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Abstract. The size of windblown dust particles plays a critical role in determining their geochemical and climate impacts. This 10 

study investigates the relationship between topographic wind conditions (speed and direction relative to land slope) and the particle 11 

size distribution of dust emissions on a regional scale. We used the Multiscale Online Nonhydrostatic Atmosphere Chemistry 12 

(MONARCH) dust reanalysis dataset, which assimilates satellite data on coarse-mode dust optical depth (DODcoarse). Validation 13 

against flight measurements from the 2011 Fennec campaign confirms the reanalysis’s effectiveness in capturing coarse to super 14 

coarse dust. A 10-year dust reanalysis underwent selective screening to identify events with fresh emissions and the fraction of 15 

coarse dust concentrations was calculated as a surrogate for size distribution. The coarse fractions and associated meteorological 16 

and land characteristics obtained from various datasets were incorporated into multiple linear regression and machine learning 17 

models. Results indicate that dust particle size increases with wind speed, likely due to a higher fraction of fresh emissions and 18 

reduced deposition of coarse dust under stronger winds. A positive correlation between dust size and uphill slope suggests that 19 

enhanced vertical transport of dust by topography outweighs the impact of shifting emission microphysics over veering winds. 20 

Both positive correlations weaken in the afternoons and summer, likely due to the turbulence during haboob storms, which can 21 

suspend coarse dust from aged emissions, competing with the effect of uphill slopes. These findings on dust size dependency on 22 

topographic winds could improve representation of dust cycle and its impacts.  23 

 24 

1 Introduction 25 

Windblown dust particles emitted from arid and semi-arid areas are the largest terrestrial contributor to global aerosols (Brasseur 26 

and Jacob, 2017). Understanding the size of the airborne dust particles is crucial for assessing their impacts on global climate and 27 

biogeochemistry. Size plays an important role in determining the emission and deposition of dust particles and thus the 28 

redistribution of soil nutrients around the globe (Knippertz, 2017; Duce and Tindale, 1991; Wang et al., 2023). Additionally, 29 

particle size can affect the likelihood of microorganisms’ attachment to dust aerosols (Polymenakou et al., 2008; Yamaguchi et al., 30 

2012) and the distance these associated microorganisms can travel (Prospero et al., 2005; Kellogg and Griffin, 2006). Particle size, 31 

along with other factors such as mineralogy, chemical composition, and shape, controls the climate impacts of dust particles which 32 

can vary drastically from warming to cooling (Adebiyi and Kok, 2020; Kok et al., 2023; Mahowald et al., 2014). Realistic 33 

representation of dust particle size distribution (PSD) in the atmosphere requires an understanding of the dependencies of dust size 34 

at emission (Kok, 2011; Rosenberg et al., 2014).  35 

Relationships between dust PSD and various environmental factors have been extensively studied. Soil moisture has been widely 36 

reported to increase the proportion of coarse dust in emissions by enhancing bonding forces among fine particles within soil 37 

aggregates (Dupont, 2022; González-Flórez et al., 2023; Shao et al., 2020), but one recent study also argues that the effect is non-38 



2 
 

monotonic (Ma et al., 2023). Another surface characteristic of interest is soil texture. Emitted dust PSD during wind tunnel 39 

experiments was reported to be significantly influenced by the fully dispersed soil size distribution (Wang et al., 2021), and 40 

proportion of emitted submicron particles and PM10 increased after tillage practices which broke down soil aggregates (Fernandes 41 

et al., 2023; Katra, 2020). The effect of atmospheric stability on dust size is inconsistent across studies. Some reported that an 42 

unstable atmospheric boundary is associated with richer submicron particles (Khalfallah et al., 2020; Shao et al., 2020), whereas 43 

others found no effect (Dupont, 2022; González-Flórez et al., 2023). Deposition impacts are universally acknowledged and were 44 

evaluated using characteristics of dust events or dust measurements, including fetch length (González-Flórez et al., 2023), dust age 45 

(Dupont et al., 2015; Ryder et al., 2013), and dust measurement height (Khalfallah et al., 2020; Shao et al., 2020). Nevertheless, 46 

the effects of multiple factors often intertwine during dust events, making the overall impact on dust size obscure.  47 

Wind speed, or the resulting friction velocity (u*) exerted on the ground surface, as the driving force of dust emissions, is one of 48 

the most essential parameters for dust emissions. The relationship between wind speed and PSD of dust emissions has been widely 49 

studied, yet consensus is lacking. Saltation-bombardment and aggregate disintegration are usually considered the primary 50 

mechanism for dust emissions (Kok et al., 2012). Parametrization of saltation-bombardment proposed that higher u* leads to higher 51 

energy in saltating particles and thus enhances the breaking down of soil aggregates and ejection of fine particles (Shao, 2001). 52 

This theory is supported by multiple wind tunnel experiments (Alfaro et al., 2022; Wang et al., 2021) and field measurements 53 

(Chkhetiani et al., 2021; Dupont, 2022; Khalfallah et al., 2020). The brittle fragmentation theory, on the other hand, postulates that 54 

PSD of vertical dust flux is independent of u*, backed by compiled data from multiple wind tunnel and field measurements (Kok, 55 

2011). Some also proposed that detachment of submicron particles from the surface of soil aggregates is more common when 56 

kinetic energy of impacting particles is low and the ejection of coarser particle from fragmentation becomes increasingly dominant 57 

with higher impaction intensity (Malinovskaya et al., 2021). These discrepancies are partially due to the interplay of other factors, 58 

such as inconsistencies in dust emission measurements (Khalfallah et al., 2020; Shao et al., 2020), soil moisture (Ishizuka et al., 59 

2008; Shao et al., 2020; Webb et al., 2021), and whether steady state saltation is reached (Mahowald et al., 2014). Selection of the 60 

dust emission properties (e.g., dust flux or dust concentration; Shao et al., 2020) and the height of dust measurements (Khalfallah 61 

et al., 2020) can alter the dust PSD. The effects of soil moisture on shifting dust PSD at emission can get entangled with the 62 

potential effects of u*. For instance, the fine fraction in dust emissions counterintuitively increasing with decreasing u* after light 63 

rain was caused by drying of the weakly crusted soils over time (Shao et al., 2020). With interferences of various factors, predicting 64 

the general dependency of PSD of dust emission on u* at regional scales over longer time becomes complex.  65 

The role of topography in altering size of dust emission is of emerging interest. The orographic channelling of winds can affect the 66 

dust emission or transport (Caton Harrison et al., 2021; Rosenberg et al., 2014). Uphill winds can enhance the vertical transport of 67 

dust particles through flow separation, especially increase the proportion of coarse particles in the elevated dust based on 68 

computational simulations (Heisel et al., 2021). Moreover, the veering angle between wind vectors and the surface inclination can 69 

affect the emitted dust PSD. A study over a local field observed that compared to winds that blew more parallel to the ridges of 70 

the slopes (i.e., tangential winds), frontal uphill winds generated a higher fraction of fine particles (0.2-2 µm) because of more 71 

sputtering of fine particles on the windward slope due to resistance from the secondary aeolian structures, as well as less generation 72 

of coarse particles (2-5 µm) on the leeward slope with the recirculation zone (Malinovskaya et al., 2021). Other potential 73 

topographic impacts include the generation of erodible material by certain orographic winds (Washington et al., 2006) and the 74 

triggering of convective storms by mountains (Knippertz et al., 2007). However, their associations with dust PSD are understudied. 75 

