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Abstract. The size of windblown dust particles plays a critical role in determining their geochemical and climate impacts. This 10 

study investigates the relationship between topographic wind conditions (speed and direction relative to land slope) and the 11 

particle size distribution of dust emissions on a regional scale. We used the Multiscale Online Nonhydrostatic Atmosphere 12 

Chemistry (MONARCH) dust reanalysis dataset, which assimilates satellite data on coarse-mode dust optical depth 13 

(DODcoarse). Validation against flight measurements from the 2011 Fennec campaign confirms the reanalysis’s effectiveness 14 

in capturing coarse to super coarse dust. A 10-year dust reanalysis underwent selective screening to identify events with fresh 15 

emissions and the fraction of coarse dust concentrations was calculated as a surrogate for size distribution. The coarse fractions 16 

and associated meteorological and land characteristics obtained from various datasets were incorporated into multiple linear 17 

regression and machine learning models. Results indicate that dust particle size increases with wind speed, likely due to a 18 

higher fraction of fresh emissions and reduced deposition of coarse dust under stronger winds. A positive correlation between 19 

dust size and uphill slope suggests that enhanced vertical transport of dust by topography outweighs the impact of shifting 20 

emission microphysics over veering winds. Both positive correlations weaken in the afternoons and summer, likely due to the 21 

turbulence during haboob storms, which can suspend coarse dust from aged emissions, competing with the effect of uphill 22 

slopes. These findings on dust size dependency on topographic winds could improve dust cycle representation and its impacts.  23 

 24 

1 Introduction 25 

Windblown dust particles emitted from arid and semi-arid areas are the largest terrestrial contributor to global aerosols 26 

(Brasseur and Jacob, 2017). Understanding the size of the airborne dust particles is crucial for assessing their impacts on global 27 

climate and biogeochemistry. Size plays an important role in determining the emission and deposition of dust particles and 28 

thus the redistribution of soil nutrients around the globe (Knippertz, 2017; Duce and Tindale, 1991; Wang et al., 2023). 29 

Additionally, particle size can affect the likelihood of microorganisms’ attachment to dust aerosols (Polymenakou et al., 2008; 30 

Yamaguchi et al., 2012) and the distance these associated microorganisms can travel (Prospero et al., 2005; Kellogg and 31 

Griffin, 2006). Particle size, along with other factors such as mineralogy, chemical composition, and shape, controls the climate 32 
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impacts of dust particles which can vary drastically from warming to cooling (Adebiyi and Kok, 2020; Kok et al., 2023; 33 

Mahowald et al., 2014). Realistic representation of dust particle size distribution (PSD) in the atmosphere requires an 34 

understanding of the dependencies of dust size at emission (Kok, 2011; Rosenberg et al., 2014).  35 

Relationships between dust PSD and various environmental factors have been extensively studied. Soil moisture has been 36 

widely reported to increase the proportion of coarse dust in emissions by enhancing bonding forces among fine particles within 37 

soil aggregates (Dupont, 2022; González-Flórez et al., 2023; Shao et al., 2020), but one recent study also argues that the effect 38 

is non-monotonic (Ma et al., 2023). Another surface characteristic of interest is soil texture. Emitted dust PSD during wind 39 

tunnel experiments was reported to be significantly influenced by the fully dispersed soil size distribution (Wang et al., 2021), 40 

and proportion of emitted submicron particles and PM10 increased after tillage practices which broke down soil aggregates 41 

(Fernandes et al., 2023; Katra, 2020). The effect of atmospheric stability on dust size is inconsistent across studies. Some 42 

reported that an unstable atmospheric boundary is associated with richer submicron particles (Khalfallah et al., 2020; Shao et 43 

al., 2020), whereas others found no effect (Dupont, 2022; González-Flórez et al., 2023). Deposition impacts are universally 44 

acknowledged and were evaluated using characteristics of dust events or dust measurements, including fetch length (González-45 

Flórez et al., 2023), dust age (Dupont et al., 2015; Ryder et al., 2013), and dust measurement height (Khalfallah et al., 2020; 46 

Shao et al., 2020). Nevertheless, the effects of multiple factors often intertwine during dust events, making the overall impact 47 

on dust size obscure.  48 

Wind speed, or the resulting friction velocity (u*) exerted on the ground surface, as the driving force of dust emissions, is one 49 

of the most essential parameters for dust emissions. The relationship between wind speed and PSD of dust emissions has been 50 

widely studied, yet consensus is lacking. Saltation-bombardment and aggregate disintegration are usually considered the 51 

primary mechanism for dust emissions (Kok et al., 2012). Parametrization of saltation-bombardment proposed that higher u* 52 

leads to higher energy in saltating particles and thus enhances the breaking down of soil aggregates and ejection of fine particles 53 

(Shao, 2001). This theory is supported by multiple wind tunnel experiments (Alfaro et al., 2022; Wang et al., 2021) and field 54 

measurements (Chkhetiani et al., 2021; Dupont, 2022; Khalfallah et al., 2020). The brittle fragmentation theory, on the other 55 

hand, postulates that PSD of vertical dust flux is independent of u*, backed by compiled data from multiple wind tunnel and 56 

field measurements (Kok, 2011). Some also proposed that detachment of submicron particles from the surface of soil 57 

aggregates is more common when kinetic energy of impacting particles is low and the ejection of coaster particle from 58 

fragmentation becomes increasingly dominant with higher impaction intensity (Malinovskaya et al., 2021). These 59 

discrepancies are partially due to the interplay of other factors, such as inconsistencies in dust emission measurements 60 

(Khalfallah et al., 2020; Shao et al., 2020), soil moisture (Ishizuka et al., 2008; Shao et al., 2020; Webb et al., 2021), and 61 

whether steady state saltation is reached (Mahowald et al., 2014). Selection of the dust emission properties (e.g., dust flux or 62 

dust concentration; Shao et al., 2020) and the height of dust measurements (Khalfallah et al., 2020) can alter the dust PSD. 63 

The effects of soil moisture on shifting dust PSD at emission can get entangled with the potential effects of u*. For instance, 64 

the fine fraction in dust emissions counterintuitively increasing with decreasing u* after light rain was caused by drying of the 65 
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weakly crusted soils over time (Shao et al., 2020). With interferences of various factors, predicting the general dependency of 66 

