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Abstract.

Artificial intelligence (Al)-based weather prediction research is growing rapidly and has shown to be competitive
with the advanced dynamic numerical weather prediction models. However, research combining Al-based weather prediction
models with data assimilation remains limited partially because long-term sequential data assimilation cycles are required to
evaluate data assimilation systems. This study proposes using ensemble data assimilation for diagnosing Al-based weather
prediction models, and marked the first successful implementation of ensemble Kalman filter with Al-based weather prediction
models. Our experiments with an Al-based model ClimaX demonstrated that the ensemble data assimilation cycled stably for
the Al-based weather prediction model using covariance inflation and localization techniques within the ensemble Kalman
filter. While ClimaX showed some limitations in capturing flow-dependent error covariance compared to dynamical models,
the Al-based ensemble forecasts provided reasonable and beneficial error covariance in sparsely observed regions. In addition,
ensemble data assimilation revealed that error growth based on ensemble ClimaX predictions was weaker than that of
dynamical NWP models, leading to higher inflation factors. A series of experiments demonstrated that ensemble data
assimilation can be used to diagnose properties of Al weather prediction models such as physical consistency and accurate

error growth representation.
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1 Introduction

The intensification of weather-induced disasters due to climate change is becoming increasingly severe worldwide
(e.g., Jonkman et al. 2024). In a recent risk report, the World Economic Forum (2023) indicated that extreme weather is among
the most severe global threats. To address extreme weather events such as torrential heavy rains and heat waves, further
advancements in weather forecasting are essential. There are two essential components for accurate weather forecasting: (1)
numerical weather prediction (NWP) models that forecast future weather based on initial conditions, and (2) data assimilation,
which integrates atmospheric observation data to estimate initial conditions for subsequent forecasts by NWP models.

Since NVIDIA issued the first artificial intelligence (Al) weather prediction model competitive to dynamical NWP
models, FourCastNet, in February 2022 (Pathak et al. 2022, Bonev et al. 2023), deep learning-based weather prediction
research has shown rapid growth. A number of Al weather prediction models have been proposed mainly by private
information and technology (IT) companies such as GraphCast by Google DeepMind (Lam et al. 2023), Pangu-Weather by
Huawei (Bi et al. 2023), ClimaX and Stormer by Microsoft (Nguyen et al. 2023), and Aurora by Microsoft (Bodnar et al. 2024).
These machine learning approaches have been shown to be competitive with state-of-the-art NWP models (e.g., Kochkov et
al. 2024). Progresses in Al-based weather prediction has been supported by the expansion of benchmark data and evaluation
algorithms, such as WeatherBench (Rasp et al. 2020, 2024). Notably, most Al-based weather prediction models, including
Pang-Weather, ClimaX, Stormer, and FourCastNet, use the Vision Transformer (ViT) neural network architecture (Vaswani
et al. 2017, Dosovitski et al. 2020). The ViT, which has been explored in language models and image classifications, was
demonstrated to be effective in weather prediction as well.

However, research that couples Al-based weather prediction models with data assimilation remains limited. This
limitation is partially due to the fact that long-term sequential data assimilation experiments are needed for the evaluation of
data assimilation systems, in contrast to weather prediction tasks that allow for parallel learning using benchmark data.
Conventional data assimilation methods used in NWP systems can be categorized into three groups: variational methods,
ensemble Kalman filters, and particle filters. There are strong mathematical similarities between neural networks and
variational data assimilation, both of which minimize their cost functions using their differentiable models. Because auto-
differentiation codes are always available for neural-network-based Al models, Al weather prediction models are considered
compatible with variational data assimilation methods as in Xiao et al. (2023) and Adrian et al. (2024). On the other hand,
recent studies have started to solve the inverse problem inherent in data assimilation by deep neural networks (McCabe and
Brown 2021, Chen et al. 2023, Boucquet et al. 2024, Luk et al. 2024, Vaughan et al. 2024). There have been some studies
employing ensemble Kalman filters for data-driven models (Hamilton et al. 2016, Penny et al. 2022, Chattopadhyay et al. 2022,
2023). However, no study has succeeded in employing ensemble Kalman filtering with global Al models of the atmosphere.
Since Al models require significantly lower computational costs compared to dynamical NWP models, Al models offer
benefits for ensemble-based methods, such as ensemble Kalman filters (EnKFs) and particle filters. Ensemble data assimilation

at the global scale also allows us for assessing the capability of data assimilation with Al models to handle spatially
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inhomogeneous observation networks and to maintain physically consistent multivariate error covariance across the entire
atmosphere.

