clay and sand), soil organic matter content, dry bulk density, soil pH, and cation exchange capacity, for each soil layer, with 847 

thickness of each layer. The number of soil layers is at least one, and is not theoretically limited. Lacking local soil data, model 848 

users may retrieve soil parameters from online databases (e.g. Poggio et al., 2021), bearing in mind the uncertainties of such 849 

products, especially in tropical areas (Khan et al., 2024).  850 

Meteorological drivers are provided in two files, depending on their temporal resolution in the model. Daytime 851 

temperature, vapor pressure deficit, incident irradiance and wind speed at a reference height above the canopy are provided 852 

for every half-hour, while average nighttime temperature and cumulative rainfall are provided at a daily timestep. Such data 853 

can typically be retrieved from meteorological stations embedded in eddy-flux towers, or from global products (Muñoz-Sabater 854 

et al., 2021), as in Schmitt et al. (2023). 855 

3.2 Initial conditions 856 

Two types of initial conditions are useful in most practical settings, and are implemented in TROLL 4.0. First, the user can 857 

simulate forest regeneration from bare ground. In this case, forest succession is initiated by the external seed rain, the 858 

composition and intensity of which are user-defined (see above). The steady-state forest composition and structure are thus 859 

emergent properties of the community assembly mechanisms embedded in the model, and the user-specified seed rain. The 860 

second option is to prescribe an initial forest state. This requires that an initial forest state be provided as an additional input 861 

file. The code is designed to adapt to the level of information provided by the inventory file, from a minimal requirement of 862 

tree dbh to the full list of individual variables for each tree. For individual variables missing in the input file, these are either 863 

computed from the model relationships or drawn at random. This second initial condition matches a real site forest state given 864 

the available data, but will require careful calibration to maintain the forest state over a longer time period (e.g. Fischer et al., 865 

2019). A more common use case is to restart new simulations from an output of a previous simulation, e.g., to perform virtual 866 

experiments controlling the initial state.  867 

3.3 Standard outputs 868 

TROLL 4.0 provides a range of outputs related to forest structure, forest composition and diversity, and ecosystem functioning 869 

(e.g., carbon and water fluxes; Fig. 4). It simulates forest structure and composition and provides outputs comparable to those 870 
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measured in the field: tree size distribution, tree spatial distribution, biomass accumulation curve, functional trait distribution, 871 

canopy height and leaf area index maps (Maréchaux and Chave, 2017), and more generally all information that can be retrieved 872 

from a detailed field inventory or a meter-scale airborne laser scanning survey (Fischer et al., 2019). In TROLL 4.0, other 873 

outputs are also available: litterfall fluxes, carbon and water fluxes comparable to the one provided by eddy-flux towers, soil 874 

water state (content and water potential). An evaluation of these outputs for two Amazonian forest sites is provided in a 875 

companion paper (Schmitt et al., submitted companion paper). 876 

 877 

 878 
Figure 4: Examples of outputs provided by TROLL 4.0 and related to ecosystem functioning, diversity and structure. (a) Temporal 879 
variations of gross primary productivity (red) and evapotranspiration (blue) within and across years. (b) Variation in total leaf area 880 
index (red line) and leaf area index per leaf age cohort (young, mature, old; yellow, light green and dark green lines, respectively), 881 
together with litterfall (grey bars), within and across years. (c) Mean seasonal variations of water content in soil layers of different 882 
depths, with the vertical yellow band in the background depicting the dry season. (d) Distribution of functional traits. (e) 883 
Distributions of basal area per diameter class. Panels (a), (b) and (c) show outputs for an Amazonian forest site (Paracou), panels 884 
(d) and (e) show outputs for two Amazonian sites (Paracou, red; Tapajos, blue), see Schmitt et al., submitted companion paper. for 885 
details on similation set-ups. 886 
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4 Discussion 887 

TROLL 4.0 is a novel generation of forest growth models designed to bridge the gap between traditional forest growth 888 

models and process-based models informed by ecophysiology. It includes an integration of processes underlying ecosystem 889 

fluxes closer to a modern DGVM than most other forest growth simulators. It also includes representation of plant community 890 

structure and diversity at a resolution similar to that used by ecologists in the field. This enables a direct comparison with a 891 

range of field data, including forest inventories, trait distribution, fine- and large-scale remote-sensing products, or eddy-892 

covariance data. Here we discuss the assumptions of the water cycle newly included in the model, as well as transferability 893 

and limitations of the current model version.  894 

4.1 Simulating water fluxes and forest responses to water availability 895 

Previous versions of TROLL assume that water availability does not limit ecosystem fluxes and dynamics, a strong but 896 

reasonable assumption in a light-limited forest like in Eastern Amazonia (Guan et al., 2015; Wagner et al., 2016; Maréchaux 897 

and Chave, 2017). However, such a simplification does not allow to account for drought-induced inter-annual variability in 898 

forest dynamics (Bonal et al., 2008; Aguilos et al., 2018; Leitold et al., 2018) or to transfer the model to sites where water 899 

availability is limiting. As droughts will be important drivers for tropical ecosystems in the future (Duffy et al., 2015), such a 900 

simplification does not allow to project future states of forest under climate change.  901 

In TROLL 4.0, we implemented a full water cycle. We introduced a belowground field with a hydraulic state coupled 902 

to the vegetation, and a representation of the response of leaf gas exchanges to local atmospheric conditions and their control 903 

by the leaf boundary layer. This detailed representation is commonplace DGVMs (Prentice et al., 2007) but to our knowledge, 904 

it is new for an individual-based spatially explicit forest dynamic simulator. This paves the way for explorations and projections 905 

of the independent effects of soil water availability and atmospheric demand on ecosystem functioning (Novick et al., 2016; 906 

Santos et al., 2018), community composition and structure (Esquivel‐Muelbert et al., 2019; Fauset et al., 2012; Slik, 2004; 907 

Feeley et al., 2011). 908 

  These developments have striven to follow the parsimonious principle: more complex representations do not 909 

systematically result in increased model reliability and robustness, especially if the additional parameters are poorly 910 

constrained (Mahnken et al., 2022; Prentice et al., 2015). The soil hydraulic state is simulated using a bucket model (Budyko, 911 

