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Abstract.  12 

Artificial intelligence (AI)-based weather prediction research is growing rapidly and has shown to be competitive 13 

with the advanced dynamic numerical weather prediction models. However, research combining AI-based weather prediction 14 

models with data assimilation remains limited partially because long-term sequential data assimilation cycles are required to 15 

evaluate data assimilation systems. This study proposes using ensemble data assimilation for diagnosing AI-based weather 16 

prediction models, and marked the first successful implementation of ensemble Kalman filter with AI-based weather prediction 17 

models. Our experiments with an AI-based model ClimaX demonstrated that the ensemble data assimilation cycled stably for 18 

the AI-based weather prediction model using covariance inflation and localization techniques within the ensemble Kalman 19 

filter. While ClimaX showed some limitations in capturing flow-dependent error covariance compared to dynamical models, 20 

the AI-based ensemble forecasts provided reasonable and beneficial error covariance in sparsely observed regions. In addition, 21 

ensemble data assimilation revealed that error growth based on ensemble ClimaX predictions was weaker than that of 22 

dynamical NWP models, leading to higher inflation factors. A series of experiments demonstrated that ensemble data 23 

assimilation can be used to diagnose properties of AI weather prediction models such as physical consistency and accurate 24 

error growth representation. 25 

  26 
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1 Introduction 27 

The intensification of weather-induced disasters due to climate change is becoming increasingly severe worldwide 28 

(e.g., Jonkman et al. 2024). In a recent risk report, the World Economic Forum (2023) indicated that extreme weather is among 29 

the most severe global threats. To address extreme weather events such as torrential heavy rains and heat waves, further 30 

advancements in weather forecasting are essential. There are two essential components for accurate weather forecasting: (1) 31 

numerical weather prediction (NWP) models that forecast future weather based on initial conditions, and (2) data assimilation, 32 

which integrates atmospheric observation data to estimate initial conditions for subsequent forecasts by NWP models. 33 

Since NVIDIA issued the first artificial intelligence (AI) weather prediction model competitive to dynamical NWP 34 

models, FourCastNet, in February 2022 (Pathak et al. 2022, Bonev et al. 2023), deep learning-based weather prediction 35 

research has shown rapid growth. A number of AI weather prediction models have been proposed mainly by private 36 

information and technology (IT) companies such as GraphCast by Google DeepMind (Lam et al. 2023), Pangu-Weather by 37 

Huawei (Bi et al. 2023), ClimaX and Stormer by Microsoft (Nguyen et al. 2023), and Aurora by Microsoft (Bodnar et al. 2024). 38 

These machine learning approaches have been shown to be competitive with state-of-the-art NWP models (e.g., Kochkov et 39 

al. 2024). Progresses in AI-based weather prediction has been supported by the expansion of benchmark data and evaluation 40 

algorithms, such as WeatherBench (Rasp et al. 2020, 2024). Notably, most AI-based weather prediction models, including 41 

Pang-Weather, ClimaX, Stormer, and FourCastNet, use the Vision Transformer (ViT) neural network architecture (Vaswani 42 

et al. 2017, Dosovitski et al. 2020). The ViT, which has been explored in language models and image classifications, was 43 

demonstrated to be effective in weather prediction as well. 44 

However, research that couples AI-based weather prediction models with data assimilation remains limited. This 45 

limitation is partially due to the fact that long-term sequential data assimilation experiments are needed for the evaluation of 46 

data assimilation systems, in contrast to weather prediction tasks that allow for parallel learning using benchmark data. 47 

Conventional data assimilation methods used in NWP systems can be categorized into three groups: variational methods, 48 

ensemble Kalman filters, and particle filters. There are strong mathematical similarities between neural networks and 49 

variational data assimilation, both of which minimize their cost functions using their differentiable models. Because auto-50 

differentiation codes are always available for neural-network-based AI models, AI weather prediction models are considered 51 

compatible with variational data assimilation methods as in Xiao et al. (2023) and Adrian et al. (2024). On the other hand, 52 

recent studies have started to solve the inverse problem inherent in data assimilation by deep neural networks (McCabe and 53 