This study proposes using ensemble data assimilation for diagnosing Al-based weather prediction models. For that
purpose, this study marks the first successful implementation of ensemble Kalman filter experiments with an Al weather
prediction model to the best of the authors knowledge. We applied the ViT-based ClimaX (Nguyen et al. 2023) to data
assimilation experiments using the available source code and experimental environments with necessary modifications. For
data assimilation, we applied the local ensemble transform Kalman filter (LETKF) (Hunt et al. 2007), which is among the most
widely used data assimilation methods in operational NWP centers such as the European Centre for Medium-Range Weather
Forecasts (ECMWF), Deutscher Wetterdienst (DWD) and Japan Meteorological Agency (JMA). Using the coupled ClimaX—
LETKF data assimilation system, we investigated several key aspects of Al-based weather prediction model, including whether
the data assimilation cycles stably for the ClimaX Al weather prediction model using ensemble Kalman filters; whether Al-
based ensemble weather prediction accurately represents flow-dependent background error variance and covariance. We also
investigated whether techniques such as covariance inflation and localization, which are conventionally used in EnKFs for
dynamical NWP models, are effective for Al weather prediction models. By addressing these research questions, we aim to
advance the integration of Al weather prediction models with data assimilation techniques, toward the development of more
accurate weather forecasting. While this study primarily aims to use ensemble data assimilation for diagnosing Al-based
weather prediction models, our research also represents an important step toward enabling real-time update of the Al weather
models with meteorological observations.

The rest of paper is organized as follows: section 2 describes the methods and experiments and section 3 presents the

results. Finally, section 4 provides discussion and summary.

2 Methods and experiments
2.1 ClimaX Model

The ClimaX (Nguyen et al. 2023) is a ViT-based Al weather prediction model for the global atmosphere. Variable
tokenization and variable aggregation are the key components of the ClimaX architecture upon ViT, as they provide flexibility
and generality. This study used the low-resolution version of ClimaX (version 0.3.1), with 64 and 32 zonal and meridional
grid points, respectively, corresponding to a spatial resolution of 5.625° x 5.625°. The vertical model level was set at seven
(900, 850, 700, 600, 500, 250 and 50 hPa).

By default, ClimaX is set to be trained against only five variables: geopotential at 500 hPa, temperature at 850 hPa,
temperature at 2 m, zonal wind at 10 m, and meridional wind at 10 m. We updated ClimaX for data assimilation, which allowed
the Al model to produce variables required for subsequent forecasts (Table 1). The updated ClimaX has state vectors including
zonal wind, meridional wind, temperature, specific humidity, and geopotential at seven vertical layers along with three surface

variables: 10-m zonal wind, 10-m meridional wind, and 2-m temperature. We also diagnosed surface pressure, which is a

3



92
93
94
95
96
97
98

99

100
101
102
103
104
105

106

107
108
109
110
111

112

113

114
115
116
117
118
119
120

required input for data assimilation, based on geopotential and surface elevation. Figure 1 shows the training curves of the
default and updated ClimaX models verified against WeatherBench data (Rasp et al. 2020). Data for the period 2006-2015
were used for training, and data for 2016 were used for validation. Here we re-trained the ClimaX entirely with the additional
outputs (i.e., no transfer learning). It took approximately 4 hours with four GPU of NVIDIA RTX 6000Ada. Anomaly
correlation coefficients increased and root mean square errors (RMSEs) decreased in Figure 1, indicating successful training
of the updated ClimaX model. Because more variables were predicted by the updated ClimaX than by the default ClimaX,

more training steps were required.