1961; Manabe1969; Vargas Godoy et al., 2021). In the future, more complex representations of soil water dynamics could be 912 

implemented at finer temporal and spatial resolutions, such as the implementation of Richards’ equation (Richards, 1931), and 913 

integration of lateral flows, but this would be at a serious computational cost. These could be compared with the current simpler 914 

representation to assess the relevance of increasing complexity in various contexts and soil data availability (Van Nes and 915 

Scheffer, 2005). However, two aspects were considered to be needed in the current version, based on biological considerations. 916 

First, we implemented a multi-layer soil model, a more detailed representation compared with other models using a bucket 917 

model approach (e.g. Fischer et al., 2014; Laio et al., 2001). This was motivated by the need to account for contrasting rooting 918 
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strategies and access to water among coexisting plants, which is an under-explored, but likely key, aspect of community 919 

dynamics in forests (Brum et al., 2019; De Deurwaerder et al., 2018; Ivanov et al., 2012). Second, we assumed that the depth 920 

of tree water uptake is not only controlled by the distribution of root biomass (as in Naudts et al., 2015; Sakschewski et al., 921 

2021; Paschalis et al., 2024), but also by soil water state and its vertical variation (as in Williams et al., 1996; Duursma and 922 

Medlyn, 2012). These improvements are relevant to the temporal variation of water retrieval depth (Bruno et al., 2006) and 923 

the sustained dry-season productivity in rainforest ecosystems (Restrepo-Coupe et al., 2017). 924 

 The control of leaf gas exchange by water availability has been implemented by means of multiplicative soil water 925 

stress factors. Although the use of such factors has been debated (Powell et al., 2013; Joetzjer et al., 2014), it has been preferred 926 

over a more explicit representation of the water flow through the plant column (e.g. Yao et al., 2022; Christoffersen et al., 927 

2016; Cochard et al., 2021; De Cáceres et al., 2023). Although the stem hydraulic traits that would be needed for parameterizing 928 

an explicit plant water flow module have been increasingly measured over the past decades, data availability for tropical tree 929 

species remains low in regards to the actual number of species coexisting in these communities. Alternatively, correlative 930 

relationships have been used to infer these traits from more easily measured traits (Christoffersen et al., 2016; Xu et al., 2016). 931 

However, these are context dependent (Brodribb, 2017; Rosas et al., 2019) and have at best low statistical support in rainforest 932 

communities that are loosely constrained by water availability (Dwyer and Laughlin, 2017; Delhaye et al., 2020; Maréchaux 933 

et al., 2020). Innovative methods alleviate the difficulties of robustly measuring the vulnerability of tropical trees to embolism 934 

(Cochard et al., 2016; Sergent et al., 2020; Garcia et al., 2023), and this could provide a key motivation for a more explicit 935 

module of plant water flow in TROLL (Kennedy et al., 2019; Paschalis et al., 2024). Such developments could be necessary 936 

to correctly represent the legacy of drought in forest ecosystems (Paschalis et al., 2024; Anderegg et al., 2015). However, two 937 

important aspects were taken into account in the implementation of the multiplicative water stress factors in TROLL 4.0. These 938 

factors were parameterized based on soil water potential as independent variable, and not soil water content, the former directly 939 

controlling water availability for plants, while the effect of soil water content is strongly mediated by soil properties (Novick 940 

et al., 2022). Also, different water stress factors were used for stomatal and non-stomatal limitations, in order to capture the 941 

sequence of effects of decreasing water availability on plant function (Trueba et al., 2019; Fatichi et al., 2016; Hsiao, 1973). 942 

 The effects of water availability on plant function and tree demography were implemented through trait-based 943 

parameterization, which allows a range of responses between trees and species. This was made possible through the use of leaf 944 

water potential at turgor loss point (𝜋!L#), a leaf-level trait that is mechanistically linked to plant responses to water availability 945 

(Bartlett et al., 2016b) and that is measurable at the community scale in diverse systems through a well-validated method 946 

(Maréchaux et al., 2016; Griffin-Nolan et al., 2019; Sun et al., 2020; Bartlett et al., 2012a). Leaf water potential at turgor loss 947 

point varies greatly across species within Amazonian forest communities (Maréchaux et al., 2015; Ziegler et al., 2019), and 948 

this diversity explains contrasting responses to water availability at the leaf and plant levels (Martin-StPaul et al., 2017; 949 

Maréchaux et al., 2018; Powell et al., 2017), and species distribution at local, regional and global scales (Bartlett et al., 2016a; 950 

Baltzer et al., 2008; Lenz et al., 2006; Bartlett et al., 2012b). The relationships implemented here involving 𝜋!L# have a 951 

mechanistic basis, as discussed above. However, the relationships controlling the effect of water availability on (1) leaf 952 
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shedding, (2) seed germination and seedling recruitment, and (3) drought-induced mortality would deserve in-depth 953 

exploration. More generally, these three processes remain key aspects of community dynamics and ecosystem functioning in 954 

high need of sustained empirical investigation (Albert et al., 2019; Díaz-Yáñez et al., 2024; McDowell et al., 2022). 955 

4.2 Model-data integration, transferability and limitations 956 

TROLL 4.0 simulates forest structure and diversity, while expanding the types of data with which its results can be compared 957 

(Schmitt et al., submitted companion paper). The individual-based species-specific representation of forest yields virtual forest 958 

inventories, including the location of each individual, their botanical identity, and their dimensions, and virtual airborne laser 959 

scanning point clouds (Fischer et al., 2019; Schmitt et al., 2023). TROLL 4.0 additionally provides water, carbon and litter 960 

flux dynamics that are directly comparable to eddy-flux tower data and litter trap monitoring at fine temporal resolutions, and 961 

this specificity has numerous advantages.  962 

Data-driven knowledge can be directly assimilated in TROLL 4.0, offering new perspectives for inference or 963 

calibration (Dietze et al., 2013; Fer et al., 2018; Hartig et al., 2012; LeBauer et al., 2013; Fischer et al., 2019). TROLL 4.0 can 964 

help inform the development of DGVMs, in which the representation of vegetation does not allow this type of assimilation 965 