Brown 2021, Chen et al. 2023, Boucquet et al. 2024, Luk et al. 2024, Vaughan et al. 2024). There have been some studies 54 

employing ensemble Kalman filters for data-driven models (Hamilton et al. 2016, Penny et al. 2022, Chattopadhyay et al. 2022, 55 

2023). However, no study has succeeded in employing ensemble Kalman filtering with global AI models of the atmosphere. 56 

Since AI models require significantly lower computational costs compared to dynamical NWP models, AI models offer 57 

benefits for ensemble-based methods, such as ensemble Kalman filters (EnKFs) and particle filters. Ensemble data assimilation 58 

at the global scale also allows us for assessing the capability of data assimilation with AI models to handle spatially 59 
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inhomogeneous observation networks and to maintain physically consistent multivariate error covariance across the entire 60 

atmosphere. 61 

This study proposes using ensemble data assimilation for diagnosing AI-based weather prediction models. For that 62 

purpose, this study marks the first successful implementation of ensemble Kalman filter experiments with an AI weather 63 

prediction model to the best of the authors knowledge. We applied the ViT-based ClimaX (Nguyen et al. 2023) to data 64 

assimilation experiments using the available source code and experimental environments with necessary modifications. For 65 

data assimilation, we applied the local ensemble transform Kalman filter (LETKF) (Hunt et al. 2007), which is among the most 66 

widely used data assimilation methods in operational NWP centers such as the European Centre for Medium-Range Weather 67 

Forecasts (ECMWF), Deutscher Wetterdienst (DWD) and Japan Meteorological Agency (JMA). Using the coupled ClimaX–68 

LETKF data assimilation system, we investigated several key aspects of AI-based weather prediction model, including whether 69 

the data assimilation cycles stably for the ClimaX AI weather prediction model using ensemble Kalman filters; whether AI-70 

based ensemble weather prediction accurately represents flow-dependent background error variance and covariance. We also 71 

investigated whether techniques such as covariance inflation and localization, which are conventionally used in EnKFs for 72 

dynamical NWP models, are effective for AI weather prediction models. By addressing these research questions, we aim to 73 

advance the integration of AI weather prediction models with data assimilation techniques, toward the development of more 74 

accurate weather forecasting. While this study primarily aims to use ensemble data assimilation for diagnosing AI-based 75 

weather prediction models, our research also represents an important step toward enabling real-time update of the AI weather 76 

models with meteorological observations. 77 

The rest of paper is organized as follows: section 2 describes the methods and experiments and section 3 presents the 78 

results. Finally, section 4 provides discussion and summary. 79 

2 Methods and experiments 80 

2.1 ClimaX Model 81 

The ClimaX (Nguyen et al. 2023) is a ViT-based AI weather prediction model for the global atmosphere. Variable 82 

tokenization and variable aggregation are the key components of the ClimaX architecture upon ViT, as they provide flexibility 83 

and generality. This study used the low-resolution version of ClimaX (version 0.3.1), with 64 and 32 zonal and meridional 84 

grid points, respectively, corresponding to a spatial resolution of 5.625° × 5.625°. The vertical model level was set at seven 85 