PSD of dust emission on u* at regional scales over longer time becomes complex.  67 

The role of topography in altering size of dust emission is of emerging interest. The orographic channelling of winds can affect 68 

the dust emission or transport (Caton Harrison et al., 2021; Rosenberg et al., 2014). Uphill winds can enhance the vertical 69 

transport of dust particles through flow separation, especially increase the proportion of coarse particles in the elevated dust 70 

based on computational simulations (Heisel et al., 2021). Moreover, the veering angle between wind vectors and the surface 71 

inclination can affect the emitted dust PSD. A study over a local field observed that compared to winds that blew more parallel 72 

to the ridges of the slopes (i.e., tangential winds), frontal uphill winds generated a higher fraction of fine particles (0.2-2 µm) 73 

because of more sputtering of fine particles on the windward slope due to resistance from the secondary aeolian structures, as 74 

well as less generation of coarse particles (2-5 µm) on the leeward slope with the recirculation zone (Malinovskaya et al., 75 

2021). Other potential topographic impacts include the generation of erodible material by certain orographic winds 76 

(Washington et al., 2006) and the triggering of convective storms by mountains (Knippertz et al., 2007). However, their 77 

associations with dust PSD are understudied. Overall, it remains unclear whether the observed effects of wind over local 78 

topography on the PSD of dust emissions is detectable at regional scales and what the overall relationship between topography 79 

and dust PSD will be.  80 

Understanding the relationship between topographic wind conditions and PSD of dust emission on a  regional scale is important 81 

for simulating dust activities and impacts in atmospheric or climate models. Complementing the accumulating field data on 82 

PSD of dust emissions (Shao et al., 2020; González-Flórez et al., 2023; Fernandes et al., 2023), this study aims to explore the 83 

impacts of topographic wind conditions on dust PSD on a regional scale through data analysis. The regional scale means that 84 

the dust emission of concern inevitably includes near-source transport and deposition. Here, we selected “fresh” dust emission 85 

events from the Multiscale Online Nonhydrostatic AtmospheRe Chemistry model (MONARCH) dust reanalysis data (Di 86 

Tomaso et al., 2022) and constructed models to investigate the correlations between PSD of surface dust concentrations in 87 

fresh emissions and wind conditions over slopes, while taking into account other relevant meteorological and surface 88 

conditions. Our methodology, sensitivity analysis, and evaluations are described in Section 2, and the discussion of our findings 89 

followed by the main takeaways are presented in Sections 3 and 4.  90 

 91 

2 Data and Methods 92 

2.1 Datasets and variables 93 

The study domain (12-38° N, 18W-36° E) encompasses the Sahara Desert, the largest dust source on Earth, which contributes 94 

to around 60% of the global dust loading (Tanaka and Chiba, 2006). Various monitoring or reanalysis datasets are available 95 

for this region, providing information on African dust sizes and the associated environmental conditions needed for this study.  96 
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The Multiscale Online Nonhydrostatic AtmoshpheRe Chemistry model (MONARCH) dust reanalysis (Di Tomaso et al., 2022) 97 

dataset provides size-resolved dust information from 2007 to 2016 with 3-hour intervals. The dataset covers North Africa, the 98 

Middle East, and Europe using a rotated-pole projection with a spatial resolution of 0.1°. The assimilation data of coarse-mode 99 

dust optical depth (DODcoarse) were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Deep 100 

Blue level 2 aerosol products (Collection 6), including aerosol optical depth (AOD), the Ångström exponent, and the single 101 

scattering albedo at different wavelengths (Ginoux et al., 2012; Pu and Ginoux, 2016). MONARCH’s first-guess dust size 102 

distribution follows the brittle-fragmentation theory of Kok (2011) with perturbations across 12 ensemble members. By 103 

applying a local ensemble transform Kalman filter with four-dimensional extension (4D-LETKF) at each 24-hour assimilation 104 

window, reanalysis increments were added to the model ensemble simulations (first-guess) to match the DODcoarse 105 

observations. Specifically, the dust state vector of the total coarse dust mixing ratio (distributed across five coarser bins from 106 

1.2 to 20 µm) was updated, then the increments for the finer three bins were determined proportionally to their total relative 107 

mass. Therefore, although MONARCH reanalysis does not directly assimilate fine-mode DOD, corrections in the coarse bins 108 

propagated to the entire PSD through the assimilation state vector and physical parameterizations, aligning the PSD more 109 

closely with dust-specific observations. Consequently, if the prior PSD is biased—for instance by placing too much mass in 110 

the largest bin or not enough in a medium bin—that bias may persist to some extent after assimilation. Despite the limitation, 111 

validation against AERONET data indicates that fine dust is still captured satisfactorily (Di Tomaso et al., 2021; Mytilinaios 112 

et al., 2023), supporting the reliability of the dataset to investigate dust PSD. We hypothesize that the dust concentration 113 

reanalysis captures the potential regional effects of topographic wind conditions on the dust PSD via assimilation of the satellite 114 

DODcoarse observations. The adjustments in dust concentration PSD during data assimilation were showcased by  the uneven 115 

ratio of the first-guess dust concentration to its reanalysis across eight size bins (see section 2.2 and Fig. S1). The MONARCH 116 

model was run in 40 hybrid pressure-sigma model layers and the dust concentration in the lowest layer is saved as the surface 117 

dust concentration. The surface dust concentration best represents near-source dust emissions and transport, and was chosen 118 

for this study. The concentration is available in eight size bins (i.e., 0.2–0.36, 0.36–0.6, 0.6–1.2, 1.2–2.0, 2.0–3.6, 3.6–6.0, 6.0–119 

12.0, and 12.0–20.0 μm; Klose et al., 2021)). For easier comparison, these size-resolved concentrations were condensed into 120 

a single index called the “coarse fraction”, defined as the sum of mass concentrations of the coarsest two bins (6-12 µm) 121 

divided by the total mass concentration of all eight bins (referred to as “cf2”). The delineation of fine and coarse particles is 122 

somewhat arbitrary and case-specific across studies. In general, a cutoff diameter from submicron to above 10 µm was used 123 