(Fischer et al., 2019). TROLL 4.0 is also easy to use and test by field ecologists as it simulates trees, not cohorts, PFTs, or gap 966 

patches: it can reproduce classical experiments in community or ecosystem ecology (e.g. Crawford et al., 2021; Schmitt et al., 967 

2020) while overcoming known empirical challenges such as low repeatability (Schnitzer and Carson, 2016) or limited spatial 968 

footprint (Estes et al., 2018). TROLL 4.0 can be compared with data under the control of different biophysical processes 969 

supporting a more robust evaluation, and limiting equifinality issues (Franks et al., 1997; Medlyn et al., 2005). Finally, the 970 

model is parameterized based on traits directly measured in the field improving model transferability (Rau et al., 2022a). 971 

The individual-scale and spatially-explicit representation of TROLL 4.0 comes with a computational burden. For a 972 

reference 4-ha area starting from bare ground, and 600 years of simulation, the computational cost of TROLL 4.0 is about 973 

1820 min, compared with version TROLL2.3 (Maréchaux and Chave 2017) about 12 min. While the shift from a monthly to 974 

a daily timestep explains the multiplication by a factor of 30 between the two versions, the addition of a belowground field 975 

and of an iterative scheme to simulate leaf gas exchanges explains for a great part the remaining factor of five. Several 976 

developments should reduce this computational cost: tree demographic processes do not need to be simulated at the daily 977 

timestep and could be represented at a monthly resolution; vegetation models already implement such nested time scales 978 

(Moorcroft, 2006). We are also confident that further computer time reduction will be brought about by code optimization. 979 

Finally, several strategies can be implemented to up-scale the outputs of individual-based models at reduced computational 980 

costs, especially by leveraging large scale remote sensing products (Rödig et al., 2017; Sato et al., 2007; Shugart et al., 2015). 981 

4.3  Current and future developments 982 

TROLL 4.0 is a reflection on the state of the art and knowledge gaps in plant physiology and ecology, resulting in an 983 

unbalanced representation across processes. TROLL is being continuously developed, as knowledge and data availability 984 
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progress, specific questions to address with the model emerge, or important limitations are identified. In a companion paper 985 

(Schmitt et al., submitted companion paper), we use data from forest inventories, litter traps, eddy-flux towers and remote 986 

sensing products to evaluate and discuss the performance and limitations of TROLL 4.0 at two forest sites. We here mention 987 

several on-going or future developments. 988 

Empirical findings suggest that the contribution of undisturbed tropical forests to the global carbon sink is declining 989 

(Hubau et al., 2020; Qie et al., 2017), pointing to the need of integrated modelling to understand and predict such trends (Yao 990 

et al., 2023, 2024; Koch et al., 2021). Among the possible steps forward with TROLL 4.0 are an improved representation of 991 

stomatal conductance and its coupling with photosynthesis (Lamour et al., 2022, 2023; Dewar et al., 2018), as well as 992 

respiration response and acclimation to climatic drivers (Smith and Dukes, 2013; Collalti et al., 2020; Slot et al., 2013; Rowland 993 

et al., 2015). Improvements on the carbon budget would also be important, with more explicit carbon allocation to reproductive 994 

organs and belowground structures, under the control of environmental drivers (Fig. 3). However, such developments would 995 

rely on limited empirical or experimental knowledge belowground (Cusack et al., 2024) and scarce information on tree 996 

reproductive strategies (Igarashi et al., 2024; Vacchiano et al., 2018; Norden et al., 2007). An improved representation and 997 

evaluation of drought-induced tree mortality would be another important step forward as it might play a key role in the observed 998 

changing dynamics and functional and floristic turnover (Esquivel‐Muelbert et al., 2019; Feeley et al., 2011; Hubau et al., 999 

2020; Qie et al., 2017). Information provided by long-term through fall exclusion experiments would offer interesting 1000 

opportunities for model development and evaluation (Powell et al., 2013; Yao et al., 2022). 1001 

 Tropical forest disturbance by land use change, fire regimes, and other degradations are an important source of C 1002 

emissions (Lapola et al., 2023), and they must be represented in models. For instance, it is important to understand how edge 1003 

effects affect the forest microclimate, and consequently forest dynamics, functioning and composition (Camargo and Kapos, 1004 

1995; Nunes et al., 2022). To this end, micro-climate models could be coupled to or embedded within TROLL (Gril et al., 1005 

2023a; Maclean and Klinges, 2021). Fragmentation also impacts seed dispersal, and thus seed rain and seed bank intensity and 1006 

composition (Warneke et al., 2022; Cubiña and Aide, 2001). Improving TROLL’s representation of seed dispersal ability and 1007 

germination as a function of plant trait and dispersal mode is key to capture the effect of forest loss and fragmentation on forest 1008 

functioning and biodiversity (Seidler and Plotkin, 2006; Muller-Landau et al., 2008; Tamme et al., 2014; Chase et al., 2020; 1009 

Riva and Fahrig, 2023). More generally, one overarching objective is to improve model’s representation of processes involved 1010 

in forest regeneration, to simulate secondary forest dynamics and resilience to disturbances (Hanbury-Brown et al., 2022; Díaz-1011 

Yáñez et al., 2024; Poorter et al., 2023; Albrich et al., 2020). 1012 

 Finally, TROLL 4.0 includes major developments that should facilitate its transferability across sites. The explicit 1013 

integration of the ecosystem water balance and vegetation responses to soil water availability now allows to consider spatio-1014 

temporal extrapolation along water stress gradients. The integration of soil topography and heterogeneity would also be an 1015 

important advance for improved genericity. As nutrient availability is being altered by human activities (Peñuelas et al., 2013), 1016 

the explicit integration of a nutrient cycle with nitrogen and phosphorous colimitation will be a useful advance in the future 1017 
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(Fernández-Martínez et al., 2014; Turner et al., 2018). Similarly, the extension of tree functioning responses to a broader range 1018 

of temperatures, should support the transferability of TROLL to temperate and boreal forests.  1019 