(900, 850, 700, 600, 500, 250 and 50 hPa).  86 

By default, ClimaX is set to be trained against only five variables: geopotential at 500 hPa, temperature at 850 hPa, 87 

temperature at 2 m, zonal wind at 10 m, and meridional wind at 10 m. We updated ClimaX for data assimilation, which allowed 88 

the AI model to produce variables required for subsequent forecasts (Table 1). The updated ClimaX has state vectors including 89 

zonal wind, meridional wind, temperature, specific humidity, and geopotential at seven vertical layers along with three surface 90 

variables: 10-m zonal wind, 10-m meridional wind, and 2-m temperature. We also diagnosed surface pressure, which is a 91 
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required input for data assimilation, based on geopotential and surface elevation. Figure 1 shows the training curves of the 92 

default and updated ClimaX models verified against WeatherBench data (Rasp et al. 2020). Data for the period 2006–2015 93 

were used for training, and data for 2016 were used for validation. Here we re-trained the ClimaX entirely with the additional 94 

outputs (i.e., no transfer learning). It took approximately 4 hours with four GPU of NVIDIA RTX 6000Ada. Anomaly 95 

correlation coefficients increased and root mean square errors (RMSEs) decreased in Figure 1, indicating successful training 96 

of the updated ClimaX model. Because more variables were predicted by the updated ClimaX than by the default ClimaX, 97 

more training steps were required. 98 

2.2 Local Ensemble Transform Kalman Filter (LETKF) 99 

The LETKF is among the most widely used data assimilation methods in operational NWP centers such as ECMWF, 100 

DWD and JMA. The LETKF simultaneously computes analysis equations at every model grid point with the assimilation of 101 

surrounding observations within the localization cut-off radius. The ClimaX–LETKF system was developed based on the 102 

SPEEDY–LETKF system (Kotsuki et al. 2022) by replacing the SPEEDY weather prediction model with ClimaX. Our future 103 

research can readily be expanded to particle filter experiments because the Kotsuki et al. (2022) system includes local particle 104 

filters in addition to the LETKF.  105 

Let 𝐗௧ ≡ ቄ𝐱௧(ଵ), . . . , 𝐱௧(௠)ቅ be an ensemble state matrix, whose ensemble mean and perturbation is given by 𝐱ത௧  (∈ ℝ௡) 106 

and 𝛿𝐗௧ ≡ ቄ𝐱௧(ଵ) − 𝐱ത௧ , . . . , 𝐱௧(௠) − 𝐱ത௧ቅ  (∈ ℝ௡×௠ ), respectively. Here, n and m are the system and ensemble sizes. The 107 

superscript (i) and subscript t denote the ith ensemble member and indicates the time, respectively. The EnKFs, including 108 

LETKF, estimate error covariance P (∈ ℝ௡×௡) according to sample estimates based on ensemble perturbation: 109 

 P≈ ଵ௠ିଵ 𝛿𝐗𝛿𝐗்.            (1) 110 

The analysis update equation of the LETKF is given by: 111 𝐗௧௔ = 𝐱ത௧௕ ⋅ 𝟏 + 𝛿𝐗௧௕𝐏෩௧௔(𝐘௧௕)்𝐑௧ି ଵ ቀ𝐲௧௢ − 𝐻௧(𝐗௧௕)ቁ ⋅ 𝟏 + ൣ(𝑚 − 1)𝐏෩௧௔൧ଵ/ଶ,     (2) 112 

𝐏෩௧௔ = ቂ(௠ିଵ)ఉ 𝐈 + (𝐘௧௕)்𝐑௧ି ଵ𝐘௧௕ቃିଵ,         (3) 113 

where, 𝐏෩ is the error covariance matrix in the ensemble space (∈ ℝ௠×௠), 𝐘 ≡ 𝐇𝛿𝐗  is the ensemble perturbation matrix in the 114 

observation space (∈ ℝ௣×௠), R is the observation error covariance matrix (∈ ℝ௣×௣), y is the observation vector (∈ ℝ௣), H is 115 

the observation operator that may be nonlinear, H (∈ ℝ௣×௡) is the Jacobian of  linear observation operator matrix, and 1 is a 116 

row vector whose all elements are 1 (∈ ℝ௠). Here, p is the number of observations. The superscripts o, b, and a denote the 117 

observation, background, and analysis, respectively. The scalar β is a multiplicative inflation factor which inflates the 118 