(Dupont, 2022; Fernandes et al., 2023; Panebianco et al., 2023) and the most common range is roughly 2-5 µm (Ishizuka et 124 

al., 2008; Ryder et al., 2019; Shao et al., 2020; Webb et al., 2021), which generally aligns with the lower boundary of 6 µm 125 

used in this study. Additionally, we tested alternative definitions of coarse fraction (namely “cf1” and “cf3”, where the coarsest 126 

one or three bins are assigned as coarse dust) in the subsequent statistical analysis and results suggest that cf2 is a representative 127 

surrogate for dust particle size. More details on the comparison are included in Table S4 and Section 3.3. 128 
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Because wind conditions associated with dust concentrations are not available from the MONARCH dust reanalysis dataset, 129 

we sourced the information from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data 130 

(Gelaro et al., 2017). MONARCH ensemble simulations applied meteorological inputs from two reanalysis datasets, i.e., 131 

MERRA-2 and ERA-Interim. Given that wind from both reanalyses are highly constrained by observations, and there is a 132 

substantial overlap in the assimilated data used by the two (Fujiwara et al., 2024; Rienecker et al, 2008; Dee et al., 2011; Gelaro 133 

et al., 2017), it is reasonable to use MERRA-2 wind vectors to inform the wind conditions of MONARCH dust reanalysis.  134 

The available wind components nearest to the surface and most relevant to dust emissions are at 2 meters above ground, 135 

provided as hourly average with a spatial resolution of 0.5° latitude × 0.625° longitude in the product M2I1NXASM. Wind 136 

speed and wind direction are subsequently calculated.  137 

 138 

 139 

Figure 1. (a) Variables used in the calculation of upwind slope. The elevations in the target grid, E(i,j) and the upwind grids (in orange if 140 
the wind components were positive; in light blue if the wind components were negative) were used to calculate the upwind slope components 141 
in x and y directions. (b) Methods for assigning the type of wind direction over topography. The angle between the upwind slope and the 142 
wind vector, α, and the predefined cut-off angle, β, together determine whether the wind from an event is typical for any of the three 143 
categories of relative wind direction, namely downhill, tangential, and uphill winds.   144 

 145 

The wind direction types relative to topography (hereafter “relative wind direction type”) were determined based on the angle, 146 

α (0 ≤ α < 360°) between the wind vector (u(i,j) and v(i,j)) and the slope vector (Sx(i,j) and Sy(i,j)). Elevation data for calculating 147 

the slope were retrieved from the NASA Shuttle Radar Topography Mission Global 3 arc-second (SRTM GL3) dataset (Farr 148 

et al., 2007). The SRTM elevation data are expected to be compatible with the MERRA-2 wind reanalysis because 1) both the 149 

SRTM and GTOPO30, which is used in the Goddard Earth Observing System (GEOS-5) model (MERRA-2’s first-guess), 150 

have much finer than MERRA-2’s grid, making their spatially averages comparable, and 2) MERRA-2 wind reanalysis are 151 

highly constrained by assimilated observations, reducing its dependency on topographic input. Dust concentration is most 152 

relevant to emissions in upwind grids, therefore, slope vector components in each grid (i,j) were determined as gradients of 153 
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elevation between the target grid and the two neighboring grids in the upwind directions (Fig. 1(a) & Eq. (1)). To the best of 154 

the authors’ knowledge, this study presents the first derivation of the upwind slope over North Africa.      155 

The wind direction over topography was categorized into tangential, uphill, and downhill winds depending on the angle α 156 

between the slope and wind vectors as well as a predefined cut-off angle, β (0 < β ≤ 45°) (Fig. 1(b) & Eq. (2)). A smaller cut-157 

off angle results in a more selective process for assigning the relative wind direction types.  158 

 159 

𝑆𝑥(𝑖, 𝑗) = {

𝐸(𝑖,𝑗)−𝐸(𝑖−1,𝑗)

𝑑𝑥
,           𝑢(𝑖, 𝑗) > 0

𝐸(𝑖,𝑗)−𝐸(𝑖+1,𝑗)

𝑑𝑥
,            𝑢(𝑖, 𝑗) < 0

 , 𝑆𝑦(𝑖, 𝑗) = {

𝐸(𝑖,𝑗)−𝐸(𝑖,𝑗−1)

𝑑𝑦
,         𝑣(𝑖, 𝑗) > 0

𝐸(𝑖,𝑗)−𝐸(𝑖,𝑗+1)

𝑑𝑦
,        𝑣(𝑖, 𝑗) < 0

,    (1) 160 

 161 

where (i,j) denotes the location of a grid cell, E(i,j) represents the elevation, and Sx(i,j) and Sy(i,j) represent the slope 162 

components in x and y directions, respectively. The u(i,j) and v(i,j) are horizontal wind components.  163 

wind type = {

uphill,  0 < 𝛼 < 𝛽 or (360° − 𝛽) < 𝛼 < 360°

tangential,   (90° − 𝛽) < 𝛼 < (90° + 𝛽)  or (270° − 𝛽) < 𝛼 < (270° + 𝛽)

downhill,  (180° − 𝛽) < 𝛼 < (180° + 𝛽)
,   (2) 164 

 165 

The land characteristics of soil texture and soil moisture that are expected to cast impacts on PSD of dust emissions were 166 

considered. Spatial distribution of soil texture was adopted from the map used in the Global Land Data Assimilation System 167 

version 2 (GLDAS2) Noah land surface model (Rodell et al., 2004), derived from the global soil dataset by Reynolds et al. 168 

(2000). The texture of the top layer of soil was categorized into the 16 classes developed by the Food and Agricultural 169 

Organization (FAO), varying in sand, silt, and clay fractions (Jahn et al., 2006). Soil moisture data were retrieved from the 170 

MERRA-2 product M2T1NXLND, providing average water content in the top 5-centimeter layer of soil hourly with a spatial 171 

resolution of 0.5° latitude × 0.625° longitude.  172 

All datasets were co-registered onto a universal 0.1° Plate Carrée coordinate. MERRA-2 and MONARCH data were regridded 173 

using the Python xesmf package version 0.7.1 (Zhuang et al., 2023). The 2 m wind vectors and the soil moisture from the 174 