5. Conclusion 1020 

TROLL 4.0 represents an advance over previous versions as it bridges across forest model types, while maintaining a 1021 

representation consistent with field ecology and ecosystem science. TROLL 4.0 simulates the responses of tropical forests to 1022 

water availability through the explicit representation of water dynamics belowground and its coupling with leaf-level gas 1023 

exchanges and demographic processes. This comes at a computational cost, and a future task is to conduct code optimization 1024 

and parallelization, and up-scaling in combination with remote-sensing products. The representation of processes in TROLL 1025 

4.0 mirrors an unbalanced state of the art, but its ability to dialogue with a range of data of various nature, makes it a valuable 1026 

tool to take up the fundamental and applied research challenges on tropical forests. TROLL 4.0 has benefited from observations 1027 

and field experiments that feed the development of models (Medlyn et al., 2015; Paschalis et al., 2020), while modeling 1028 

exercises inform and guide empirical approaches (Medlyn et al., 2016; Norby et al., 2016; Pacala and Rees, 1998). This is 1029 

possible because of the fine scale representation of forest structure and diversity and the trait-based parameterization of 1030 

processes in the model. 1031 

 1032 

 1033 

Code and data availability. The code of TROLL 4.0 is available at https://github.com/TROLL-code/TROLL, a DOI will be 1034 

linked to this repository upon publication. Additionally,  TROLL 4.0 can be set-up and run, and its outputs can be analyzed 1035 

with an updated version of the R package rcontroll: https://github.com/sylvainschmitt/rcontroll/tree/TROLLV4, also available 1036 

in R through the command devtools::install_github("sylvainschmitt/rcontroll", ref = "TROLLV4"). 1037 

 1038 

Supplement. The supplement related to this article will be available online upon publication acceptance. 1039 
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Appendix A  2419 

Table A1. List of symbols and variables. 2420 

Symbols Definition Units Nature Equations 
Physical constants 
𝑀J Molar mass of water vapor kg mol-1 Constant 12 
R ideal gas constant J mol-1 K-1 Constant 12-13, 28-31, 46-47 
𝑉J Partial molal volume of water m3 mol-1 Constant 13 

𝜅 von Karman constant 
 unitless Constant 8, 15 

g Gravity constant m s-2 Constant 37 
𝜌 Density of water kg m-3 Constant 37 
𝑀, Molecular mass of air kg mol-1 Constant 41, 48 
𝐶# Heat capacity of air J kg-1 K-1 Constant 41, 48 
𝛾 Psychrometric constant Pa K-1 Constant 41 
𝐷F Molecular diffusivity to heat m2 s-1 Constant 46 
𝜎 Stefan-Boltzmann constant W m-2 K-4 Constant 44, 48 
Aboveground environment 

PPFDtop Photosynthetic photon flux 
density at canopy top 𝜇mol photons m-2 s-1 Updated at half hourly 

step, given as input 1 

𝑇!"# Temperature at canopy top °C Updated at half hourly 
step, given as input 4, 6, 44 

𝑉𝑃𝐷!"# Vapour pressure deficit at canopy 
top kPa Updated at half hourly 

step, given as input 5, 7 

utop Wind speed at a reference height 
above the canopy m s-1 Updated at half hourly 

step, given as input Sections 2.1 and 2.2 

Tnight Nighttime temperature °C Updated daily, given as 
input Section 2.2 

𝑃𝑃𝐹𝐷 Incident photosynthetic photon 
flux density 𝜇mol photons m-2 s-1 Computed every half 

hour 1, 25 

T Temperature °C Computed every half 
hour 4, 42, 46-48 

VPD Vapour pressure deficit kPa Computed every half 
hour 5 

u Wind speed m s-1 
Computed every half 
hour 
 

8, 9, 15, 47 

ca CO2 concentration 𝜇mol mol-1 (ppm) Constant Section 2.5 
Press Atmospheric pressure Pa Constant 46-47 

𝑃𝑃𝐹𝐷,-. 
Absorbed photosynthetic photon 
flux density 𝜇mol photons m-2 s-1 Computed every half 

hour 2 

𝑇&%,9 Temperature, averaged per crown 
layer °C Computed every half 

hour 6 

𝑉𝑃𝐷&%,9 Vapour pressure deficit, averaged 
per crown layer kPa Computed every half 

hour 7 

LAI Cumulated leaf area per ground 
area m2 m-2 Computed daily for 

each voxel  1-3, 11, 43 

dens Averaged leaf area density per 
unit ground area m2 m-2 Computed daily, 

averaged per layer 3, 6-7 
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k Effective light extinction 
coefficient unitless 

Fixed, computed from 
kgeom and 
absorptanceleaves 

1 

kgeom 
Light extinction coefficient 
reflecting the geometric 
arrangement of leaves 

unitless Constant, given as 
input 1 

absorptan
celeaves 

Fraction of absorbed light within 
a single leaf unitless Constant, given as 

input 1 

LAIsat 
LAI threshold for computing 
microenvironemntal variation 
within the canopy 

m2 m-2 Constant 4-7 

∆𝑇 Parameter of the within-canopy 
variation in temperature °C Constant 4, 6 

CVPD0 
Parameter of the within-canopy 
variation in vapour pressure 
deficit 

unitless Constant 5, 7 

u* friction velocity 
 m s-1 Constant  

d	 zero-plane displacement height m 
Computed from the 
locally averaged 
canopy height (H) 

8 

𝑧8	 aerodynamic roughness m 
Computed from the 
locally averaged 
canopy height (H) 

8 

H	 Top canopy height m Computed daily 8-9 

𝛼	 Parameter of wind speed decrease 
within the canopy unitless Constant 9 

Water balance 

P	 Precipitation mm Updated daily, given as 
input 10 

I	 Interception mm Computed daily 10, 11 
Q	 Run-off m3 Computed daily 10 
E	 Evaporation from the soil kg m-2 s-1 Computed daily 10, 12 
T	 Tree transpiration m3 Computed daily 10 
L	 Leakage m3 Computed daily 10 
K	 Parameter for rainfall interception mm Constant 11 
𝑇.	 Temperature at soil surface K Computed daily 12, 13 
𝑒.	 Vapor pressure of the soil surface Pa Computed daily 12 