background error covariance such that 𝐏௧௕ → (1 + 𝛽)𝐏௧௕. This study uses the Miyoshi (2011)’s approach, which estimates 119 

spatially varying inflation factors adaptively based on observation-space statistics (Desroziers et al. 2005). 120 
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Localization is a practically important technique for EnKFs to eliminate long-range erroneous correlations due to the 121 

sample estimates of P with a limited ensemble size (Houtekamer and Zhang, 2016). Although a larger localization can spread 122 

observation data information for grid points distant from observations, a larger localization scale can yield suboptimal error 123 

covariance because of sampling errors. The LETKF inflates the observation error variance to realizes the localization (Hunt et 124 

al. 2007) whose function is given by: 125 𝑙 = ቊexp ቂ− ଵଶ ሼ(𝑑ℎ/𝐿ℎ)ଶ + (𝑑௩/𝐿௩)ଶሽቃ  𝑖𝑓  𝑑ℎ < 2ඥ10/3𝐿ℎ 𝑎𝑛𝑑 𝑑௩ < 2ඥ10/3𝐿௩0 𝑒𝑙𝑠𝑒   ,   (4) 126 

where l is the localization function, and its inverse 𝑙ିଵ is multiplied to inflate R for the localization. Horizontal and vertical 127 

distances (km and log(Pa)) from analysis grid point to the observation are defined by dh and dv where subscripts h and v denote 128 

horizontal and vertical, respectively. Here, 𝐿ℎ and 𝐿௩ are tunable horizontal and vertical localization scales (km and log(Pa)). 129 

The vertical localization scale 𝐿௩ was set at 1.0 (log Pa) following the method of Kotsuki et al. (2022). Sensitivity to the 130 

horizontal localization scale for Lh = 400, 500, 600, 700, and 800 km is investigated in subsequent experiments. 131 

2.3 Data assimilation experiments 132 

In this study, all experiments were conducted as simulation experiments by generating observation data from 133 

WeatherBench with additions of Gaussian random noises. Although the real observation data was not directly assimilated, the 134 

assimilated observations reflect the real atmosphere in this study, in contrast to observing system simulation experiments. To 135 

approximate real-world scenarios, we considered radiosonde-like observations to generate atmospheric observation profiles 136 

for observing stations (Figure 2). At observing stations, temperature, and zonal and meridional winds were observed at all 137 

seven layers, whereas specific humidity was observed at the first to fourth layers. Table 1 shows the standard deviations of the 138 

observation errors. The network of observing stations and observation error standard deviations were consistent with those of 139 

the SPEEDY–LETKF experiments (Kotsuki et al. 2022, Kotsuki and Bishop 2022). Observation data were produced at 6-h 140 

intervals, such that the data assimilation interval was also 6 h. Since the observation data were generated directly at the model 141 

grid points, the observation operator is a linear operator composed only of 0.0 and 1.0. 142 

We employed a series of data assimilation experiments over a year of 2017, which is not used for training and 143 

validation of the ClimaX. The ensemble size is 20. Their initial conditions for 00 UTC January 1 in 2017 were taken from 144 

WeatherBench data in 2006, which were sampled every 12 hours from 00 UTC January 1 in 2006. Data assimilation 145 

experimental results were verified against WeatherBench data. 146 

It should be noted that we were unable to conduct observation system simulation experiments (k.a. OSSEs), which 147 

requires a natural run by ClimaX. This is because ClimaX could not produce long-term forecasts within our experimental 148 

configurations. A typical example is shown in Figure 3. The forecasted temperature fields of ClimaX eventually began to 149 

deviate from the WeatherBench data with the continuation of 6-h forecasts. Ultimately, ClimaX produced meteorologically 150 

unrealistic weather fields, as demonstrated by the very low temperatures in the Pacific Ocean. Because AIs cannot learn 151 

physical laws in the absence of specific treatments, they are more likely to produce unrealistic weather fields under previously 152 
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unencountered weather conditions. In other words, this suggests that ClimaX is unable to return to a meteorologically plausible 153 

attractor (or trajectory) while data assimilation enables the ClimaX to synchronize with the real atmosphere as shown in section 154 