MERRA-2 reanalysis underwent upsampling using the “nearest source to destination” algorithm to match MONARCH’s finer 175 

resolution. This algorithm does not bring in artificial variations so is the safest choice for regridding. Coarser spatial resolution 176 

of the MERRA-2 data means some neighboring grids will inevitably share the same wind vector and soil moisture, diminishing 177 

the potential effects of wind conditions on dust PSD. The SRTM elevation data with a much higher original resolution were 178 

downsampled using the “average” method provided by the Python package of geowombat version 2.1.6 (Graesser, 2023). Sub-179 

grid information on topography was lost, but handling topography information at the same scale as the wind data is reasonable 180 
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because the terrain variations at finer resolution are deemed smooth when scaling up. Soil texture data at 0.25° lat-lon 181 

coordinates were also projected to the 0.1° coordinates. To match the instantaneous 3-hourly timesteps of the MONARCH 182 

reanalysis, we picked the average wind components and soil moisture from the precedent hour, relevant to the initial dust 183 

emissions that can remain airborne during that period. Maps showing the average wind speed, the average upwind slope, the 184 

most common wind direction types, and the average surface dust concentration at 0.1° resolution over the 10 years are 185 

presented in Fig. 2. While we acknowledge the inherent resolution limitations of reanalysis datasets, the focus of this study is 186 

on the broader-scale modulation of dust emission by wind conditions, and data assimilation combined with upsampling 187 

techiniques ensure that our conclusion remain interpretable in this context. 188 

 189 

 190 

Figure 2. General spatial patterns of (a) 2-m wind speed from the MERRA-2 reanalysis, (b) calculated upwind slope, (c) derived wind 191 
direction type relative to slope using cut-off angle of 10°, and (d) MONARCH total dust concentration at ground surface from 2007 to 2016. 192 
The average values are shown for wind speed, upwind slope, and dust surface concentration, and the most frequent types are shown for the 193 
relative wind direction.  194 

 195 

2.2 Validation against the Fennec measurements 196 

The MONARCH dust reanalysis dataset was previously evaluated against observations from the Aerosol Robotic Network 197 

(AERONET) retrievals (Di Tomaso et al., 2021; Mytillinaios et al., 2023). Comparison between the 3-hourly MONARCH 198 

reanalysis of DODcoarse at 550 nm and the coarse-mode AOD at 500 nm from AERONET retrievals over Sahara generate a 199 

Pearson correlation of 0.81 with a root mean square error of 0.15 (Di Tomaso et al., 2022). Here, we present an additional case 200 
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study to particularly evaluate the performance of dust reanalysis on capturing fresh dust emissions. Observational data were 201 

obtained from the 2011 Fennec campaign, where size-resolved dust emissions over western Africa were intensively sampled 202 

using wing-mounted instruments (Ryder et al., 2013). Segments of three flights (b600–602), each lasted 10 minutes, over 203 

northern Mali on 17–18 June 2011, were identified to be associated with fresh dust uplifts by low-level jets (Ryder et al., 2013; 204 

Ryder et al., 2015). Measured dust number concentration during these flight segments was converted to volumetric 205 

concentration for easier comparison with the MONARCH reanalysis data. The MONARCH reanalysis grids containing any 206 

portion of these flight trajectories were identified, and the associated dust mass concentrations were retrieved. These 207 

concentrations were weighted averaged by flight duration in each grid cell to yield an overall binned dust concentration. The 208 

MONARCH dust mass concentrations were also converted into volumetric concentrations using the dust particle density of 209 

2500 kg m-3 for the finer four bins and 2,650 kg m-3 for the coarser four bins (Klose et al., 2021). As shown in Fig. 3, the trends 210 

of two dust PSDs generally agree well across all the eight size bins of the MONARCH dataset. Most notably, MONARCH 211 

reanalysis is effective at capturing the coarse to super coarse modes (defined as dust with diameter greater than 10 µm; Meng 212 

et al., 2022) represented by the last three bins (3.6–20 µm), outperforming several recent dust simulations that lack the data 213 

assimilation (Adebiyi and Kok, 2020; Meng et al., 2022). Additional investigations (see Fig. S1) revealed that the reanalysis 214 

dust concentration changes non-monotonically from its first-guess, leading to the conclusion that not only the total dust 215 

concentration but also its PSD has changed due to assimilation. Overall, the predicted concentration for fresh emitted dust lies 216 

in an acceptable range, and the data assimilation process improved concentration across all bins as well as adjusted the dust 217 

size distribution, suggesting that the MONARCH reanalysis reasonably represents fresh dust emissions.  218 

  219 

 220 
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Figure 3. The black line shows the average volumetric concentration (µm3 cm-3) of dust sampled during three Fennec flights (6 flight 221 
segments) and the grey shaded area denotes the range of values. The blue bars show the volumetric concentration (µm3 cm-3) of dust in 222 
corresponding grids from the MONARCH reanalysis calculated from the weighted average mass concentration, with a particle density of 223 
2,500 kg m-3 for the finer four bins and 2,650 kg m-3 for the coarser four bins. The error bars denote the range of values.  224 

 225 

2.3 Event selection and sensitivity tests 226 

Addressing the specific goals of this study requires the selection of the most relevant dust events from a decade of data over 227 

northern Africa. Two goals guided the screening process: 1) excluding the aged dust, and 2) focusing on wind conditions over 228 

distinctive terrain variations. Several screening criteria were accordingly developed that must be met simultaneously for dust 229 

events to be eligible for further analysis. Specifically, the selected dust events must occur within dust sources and over terrain 230 

with prominent slopes, be concurrent with high wind speeds and typical wind directions over slope, and have notable increases 231 

in dust surface concentrations. The procedures for screening these events are illustrated in Fig. 4 and described below in detail. 232 

This highly selective approach was made possible by the abundance of data from the MONARCH reanalysis.  233 