2.2 Local Ensemble Transform Kalman Filter (LETKF)

The LETKF is among the most widely used data assimilation methods in operational NWP centers such as ECMWF,
DWD and JMA. The LETKF simultaneously computes analysis equations at every model grid point with the assimilation of
surrounding observations within the localization cut-off radius. The ClimaX-LETKF system was developed based on the
SPEEDY-LETKEF system (Kotsuki et al. 2022) by replacing the SPEEDY weather prediction model with ClimaX. Our future
research can readily be expanded to particle filter experiments because the Kotsuki et al. (2022) system includes local particle

filters in addition to the LETKF.

LetX; = {xgl), ey xgm)} be an ensemble state matrix, whose ensemble mean and perturbation is given by X; (€ R™)

and 6X; = {xgl) —it,...,xgm) —)_(t} (€ R™™), respectively. Here, n and m are the system and ensemble sizes. The

superscript (i) and subscript ¢ denote the ith ensemble member and indicates the time, respectively. The EnKFs, including

LETKEF, estimate error covariance P (€ R™ ™) according to sample estimates based on ensemble perturbation:
P~ —— 5X5XT. (1)
m—-1
The analysis update equation of the LETKF is given by:

X¢ =% 1+ SXPPE(Y)) R (y2 — HoXD)) - 1+ [(m — DB, @

(m-1 _1yp] 7t
=21+ ()R 3)

Pe =
where, P is the error covariance matrix in the ensemble space (€ R™*™), Y = H6X is the ensemble perturbation matrix in the
observation space (€ RP*™), R is the observation error covariance matrix (€ RP*P), y is the observation vector (€ RP), H is
the observation operator that may be nonlinear, H (€ RP*™) is the Jacobian of linear observation operator matrix, and 1 is a
row vector whose all elements are 1 (€ R™). Here, p is the number of observations. The superscripts o, b, and a denote the
observation, background, and analysis, respectively. The scalar f is a multiplicative inflation factor which inflates the

background error covariance such that P? —» (1 + B)P£. This study uses the Miyoshi (2011)’s approach, which estimates

spatially varying inflation factors adaptively based on observation-space statistics (Desroziers et al. 2005).
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Localization is a practically important technique for EnKFs to eliminate long-range erroneous correlations due to the
sample estimates of P with a limited ensemble size (Houtekamer and Zhang, 2016). Although a larger localization can spread
observation data information for grid points distant from observations, a larger localization scale can yield suboptimal error
covariance because of sampling errors. The LETKF inflates the observation error variance to realizes the localization (Hunt et
al. 2007) whose function is given by:

= {exp [~ 20(di/Li)* + (d/L)PY]  if dy < 2,/10/3L, and d,, < 2,/10/3L, , @

0 else

where [ is the localization function, and its inverse [~! is multiplied to inflate R for the localization. Horizontal and vertical
distances (km and log(Pa)) from analysis grid point to the observation are defined by dj, and d, where subscripts 4 and v denote
horizontal and vertical, respectively. Here, L, and L,, are tunable horizontal and vertical localization scales (km and log(Pa)).
The vertical localization scale L, was set at 1.0 (log Pa) following the method of Kotsuki et al. (2022). Sensitivity to the

horizontal localization scale for L, = 400, 500, 600, 700, and 800 km is investigated in subsequent experiments.

2.3 Data assimilation experiments

In this study, all experiments were conducted as simulation experiments by generating observation data from
WeatherBench with additions of Gaussian random noises. Although the real observation data was not directly assimilated, the
assimilated observations reflect the real atmosphere in this study, in contrast to observing system simulation experiments. To
approximate real-world scenarios, we considered radiosonde-like observations to generate atmospheric observation profiles
for observing stations (Figure 2). At observing stations, temperature, and zonal and meridional winds were observed at all
seven layers, whereas specific humidity was observed at the first to fourth layers. Table 1 shows the standard deviations of the
observation errors. The network of observing stations and observation error standard deviations were consistent with those of
the SPEEDY-LETKF experiments (Kotsuki et al. 2022, Kotsuki and Bishop 2022). Observation data were produced at 6-h
intervals, such that the data assimilation interval was also 6 h. Since the observation data were generated directly at the model
grid points, the observation operator is a linear operator composed only of 0.0 and 1.0.