3. This property in AI models were theoretically demonstrated by Adrian et al. (2024), which showed that long-term filter 155 

accuracy can be achieved with surrogate models if the models can provide accurate short-term forecasts. Applying neural 156 

networks that are informed or constrained by physical laws would be necessary to conduct observation system simulation 157 

experiments for AI-based weather prediction models.  158 

3 Results 159 

Figure 4 presents the time series of global-mean root mean square errors (RMSEs) for temperature and geopotential 160 

height at the fifth model level, with four different horizontal localization scales (Lh). After the initiation of data assimilation, 161 

all experiments showed reductions in analysis errors. Experiments with Lh = 500, 600 and 700 km showed stable performance 162 

over a period of one year, until the end of 2017. Notably, data assimilation improved not only the observed variable, 163 

temperature, but also the unobserved variables, such as geopotential height. This indicates that observation information was 164 

propagated to unobserved variables through the data assimilation cycle. In contrast, the experiment with Lh = 800 km exhibited 165 

filter divergence after September 2017 due to erroneous error covariance associated with the larger localization scale. In 166 

addition, the experiment with Lh = 400 km kept reducing the RMSEs over a year, but are still higher than those of the other 167 

experiments with the exception of Lh = 800 km. It indicates that a too small localization scale is suboptimal. This implies that 168 

ensemble-based error covariance is beneficial to some extent to propagating the impacts of assimilated observation for distant 169 

grid points. 170 

Figure 5 shows the global mean RMSEs for zonal wind, meridional wind, temperature, specific humidity, geopotential 171 

height, and surface pressure, as a function of the horizontal localization scales averaged over July–December, 2017. At smaller 172 

localization scales (Lh = 400 and 500 km), the analysis RMSEs tended to be lower than the first-guess RMSEs, which suggests 173 

that data assimilation was beneficial in reducing errors. Conversely, at larger localization scales (Lh = 800 km), analysis RMSEs 174 

tended to be higher than the first guess RMSEs, indicating that data assimilation degraded the analysis, presumably also due 175 

to excessive error covariance at larger localization scales. In addition, the analysis RMSEs were slightly higher than the first 176 

guess RMSEs for some variables at Lh = 700 km although the data assimilation cycled stably (Figure 4). In general, stable 177 

filters are expected to yield overall RMSE reduction unless the system is non-chaotic. Therefore, this results for Lh = 700 km 178 

imply that the present ClimaX exhibits weaker chaotic behaviour compared to the real atmosphere. 179 

Among the five experiments, a localization scale of Lh = 600 km yielded the lowest analysis RMSEs for most variables. 180 

Significant analysis error reductions were observed for temperature and surface pressure. However, no clear impacts were 181 

observed for zonal and meridional winds. Even slight degradations were detected, implying that spatial and inter-variable error 182 

covariance may not be well represented in our ClimaX-LETKF. 183 
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Here, we investigate the spatial patterns of the difference between the analysis and first-guess mean absolute errors, 184 

which is given by: 185 𝑀𝐴𝐸ௗ௜௙௙ = ଵே೟ ∑ |𝐱ത௧௔ − 𝐱௧ௐ஻| − |𝐱ത௧௕ − 𝐱௧ௐ஻|௧ ,        (5) 186 

where Nt is the sample size and superscript WB represents WeatherBench data. Negative and positive values indicate 187 

improvements and degradations due to data assimilation, respectively. Figure 6 shows the 𝑀𝐴𝐸ௗ௜௙௙ for four variables (zonal 188 

wind at 850 hPa, temperature at 700 hPa, geopotential height at 500 hPa, and surface pressure) based on the experiments with 189 

the localization scale Lh = 500 km, which resulted in RMSE reductions by data assimilation for most of variables in Figure 5. 190 