Overall, it remains unclear whether the observed effects of wind over local topography on the PSD of dust emissions is detectable 76 

at regional scales.  77 
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Understanding the relationship between topographic wind conditions and PSD of dust emission on a regional scale is important 78 

for simulating dust activities and impacts in atmospheric or climate models. Complementing the accumulating field data on PSD 79 

of dust emissions (Shao et al., 2020; González-Flórez et al., 2023; Fernandes et al., 2023), this study aims to explore the impacts 80 

of topographic wind conditions on dust PSD on a regional scale through data analysis. The regional scale means that the dust 81 

emission of concern inevitably includes near-source transport and deposition. Here, we selected “fresh” dust emission events from 82 

the Multiscale Online Nonhydrostatic AtmospheRe Chemistry model (MONARCH) dust reanalysis data (Di Tomaso et al., 2022) 83 

and constructed models to investigate the correlations between PSD of surface dust concentrations in fresh emissions and wind 84 

conditions over slopes, while taking into account other relevant meteorological and surface conditions. Our methodology, 85 

sensitivity analysis, and evaluations are described in Section 2, and the discussion of our findings followed by the main takeaways 86 

are presented in Sections 3 and 4.  87 

 88 

2 Data and Methods 89 

2.1 Datasets and variables 90 

The study domain (12-38° N, 18W-36° E) encompasses the Sahara Desert, the largest dust source on Earth, which contributes to 91 

around 60% of the global dust loading (Tanaka and Chiba, 2006). Various monitoring or reanalysis datasets are available for this 92 

region, providing information on African dust sizes and the associated environmental conditions needed for this study.  93 

The Multiscale Online Nonhydrostatic AtmoshpheRe Chemistry model (MONARCH) dust reanalysis (Di Tomaso et al., 2022) 94 

dataset provides size-resolved dust information from 2007 to 2016 with 3-hour intervals. The dataset covers North Africa, the 95 

Middle East, and Europe using a rotated-pole projection with a spatial resolution of 0.1°. The assimilation data of coarse-mode 96 

dust optical depth (DODcoarse) were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Deep Blue 97 

level 2 aerosol products (Collection 6), including the aerosol optical depth (AOD), the Ångström exponent, and the single scattering 98 

albedo at different wavelengths (Ginoux et al., 2012; Pu and Ginoux, 2016). MONARCH’s first-guess dust size distribution follows 99 

the brittle-fragmentation theory of Kok (2011) with perturbations across 12 ensemble members. By applying a local ensemble 100 

transform Kalman filter with four-dimensional extension (4D-LETKF) at each 24-hour assimilation window, reanalysis increments 101 

were added to the model ensemble simulations (first-guess) to match the DODcoarse observations. Specifically, the dust state vector 102 

of the total coarse dust mixing ratio (distributed across five coarser bins from 1.2 to 20 µm) was updated, then the increments for 103 

the finer three bins were determined proportionally to their total relative mass. Therefore, although MONARCH reanalysis does 104 

not directly assimilate fine-mode DOD, corrections in the coarse bins propagated to the entire PSD through the assimilation state 105 

vector and physical parameterizations, aligning the PSD more closely with dust-specific observations. Consequently, if the prior 106 

PSD is biased—for instance by placing too much mass in the largest bin or not enough in a medium bin—that bias may persist to 107 

some extent after assimilation. Despite the limitation, validation against observational data from the Aerosol Robotic Network 108 

(AERONET) indicates that fine dust is still captured satisfactorily (Di Tomaso et al., 2021; Mytilinaios et al., 2023), supporting 109 

the reliability of the dataset to investigate dust PSD. We hypothesize that the dust concentration reanalysis captures the potential 110 

regional effects of topographic wind conditions on the dust PSD via assimilation of the satellite DODcoarse observations. The 111 

adjustments in dust concentration PSD during data assimilation are showcased by  the uneven ratio of the first-guess dust 112 

concentration to its reanalysis across eight size bins (see section 2.2 and Fig. S1). The MONARCH model was run in 40 hybrid 113 

pressure-sigma model layers and the dust concentration in the lowest layer was saved as the surface dust concentration. The surface 114 
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dust concentration best represents near-source dust emissions and transport, and was chosen for this study. The concentration is 115 

available in eight size bins (i.e., 0.2–0.36, 0.36–0.6, 0.6–1.2, 1.2–2.0, 2.0–3.6, 3.6–6.0, 6.0–12.0, and 12.0–20.0 μm; Klose et al., 116 

2021)). For easier comparison, these size-resolved concentrations were condensed into a single index called the “coarse fraction”, 117 

defined as the sum of mass concentrations of the coarsest two bins (6-12 µm) divided by the total mass concentration of all eight 118 

bins (referred to as “cf2”). The delineation of fine and coarse particles is somewhat arbitrary and case-specific across studies. In 119 

general, a cutoff diameter from submicron to above 10 µm was used (Dupont, 2022; Fernandes et al., 2023; Panebianco et al., 120 

2023) and the most common range is roughly 2-5 µm (Ishizuka et al., 2008; Ryder et al., 2019; Shao et al., 2020; Webb et al., 121 

2021), which generally aligns with the lower boundary of 6 µm used in this study. Additionally, we tested alternative definitions 122 

of coarse fraction (namely “cf1” and “cf3”, where the coarsest one or three bins were assigned as coarse dust) in the subsequent 123 

statistical analysis and results suggest that cf2 is a representative surrogate for dust particle size. More details on the comparison 124 

are included in Table S4 and Section 3.3. 125 

Because wind conditions associated with dust concentrations are not available from the MONARCH dust reanalysis dataset, we 126 

sourced the information from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data (Gelaro et 127 

al., 2017). MONARCH ensemble simulations applied meteorological inputs from two reanalysis datasets, i.e., MERRA-2 and 128 

ERA-Interim. Given that wind from both reanalyses are highly constrained by observations, and there is a substantial overlap in 129 

the assimilated data used by the two (Fujiwara et al., 2024; Rienecker et al, 2008; Dee et al., 2011; Gelaro et al., 2017), it is 130 

reasonable to use MERRA-2 wind vectors to inform the wind conditions of MONARCH dust reanalysis. The available wind 131 

components nearest to the surface and most relevant to dust emissions are at 2 meters above ground, provided as hourly average 132 

with a spatial resolution of 0.5° latitude × 0.625° longitude in the product M2I1NXASM. Wind speed and wind direction were 133 

subsequently calculated.  134 

 135 

 136 
Figure 1. (a) Variables used in the calculation of the upwind slope. The elevations in the target grid, E(i,j) and the upwind grids (in orange if the 137 
wind components were positive; in light blue if the wind components were negative) were used to calculate the upwind slope components in x 138 
and y directions. (b) Methods for assigning the type of wind direction over topography. The angle between the upwind slope and the wind vector, 139 
α, and the predefined cut-off angle, β, together determined whether the wind from an event was typical for any of the three categories of relative 140 
wind direction, namely downhill, tangential, and uphill winds.   141 

 142 

The wind direction types relative to topography (hereafter “relative wind direction type”) were determined based on the wind 143 

vector (represented by u(i,j) and v(i,j)) and the slope vector (represented by Sx(i,j) and Sy(i,j)). Elevation data for calculating the 144 

slope were retrieved from the NASA Shuttle Radar Topography Mission Global 3 arc-second (SRTM GL3) dataset (Farr et al., 145 
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2007). The SRTM elevation data are expected to be compatible with the MERRA-2 wind reanalysis because 1) both the SRTM 146 

and GTOPO30, which is used in the Goddard Earth Observing System (GEOS-5) model (MERRA-2’s first-guess), have much 147 

finer resolution than MERRA-2’s grids, making their spatially averages comparable, and 2) MERRA-2 wind reanalysis are highly 148 

constrained by assimilated observations, reducing its dependency on topographic input. Dust concentration is most relevant to 149 

emissions in upwind grids, therefore, slope vector components in each grid (i,j) were determined as gradients of elevation between 150 

the target grid and the two neighboring grids in the upwind directions (Fig. 1(a) & Eq. (1)). To the best of the authors’ knowledge, 151 

this study presents the first derivation of the upwind slope over North Africa.      152 

The wind direction over topography was categorized into tangential, uphill, and downhill winds depending on the angle between 153 

the slope and wind vectors, α (0 ≤ α < 360°) as well as a predefined cut-off angle, β (0 < β ≤ 45°) (Fig. 1(b) & Eq. (2)). A smaller 154 

cut-off angle will result in a more selective process for assigning the relative wind direction types.  155 

 156 

𝑆!(𝑖, 𝑗) = (
"($,&)("($(),&)

*!
,											𝑢(𝑖, 𝑗) > 0

"($,&)("($+),&)
*!