𝑒,	
Vapor pressure of air above the 
soil surface Pa Computed daily 12 

𝑒.,! saturated vapor pressure Pa Computed daily 13 
𝑟."KL	 Soil surface resistance s m-1 Computed daily 12, 14 

𝑟,%I"	
Aerodynamic resistance to heat 
transfer s m-1 Computed daily 12, 15 

Z	 Reference height for  𝑟,%I" 
computation m Constant 15 

𝑍&	 Momentum soil roughness m Constant 15 
𝜓L Soil water potential of layer l MPa Computed daily 21 

𝐾L 
Soil hydraulic conductivity of 
layer l 

kg m-2 s-1 
 Computed daily 22 
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𝜓."KL,!"#	
Water potential of the top soil 
belowground voxel MPa Computed daily 13 

𝜃!"#	
Water content of the top soil 
belowground voxel m3 Computed daily 14 

𝜃QR,!"#	
water content at field capacity of 
the top soil belowground voxel m3 Computed daily 14 

Species and tree characteristics 

LMA Leaf mass per area g m-2 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

26, 27, 32, 56 

LA Leaf area cm2 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

46-47 

N Leaf nitrogen content per dry 
mass mg g-1 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

26, 27, 32 

P Leaf phosphorous content per dry 
mass mg g-1 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

26, 27, 32 

wsg Wood specific gravity g cm-3 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

36, 55, 60-61, 66 

𝜋!L# Leaf water potential at turgor loss 
point MPa 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

39-40, 58, 68, section 
2.7.1 

dbhthres 
Threshold diameter at breast 
height, beyond which growth 
senescence starts 

m 

Species-specific 
means: constant, 
provided as input; tree-
specific values: 
randomly attributed at 
tree birth 

62, 63 
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𝑑𝑏ℎ&,g Maximal tree diameter at breast 
height m Computed once per 

tree Section 2.6.4 

hlim Asymptotic height (parameter of 
Michaelis-Menten function) m 

Species-specific 
means: constant, 
provided as input 

16 

ℎ&,g Maximal tree height m 
Species-specific 
means: constant, 
provided as input 

67 

ah Parameter of Michaelis-Menten 
function m 

Species-specific 
means: constant, 
provided as input 

16 

freg,s Relative abundance of species s in 
the external seed rain unitless Species-specific, 

provide as input 64 

𝑤L Leaf width m Computed for each tree 46-47 
LL Leaf lifespan yr Computed for each tree 57 

𝜀K,W 
Individual effects for trait or 
variable i and tree j See traits Randomly attributed at 

tree birth Sections 2.4.1 and 2.4.2 

𝜎K 
standard deviation for 
intraspecific variability in trait or 
variable i 

See traits Constant, provided as 
input Sections 2.4.1 and 2.4.2 

dbh Tree diameter at breast height m Tree variable, updated 
at each timestep 16, 17, 19, 60-62 

h Tree height m Tree variable, updated 
at each timestep 16, 37, 54-55, 58, 60 

cr Tree crown radius m Tree variable, updated 
at each timestep 17 

cd Tree crown depth m Tree variable, updated 
at each timestep 18, 54 

acr Coefficients of crown radius 
allometry unitless 

Species-independent 
constant, provided as 
input 

17 

bcr Coefficients of crown radius 
allometry unitless 

Species-independent 
constant, provided as 
input 

17 

acd Coefficients of crown depth 
allometry m 

Species-independent 
constant, provided as 
input 

18 

bcd Coefficients of crown depth 
allometry unitless 

Species-independent 
constant, provided as 
input 

18 

shape_cr
own 

Ratio between the radius of the 
crown at the top of the tree to the 
radius at the bottom of the crown 
being a global parameter 

unitless Global parameter, 
provided as input Section 2.4.2 

fgap Fraction of gaps (openings) in tree 
crowns unitless Constant, provided as 

input Section 2.4.2 

RD Tree root depth m Tree variable, updated 
at each timestep 19 

RBt Total tree fine root biomass g Tree variable, updated 
at each timestep 20 
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RBl Tree fine root biomass in layer l g Tree variable, updated 
at each timestep 20 

𝜓I""! 
Soil water potential in the tree 
root zone MPa Tree variable, updated 

at each timestep 21, 37 

𝜓H,&K9 Root water potential below which 
there is no soil water uptake MPa Constant 21 

Gl soil-to-root water conductance in 
layer l 

mmol H20 m-2 s-1 
MPa-1 

Variable, computed for 
each tree and layer at 
each timestep 

21, 22 

La,l Tree total root length per unit area 
in layer l m m-2 

Variable, computed for 
each tree and layer at 
each timestep 

22 

Lv,l Tree total root length per unit soil 
volume in layer l m m-3 

Variable, computed for 
each tree and layer at 
each timestep 

23 

SRL Specific root length m g-1 Constant 22 
rs Mean fine root radius m Constant 22 

rs half of the mean distance between 
roots m 

Variable, computed for 
each tree and layer at 
each timestep 

22, 23 

Leaf physiology 

Tl Leaf temperature °C Computed half-hourly 
for each crown layer 24, 25, 28-31, 33, 46 

VPDs Vapor pressure deficit at the leaf 
surface kPa Computed half-hourly 

for each crown layer 35 

cs CO2 concentration at the leaf 
surface 

𝜇mol mol-1 (ppm or 
𝜇bar) 

Computed half-hourly 
for each crown layer 34 

𝑐K 
CO2 concentration at 
carboxylation sites 

𝜇mol mol-1 (ppm or 
𝜇bar) 