To start with, dust events were confined to dust sources to exclude long-range transported and likely aged dust far from dust-234 

source regions. The 10-year average of surface dust concentrations was calculated for the entire study domain, and pixels with 235 

values above the threshold percentile were designated as dust sources. For example, dust sources selected using the 80 th 236 

percentile of the 10-year average dust concentration as the threshold are presented in Fig. 4(a). The map of dust sources features 237 

the Bodélé Depression, Great Sand Sea, Tanezrouft, and the Atlantic Coastal Desert, consistent with the dust sources identified 238 

in other studies (Formenti et al., 2011; Di Tomaso et al., 2022). Further screening steps were performed independently within 239 

these dust sources.  240 

 241 

 242 

Figure 4. Schematics showing the procedures for screening the 10-year dust reanalysis data for fresh dust emissions. First, dust sources were 243 
assigned to regions where the annual average of dust surface concentration is among the top percentile (i.e., 20% as shown in (a)) of all 244 
values across the study domain of North Africa. Subsequently, additional screening criteria were applied simultaneously to events that 245 
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occurred within these dust sources. These criteria include (b) high wind speed, (c) wind direction over topography, (d) high increase in dust 246 
surface concentration, and (e) steep slope. Maps (b–e) are examples of filters used in the "initial” run (see in Table 1) for 1 January 2016, at 247 
2:30 UTC.  248 

 249 

To maximize the likelihood of capturing predominantly fresh dust emissions, high wind speed was a necessary criterion, as 250 

low wind speeds are unlikely to generate sufficient fresh dust. A single cut-off value for high wind speed was chosen as a top 251 

percentile of the 10-year average wind speed over the whole domain. Similarly, a single threshold slope was used to select the 252 

events over prominent terrain variations. Dust events occurring over relative flat surfaces were excluded to magnify the 253 

potential signals of shifted PSD due to terrain variation. Wind direction over slopes was categorized following procedures 254 

described in Section 2.1 and a cut-off angle smaller than 45° was used to exclusively select typical uphill, tangential, or 255 

downhill winds over slopes. Another criterion for increasing the probability of capturing dominantly fresh emissions was 256 

identifying sharp increases in surface concentrations. This approach favored the initiation of significant dust emissions with 257 

relative clean background dust levels. Examples of selected dust events based on each of the above criteria at 2:30 UTC on 1 258 

January 2016, are provided in Fig. 4(b–e), using the configurations for the “initial” run (i.e., a cut-off angle of 10° for 259 

categorization of wind direction, the 80th percentile as threshold for high wind speeds and steep slope, and 80% as the threshold 260 

ratio of the increased surface dust concentration to the total dust concentration as shown in Table 1).  261 

We performed several sensitivity tests to account for the uncertainties associated with the criteria used for event selection. We 262 

perturbed each of the threshold percentiles or the cut-off values used in the “initial” run in a pair of sensitivity runs. Specifically, 263 

we added and subtracted 10% from the threshold percentiles of 80% used for screening dust sources, steep slope, high wind 264 

speed, and high fraction of fresh emissions. Cut-off angles, β of 5° and 20° were tested compared to the initial 10° for typical 265 

wind direction. Configurations of all the sensitivity runs are shown in Table 1. A combination of all the stricter criteria was 266 

used in the “final” run. 267 

 268 

Table 1. Thresholds or cut-off values used in all runs. Locations where the 10-year average surface dust concentration is above the threshold 269 
percentile value of all locations were designated as dust sources. Events over dust sources with slope and wind speed above the threshold 270 
percentiles of temporally averaged values over the whole domain, and increases in dust surface concentration above the threshold values 271 
were selected. The wind direction relative to topography was assigned using the cut-off angle. Values marked in bold represent the different 272 
criteria compared to the “initial” run.  273 

Test name Dust sources 

threshold 

percentile 

Wind direction 

cut-off angle 

Slope 

threshold 

percentile 

Wind speed 

threshold 

percentile 

Increase in dust 

surface 

concentration 

threshold  

Initial 80 10° 80 80 80%  

90%source 90 10° 80 80 80% 

70%source 70  10° 80 80 80% 

5cutoff 80 5° 80 80 80% 

20cutoff 80 20° 80 80 80% 

90%slope 80 10° 90 80 80% 

70%slope 80 10° 70  80 80% 
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90%wdsp 80 10° 80 90 80% 

70%wdsp 80 10° 80 70  80% 

90%sconc 80 10° 80 80 90%  

70%sconc 80 10° 80 80 70%  

Final 90 5° 90 90 90%  

 274 

2.4 Statistical analysis 275 

Based on the selected events for “fresh” dust emissions, we explored the relationships between wind conditions and the PSD 276 

of emitted dust, taking into consideration the effects of various meteorological and landscape factors. Specifically, the 277 

dependent variable was the coarse fraction of surface dust, and the independent variables of focus were the wind speed and the 278 

slope associated with uphill, tangential, and downhill winds. The five additional independent variables are environmental 279 

variables that can potentially affect dust PSD as well as the relationships between dust PSD and wind conditions, including 280 

the continuous variables of year and soil moisture, and the categorical variables of time of day, season, and soil texture type. 281 

Dust events with missing values in soil texture class or wind direction type were excluded.  282 

Exploratory data analysis was first conducted to assess data quality, identify intrinsic patterns, and guide the selection of 283 

appropriate statistical models. We selected and modified our statistical models based on their adherence to model assumptions, 284 

ability to explain the variability in the coarse fraction, and overall complexity. An initial choice was the multiple linear 285 

regression model which has the advantage of high explainability. We separated the slope by wind direction types to provide a 286 

more holistic representation of the effects of veering wind over topography. Significant coefficients for continuous variables, 287 

such as wind speed, represent the change in the coarse fraction of dust concentrations associated with a one-unit change in that 288 

corresponding independent variable. Categorical variables (e.g., time of day) are encoded as binary dummy variables, each 289 

representing a distinct category. The coefficients of these variables reflect the change in coarse fraction relative to the reference 290 

category chosen during the encoding process. Interaction terms can also be added to linear models in order to reflect the 291 

interplay between wind conditions and other factors. An interaction can be expressed as 𝑥𝑚 × 𝑥𝑝, where 𝑥𝑚 is one of the four 292 

wind condition variables and 𝑥𝑝 is one of the two additional continuous variables (i.e., year and soil moisture) or a dummy 293 

variable representing one of the three additional categorical variables (i.e., time of day, season, and soil texture). The 294 

adjustment in the coefficient for 𝑥𝑚 due to 𝑥𝑝would be represented by 𝛽𝑚𝑝𝑥𝑝. A valid linear model requires linear 295 

relationships, normality of errors, constant variance (homoscedasticity), and low correlations among independent variables. 296 