,												𝑢(𝑖, 𝑗) < 0
	, 𝑆,(𝑖, 𝑗) = (

"($,&)("($,&())
*,

,									𝑣(𝑖, 𝑗) > 0
"($,&)("($,&+))

*,
, 							𝑣(𝑖, 𝑗) < 0

,    (1) 157 

 158 

where (i,j) denotes the location of a grid cell, E(i,j) represents the elevation, and Sx(i,j) and Sy(i,j) represent the slope components 159 

in x and y directions, respectively. The u(i,j) and v(i,j) are horizontal wind components.  160 

𝐰𝐢𝐧𝐝	𝐭𝐲𝐩𝐞 = (
uphill, 	𝟎 < 𝜶 < 𝜷	𝐨𝐫	(𝟑𝟔𝟎° − 𝜷) < 𝜶 < 𝟑𝟔𝟎°

tangential, 		(𝟗𝟎° − 𝜷) < 𝜶 < (𝟗𝟎° + 𝜷)		𝐨𝐫	(𝟐𝟕𝟎° − 𝜷) < 𝜶 < (𝟐𝟕𝟎° + 𝜷)
downhill, 	(𝟏𝟖𝟎° − 𝜷) < 𝜶 < (𝟏𝟖𝟎° + 𝜷)

,   (2) 161 

 162 

The land characteristics of soil texture and soil moisture that are expected to cast impacts on PSD of dust emissions were 163 

considered. Spatial distribution of soil texture was adopted from the map used in the Global Land Data Assimilation System version 164 

2 (GLDAS2) Noah land surface model (Rodell et al., 2004), derived from the global soil dataset by Reynolds et al. (2000). The 165 

texture of the top layer of soil was categorized into the 16 classes developed by the Food and Agricultural Organization (FAO), 166 

varying in sand, silt, and clay fractions (Jahn et al., 2006). Soil moisture data were retrieved from the MERRA-2 product 167 

M2T1NXLND, providing average water content in the top 5-centimeter layer of soil hourly with a spatial resolution of 0.5° latitude 168 

× 0.625° longitude.  169 

All datasets were co-registered onto a universal 0.1° Plate Carrée coordinate. MERRA-2 and MONARCH data were regridded 170 

using the Python xesmf package version 0.7.1 (Zhuang et al., 2023). The 2 m wind vectors and the soil moisture from the MERRA-171 

2 reanalysis underwent upsampling using the “nearest source to destination” algorithm to match MONARCH’s finer resolution. 172 

This algorithm did not bring in artificial variations so was the safest choice for regridding. Coarser spatial resolution of the 173 

MERRA-2 data meant some neighboring grids inevitably shared the same wind vector and soil moisture, diminishing the potential 174 

effects of wind conditions on dust PSD. The SRTM elevation data with a much higher original resolution were downsampled using 175 

the “average” method provided by the Python package of geowombat version 2.1.6 (Graesser, 2023). Sub-grid information on 176 

topography was lost, but handling topography information at the same scale as the wind data was reasonable because the terrain 177 

variations at finer resolution were deemed smooth when scaling up. Soil texture data at 0.25° lat-lon coordinates were also projected 178 

to the 0.1° coordinates. To match the instantaneous 3-hourly timesteps of the MONARCH reanalysis, we picked the average wind 179 
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components and soil moisture from the precedent hour, relevant to the initial dust emissions that could remain airborne during that 180 

time period. Maps showing the average wind speed, the average upwind slope, the most common wind direction types, and the 181 

average surface dust concentration at 0.1° resolution over the 10 years are presented in Fig. 2. While we acknowledge the inherent 182 

resolution limitations of reanalysis datasets, the focus of this study is on the broader-scale modulation of dust emission by wind 183 

conditions, and data assimilation combined with upsampling techniques ensure that our conclusion remain interpretable in this 184 

context. 185 

 186 

 187 
Figure 2. General spatial patterns of (a) 2m wind speed from the MERRA-2 reanalysis, (b) calculated upwind slope, (c) derived wind direction 188 
type relative to slope using cut-off angle of 10°, and (d) MONARCH total dust concentration at ground surface from 2007 to 2016. The average 189 
values are shown for wind speed, upwind slope, and dust surface concentration, and the most frequent types are shown for the relative wind 190 
direction.  191 

 192 

2.2 Validation against the Fennec measurements 193 

The MONARCH dust reanalysis dataset was previously evaluated against observations from the AERONET retrievals (Di Tomaso 194 

et al., 2021; Mytillinaios et al., 2023). Comparison between the 3-hourly MONARCH reanalysis of DODcoarse at 550 nm and the 195 

coarse-mode AOD at 500 nm from AERONET retrievals over Sahara generate a Pearson correlation of 0.81 with a root mean 196 

square error of 0.15 (Di Tomaso et al., 2022). Here, we present an additional case study to particularly evaluate the performance 197 

of dust reanalysis on capturing fresh dust emissions. Observational data were obtained from the 2011 Fennec campaign, where 198 

size-resolved dust emissions over western Africa were intensively sampled using wing-mounted instruments (Ryder et al., 2013). 199 

Segments of three flights (b600–602), each lasted 10 minutes, over northern Mali on 17–18 June 2011, were identified to be 200 

associated with fresh dust uplifts by low-level jets (Ryder et al., 2013; Ryder et al., 2015). Measured dust number concentration 201 

during these flight segments was converted to volumetric concentration for easier comparison with the MONARCH reanalysis 202 

data. The MONARCH reanalysis grids containing any portion of these flight trajectories were identified, and the associated dust 203 

mass concentrations were retrieved. These concentrations were weighted averaged by flight duration in each grid cell to yield an 204 

overall binned dust concentration. The MONARCH dust mass concentrations were also converted into volumetric concentrations 205 

using the dust particle density of 2500 kg m-3 for the finer four bins and 2,650 kg m-3 for the coarser four bins (Klose et al., 2021). 206 
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As shown in Fig. 3, the trends of two dust PSDs generally agree well across all the eight size bins of the MONARCH dataset. Most 207 

notably, MONARCH reanalysis is effective at capturing the coarse to super coarse modes (defined as dust with diameter greater 208 

than 10 µm; Meng et al., 2022) represented by the last three bins (3.6–20 µm), outperforming several recent dust simulations that 209 

lack the data assimilation (Adebiyi and Kok, 2020; Meng et al., 2022). Additional investigations (see Fig. S1) revealed that the 210 

reanalysis dust concentration changes non-monotonically from its first-guess, leading to the conclusion that not only the total dust 211 

concentration but also its PSD has changed through assimilation. Overall, the predicted concentration for fresh emitted dust lies in 212 

an acceptable range, and the data assimilation process improved concentration across all bins as well as adjusted the dust size 213 

distribution, suggesting that the MONARCH reanalysis reasonably represents fresh dust emissions.  214 

  215 

 216 
Figure 3. The black line shows the average volumetric concentration (µm3 cm-3) of dust sampled during three Fennec flights (6 flight segments) 217 
and the grey shaded area denotes the range of values. The blue bars show the volumetric concentration (µm3 cm-3) of dust in corresponding grids 218 
from the MONARCH reanalysis calculated from the weighted average mass concentration, with a particle density of 2,500 kg m-3 for the finer 219 
four bins and 2,650 kg m-3 for the coarser four bins. The error bars denote the range of values.  220 