General improvements are seen at grid points with observations for zonal wind and temperature (Figs. 6 a and b). However, 191 

there were also slight degradations at grid points surrounding observing stations, such as those in arctic ocean and along the 192 

US and Japanese coasts. We also see degradations for geopotential height where temperature and zonal wind degradations are 193 

presented (Fig. 6 c). These degradations suggest ensemble-based spatial error covariance were suboptimal in these regions. In 194 

contrast, geopotential height and surface pressure generally improved in the Southern Hemisphere (Figs. 6 c and d). In 195 

particular, improvements are seen even at grid points surrounding observing stations in the Southern Hemisphere. Specifically, 196 

using the spatial and inter-variable error covariance based on AI-based ensemble forecasts was advantageous for geopotential 197 

heights and surface pressure in sparsely observed regions. 198 

Another important property is that the ClimaX would be less chaotic than dynamical NWP models, as indicated by 199 

the estimated inflation factor β diagnosed by observation-space statistics (Figure 7). In addition, the larger inflation would also 200 

indicate greater model error in ClimaX, which requires stronger inflation to account for model’s imperfection. Compared to 201 

our study, Kotsuki et al. (2017) estimated much smaller inflation factor for a global ensemble data assimilation system using 202 

a dynamical model (cf. Fig. 10a in Kotsuki et al. 2017). For example, the inflation factors in Kotsuki et al. (2017) were at most 203 

around 2.0, whereas the ClimaX-LETKF required inflation factors exceeding 5.0. Selz and Craig (2022) noted that an AI-204 

based weather prediction model failed to reproduce rapid initial error growth rates, which would prevent it from replicating 205 

the butterfly effect as accurately as dynamical NWP models. 206 

4 Discussion and summary 207 

The optimal localization scale was very small unexpectedly in Figure 5. Kondo and Miyoshi (2016) pointed out that 208 

a larger localization scale is beneficial for low-resolution models and larger ensemble sizes (cf. Table 1 in Kondo and Miyoshi 209 

2016). Our optimal localization scale for the 20-member ClimaX-LETKF was 600 km, which is shorter than the 700–900 km 210 

scale of the 20-member LETKF experiments coupled with a dynamical NWP model (also known as SPEEDY; Molteni 2003) 211 

(e.g., Kondo and Miyoshi 2013, Figure 2b in Kotsuki and Bishop 2022). Nevertheless, considering that the SPEEDY model 212 

has a finer horizontal resolution (96 × 48 horizontal grids) than the ClimaX used in this study (64 × 32 horizontal grids), it 213 

remains plausible that ClimaX captures flow-dependent error covariance less effectively than dynamical NWP models. 214 
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Bonavita (2024) investigated physical realism of the present AI models (FourCastNet, Pangu-Weather and GraphCast), and 215 

concluded that AI models are not able to properly reproduce sub-synoptic and mesoscale weather phenomena. The suboptimal 216 

flow-dependent error covariance in this study can be attributed to physical inconsistent atmospheric fields of the ClimaX 217 

predictions. 218 

Two major advancements are required for AI-based weather prediction models to improve ensemble data assimilation. 219 

First, it is imperative that AI models generate physically consistent forecast variables. The accuracy of spatial and inter-variable 220 

error covariance would be improved by this enhancement, which would require AI model training procedures to include 221 

physical constraints such as the hydrostatic and geostrophic balances, in addition to decreasing the mean square errors of the 222 

target variables. Second, it is crucial to accurately capture error growth rate. Our findings demonstrated that error growth based 223 

on ensemble ClimaX predictions were weaker than those of dynamical NWP models, leading to higher inflation factors (Figure 224 