Collinearity or multicollinearity among predictors can inflate standard errors and reduce the statistical significance of 297 

regression coefficients. To assess this, we calculated the Generalized Variance Inflation Factors (GVIFs) for all predictors in 298 

the linear models using the VIF function in  R (R. Core Team, 2023). For categorical variables, the GVIFs were adjusted by 299 

the degrees of freedom (Df), expressed as 𝐺𝑉𝐼𝐹1/(2⋅𝐷𝑓). An adjusted GVIF of 1 (the smallest value) indicates no collinearity, 300 

while values below 5 generally suggest low and acceptable collinearity.  301 
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When assumptions of normality and constant variances were violated, we attempted standardization and transformations, 302 

including the Box-Cox transformation (Box and Cox, 1964) and the logit transformation (Berkson, 1944), to tackle these 303 

issues. We also tested weighted linear regression, also known as weighted least squares (WLS) (Kiers, 1997), which can handle 304 

non-constant variance (heteroscedasticity) by assigning weights to observations.In addition, Beta regression models were 305 

implemented, which are particularly useful for fractional variables that range between 0 and 1, such as the coarse fraction in 306 

this study (Douma and Weedon, 2019). Beta regression has been previously applied to air quality-related health metrics within 307 

the standard unit interval (Lu et al., 2021) and to particle size data with skewed distributions (Peleg, 2019).  308 

Several evaluation metrics were used to compare model performance, including the root mean square error (RMSE), the mean 309 

absolute error (MAE), the adjusted coefficient of determination (adjusted R2, which evaluates the amount of variability in the 310 

coarse fraction explained by the model while penalizing model complexity). Higher adjusted R2, and lower RMSE or MAE 311 

values suggest that more variations of the data are captured by models. We also calculated the prediction interval accuracy at 312 

the 95% confidence level, defined as the proportion of observations covered by prediction intervals. The performance metrics 313 

were also averaged using the 10-fold cross-validation (CV), where the dataset was randomly divided into 10 subsets, and 314 

models were trained on 9 subsets and tested on the remaining subset in each iteration, with a total of 10 iterations. All statistical 315 

analyses were performed using R and the relevant packages (Zeileis and Hothorn, 2002; Grün et al., 2012; Cribari-Neto and 316 

Zeileis, 2010; Fox and Weisberg, 2019; Venables and Ripley, 2002).  317 

Moreover, we constructed machine learning models to account for the large dataset and potential non-linear relationships. 318 

Categorical variables (wind direction, soil texture type, season, and time of day) were converted into dummy variables, 319 

resulting in a total of 22 predictors when combined with continuous predictors (wind speed, slope, and year). We built Random 320 

Forest and Extreme Gradient Boosting (XGBoost) models, both are widely used regressors (Bacanin et al., 2024; Brokamp et 321 

al., 2017; Keller & Evans, 2019; Zhang et al., 2022). Though both models rely on decision trees, Random Forest aggregates 322 

multiple trees trained on randomly sampled subset of data, whereas the XGBoost sequentially refines decision trees through 323 

iterative training. Model hyperparameters were fine-tuned to maixmize the predictive performance, with the search grids 324 

determined based on sample size, predictor count, and computational efficiency. The search grids and the optimal 325 

hyperparameter combinations are listed in Table S1. As with the linear models, we assessed the accuracy of prediction interval 326 

coverage at 95% confidence level through 10-fold CV. Machine learning models are known to have high prediction accuracy 327 

but can be challenging to interpret. One technique to assess the contribution of individual predictors to the coarse fraction 328 

based on decision trees is the SHapley Additive exPlanations (SHAP) analysis, which was performed on the optimized models. 329 

These analyses were conducted using Python packages including scikit-learn (version 1.2.2; Pedregosa et al., 2011),  xgboost  330 

(version 1.7.6; Chen and Guestrin, 2016), and shap  (version 0.44.0; Lundberg and Lee, 2017).   331 

Eventually, the more complex models did not outperform the multiple linear models to a large extent. Given their high 332 

explainability, ability to incorporate interactions between predictors, and competitive performance, we utimately selected 333 
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linear models for further analysis. SHAP results from the machine learning models were also included for cross-validating key 334 

findings. More details on the model performance and results are described in Section 3.3.  335 

 336 

3 Results and Discussion 337 

3.1 Sensitivity tests show minor variations 338 

As a result of the screening processes, a total number of 461,183 dust events were identified in the “initial” run and 25,884 339 

events were identified in the “final” run from around 3.5 billion records of dust concentrations at specific locations and times. 340 

Figure 5 shows the percentage changes in median coarse fraction by wind direction types from all sensitivity runs. In general, 341 

nearly all perturbations of any single screening criterion result in around ±1% of changes in average or median coarse fraction 342 

grouped by wind direction. The exception is restricting wind speed to the top 10% percentile (the “90%wdsp” run), which 343 

leads to a roughly 2% increase in the median values for each wind direction type. Coarse fraction of dust emissions with 344 

downhill winds are usually more sensitive to the threshold values used for screening than emissions with the other two wind 345 

directions. When all criteria were restricted simultaneously in the “final” run, the median coarse fraction of dust emission 346 

increases by less than 2% under tangential or uphill winds and around 3.5% under downhill winds. Considering the minor 347 

variations in coarse fraction among sensitivity runs, we decided to focus on one run for more detailed analysis. The “final” run 348 

was chosen because, in theory, the selected events are most representative for fresh dust emissions.  349 

 350 

 351 
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Figure 5. Percentage change in the median coarse fraction by wind direction type for all sensitivity runs as compared to the “initial” run.  352 