 221 

2.3 Event selection and sensitivity tests 222 

Addressing the specific goals of this study requires the selection of the most relevant dust events from a decade of data over 223 

northern Africa. Two goals guided the screening process: 1) excluding the aged dust, and 2) focusing on wind conditions over 224 

distinctive terrain variations. Several screening criteria were accordingly developed that must be met simultaneously for dust events 225 

to be eligible for further analysis. Specifically, the selected dust events must occur within dust sources and over terrain with 226 

prominent slopes, be concurrent with high wind speeds and typical wind directions over slope, and have notable increases in dust 227 

surface concentrations. The procedures for screening these events are illustrated in Fig. 4 and described below in detail. This highly 228 

selective approach was made possible by the abundance of data from the MONARCH reanalysis.  229 

To start with, dust events were confined to dust sources to exclude long-range transported and likely aged dust far from dust-source 230 

regions. The 10-year average of surface dust concentrations was calculated for the entire study domain, and pixels with values 231 

above the threshold percentile were designated as dust sources. For example, dust sources selected using the 80th percentile of the 232 
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10-year average dust concentration as the threshold are presented in Fig. 4(a). The map of dust sources features the Bodélé 233 

Depression, Great Sand Sea, Tanezrouft, and the Atlantic Coastal Desert, consistent with the dust sources identified in other studies 234 

(Formenti et al., 2011; Di Tomaso et al., 2022). Further screening steps were performed independently within these dust sources.  235 

 236 

 237 
Figure 4. Schematics showing the procedures for screening the 10-year dust reanalysis data for fresh dust emissions. First, dust sources were 238 
assigned to regions where the annual average of dust surface concentration is among the top percentile (i.e., 20% as shown in (a)) of all values 239 
across the study domain of North Africa. Subsequently, additional screening criteria were applied simultaneously to events that occurred within 240 
these dust sources. These criteria include (b) high wind speed, (c) wind direction over topography, (d) high increase in dust surface concentration, 241 
and (e) steep slope. Maps (b–e) are examples of filters used in the "initial” run (see in Table 1) for 1 January 2016, at 2:30 UTC.  242 

 243 

To maximize the likelihood of capturing predominantly fresh dust emissions, high wind speed was a necessary criterion, as low 244 

wind speeds are unlikely to generate sufficient fresh dust. A single cut-off value for high wind speed was chosen as a top percentile 245 

of the 10-year average wind speed over the whole domain. Similarly, a single threshold slope was used to select the events over 246 

prominent terrain variations. Dust events occurring over relative flat surfaces were excluded to magnify the potential signals of 247 

shifted PSD due to terrain variation. Wind direction over slopes was categorized following procedures described in Section 2.1 248 

and a cut-off angle smaller than 45° was used to exclusively select typical uphill, tangential, or downhill winds over slopes. Another 249 

criterion for increasing the probability of capturing dominantly fresh emissions was identifying sharp increases in surface 250 

concentrations. This approach favored the initiation of significant dust emissions with relative clean background dust levels. 251 

Examples of selected dust events based on each of the above criteria at 2:30 UTC on 1 January 2016, are provided in Fig. 4(b–e), 252 

using the configurations for the “initial” run (i.e., a cut-off angle of 10° for categorization of wind direction, the 80th percentile as 253 

threshold for high wind speeds and steep slope, and 80% as the threshold ratio of the increased surface dust concentration to the 254 

total dust concentration as shown in Table 1).  255 

We performed several sensitivity tests to account for the uncertainties associated with the criteria used for event selection. We 256 

perturbed each of the threshold percentiles or the cut-off values used in the “initial” run in a pair of sensitivity runs. Specifically, 257 

we added and subtracted 10% from the threshold percentiles of 80% used for screening dust sources, steep slope, high wind speed, 258 

and high fraction of fresh emissions. Cut-off angles, β of 5° and 20° were tested compared to the initial 10° for typical wind 259 

direction. Configurations of all the sensitivity runs are shown in Table 1. A combination of all the stricter criteria was used in the 260 

“final” run. 261 

 262 
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Table 1. Thresholds or cut-off values used in all runs. Locations where the 10-year average surface dust concentration is above the threshold 263 
percentile value of all locations were designated as dust sources. Events over dust sources with slope and wind speed above the threshold 264 
percentiles of temporally averaged values over the whole domain, and increases in dust surface concentration above the threshold values were 265 
selected. The wind direction relative to topography was assigned using the cut-off angle. Values marked in bold represent the different criteria 266 
compared to the “initial” run.  267 

Test name Dust sources 
threshold 
percentile 

Wind direction 
cut-off angle 

Slope 
threshold 
percentile 

Wind speed 
threshold 
percentile 

Increase in dust 
surface 
concentration 
threshold  

Initial 80 10° 80 80 80%  
90%source 90 10° 80 80 80% 
70%source 70  10° 80 80 80% 
5cutoff 80 5° 80 80 80% 
20cutoff 80 20° 80 80 80% 
90%slope 80 10° 90 80 80% 
70%slope 80 10° 70  80 80% 
90%wdsp 80 10° 80 90 80% 
70%wdsp 80 10° 80 70  80% 
90%sconc 80 10° 80 80 90%  
70%sconc 80 10° 80 80 70%  
Final 90 5° 90 90 90%  

 268 

2.4 Statistical analysis 269 

Based on the selected events for “fresh” dust emissions, we explored the relationships between wind conditions and the PSD of 270 

emitted dust, taking into consideration the effects of various meteorological and landscape factors. Specifically, the dependent 271 

variable was the coarse fraction of surface dust, and the independent variables of focus were the wind speed and the slope associated 272 

with uphill, tangential, and downhill winds. The five additional independent variables are environmental variables that can 273 

potentially affect dust PSD as well as the relationships between dust PSD and wind conditions, including the continuous variables 274 

of year and soil moisture, and the categorical variables of time of day, season, and soil texture type. Dust events with missing 275 

values in soil texture class or wind direction type were excluded.  276 

Exploratory data analysis was first conducted to assess data quality, identify intrinsic patterns, and guide the selection of 277 

appropriate statistical models. We selected and modified our statistical models based on their adherence to model assumptions, 278 

ability to explain the variability in the coarse fraction, and overall complexity. An initial choice was the multiple linear regression 279 

model which has the advantage of high explainability. We separated the slope by wind direction types to provide a more holistic 280 

representation of the effects of veering wind over topography. Significant coefficients for continuous variables, such as wind speed, 281 

represent the change in the coarse fraction of dust concentrations associated with a one-unit change in that corresponding 282 

independent variable. Categorical variables (e.g., time of day) are encoded as binary dummy variables, each representing a distinct 283 

category. The coefficients of these variables reflect the change in coarse fraction relative to the reference category chosen during 284 

the encoding process. Interaction terms can also be added to linear models in order to reflect the interplay between wind conditions 285 

and other factors. An interaction can be expressed as 𝑥- × 𝑥., where 𝑥- is one of the four wind condition variables and 𝑥. is one 286 

of the two additional continuous variables (i.e., year and soil moisture) or a dummy variable representing one of the three additional 287 

categorical variables (i.e., time of day, season, and soil texture). The adjustment in the coefficient for 𝑥- due to 𝑥.would be 288 

represented by 𝛽-.𝑥.. A valid linear model requires linear relationships, normality of errors, constant variance (homoscedasticity), 289 

and low correlations among independent variables. Collinearity or multicollinearity among predictors can inflate standard errors 290 

and reduce the statistical significance of regression coefficients. To assess this, we calculated the Generalized Variance Inflation 291 

Factors (GVIFs) for all predictors in the linear models using the VIF function in  R (R. Core Team, 2023). For categorical variables, 292 
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the GVIFs were adjusted by the degrees of freedom (Df), expressed as 𝐺𝑉𝐼𝐹)/(0⋅23). An adjusted GVIF of 1 (the smallest value) 293 

indicates no collinearity, while values below 5 generally suggest low and acceptable collinearity.  294 