We employed a series of data assimilation experiments over a year of 2017, which is not used for training and
validation of the ClimaX. The ensemble size is 20. Their initial conditions for 00 UTC January 1 in 2017 were taken from
WeatherBench data in 2006, which were sampled every 12 hours from 00 UTC January 1 in 2006. Data assimilation
experimental results were verified against WeatherBench data.

It should be noted that we were unable to conduct observation system simulation experiments (k.a. OSSEs), which
requires a natural run by ClimaX. This is because ClimaX could not produce long-term forecasts within our experimental
configurations. A typical example is shown in Figure 3. The forecasted temperature fields of ClimaX eventually began to
deviate from the WeatherBench data with the continuation of 6-h forecasts. Ultimately, ClimaX produced meteorologically
unrealistic weather fields, as demonstrated by the very low temperatures in the Pacific Ocean. Because Als cannot learn

physical laws in the absence of specific treatments, they are more likely to produce unrealistic weather fields under previously
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unencountered weather conditions. In other words, this suggests that ClimaX is unable to return to a meteorologically plausible
attractor (or trajectory) while data assimilation enables the ClimaX to synchronize with the real atmosphere as shown in section
3. This property in Al models were theoretically demonstrated by Adrian et al. (2024), which showed that long-term filter
accuracy can be achieved with surrogate models if the models can provide accurate short-term forecasts. Applying neural
networks that are informed or constrained by physical laws would be necessary to conduct observation system simulation

experiments for Al-based weather prediction models.

3 Results

Figure 4 presents the time series of global-mean root mean square errors (RMSEs) for temperature and geopotential
height at the fifth model level, with four different horizontal localization scales (L). After the initiation of data assimilation,
all experiments showed reductions in analysis errors. Experiments with L, = 500, 600 and 700 km showed stable performance
over a period of one year, until the end of 2017. Notably, data assimilation improved not only the observed variable,
temperature, but also the unobserved variables, such as geopotential height. This indicates that observation information was
propagated to unobserved variables through the data assimilation cycle. In contrast, the experiment with L, = 800 km exhibited
filter divergence after September 2017 due to erroneous error covariance associated with the larger localization scale. In
addition, the experiment with L, = 400 km kept reducing the RMSEs over a year, but are still higher than those of the other
experiments with the exception of L, = 800 km. It indicates that a too small localization scale is suboptimal. This implies that
ensemble-based error covariance is beneficial to some extent to propagating the impacts of assimilated observation for distant
grid points.

Figure 5 shows the global mean RMSEs for zonal wind, meridional wind, temperature, specific humidity, geopotential
height, and surface pressure, as a function of the horizontal localization scales averaged over July-December, 2017. At smaller
localization scales (L, = 400 and 500 km), the analysis RMSEs tended to be lower than the first-guess RMSEs, which suggests
that data assimilation was beneficial in reducing errors. Conversely, at larger localization scales (L, = 800 km), analysis RMSEs
tended to be higher than the first guess RMSEs, indicating that data assimilation degraded the analysis, presumably also due
to excessive error covariance at larger localization scales. In addition, the analysis RMSEs were slightly higher than the first
guess RMSEs for some variables at L, = 700 km although the data assimilation cycled stably (Figure 4). In general, stable
filters are expected to yield overall RMSE reduction unless the system is non-chaotic. Therefore, this results for L, = 700 km
imply that the present ClimaX exhibits weaker chaotic behaviour compared to the real atmosphere.