 353 

3.2 Exploratory analysis 354 

To gain an impression of the general distribution of the data, we started with plotting the dust coarse fraction against four 355 

variables of wind conditions in Fig. 6. Scatter points in the panel for wind speed are color-coded by number of overlapping 356 

observations, and data points in other three panels for slopes are color-coded by wind speed. Across all four panels, a pattern 357 

of heteroscedasticity is revealed, that is, the variance of coarse fraction is greater for dust events associated with lower wind 358 

speed or slope than for those with high wind speed or slope. The vertically aligned scatter points with varying colors at a slope 359 

of around 1.7 in the panel for “slope under uphill winds” represent 93 dust events that occurred at a same location under 360 

different wind speeds near the northern border of Western Sahara during 2007–2016, illustrating how a larger number of dust 361 

events can lead to higher variance. No obvious non-linear relationships between the four wind condition variables and the 362 

coarse fraction are observed. The trend lines based on simple linear regression models of the coarse fraction against each wind 363 

condition variable indicate general trends in the dust PSD with varying wind conditions, but the significance of these 364 

relationships is not assured. Additional plots for the soil moisture and slope under three wind conditions with color-codes 365 

representing the density of overlapping data points is presented in Fig. S2.  366 

 367 

 368 

 369 



15 

 

Figure 6. Scatter plots and linear trend lines of relationships between the coarse fraction of surface dust concentration and the wind speed 370 
and the slope under three different wind directions. In the upper left panel for wind speed, the color-codes present the number of overlapping 371 
data points. In the other three panels for slope, the color of each scatter point represents the associated wind speed for the dust event.  372 

 373 

3.3 General associations between wind conditions and dust coarse fraction 374 

The absence of obvious non-linear relationships between coarse fraction and wind conditions from the exploratory analysis 375 

further motivated us to initially construct linear regression models, in addition to it being a common starting point. The linear 376 

model including all independent variables but no interactions has an adjusted R2 value of 0.224, RMSE with 10-fold CV of 377 

0.070, and MAE with 10-fold CV of 0.059. Additionally, we added all possible interactions into the model and fine-tuned it 378 

by removing the insignificant interaction terms. The resulting model with interactions has similar performance, with the 379 

adjusted R2 of 0.239, RMSE with 10-fold CV of 0.070, and MAE with 10-fold CV of 0.058. The somewhat weak correlations 380 

may be related to factors that are not included in the model, such as deposition, variability within the same categories of soil 381 

texture, etc. Residual analyses indicate violations of the assumptions of evenly distributed variance and normality (Fig. S3). 382 

We attempted to address these issues and improve model performance through various linear model adaptations but only 383 

obtained indefinite or marginal improvements—standardizing the coarse fraction and wind conditions variables yields an 384 

adjusted R2 of 0.241, RMSE with 10-fold CV of 1.678, and MAE with 10-fold CV of 1.420; and logit transformation on the 385 

coarse fraction generates an adjusted R2 of 0.237, RMSE with 10-fold CV of 1.420, and MAE with 10-fold CV of 0.487. 386 

Furthermore, the Box-Cox transformation, weighted least squares (WLS), or Beta regression models with the best-performing 387 

configuration (with a log-log link function for the mean and an identity link function for the dispersion) all failed to resolve 388 

heteroscedasticity in the residuals with respect to wind condition variables. For the machine learning models, the optimized 389 

Random Forest and XGBoost models achieved R² values of 0.407 and 0.474, respectively, which dropped to 0.259 and 0.273 390 

after 10-fold CV, indicating potential overfitting. The coverage rates of prediction intervals with the 10-fold CV are 92.5% for 391 

Random Forest and 54.4% for XGBoost, both lower than the 94.0% coverage by the linear models both with and without 392 

interactions. Linear models outperforming machine learning models on prediction accuracy strongly encourages the selection 393 

of linear models. Considering their comparative satisfactory performance, simplicity, and directly interpretable coefficients, 394 

we decided to proceed with the linear regression models among all models. We first assessed the influence of individual 395 

predictors based on the linear regression model without interactions, with cross comparison with results from the machine 396 

learning models (Fig. S5). Subsequently, we used the linear model with interaction terms to investigate the effects of 397 

interactions among predictors.  398 

Linear model without interaction terms are used to infer the general effects of wind conditions on coarse dust fraction. These 399 

linear models are not intended to imply strictly linear relationships between dust PSD and wind conditions, but rather to provide 400 

initial guidance on the directionality of these relationships. Although individual data points present deviations, our models 401 

effectively predict the overall trend, as suggested by the response vs. fitted value plots (Fig. S4), where the predicted values 402 
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align closely with observed values and cluster around the one-to-one red line. Adjusted GVIF values for the model without 403 

regression were consistently below 2 with most values close to 1 (Table S2), indicating that multicollinearity among continuous 404 

or categorical predictors does not significantly affect the regression model. The multiple linear regression model for the dust 405 

coarse fraction includes four independent variables for wind conditions (speed and three options for slope) and additional 406 

factors that may affect the PSD of dust emissions, allowing us to investigate the effects of topographic wind conditions while 407 

controlling interferences from other environmental factors. The model can be expressed as:  408 

 409 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7 + 𝛽8𝑥8 + 𝛽9𝑥9 + 𝜖,  (3) 410 

 411 

where, 𝑦 represents the coarse fraction of dust emissions, 𝑥1represents wind speed, and 𝑥2, 𝑥3, and 𝑥4 represent slope under 412 

uphill, tangential, and downhill winds, respectively; 𝑥5 is the categorical variable of time of day, including three levels of 413 

morning (6:00–12:00 local time), afternoon (12:00–18:00 local time), and evening (18:00–6:00 local time); 𝑥6 is the 414 

categorical variable of season, comprising DJF (winter months of December, January, and February), MAM (spring months 415 

of March, April, and May), JJA (summer months of June, July, and August), and SON (autumn months of September, October, 416 

and November); 𝑥7 and 𝑥8 represent the continuous variables of year and soil moisture; and 𝑥9 is the categorical variable of 417 

soil texture class, which contains eight levels of the FAO soil texture classes (Jahn et al., 2006). The coefficients 𝛽𝑖  represent 418 

the expected changes in the response variable 𝑦 per unit increase in the continuous predictor 𝑥𝑖, and the difference in 𝑦 relative 419 

to the reference category for categorical predictor 𝑥𝑖, while holding all other variables constant. The 𝜖 represents the residuals 420 

of the model. The default coarse fraction is cf2 (defined in Section 2.1), and the corresponding estimated values, standard 421 

errors, and significance of the wind condition coefficients are presented in Table 2,  with full details of all coefficients in Table 422 