When assumptions of normality and constant variances were violated, we attempted standardization and transformations, including 295 

the Box-Cox transformation (Box and Cox, 1964) and the logit transformation (Berkson, 1944), to tackle these issues. We also 296 

tested weighted linear regression, also known as weighted least squares (WLS) (Kiers, 1997), which can handle non-constant 297 

variance (heteroscedasticity) by assigning weights to observations. In addition, Beta regression models were implemented, which 298 

are particularly useful for fractional variables that range between 0 and 1, such as the coarse fraction in this study (Douma and 299 

Weedon, 2019). Beta regression has been previously applied to air quality-related health metrics within the standard unit interval 300 

(Lu et al., 2021) and to particle size data with skewed distributions (Peleg, 2019).  301 

Several evaluation metrics were used to compare model performance, including the root mean square error (RMSE), the mean 302 

absolute error (MAE), the adjusted coefficient of determination (adjusted R2, which evaluates the amount of variability in the 303 

coarse fraction explained by the model while penalizing model complexity). Higher adjusted R2, and lower RMSE or MAE values 304 

suggest that more variations of the data are captured by models. We also calculated the prediction interval accuracy at the 95% 305 

confidence level, defined as the proportion of observations covered by prediction intervals. The performance metrics were also 306 

averaged using the 10-fold cross-validation (CV), where the dataset was randomly divided into 10 subsets, and models were trained 307 

on 9 subsets and tested on the remaining subset in each iteration, with a total of 10 iterations. All statistical analyses were performed 308 

using R and the relevant packages (Zeileis and Hothorn, 2002; Grün et al., 2012; Cribari-Neto and Zeileis, 2010; Fox and Weisberg, 309 

2019; Venables and Ripley, 2002).  310 

Moreover, we constructed machine learning models to account for the large dataset and potential non-linear relationships. 311 

Categorical variables (wind direction, soil texture type, season, and time of day) were converted into dummy variables, resulting 312 

in a total of 22 predictors when combined with continuous predictors (wind speed, slope, and year). We built Random Forest and 313 

Extreme Gradient Boosting (XGBoost) models, both are widely used regressors (Bacanin et al., 2024; Brokamp et al., 2017; Keller 314 

& Evans, 2019; Zhang et al., 2022). Though both models rely on decision trees, Random Forest aggregates multiple trees trained 315 

on randomly sampled subset of data, whereas the XGBoost sequentially refines decision trees through iterative training. Model 316 

hyperparameters were fine-tuned to maximize the predictive performance, with the search grids determined based on sample size, 317 

predictor count, and computational efficiency. The search grids and the optimal hyperparameter combinations are listed in Table 318 

S1. As with the linear models, we assessed the accuracy of prediction interval coverage at 95% confidence level through 10-fold 319 

CV. Machine learning models are known to have high prediction accuracy but can be challenging to interpret. One technique to 320 

assess the contribution of individual predictors to the coarse fraction based on decision trees is the SHapley Additive exPlanations 321 

(SHAP) analysis, which was performed on the optimized models. These analyses were conducted using Python packages including 322 

scikit-learn (version 1.2.2; Pedregosa et al., 2011),  xgboost  (version 1.7.6; Chen and Guestrin, 2016), and shap  (version 0.44.0; 323 

Lundberg and Lee, 2017).   324 

Eventually, the more complex models did not outperform the multiple linear models to a large extent. Given their high 325 

explainability, ability to incorporate interactions between predictors, and competitive performance, we ultimately selected linear 326 

models for further analysis. SHAP results from the machine learning models were also included for cross-validating key findings. 327 

More details on the model performance and results are described in Section 3.3.  328 

 329 
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3 Results and Discussion 330 

3.1 Sensitivity tests show minor variations 331 

As a result of the screening processes, a total number of 461,183 dust events were identified in the “initial” run and 25,884 events 332 

were identified in the “final” run from around 3.5 billion records of dust surface concentrations at specific locations and times. 333 

Figure 5 shows the percentage changes in median coarse fraction by wind direction types from all sensitivity runs (Table 1). In 334 

general, nearly all perturbations of any single screening criterion result in around ±1% of changes in the average or median coarse 335 

fraction grouped by wind direction. The exception is restricting wind speed to the top 10% percentile (the “90%wdsp” run), which 336 

leads to a roughly 2% increase in the median values for each wind direction type. Coarse fraction of dust emissions with downhill 337 

winds are usually more sensitive to the screening threshold values than the other two wind directions. When all criteria were 338 

restricted simultaneously in the “final” run, the median coarse fraction of dust emission increases by less than 2% under tangential 339 

or uphill winds and around 3.5% under downhill winds. Considering the minor variations in coarse fraction among sensitivity runs, 340 

we decided to focus on one run for more detailed analysis. The “final” run was chosen because, in theory, the selected events are 341 

most representative for fresh dust emissions.  342 

 343 

 344 
Figure 5. Percentage change in the median coarse fraction by wind direction type for all sensitivity runs (see Table 1) as compared to the “initial” 345 
run.  346 

 347 

3.2 Exploratory analysis 348 

To gain an impression of the general distribution of the data, we started with plotting the dust coarse fraction against four variables 349 

of wind conditions (Fig. 6). Scatter points in the panel for wind speed are color-coded by number of overlapping observations, and 350 

data points in other three panels for slopes are color-coded by wind speed. Across all four panels, a pattern of heteroscedasticity is 351 

revealed, that is, the variance of coarse fraction is greater for dust events associated with lower wind speed or slope than for events 352 

with high wind speed or slope. The vertically aligned scatter points with varying colors at a slope of around 1.7 in the panel for 353 

“slope under uphill winds” represent 93 dust events that occurred at a same location under different wind speeds near the northern 354 

border of Western Sahara during 2007–2016, illustrating how a large number of dust events can lead to highe variance. No obvious 355 
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non-linear relationships between the four wind condition variables and the coarse fraction are observed. The trend lines based on 356 

simple linear regression models of the coarse fraction against each wind condition variable indicate general trends in the dust PSD 357 

with varying wind conditions, but the significance of these relationships is not assured. Additional plots for the soil moisture and 358 

slope under three wind conditions color-coded by the density of overlapping data points are presented in Fig. S2.  359 

 360 

 361 

 362 
Figure 6. Scatter plots and linear trend lines of relationships between the coarse fraction of surface dust concentration in fresh emissions and the 363 
wind speed and the slope under three different wind directions. In the upper left panel for wind speed, the color-codes present the number of 364 
overlapping data points. In the other three panels for slope, the color of each scatter point represents the associated wind speed for each dust 365 
event.  366 

 367 

3.3 General associations between wind conditions and dust coarse fraction 368 

The absence of obvious non-linear relationships between coarse fraction and wind conditions from the exploratory analysis further 369 

motivated us to initially construct linear regression models, in addition to it being a common starting point. The linear model 370 

including all independent variables but no interactions has an adjusted R2 value of 0.224, RMSE with 10-fold CV of 0.070, and 371 

MAE with 10-fold CV of 0.059. Additionally, we added all possible interactions into the model and fine-tuned it by removing the 372 

insignificant interaction terms. The resulting model with interactions has similar performance, with the adjusted R2 of 0.239, RMSE 373 

with 10-fold CV of 0.070, and MAE with 10-fold CV of 0.058. The somewhat weak correlations may be related to factors that are 374 

not included in the model, such as deposition, variability within the same categories of soil texture, etc. Residual analyses indicate 375 

violations of the assumptions of evenly distributed variance and normality (Fig. S3). We attempted to address these issues and 376 

improve model performance through various linear model adaptations but only obtain indefinite or marginal improvements—377 

standardizing the coarse fraction and wind conditions variables yields an adjusted R2 of 0.241, RMSE with 10-fold CV of 1.678, 378 

and MAE with 10-fold CV of 1.420; and logit transformation on the coarse fraction generates an adjusted R2 of 0.237, RMSE with 379 

10-fold CV of 1.420, and MAE with 10-fold CV of 0.487. Furthermore, the Box-Cox transformation, weighted least squares 380 