7). Thus, ensemble forecasts produced by AI weather prediction models likely exhibit insufficient spread. In weather 225 

forecasting, capturing forecast uncertainty is as important as providing accurate forecasts. Recent studies have begun to 226 

develop models for generating statistically accurate ensembles by using generative models (Price et al., 2024) or by training 227 

on probabilistic cost functions (Kochkov et al., 2024). Other possible solutions for improving the error growth is to develop a 228 

set of slightly different AI models by randomizing the seed in the AI training process as an analogy of stochastic 229 

parameterization (Weyn et al. 2021) or to incorporate Lyapunov exponent within the cost function of model training (Platt et 230 

al. 2023). Note that the present experiments were conducted at a coarse resolution of 5.625°, which may limit the ability of the 231 

ClimaX-LETKF system to accurately diagnose localized weather phenomena. At higher spatial resolutions, AI models may 232 

capture mesoscale and sub-synoptic features, potentially leading to more realistic ensemble-based error covariances. Future 233 

work will explore the data assimilation system's behaviours at higher resolutions using more advanced versions of AI models 234 

with denser observation datasets. 235 

Despite the need for further improvements, this study represents a significant step toward ensemble data assimilation 236 

for AI-based weather prediction models. Notably, we demonstrated that the data assimilation cycled stably for the AI-based 237 

weather prediction model ClimaX with the LETKF using covariance inflation and localization techniques. In addition, the 238 

ensemble-based error covariance was reasonably estimated by the AI-based weather prediction model in sparsely observed 239 

regions.  240 

Additional research is anticipated for areas identified as requiring further improvements. For that purpose, ensemble 241 

data assimilation is a useful tool for diagnosing AI-based weather forecasting models. Namely, investigating optimal 242 

localization scales, ensemble-based error covariance and necessary inflation factors give beneficial insights to understand 243 

properties of AI models. After achieving the two major advancements, it is important to employ a systematic sensitivity 244 

analysis for localization radius and ensemble size. A suitable inflation method for AI-based weather prediction models also 245 

remains to be explored. Comparing the EnKF with variational or ensemble-variational approaches would be an important topic 246 

for future investigation. Since AI models require much lower computational costs compared to dynamical NWP models, 247 

extending the present study to large-ensemble EnKFs or LPF is also important subjects of future studies. Our future work will 248 
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investigate the applicability of the proposed system for real-time forecasting with higher-resolution AI models with real 249 

weather observations such as PREPBUFR and satellite radiances. The analysis fields and ensemble spreads generated by 250 

ensemble data assimilation with assimilation of real observations may be applicable to subsequent training of AI models. Most 251 

current AI weather models are trained on reanalysis data such as WeatherBench, without explicitly accounting for the 252 

uncertainty in analysis (i.e., analysis ensemble spread). By using ensemble spreads or individual ensemble members, training 253 

process of AI models could be improved such as by relaxing penalties in regions with large ensemble spread.  254 

Beyond weather prediction, data assimilation has been successfully combined with machine learning-based surrogate 255 

models in various fields, including oceanography, hydrology, and wildfire (e.g., Brajard et al. 2021; Cheng et al. 2022; Jeong 256 

et al. 2024). It would be beneficial to explore how the EnKF could be applied to diagnose AI-based models in other fields. 257 
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Tables 373 

Table 1: Variables of the ClimaX model used in this study. ClimaX requires input variables to predict output variables. 374 

Observation (Obs) variables are assimilated with associated error standard deviation (Error SD).  375 

Symbol Variable Unit Input Output Obs Error SD Height 

U Zonal wind m/s X X X 1.0 

925, 850, 700, 

600, 500, 250, 

50 (hPa) 