Computed half-hourly 
for each crown layer 24, 34 

𝐴9 Leaf-level net carbon assimilation 
rate μmol CO2 m-2 s-1 Computed half-hourly 

for each crown layer 24, 52 

𝐴3 Leaf-level net carbon assimilation 
rate limited by Rubisco activity μmol CO2 m-2 s-1 Computed half-hourly 

for each crown layer 24 

𝐴W 
Leaf-level net carbon assimilation 
rate limited by RuBP regeneration μmol CO2 m-2 s-1 Computed half-hourly 

for each crown layer 24 

𝑅# Photorespiration rate μmol C m-2 s-1 Computed half-hourly 
for each crown layer 24 

𝑅D Leaf dark respiration rate  μmol C m-2 s-1 Computed half-hourly 
for each crown layer 33 

𝑅D>G Leaf dark respiration rate on a 
leaf dry mass basis nmol CO2 g-1s-1 Computed half-hourly 

for each crown layer 32 

𝑉R&,g Maximum rate of carboxylation μmol CO2 m-2s-1 Computed half-hourly 
for each crown layer 24, 26, 28 

𝑉R&,g>G Maximum rate of carboxylation 
on a leaf dry mass basis μmol CO2 g-1 s-1 Computed half-hourly 

for each crown layer 26 

𝐽 Electron transport rate μmol e- m-2 s-1 Computed half-hourly 
for each crown layer 24, 25 

𝐽&,g maximal electron transport 
capacity μmol e- m-2 s-1 Computed half-hourly 

for each crown layer 25, 29 
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𝐽&,g>G maximal electron transport 
capacity on a leaf dry mass basis μmol e- g-1 s-1 Computed half-hourly 

for each crown layer 27 

𝛤∗  CO2 compensation point in the 
absence of dark respiration 𝜇bar Computed half-hourly 

for each crown layer 24, 30 

𝐾& Apparent kinetic constant of the 
Rubisco 𝜇bar Computed half-hourly 

for each crown layer 24, 31 

𝜃 Curvature factor unitless Constant 25 

𝛼 Apparent quantum yield to 
electron transport mol e- mol photons-1 Constant 25 

LSQ Effective spectral quality of light unitless Constant 25 

𝑔. stomatal conductance to CO2 mol CO2 m-2 s-1 Computed half-hourly 
for each crown layer 34 

𝑔.J stomatal conductance to water 
vapor mol H20 m-2 s-1 Computed half-hourly 

for each crown layer 35 

𝑔8 minimum leaf conductance for 
water vapor mol H20 m-2 s-1 Constant, provided by 

the user 35 

𝑔: Parameter of the stomatal 
conductance model kPa0.5  Computed daily for 

each tree 35, 36 

𝜓#D Leaf predawn water potential MPa Tree variable, 
computed daily 24, 25, 28, 29, 36-40 

𝑊𝑆𝐹9. 
Water stress factor for non-
stomatal limitation unitless Tree variable, 

computed daily 28, 29, 40 

𝑊𝑆𝐹. 
Water stress factor for stomatal 
limitation unitless Tree variable, 

computed daily 36, 38-39 

a Parameter of 𝑊𝑆𝐹9. unitless Constant  40 

b Parameter of 𝑊𝑆𝐹. unitless Computed from tree-
specific 𝜓!L# 39, 39 

𝐸L Leaf-level transpiration rate mol H20 m-2 s-1 Computed half-hourly 
for each crown layer 41 

𝜆 Latent heat of water vapor J mol-1 Computed half-hourly 
for each crown layer 41, 42 

s 
slope of the (locally linearized) 
relationship between saturated 
vapor pressure and temperature 

Pa K-1 Computed half-hourly 
for each crown layer 41 

𝑅9K isothermal net radiation J m-2 s-1 Computed half-hourly 
for each crown layer 41, 43 

𝑔F total leaf conductance to heat mol m-2 s-1 Computed half-hourly 
for each crown layer 41, 45 

	𝑔-FQ boundary layer conductance for 
free convection mol m-2 s-1 Computed half-hourly 

for each crown layer 45, 46, 50 

	𝑔-FA boundary layer for forced 
convection mol m-2 s-1 Computed half-hourly 

for each crown layer 45, 47, 50 

	𝑔I radiation conductance mol m-2 s-1 Computed half-hourly 
for each crown layer 45, 48 

𝑔J total leaf conductance to water 
vapor mol H20 m-2 s-1 Computed half-hourly 

for each crown layer 41, 49 

𝑔-J boundary layer conductance to 
water vapor mol H20 m-2 s-1 Computed half-hourly 

for each crown layer 49, 50 

𝑆,-. 
Absorbed solar radiation (PAR 
and NIR) J m-2 s-1 Computed half-hourly 

for each crown layer 43 
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𝐵9,8 Net longwave radiation at the top 
of the canopy J m-2 s-1 Computed every half 

hour 43, 44 

𝑘D Coefficient of extinction of 
longwave radiation Unitless Constant  43 

𝜀L Emissivity of the canopy leaves Unitless Constant 44, 48 

𝜀, Emissivity of the atmosphere Unitless Computed every half 
hour 44 

Tree carbon allocation and demography 

𝐺𝑃𝑃K9D Tree-level gross primary 
productivity gC Computed daily 51 

 
𝑁𝑃𝑃K9D 

Tree-level net primary 
productivity gC Computed daily 51 

𝑁𝑃𝑃L%,3%. 
Tree-level net primary 
productivity allocated to leaf 
production 

gC Computed daily 56 

𝑁𝑃𝑃J""D 
Tree-level net primary 
productivity allocated to woody 
growth 

gC Computed daily 61 

AGB Tree aboveground biomass kg Computed daily 59-60 

𝑅&,K9!%9,9R% Tree-level maintenance 
respiration gC Computed daily 51 

𝑅.!%& Stem maintenance respiration  μmol C s-1 Computed daily 54 
𝑅$I"J!X Tree-level growth respiration gC Computed daily 51 
LAt Tree-level total leaf area m2 Updated daily 55 
LAopt Optimal tree leaf area m2 Updated daily Section 2.6.2 
𝐿𝐴L Leaf area in tree crown layer l m2 Updated daily 51, 52-53 
LAyoung Tree-level young leaf area m2 Updated daily 52-53, 56 
LAmature Tree-level mature leaf area m2 Updated daily 52-53, 56 
LAold Tree-level old leaf area m2 Updated daily 52-53, 56 