(WLS), or Beta regression models with the best-performing configuration (with a log-log link function for the mean and an identity 381 
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link function for the dispersion) all fail to resolve heteroscedasticity in the residuals with respect to wind condition variables. For 382 

the machine learning models, the optimized Random Forest and XGBoost models achieve R² values of 0.407 and 0.474, 383 

respectively, which drop to 0.259 and 0.273 after 10-fold CV, indicating potential overfitting. The coverage rates of prediction 384 

intervals with the 10-fold CV are 92.5% for Random Forest and 54.4% for XGBoost, both lower than the 94.0% coverage by the 385 

linear models both with and without interactions. Linear models outperforming machine learning models on prediction accuracy 386 

strongly encourages the selection of linear models. Considering their comparative satisfactory performance, simplicity, and directly 387 

interpretable coefficients, we decided to proceed with the linear regression models among all models. We first assessed the 388 

influence of individual predictors based on the linear regression model without interactions, with cross comparison with results 389 

from the machine learning models (Fig. S5). Subsequently, we used the linear model with interaction terms to investigate the 390 

effects of interactions among predictors.  391 

Linear model without interaction terms are used to infer the general effects of wind conditions on coarse dust fraction. These linear 392 

models are not intended to imply strictly linear relationships between dust PSD and wind conditions, but rather to provide initial 393 

guidance on the directionality of these relationships. Although individual data points present deviations, our models effectively 394 

predict the overall trend, as suggested by the response vs. fitted value plots (Fig. S4), where the predicted values align closely with 395 

observed values and cluster around the one-to-one red line. Adjusted GVIF values for the model without regression were 396 

consistently below 2 with most values close to 1 (Table S2), indicating that multicollinearity among continuous or categorical 397 

predictors does not significantly affect the regression model. The multiple linear regression model for the dust coarse fraction 398 

includes four independent variables for wind conditions (speed and three options for slope) and additional factors that may affect 399 

the PSD of dust emissions, allowing us to investigate the effects of topographic wind conditions while controlling interferences 400 

from other environmental factors. The model can be expressed as:  401 

 402 

𝑦 = 𝛽4 + 𝛽)𝑥) + 𝛽0𝑥0 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7 + 𝛽8𝑥8 + 𝛽9𝑥9 + 𝛽:𝑥: + 𝛽;𝑥; + 𝜖,  (3) 403 

 404 

where, 𝑦 represents the coarse fraction of dust emissions, 𝑥)represents wind speed, and 𝑥0, 𝑥5, and 𝑥6 represent slope under uphill, 405 

tangential, and downhill winds, respectively; 𝑥7	is the categorical variable of time of day, including three levels of morning (6:00–406 

12:00 local time), afternoon (12:00–18:00 local time), and evening (18:00–6:00 local time); 𝑥8	is the categorical variable of season, 407 

comprising DJF (winter months of December, January, and February), MAM (spring months of March, April, and May), JJA 408 

(summer months of June, July, and August), and SON (autumn months of September, October, and November); 𝑥9	and 𝑥: represent 409 

the continuous variables of year and soil moisture; and 𝑥;	is the categorical variable of soil texture class, which contains eight 410 

levels of the FAO soil texture classes (Jahn et al., 2006). The coefficients 𝛽$ represent the expected changes in the response variable 411 

𝑦 per unit increase in the continuous predictor 𝑥$, and the difference in 𝑦 relative to the reference category for categorical predictor 412 

𝑥$, while holding all other variables constant. The 𝜖 represents the residuals of the model. The default coarse fraction is cf2 (defined 413 

in Section 2.1), and the corresponding estimated values, standard errors, and significance of the wind condition coefficients (𝛽) −414 

𝛽6) are presented in Table 2,  with full details of all coefficients in Table S3. As noted in Section 2.1, we also tested two alternative 415 

definitions of coarse fraction (cf1 and cf3) and compared the estimated coefficients with their statistical significance in Table S4. 416 

The coefficient estimates based on cf2 and cf3 are largely consistent, whereas those based on cf1 show some distinct patterns. 417 

Given that dust in the top bin (12-20 µm) falls into the “super coarse” dust category (> 10 µm; Meng et al., 2022), these results 418 
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suggest that super coarse dust responds differently to varying wind conditions compared to other coarse dust. Therefore, the cf2 419 

definition serves as a robust representation of coarse dust particles.  420 

The coefficient for wind speed from the linear model, 𝛽) is statistically significant and positive (Table 2), suggesting that 421 

controlling the effects of other factors, the coarse fraction of dust emissions increases with the wind speed. This result is consistent 422 

with the SHAP analyses on both machine learning models as showcased in the SHAP summary plots (Fig. S5), where purple data 423 

points with high wind speed are concentrated on the right side of the vertical centerline and yellow points with lower wind speed 424 

dominate the left side, indicating a positive correlation between wind speed and coarse fraction. The observed trend contradicts 425 

implications of the theory based on the saltation-bombardment emission mechanism, which predicts that higher kinetic energy of 426 

impact particles from greater wind speed can intensify the disintegration of soil aggregates and thus the release of finer particles 427 

(Shao, 2001; Alfaro et al., 1997). Conversely, our result aligns with the observed shift in the dominant emission mechanism from 428 

“shaking-off” of submicron particles to the generation of coarser microparticles from fragmentation as the velocity of saltating 429 

particles increases (Malinovskaya et al., 2021). An alternative explanation for the observed positive effect of wind speed on dust 430 

size at emission is related to soil conditions (Ishizuka et al., 2008; Panebianco et al., 2023). In previous studies, emissions of super 431 

coarse dust (> 10 µm) increased with wind speed while the emissions of ultrafine dust (< 1 µm) remained nearly invariant over 432 

sandy soil (Panebianco et al., 2023); in addition, the fraction of fine dust (< 2 µm) decreased with friction velocity on slightly 433 

crusted surfaces (Ishizuka et al., 2008). These phenomena were likely due to weaker cohesive forces and thus easier emission of 434 

coarse particles than fine particles. Though our sensitivity test using cf1 rejects the increased emission of super coarse dust with 435 

wind speed (Table S4), unmeasured changes in the fine dust emissions leading to an overall higher coarse fraction remain one 436 

possibility. Soil texture and soil moisture were included in the model, but subtle discrepancies across events within the same soil 437 

class or soil moisture are not eliminated. Last but not least, since the fresh dust emissions at regional scale inevitably include 438 

transported dust, yet another potential explanation is unrelated to the emission, but to the transport process—as wind speed 439 

increases, more fresh emissions are generated, which undergo less deposition and contain a higher fraction of coarse particles than 440 

the aged background dust (González-Flórez et al., 2023).  441 

 442 
Table 2. Estimates, standard errors, and p-values of wind condition coefficients for the multiple linear model of dust coarse fraction. The model 443 
includes the independent variables of wind conditions (i.e., wind speed and slope under three wind direction types), time of day, season, year, 444 
soil moisture, and soil texture. The symbols of coefficients are defined in Eq. (3).  445 

Coefficients for Variables Estimates Standard errors p-values 
wind speed (β1) 0.0075 0.0002 <0.0001 
slope with uphill winds (β2) 0.0175 0.0013 <0.0001 
slope with tangential winds (β3) 0.0081 0.0015 <0.0001 
slope with downhill winds (β4) 0.0076 0.0016 <0.0001 

 446 

The coefficients for slopes under all three wind directions from the linear regression are significant and positive (Table 2), 447 

suggesting that the coarse fraction of dust emissions increases with the slope regardless of the relative wind direction. The largest 448 

coefficient for uphill winds among all three slopes indicates that it has the strongest effect on dust coarse fraction. Similarly, the 449 