V Meridional wind m/s X X X 1.0 

T Temperature K X X X 1.0 

Q Specific humidity kg/kg X X X (※) 0.1 

Geo Geopotential m2/s2 X X   

U10m 10-m zonal wind m/s X X   10 m 

V10m 10-m meridional wind m/s X X   10 m 

T2m 2-m temperature m/s X X   2 m 

Ps Surface pressure hPa   X 1.0 Surface 

Elev Surface elevation m X    Surface 

Lon Longitude degree X    – 

Lat Latitude degree X    – 

Mask Land–sea mask 1 or 0 X    – 

※ Specific humidity is observed up to 4th model level (i.e., 925, 850, 700 and 600 hPa). 376 
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 378 

Figures 379 

 380 

 381 
Figure 1: Training curves for the default and updated ClimaX models (dashed blue and solid orange lines) verified against 382 

WeatherBench data in 2016, as a function of the number of training steps. Each training step includes 64 training data in a 383 

mini batch. Panels (a-c) and (d-f) show anomaly correlation coefficients (ACCs) and root mean square errors (RMSEs). (a, d), 384 

(b, e) and (c, f) are geopotential at 500 hPa (m2/s2), temperature at 850 hPa and zonal wind at 500 hPa. There are no blue 385 

dashed lines in panels (c) and (f) because the default ClimaX model does not predict zonal wind at 500 hPa. 386 

 387 

 388 

  389 
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 390 
Figure 2. The observing network. Small black dots and red crosses represent model grid points and observing points, 391 

respectively.  392 
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 393 
Figure 3: Spatial patterns of temperature (K) at 5th model level (500 hPa). Panels (a-c) are WeatherBench data. Panels (d-f) 394 

are forecasts by ClimaX initialized at 0000 UTC of January 1, 2017. Panels (a, d) show 0000 UTC of January 3, 2017, (b, e) 395 

show 0000 UTC of February 1, 2017, and (c, f) show 0000 UTC of May 1, 2017, respectively. 396 

 397 

  398 
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 399 

Figure 4: Time series of global-mean root mean square errors (RMSEs) verified against WeatherBench data, and ensemble 400 

spreads for (a) temperature (K) and geopotential height (m) at the fifth model level (= 500 hPa). Thin and bold solid lines 401 

indicate 6-hourly RMSEs and their 7-day running means, respectively. Dashed lines indicate ensemble spreads. Black, purple, 402 

blue, green, and red lines indicate the ClimaX-LETKF experiments, at localization scales of Lh= 400, 500, 600, 700 and 800 km. 403 

The abscissa indicates the date (month/day) in 2017.  404 
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 405 
Figure 5: Global mean root mean square errors (RMSEs) verified against WeatherBench (WB) for (a) zonal wind (m/s), (b) 406 

meridional wind (m/s), (c) temperature (K), (d) specific humidity (g/kg), (e) geopotential height (m), and (f) surface pressure 407 

(hPa), as a function of the horizontal localization scales (km) averaged over July–December 2017. Colored bars and black 408 

diamonds indicate analysis (AN) and first-guess (FG) RMSEs, respectively. Blue, green, red, and purple bars in (a-e) represent 409 

2nd, 3rd, 5th and 6th model levels (850, 700, 500, and 250 hPa, respectively). Gray bars in (f) represent surface pressure. The 410 

RMSEs of specific humidity at the 6th model level in (d) were too low to be shown.   411 
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 412 
Figure 6: Spatial patterns of difference between analysis (AN) and first-guess (FG) mean absolute errors (MAEs) for (a) zonal 413 

wind (m/s) at 850 hPa, (b) temperature (K) at 700 hPa, (c) geopotential height (m) at 500 hPa, and surface pressure (hPa), 414 

averaged over July–December 2017. Warm and cold colors represent improvements and degradations due to data assimilation. 415 

Results are for a localization scale of Lh = 500 km. Black crosses indicate observing stations. 416 

   417 
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 418 
Figure 7: (a) Spatial pattern of the multiplicative inflation factor at the end of experiment on 1800UTC of December 31, 2017. 419 

(b) Time series of globally averaged inflation factors. Results are for a localization scale of Lh = 600 km. 420 