𝜚 
Ratio of young or old leaf 
assimilation rate over mature leaf 
assimilation rate 

unitless Constant 52 

𝜚y 
Ratio of young or old leaf 
respiration rate over mature leaf 
respiration rate 

unitless Constant 53 

𝜏}"A9$ Leaf residence time in the young 
age pool yr Computed for each tree 56 

𝜏&,!AI% Leaf residence time in the young 
age pool yr Computed for each tree 56 

𝜏"LD Leaf residence time in the young 
age pool yr Computed for each tree 56 

SA Tree sapwood area m2 Updated daily 54, 55 

𝜆: Parameter for sapwood area 
computation m2 cm-2 Constant 55 

𝜆U Parameter for sapwood area 
computation m cm-2 Constant 55 

𝛿: Parameter for sapwood area 
computation m2 cm-2 Constant 55 

𝛿U Parameter for sapwood area 
computation cm3 g-1 Constant 55 
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fcanopy 
Fraction of 𝑁𝑃𝑃K9D allocated to 
tree canopy (including leaves, 
fruits and twigs) 

unitless Constant, given as 
input Sections 2.6.1 and 2.6.2 

fleaves Fraction of 𝑁𝑃𝑃K9D allocated to 
leaves unitless Constant Section 2.6.2, 56 

ffruit Fraction of 𝑁𝑃𝑃K9D allocated to 
fruits unitless Constant Section 2.6.1 

ftwigs Fraction of 𝑁𝑃𝑃K9D allocated to 
twigs unitless Constant Section 2.6.1 

fwood Fraction of 𝑁𝑃𝑃K9D allocated to 
wood unitless Constant, given as 

input Section 2.6.2 

𝜓<," Water potential threshold for 
accelerating old leaf shedding MPa Computed daily for 

each tree 58 

𝑎<," 
Parameter to compute 𝜓<," 
(modulates old leaf drought 
tolerance) 

unitless Constant, given as 
input 58 

𝑏<," 
Parameter to compute 𝜓<," 
(modulates the height dependence 
of leaf susceptibility to drought) 

MPa Constant, given as 
input 58 

𝑓" Factor of the acceleration of old 
leaf shedding unitless Updated daily for each 

tree Section 2.6.2 

𝛿" 
Parameter controlling the pace of 
old leaf shedding acceleration 
(∆𝑓8) 

unitless Constant, given as 
input  

𝑁𝑆𝐶I Maximal amount of stored non-
structural carbohydrates gC Updated daily for each 

tree 59 

∆𝑉 Increment of stem volume m3 Computed daily for 
each tree  61 

𝑆𝑒𝑛𝑒𝑠𝑐 Growth senescence factor unitless Computed daily for 
each tree 61-62 

Δdbh Trunk diameter growth m Computed daily for 
each tree Section 2.6.4 

𝑑𝑏ℎ&,!AI% Diameter threshold beyond which 
the tree is fertile m Computed once for 

each tree 63 

𝜎DK.# Scale parameter of the Rayleigh 
distribution for seed dispersal m Constant Section 2.7.1 

ns Number of reproduction 
opportunities per mature tree number of seeds  Constant Section 2.7.1 

Ntot Intensity of the external seed rain number of seeds per 
hectare 

Constant, given as 
input 64 

𝑛%g!,. 
Species-specific number of 
dispersal events due to the 
external seed rain 

number of seeds Computed once for 
each species 64 

𝑛X, Area of the simulated plot ha 
Constant, computed 
from dimensions given 
as input 

64 

LAImax 
LAI threshold beyond which the 
seedling leaf carbon balance is 
negative 

m2 m-2 Computed once for 
each tree Section 2.7.1 
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𝑑 Tree death rate events yr-1 Updated daily at tree 
level 65-66 

𝑑- Background death rate events yr-1 Computed once per 
tree 65 

m reference background mortality 
rate events yr-1 Constant, provided as 

input 66 

𝑤𝑠𝑔LK& Parameter of 𝑑- g cm-3 Constant 66 

𝑑.!,I3 Death rate due to carbon 
starvation events yr-1 Updated daily at tree 

level 65 

𝑑!I%%Q,LL Death rate due to treefall events yr-1 Updated daily at tree 
level 65 

𝛩 Parameter of treefall probability m Computed once per 
tree 67 

𝑑DI"A$X! Death rate due to drought events yr-1 Updated daily at tree 
level 65 

𝑣< Variance for treefall probability unitless Computed once per 
tree 67 

hurt Parameter of secondary treefall 
probability m Updated daily for each 

tree Section 2.7.2 

𝜓L%!X,L 
Water potential threshold for 
drought-induced mortality MPa Computed once per 

tree 68 

 2421 
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ED2 

(Longo et al., 2018; Medvigy et al., 
2009) 

Cohort-based vegetation model 
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ED2-hydro 

(Powell et al., 2018; Xu et 
al., 2016) 

ED2 with a new module of 
plant hydraulics  
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(Fyllas et al., 2014) 
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TFS-Hydro 

(Christoffersen et al., 2016) 

TFS with a new module of plant hydraulics 

“ 
“ 

𝑔 ! =
𝑔 !

,"

×
B 1
+
C𝜓

.%
+1

𝜓
4 ;
,;
"E

+ =
;	

F:
#  

w
he

re
 𝜓

4 ;
,;
" 

is
 th

e 
le

af
 w

at
er

 
po

te
nt

ia
l a

t 5
0%

 st
om

at
al

 
cl

os
ur

e 
(a

ss
um

ed
 a

 1
:1

 
re

la
tio

ns
hi

p 
be

tw
ee

n 
𝜓
4 ;
,;
" 

an
d 

th
e 

w
at

er
 p

ot
en

tia
l a

t 
20

%
 lo

ss
 o

f x
yl

em
 h

yd
ra

ul
ic

 
co

nd
uc

tiv
ity

 (P
20
,x
), 

fo
llo

w
in

g 
re

su
lts

 fr
om

 
(B

ro
dr

ib
b 

et
 a

l.,
 2

00
3)

), 
an

d 
𝑎 4

; i
s t

he
 sl

op
e 

of
 th

e 
cu

rv
e 

at
 𝜓

.%
+1
=
𝜓
4 ;
,;
",

 c
om

pu
te

d 
fr

om
 𝜓

4 ;
,;
" 

us
in

g 
th

e 
sa

m
e 

re
la

tio
ns

hi
p 

th
at

 re
la

te
s a

x 
an

d 
P 5
0,
x. 