SHAP analysis on the optimized Random Forest model (Fig. S5) suggests a positive relationship between slope and coarse fraction, 450 

with uphill winds further accentuate the positive effects. The XGBoost model indicates mixed effects of wind directions but the 451 

results are less reliable due to its lower prediction accuracy (54%). Overall, the linear model and the Random Forest model agree 452 

on the positive correlation between slope and dust size, especially under uphill winds. The strong increase in coarse fraction with 453 

uphill slope aligns with previous findings using large eddy simulations, which was explained by the enhancement in vertical 454 
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transport of dust particles being more prominent for coarser particles (Heisel et al., 2021). In contrast, the microphysics of dust 455 

emission proposed that compared to tangential winds, uphill winds against the slope resulted in more detachment of fine particles 456 

from the surface of soil aggregates on the windward slope due to the secondary aeolian structures, and meanwhile less ejection of 457 

coarse particles from the fragmentation of soil aggregates upon hitting the leeward slope (Malinovskaya et al., 2021). Our results 458 

suggest that at the regional scale, the effect of near-source transport of emitted dust at scales of hundreds to thousands of meters 459 

dominates over the impact of microphysics of dust emission related to secondary dune structure at scales of centimeter to meters. 460 

The overall elevated coarse fraction with slopes might also be attributed to the orographic wind channelling (Rosenberg et al., 461 

2014), increased availability of coarser particles on hills (Samuel-Rosa et al., 2013; Washington et al., 2006) and their greater 462 

mobility under gravity. Effects of slope under tangential and downhill winds are less pronounced, with linear model suggesting 463 

their weaker positive relationships with coarse fraction compared to uphill winds (Table 2), and the Random Forest model 464 

indicating negative impacts of tangential and downhill wind directions on coarse fraction even though the effect of slope is positive 465 

(Fig. S5). These weaker effects can possibly be explained by the lack of effective enhancement in vertical transport of coarse 466 

particles on the windward side of slopes.  467 

3.4 Associations between wind conditions and dust coarse fraction under varying environmental conditions 468 

Adding interaction terms to the linear model allow us to investigate how the relationships between wind conditions and dust coarse 469 

fraction may vary depending on the additional variables for time and surface characteristics. The model including all significant 470 

interactions is shown in Eq. (4). Results for coefficients related to the interactions are shown in Table 3 and the complete results 471 

are included in Table S5.  472 

 473 

𝑦 = 𝛽4 + 𝛽)𝑥) + 𝛽0𝑥0 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7 + 𝛽8𝑥8 + 𝛽9𝑥9 + 𝛽:𝑥: + 𝛽;𝑥; + 𝛽)7𝑥)𝑥7 + 𝛽)8𝑥)𝑥8 + 𝛽):𝑥)𝑥: + 𝛽07𝑥0𝑥7 +474 

𝛽08𝑥0𝑥8 + 𝛽0:𝑥0𝑥: + 𝛽57𝑥5𝑥7 + 𝛽5:𝑥5𝑥: + 𝛽68𝑥6𝑥8 + 𝜖,       (4) 475 

 476 

where, 𝑥)– 𝑥;, 𝑦, and 𝛽)–𝛽; are the same as in Eq. (3). The 𝛽$& are coefficients for interactions between 𝑥$ 	(1 ≤ 𝑖 ≤ 4) and 𝑥& 	(5 ≤477 

𝑗 ≤ 9) and their interpretations are described in Section 2.4.  478 

With interactions in the model, the coefficient 𝛽) indicates the slope of linear correlation between wind speed and the coarse 479 

fraction when the variables that have interactions with wind speed are at the reference levels for categorical variables (i.e., 480 

“afternoon” for time of day and “DJF” for season) or at zero for continuous variable (i.e., soil moisture). Adjustments of the 481 

correlation under other conditions are indicated by the coefficients for interactions with wind speed (𝛽)7 𝛽)8, and 𝛽):). The overall 482 

coefficient for wind speed stays positive with varying time of day and season, which agrees with the results from the model without 483 

interactions (Table 2) , except for the rare cases when soil moisture is high (> 50%). As suggested by the adjustments of coefficients, 484 

the positive correlation between wind speed and coarse fraction is weakened during events that happen in the afternoon, in summer, 485 

or are associated with higher soil moisture. All these conditions are typical for haboob dust storms which are capable of generating 486 

intense dust emissions (Heinold et al., 2013; Knippertz, 2017). Therefore, a potential explanation for the observed patterns is that 487 

the dust PSD dependency on wind speed is reduced during convective conditions associated with haboobs. Reasons behind the 488 

weakened correlation could be related to turbulent atmospheric conditions. If the earlier assumption is valid that the coarse fraction 489 

increases with wind speed due to the associated higher proportion of fresh emissions, during convective events, the role of turbulent 490 

flows in keeping dust particles suspended regardless of the magnitude of wind speed may blur the effects of wind speed. Moreover, 491 
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the positive relationship between wind speed and coarse fraction diminishes with soil moisture. Higher soil moisture may inhibit 492 

fresh dust emissions, thereby weakening the positive correlation.  493 

 494 

Table 3. Estimates, standard errors, and p-values of the interaction coefficients for the multiple linear model of dust coarse fraction. 495 
The model includes the independent variables of wind conditions (i.e., wind speed and slope under three wind direction types), 496 
time of day, season, year, soil moisture, and soil texture, as well as significant interaction terms between wind conditions and other 497 
independent variables. The interaction coefficients represent wind conditions (speed and direction) under various situations of time 498 
of day, season, and soil moisture. The symbols of coefficients are defined in Eq. (3) and (4). Statistically significant (at 0.05 499 
significance level) coefficients are bolded and their p-values are marked with “*”, among which the negative coefficients are 500 
italicized.  501 

Multiple linear model coefficients for wind speed under various conditions 
 Estimates Standard errors p-values 
Afternoon, DJF, and soil moisture of 0 
(reference levels; β1) 0.0076 0.0007 <0.0001* 

Adjustments with time of day (β15)  
evening 0.0122 0.0006 <0.0001* 
morning 0.0016 0.0006 0.0058* 

Adjustments with season (β16) 
JJA -0.0028 0.0007 <0.0001* 
MAM -0.0023 0.0006 0.0003* 
SON -0.0003 0.0007 0.6500 

Adjustments with soil moisture (β18) -0.0154 0.0029 <0.0001* 
Multiple linear model coefficients for slope with uphill winds under various conditions 

 Estimates Standard errors p-values 
Afternoon, DJF, and soil moisture of 0 
(reference levels; β2) 0.0135 0.0030 <0.0001* 

Adjustments with time of day (β25) 
evening 0.0061 0.0024 0.0118* 
morning 0.0159 0.0026 <0.0001* 

Adjustments with season (β26)    
JJA -0.0098 0.0028 0.0005* 
MAM -0.0138 0.0029 <0.0001* 
SON -0.0056 0.0031 0.0672 

Adjustments with soil moisture (β28) 0.0521 0.0107 <0.0001 
Multiple linear model coefficients for slope with tangential winds under various conditions 

 Estimates Standard errors p-values 
Afternoon, soil moisture of 0  
(reference levels; β3) -0.0038 0.0025 0.1261 

Adjustments with time of day (β35) 
evening 0.0134 0.0024 <0.0001* 
morning 0.0110 0.0027 <0.0001* 

Adjustments with soil moisture (β38) 0.0351 0.0115 0.0022* 
Multiple linear model coefficients for slope with downhill winds under various conditions 

 Estimates Standard errors p-values 
DJF (reference level; β4) 0.0148 0.0026 <0.0001* 
Adjustments with season (β46)    