Among the five experiments, a localization scale of L, = 600 km yielded the lowest analysis RMSEs for most variables.
Significant analysis error reductions were observed for temperature and surface pressure. However, no clear impacts were
observed for zonal and meridional winds. Even slight degradations were detected, implying that spatial and inter-variable error

covariance may not be well represented in our ClimaX-LETKF.
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Here, we investigate the spatial patterns of the difference between the analysis and first-guess mean absolute errors,

which is given by:
1 — —
MAE ;57 = N_EZAX? —x{'B| — | — x{'"|, ®)

where N, is the sample size and superscript WB represents WeatherBench data. Negative and positive values indicate
improvements and degradations due to data assimilation, respectively. Figure 6 shows the MAE;¢f for four variables (zonal
wind at 850 hPa, temperature at 700 hPa, geopotential height at 500 hPa, and surface pressure) based on the experiments with
the localization scale L; = 500 km, which resulted in RMSE reductions by data assimilation for most of variables in Figure 5.
General improvements are seen at grid points with observations for zonal wind and temperature (Figs. 6 a and b). However,
there were also slight degradations at grid points surrounding observing stations, such as those in arctic ocean and along the
US and Japanese coasts. We also see degradations for geopotential height where temperature and zonal wind degradations are
presented (Fig. 6 c). These degradations suggest ensemble-based spatial error covariance were suboptimal in these regions. In
contrast, geopotential height and surface pressure generally improved in the Southern Hemisphere (Figs. 6 ¢ and d). In
particular, improvements are seen even at grid points surrounding observing stations in the Southern Hemisphere. Specifically,
using the spatial and inter-variable error covariance based on Al-based ensemble forecasts was advantageous for geopotential
heights and surface pressure in sparsely observed regions.

Another important property is that the ClimaX would be less chaotic than dynamical NWP models, as indicated by
the estimated inflation factor  diagnosed by observation-space statistics (Figure 7). In addition, the larger inflation would also
indicate greater model error in ClimaX, which requires stronger inflation to account for model’s imperfection. Compared to
our study, Kotsuki et al. (2017) estimated much smaller inflation factor for a global ensemble data assimilation system using
a dynamical model (cf. Fig. 10a in Kotsuki et al. 2017). For example, the inflation factors in Kotsuki et al. (2017) were at most
around 2.0, whereas the ClimaX-LETKF required inflation factors exceeding 5.0. Selz and Craig (2022) noted that an Al-
based weather prediction model failed to reproduce rapid initial error growth rates, which would prevent it from replicating

the butterfly effect as accurately as dynamical NWP models.

4 Discussion and summary

The optimal localization scale was very small unexpectedly in Figure 5. Kondo and Miyoshi (2016) pointed out that
a larger localization scale is beneficial for low-resolution models and larger ensemble sizes (cf. Table 1 in Kondo and Miyoshi
2016). Our optimal localization scale for the 20-member ClimaX-LETKF was 600 km, which is shorter than the 700-900 km
scale of the 20-member LETKF experiments coupled with a dynamical NWP model (also known as SPEEDY’; Molteni 2003)
(e.g., Kondo and Miyoshi 2013, Figure 2b in Kotsuki and Bishop 2022). Nevertheless, considering that the SPEEDY model
has a finer horizontal resolution (96 x 48 horizontal grids) than the ClimaX used in this study (64 % 32 horizontal grids), it

remains plausible that ClimaX captures flow-dependent error covariance less effectively than dynamical NWP models.
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Bonavita (2024) investigated physical realism of the present Al models (FourCastNet, Pangu-Weather and GraphCast), and
concluded that Al models are not able to properly reproduce sub-synoptic and mesoscale weather phenomena. The suboptimal
flow-dependent error covariance in this study can be attributed to physical inconsistent atmospheric fields of the ClimaX
predictions.