- 
“ 

𝜓
.%
+1
	is

 u
pd

at
ed

 a
t 

ea
ch

 ti
m

es
te

p 
(h

ou
rly

) b
y 

th
e 

hy
dr

au
lic

 m
od

ul
e,

 
ba

se
d 

on
 a

 
co

nt
in

uo
us

 p
or

ou
s 

m
ed

ia
 a

pp
ro

ac
h.

 
P 2
0,
x i

s i
ts

el
f 

de
riv

ed
 fr

om
 

xy
le

m
 

vu
ln

er
ab

ili
ty

 
fu

nc
tio

n 
w

ith
 P
50
,x
 

(d
er

iv
ed

 fr
om

 a
n 

in
fe

rr
ed

 
re

la
tio

ns
hi

p 
w

ith
 

w
oo

d 
de

ns
ity

, 
R
2 =

0.
34

, b
as

ed
 o

n 
a 

m
et

a-
an

al
ys

is
) 

an
d 

sl
op

e 
a x

 
(d

er
iv

ed
 fr

om
 a

n 
in

fe
rr

ed
 

re
la

tio
ns

hi
p 

w
ith

 
P 5
0,
x, 

ba
se

d 
on

 a
 

m
et

a-
an

al
ys

is
, 

R
2 =

0.
38

). 
D

id
 n

ot
 c

on
si

de
r 

ve
rti

ca
l 

di
st

rib
ut

io
n 

of
 so

il 
w

at
er

 a
nd

 ro
ot

s. 

Multi-layer CLM4.5 

(Bonan et al., 2014) 
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(Sitch et al., 2003) 
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Table B2. Examples of observational or experimental studies that explored the relative roles of stomatal and non-2434 

stomatal limitations of photosynthesis under drought conditions. 2435 

Key message 
for vegetation 

models 
Reference Studied system Main results 

Stomatal-
limitation only 

Santos et al., 
2018 

57 canopy and understory trees 
within a central Amazonian forest 

Photosynthesis decreased during the extreme dry 
season, and this was only related to stomatal closure 

(decline in stomatal conductance) and not to leaf 
biochemical changes (sustained chlorophyll 
concentration and fluoresecnce, and nutrient 

concentration). 

 Rowland et al., 
2015 

Trees in the ThroughFall Exclusion 
and control plots in Caixuana, 

Amazonia. 

No differences in Vcmax and Jmax between the 
throughfall exclusion plot and the control plot. 

Trueba et al., 
2019 

Mature individuals of 10 
angiosperms species located on the 
campus of UCLA and a park in LA 

The stomatal and leaf hydraulic systems (50% lost of 
gs, Kleaf) show early functional declines before cell 

integrity is lost. Substantial damage to the 
photochemical apparatus (maximum quantum yield of 

the photosystem) occurs at extreme dehydration, 
after turgor loss and complete stomatal closure, and 

seems to be irreversible. 

Both stomatal 
and non-stomatal 

limitations 

Zhou et al., 2013 

Meta-analysis of 22 experimental 
datasets where photosynthesis, 

stomatal conductance and predawn 
leaf water potential were measured 
at increasing water stress, spanning 

a range of plant functional types 

Photosynthesis was found almost universally to 
decrease more than could be explained by the reduction 

in g1 (parameter of the Medlyn model), implying a 
decline in apparent carboxylation capacity (Vcmax). 

Zhou et al., 2014 

Two experiments, one in Australia 
on Eucalyptus, one in Spain on 

Quercus, on plants grown in 
glasshouses under control 

conditions. 
The non-stomatal response was 

partitioned into effects on 
mesophyll conductance (gm), the 

maximum Rubisco activity (Vcmax) 
and the maximum electron transport 

rate (Jmax). 

They found consistency among the drought responses 
of g1, gm, Vcmax and Jmax, suggesting that drought 

imposes limitations on Rubisco activity and RuBP 
regeneration capacity concurrently with declines in 
stomatal and mesophyll conductance. Within each 

experiment, the more xeric species showed relatively 
high g1 under moist conditions, low drought sensitivity 
of g1, gm, Vcmax and Jmax, and more negative values of 
the critical pre-dawn water potential at which Vcmax 

declines most steeply, compared with the more mesic 
species. 

Results showed that the decline in Vcmax is not 
explained just by the decline in gm, but by the decline 

in both gm and Vcmax. 

Egea et al., 2011 

Outputs from a coupled A-gs model 
that uses a soil water content-

dependent water stress factor were 
compared to leaf-level values 
obtained from the literature. 

The sensitivity analyses emphasized the necessity to 
combine both stomatal and non-stomatal limitations of 

A in coupled A–gs models to accurately capture the 
observed functional relationships A vs. gs and A/gs vs. 
gs in response to drought. Accounting for water stress 

in coupled A–gs models by imposing either stomatal or 
biochemical limitations of A, as commonly practiced in 

most ecosystem models, failed to reproduce the 
observed functional relationship between key leaf gas 

exchange attributes. 

Drake et al., 2017 Plants in pots of four tree species 
originating from constrating 

as soil water content (θ) was reduced under increasing 
drought, all species responded by reducing gs, resulting 
in reduced Ci and Asat. However, Asat was reduced to 
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hydrological environment, placed in 
the field under rainout shelters. 

Comparison with coupled stomatal 
conductance-photosynthesis model. 

a larger degree than would be predicted only by 
stomatal reduction of Ci, indicating a coincident 

reduction in photosynthetic capacity with declining θ. 
The best model include both stomatal and non-stomatal 

limitations. 
 2436 
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