JJA -0.0101 0.0031 0.0011* 
MAM -0.0105 0.0032 0.0011* 
SON -0.0090 0.0036 0.0116* 

 502 

The adjustments of the relationship between slope and coarse fraction with other environmental variables are generally consistent 503 

across three wind direction types. Overall, the coefficients for slope with three wind directions stay positive under most 504 
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circumstances, aligning with results from the model without interactions (Table 2). Notably, the effect of the uphill slope is 505 

strongest in the morning. Unlike Harmattan surges, which can induce dust emission throughout the day, or haboob storms, which 506 

mostly occur in the afternoons, dust uplift due to the breakdown of night-time low-level jets (NLLJs) is limited to the period around 507 

sunrise to midday (Fiedler et al., 2015; Heinold et al., 2013). Therefore, the result may indicate that the role of uphill slope in 508 

facilitating transport of coarse dust is particularly relevant during emissions related to NLLJs. Moreover, the effect of slope in 509 

increasing coarse fraction is weakest during afternoon events under both uphill and tangential winds. With both uphill and downhill 510 

winds, the positive correlation between slope and coarse fraction is the strongest in winter, and the weakest in spring and summer. 511 

The reduced correlation of dust PSD with uphill slope in both afternoon and summer suggests a diminished effect of slope during 512 

haboob dust storms. This can be explained by the stronger turbulence associated with convective storms, which readily stirs up the 513 

air and facilitate particle transport, thereby weakening the additional effect of uphill slope by elevating coarse particles through 514 

flow separation.  515 

The effect of slope on increasing coarse fraction of dust also becomes more apparent with increasing soil moisture under uphill 516 

and tangential winds. A potential explanation is that low soil moisture might be associated with low water vapor content in lower-517 

Saharan Air Layer, which can lead to continued vertical motions of the atmosphere into the night due to increased atmospheric 518 

longwave heating (Ryder, 2021). Conversely, the air is more stable with higher relative humidity, making the enhancement by 519 

topography more critical for the transport of coarse dust. 520 

 521 

4 Conclusion 522 

This study aims to explore the relationship between topographic wind conditions and particle size distribution (PSD) of dust 523 

emissions on a regional scale through data analysis. The Multiscale Online Nonhydrostatic AtmospheRe Chemistry model 524 

(MONARCH) dust concentrations were first evaluated against flight measurements of fresh dust emissions from the 2011 Fennec 525 

campaign and were proven to be effective in capturing concentrations of coarse to super coarse dusts in fresh dust emissions. For 526 

our analysis, size-resolved surface dust mass concentrations from the MONARCH dust reanalysis over the Sahara during 2007–527 

2016 were condensed into an index of coarse fraction (the ratio of the sum of concentrations in the top two bins (6–20 µm) to the 528 

total concentration in eight bins (0.2–20 µm)), serving as the proxy for size distribution. Information on wind vectors and soil 529 

moisture, elevation, and soil texture was obtained from the Modern-Era Retrospective analysis for Research and Applications 530 

(MERRA-2) reanalysis data, the NASA Shuttle Radar Topography Mission Global 3 arc-second (SRTM GL3) dataset, and the 531 

inputs to the Global Land Data Assimilation System version 2 (GLDAS2) Noah land surface model, respectively. Several highly 532 

selective criteria were applied to maximize the probability of selecting fresh dust emissions with typical wind conditions over 533 

topography. Scatter plots of coarse fraction against four wind conditions variables (i.e., wind speed, slope under uphill, tangential, 534 

and downhill winds) reveal unevenly distributed variance without obvious non-linear trends. We ultimately selected the multiple 535 

linear models after testing several model variations to quantify and explain the trends in data, with key findings cross-validated 536 

using machine learning models.  537 

The linear model without and with significant interaction terms can explain 22% and 24% of the variability of coarse fraction, 538 

respectively. The model, however, fails to fulfil the assumptions on homoscedasticity (constant variance) and normality, and this 539 

issue could not be resolved by other parametric modelling approaches including linear regression models with transformations of 540 

variables, weighted least square, or Beta regression models with several options for link functions. The strong intrinsic pattern of 541 
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non-constant variance and the abundance of data points require more advanced models, which is beyond the scope of our current 542 

work. Other uncertainties arose from the varying original resolution of datasets and the resampling process. Moreover, even though 543 

we applied multiple criteria to exclusively pick fresh dust emissions, we cannot totally exclude the portion of transported dust. The 544 

analysis focuses on the general trend for North Africa, and more detailed insights rely on analysis for smaller geographic domains.  545 

Despite some limitations, the multiple linear models achieved high predictive accuracy—over 94% under 10-fold cross-validation 546 

(CV)—demonstrating their capability to provide meaningful insights for interpretation. The optimized Random Forest model, 547 

which attained 92% predictive accuracy with 10-fold CV despite potential overfitting, added insights to the influence of each 548 

predictor by applying the SHapley Additive exPlanations (SHAP) analysis. Both the linear and the Random Forest models reveal 549 

positive associations between coarse dust fraction and both wind speed and slope. An increased coarse fraction in dust emissions 550 

with wind speed is inconsistent with theories by Kok (2011) or those based on saltation-bombardment mechanism (Shao, 2001; 551 

Alfaro et al., 1997), which predict invariant or opposite trends, respectively. The most likely explanation for our finding is that 552 

higher winds are associated with more fresh emissions (which undergo less deposition) because transported dust was inevitably 553 

included in our samples even with meticulous screening (González-Flórez et al., 2023). Therefore, our finding does not necessarily 554 

reject the former theories, as the definition of dust emissions may differ across studies. Another notable possibility is a shift in 555 

emission mechanisms with wind speed—under light winds, the detachment of fine particles from surfaces of soil aggregates 556 

dominates the emissions, generating more fine dust; in contrast, the fragmentation of soil aggregates dominates emissions under 557 

stronger winds and ejects more coarse dusts (Malinovskaya et al., 2021).  558 

The positive correlation between coarse dust fraction and slope is most pronounced under uphill winds. This aligns with the impacts 559 

of flow separation induced by topography, as suggested by previous numerical simulations (Heisel et al., 2021), but contradicts 560 

the observed effects of frontal winds explained by the microphysics of dust emissions (Malinovskaya et al., 2021). Our finding 561 

suggests that the topographic influence on transport over hundreds to thousands of meters may override the localized effects 562 

(increased generation of fine particles) from secondary aeolian structures at scales of centimeters to meters. The persistent influence 563 

of slope on increasing the coarse fraction, regardless of wind direction, might be related to meteorological conditions (e.g., 564 

orographic wind channelling; Rosenburg et al., 2014) and soil conditions (e.g., increased availability and gravitational mobility of 565 

coarser particles on hills; Washington et al., 2006).  566 

Including interaction terms in the model allows us to investigate shifts in the effects of wind conditions on dust size under different 567 

environmental conditions. The positive correlation between wind speed and coarse fraction diminishes during afternoon and 568 

summer events and under high soil moisture. This reduction is likely due to decreased differences in dust size distribution by 569 

deposition during haboob convective storms when turbulence is strong (Heinold et al., 2013; Knippertz, 2017). The uphill slope 570 

exhibits the strongest effect on increasing dust size in the morning, suggesting that the enhanced vertical transport may be 571 

particularly effective in uplifting coarse dust during emissions related to the breakdown of night-time low-level jets (Fiedler et al., 572 

2015; Heinold et al., 2013). The effect of uphill slope is weakened during summer and afternoons, indicating that turbulence during 573 

haboob dust storms has competing effects in sustaining airborne coarse dust.  574 

This work provides insights into the controlling factors of dust PSD on a regional scale using a meta-analysis of a 10-year dust 575 

reanalysis dataset, complementing the accumulating knowledge from recent field measurements. The study highlights the 576 

overlapping effects and interactions among various environmental factors on the size distribution of dust emissions, which can 577 

potentially be applied to improve dust emission parameterizations in regional to global Earth system models. Moreover, the 578 

workflow for screening fresh dust events developed in this work serves as a reference for future studies utilizing datasets at various 579 

scales. Remaining uncertainties in this work (e.g., those introduced by unmatching resolution of source data or lack of explicit 580 
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information on dust event types) calls for further investigation, especially on the role of various environmental factors and their 581 

interactions. Additional field measurements, as well as the development and validation of data products providing detailed 582 

information on size-resolved dust emissions, meteorological conditions, and soil and topographic properties, would be crucial for 583 

advancing this field.  584 
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