Two major advancements are required for Al-based weather prediction models to improve ensemble data assimilation.
First, it is imperative that Al models generate physically consistent forecast variables. The accuracy of spatial and inter-variable
error covariance would be improved by this enhancement, which would require Al model training procedures to include
physical constraints such as the hydrostatic and geostrophic balances, in addition to decreasing the mean square errors of the
target variables. Second, it is crucial to accurately capture error growth rate. Our findings demonstrated that error growth based
on ensemble ClimaX predictions were weaker than those of dynamical NWP models, leading to higher inflation factors (Figure
7). Thus, ensemble forecasts produced by AI weather prediction models likely exhibit insufficient spread. In weather
forecasting, capturing forecast uncertainty is as important as providing accurate forecasts. Recent studies have begun to
develop models for generating statistically accurate ensembles by using generative models (Price et al., 2024) or by training
on probabilistic cost functions (Kochkov et al., 2024). Other possible solutions for improving the error growth is to develop a
set of slightly different Al models by randomizing the seed in the Al training process as an analogy of stochastic
parameterization (Weyn et al. 2021) or to incorporate Lyapunov exponent within the cost function of model training (Platt et
al. 2023). Note that the present experiments were conducted at a coarse resolution of 5.625°, which may limit the ability of the
ClimaX-LETKF system to accurately diagnose localized weather phenomena. At higher spatial resolutions, Al models may
capture mesoscale and sub-synoptic features, potentially leading to more realistic ensemble-based error covariances. Future
work will explore the data assimilation system's behaviours at higher resolutions using more advanced versions of Al models
with denser observation datasets.

Despite the need for further improvements, this study represents a significant step toward ensemble data assimilation
for Al-based weather prediction models. Notably, we demonstrated that the data assimilation cycled stably for the Al-based
weather prediction model ClimaX with the LETKF using covariance inflation and localization techniques. In addition, the
ensemble-based error covariance was reasonably estimated by the Al-based weather prediction model in sparsely observed
regions.

Additional research is anticipated for areas identified as requiring further improvements. For that purpose, ensemble
data assimilation is a useful tool for diagnosing Al-based weather forecasting models. Namely, investigating optimal
localization scales, ensemble-based error covariance and necessary inflation factors give beneficial insights to understand
properties of Al models. After achieving the two major advancements, it is important to employ a systematic sensitivity
analysis for localization radius and ensemble size. A suitable inflation method for Al-based weather prediction models also
remains to be explored. Comparing the EnKF with variational or ensemble-variational approaches would be an important topic
for future investigation. Since Al models require much lower computational costs compared to dynamical NWP models,

extending the present study to large-ensemble EnKFs or LPF is also important subjects of future studies. Our future work will
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investigate the applicability of the proposed system for real-time forecasting with higher-resolution Al models with real
weather observations such as PREPBUFR and satellite radiances. The analysis fields and ensemble spreads generated by
ensemble data assimilation with assimilation of real observations may be applicable to subsequent training of Al models. Most
current Al weather models are trained on reanalysis data such as WeatherBench, without explicitly accounting for the
uncertainty in analysis (i.e., analysis ensemble spread). By using ensemble spreads or individual ensemble members, training
process of Al models could be improved such as by relaxing penalties in regions with large ensemble spread.

Beyond weather prediction, data assimilation has been successfully combined with machine learning-based surrogate
models in various fields, including oceanography, hydrology, and wildfire (e.g., Brajard et al. 2021; Cheng et al. 2022; Jeong
et al. 2024). It would be beneficial to explore how the EnKF could be applied to diagnose Al-based models in other fields.
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373 Tables

374 Table 1: Variables of the ClimaX model used in this study. ClimaX requires input variables to predict output variables.

375 Observation (Obs) variables are assimilated with associated error standard deviation (Error SD).

Symbol Variable Unit Input Output Obs Error SD Height
0] Zonal wind m/s X X X 1.0
v Meridional wind m/s X X X 1.0 925, 850, 700,
T Temperature K X X X 1.0 600, 500, 250,
Q Specific humidity kg/kg X X X (%) 0.1 30 (hPa)
Geo Geopotential m?/s? X X
Ul0m 10-m zonal wind m/s X X 10 m
V10m 10-m meridional wind m/s X X 10 m
T2m 2-m temperature m/s X X 2m
Ps Surface pressure hPa X 1.0 Surface
Elev Surface elevation m X Surface
Lon Longitude degree X -
Lat Latitude degree X -
Mask Land-sea mask lor0 X -
376 % Specific humidity is observed up to 4th model level (i.e., 925, 850, 700 and 600 hPa).

377
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382  Figure 1: Training curves for the default and updated ClimaX models (dashed blue and solid orange lines) verified against
383 WeatherBench data in 2016, as a function of the number of training steps. Each training step includes 64 training data in a
384 mini batch. Panels (a-c) and (d-f) show anomaly correlation coefficients (ACCs) and root mean square errors (RMSEs). (a, d),
385 (b, €) and (c, ) are geopotential at 500 hPa (m?%s?), temperature at 850 hPa and zonal wind at 500 hPa. There are no blue
386 dashed lines in panels (c) and (f) because the default ClimaX model does not predict zonal wind at 500 hPa.
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391 Figure 2. The observing network. Small black dots and red crosses represent model grid points and observing points,
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Figure 3: Spatial patterns of temperature (K) at 5th model level (500 hPa). Panels (a-c) are WeatherBench data. Panels (d-f)
are forecasts by ClimaX initialized at 0000 UTC of January 1, 2017. Panels (a, d) show 0000 UTC of January 3, 2017, (b, e)
show 0000 UTC of February 1, 2017, and (c, f) show 0000 UTC of May 1, 2017, respectively.

16



399

400
401
402
403
404

(a) [AN] RMSE (solid) Spread (dashed) ; Temperature [K] at 500 hPa (b) [AN] RMSE (solid) Spread (dashed) ; Geopotential Height [m] at 500 hPa
70

3

27 60

24
21 (¥ 50

1.8 a0 |1}

1.5
30

1.2

RMSE, Spread [K]
RMSE, Spread [m]

0.9 20

06 F

10 fe

0.3
2017/01/01 03/01 05/01 07/01 09/01 11/01 12/31 2017/01/01 03/01 05/01 07/01 09/01 11/01 12/31
date date

Figure 4: Time series of global-mean root mean square errors (RMSEs) verified against WeatherBench data, and ensemble
spreads for (a) temperature (K) and geopotential height (m) at the fifth model level (= 500 hPa). Thin and bold solid lines
indicate 6-hourly RMSEs and their 7-day running means, respectively. Dashed lines indicate ensemble spreads. Black, purple,
blue, green, and red lines indicate the ClimaX-LETKF experiments, at localization scales of L,= 400, 500, 600, 700 and 800 km.
The abscissa indicates the date (month/day) in 2017.
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Figure 5: Global mean root mean square errors (RMSEs) verified against WeatherBench (WB) for (a) zonal wind (m/s), (b)
meridional wind (m/s), (c) temperature (K), (d) specific humidity (g/kg), (¢) geopotential height (m), and (f) surface pressure
(hPa), as a function of the horizontal localization scales (km) averaged over July—-December 2017. Colored bars and black
diamonds indicate analysis (AN) and first-guess (FG) RMSEs, respectively. Blue, green, red, and purple bars in (a-¢) represent
2nd, 3rd, 5th and 6th model levels (850, 700, 500, and 250 hPa, respectively). Gray bars in (f) represent surface pressure. The
RMSE:s of specific humidity at the 6th model level in (d) were too low to be shown.
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412
413 Figure 6: Spatial patterns of difference between analysis (AN) and first-guess (FG) mean absolute errors (MAESs) for (a) zonal

414 wind (m/s) at 850 hPa, (b) temperature (K) at 700 hPa, (c) geopotential height (m) at 500 hPa, and surface pressure (hPa),
415 averaged over July-December 2017. Warm and cold colors represent improvements and degradations due to data assimilation.
416 Results are for a localization scale of L, = 500 km. Black crosses indicate observing stations.

417
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418
419  Figure 7: (a) Spatial pattern of the multiplicative inflation factor at the end of experiment on 1800UTC of December 31, 2017.

420  (b) Time series of globally averaged inflation factors. Results are for a localization scale of L, = 600 km.
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