S3. As noted in Section 2.1, we also tested two alternative definitions of coarse fraction (cf1 and cf3) and compared the 423 

estimated coefficients with their statistical significance in Table S4. The coefficient estimates based on cf2 and cf3 are largely 424 

consistent, whereas those based on cf1 show some distinct patterns. Given that dust in the top bin (12-20 µm) falls into the 425 

“super coarse” dust category (> 10 µm; Meng et al., 2022), these results suggest that super coarse dust responds differently to 426 

varying wind conditions compared to other coarse dust. Therefore, the cf2 definition serves as a robust representation of coarse 427 

dust particles.  428 

The coefficient for wind speed from the linear model is statistically significant and positive (Table 2), suggesting that 429 

controlling the effects of other factors, the coarse fraction of dust emissions increases with the wind speed. This result is 430 

consistent with the SHAP analyses on both machine learning models as showcased in the SHAP summary plot (Fig. S5), where 431 

purple data points with high wind speed are concentrated on the right side of the vertical centerline and yellow points with 432 

lower wind speed dominates the left side, indicating a positive correlation between wind speed and coarse fraction. The 433 

observed trend contradicts implications of the theory based on the saltation-bombardment emission mechanism, which predicts 434 
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that higher kinetic energy of impact particles from greater wind speed can intensify the disintegration of soil aggregates and 435 

thus the release of finer particles (Shao, 2001; Alfaro et al., 1997). Conversely, our result aligns with the observed shift in the 436 

dominant emission mechanism from “shaking-off” of submicron particles to the generation of coarser microparticles from 437 

fragmentation as the velocity of saltating particles increases (Malinovskaya et al., 2021). An alternative explanation for the 438 

observed positive effect of wind speed on dust size at emission is related to soil conditions (Ishizuka et al., 2008; Panebianco 439 

et al., 2023). Emissions of super coarse dust (> 10 µm) increased with wind speed while the emissions of ultrafine dust (< 1 440 

µm) remained nearly invariant over sandy soil (Panebianco et al., 2023); in addition, the fraction of fine dust (< 2 µm) decreased 441 

with friction velocity on slightly crusted surfaces (Ishizuka et al., 2008). These phenomena were likely due to weaker cohesive 442 

forces and thus easier emission for coarse particles than fine particles. Though our sensitivity test using cf1 rejects the increased 443 

emission of super coarse dust with wind speed (Table S4), unmeasured changes in the fine dust emissions leading to an overall 444 

higher coarse fraction remain one possibility. Soil texture and soil moisture were included in the model, but subtle 445 

discrepancies across events within the same soil class or soil moisture are not eliminated. Last but not least, since the fresh 446 

dust emissions at regional scale inevitably include transported dust, yet another potential explanation is unrelated to the 447 

emission, but to the transport process—as wind speed increases, more fresh emissions are generated, which undergo less 448 

deposition and contain a higher fraction of coarse particles than the aged background dust (González-Flórez et al., 2023).  449 

 450 

Table 2. Estimates, standard errors, and p-values of wind condition coefficients for the multiple linear model of dust coarse fraction. The 451 
model includes the independent variables of wind conditions (i.e., wind speed and slope under three wind direction types), time of day, 452 
season, year, soil moisture, and soil texture. The symbols of coefficients are defined in Eq. (3).  453 

Coefficients for Variables Estimates Standard errors p-values 

wind speed (β1) 0.0075 0.0002 <0.0001 

slope with uphill winds (β2) 0.0175 0.0013 <0.0001 

slope with tangential winds (β3) 0.0081 0.0015 <0.0001 

slope with downhill winds (β4) 0.0076 0.0016 <0.0001 

 454 

The coefficients for slopes under all three wind directions from the linear regression are significant and positive (Table 2), 455 

suggesting that the coarse fraction of dust emissions increases with the slope regardless of the relative wind direction. The 456 

largest coefficient for uphill winds among all three slopes indicates that it has the strongest effect on dust coarse fraction. 457 

Similarly, the SHAP analysis on the optimized Random Forest model (Fig. S5) suggests a positive relationship between slope 458 

and coarse fraction, with uphill winds further accentuate the positive effects. The XGBoost model indicates mixed effects of 459 

wind directions but the results are less reliable due to its lower prediction accuracy. Overall, the linear model and the Random 460 

Forest model agree on the positive correlation between slope, espacially under uphill winds, and dust size. The strong increase 461 

in coarse fraction with uphill slope aligns with previous findings using large eddy simulations, which was explained by the 462 

enhancement in vertical transport of dust particles being more prominent for coarser particles (Heisel et al., 2021). In contrast, 463 

the microphysics of dust emission proposed that compared to tangential winds, uphill winds against the slope resulted in more 464 
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detachment of fine particles from the surface of soil aggregates on the windward slope due to the secondary aeolian structures, 465 

and meanwhile less ejection of coarse particles from the fragmentation of soil aggregates upon hitting the leeward slope 466 

(Malinovskaya et al., 2021). Our results suggest that at the regional scale, the effect of near-source transport of emitted dust at 467 

scales of hundreds to thousands of meters dominates over the impact of microphysics of dust emission related to secondary 468 

dune structure at scales of centimeter to meters. The overall elevated coarse fraction with slopes might be attributed to the 469 

orographic wind channelling (Rosenberg et al., 2014), increased availability of coarser particles on hills (Samuel-Rosa et al., 470 

2013; Washington et al., 2006) and their greater mobility under gravity. Effects of slope under tangential and downhill winds 471 

are less pronounced, with linear model suggesting their weaker positive relationships with coarse fraction compared to uphill 472 

winds (Table 2), and the Random Forest model indicating negative impacts of tangential and downhill wind directions on 473 

coarse fraction even though the effect of slope is positive (Fig. S5). These weaker effects can possibly be explained by the lack 474 

of effective enhancement in vertical transport of coarse particles on the windward side of slopes.  475 

3.4 Associations between wind conditions and dust coarse fraction under varying environmental conditions 476 

Interaction terms in the model allow us to investigate how the relationships between wind conditions and dust coarse fraction 477 

may vary depending on the additional variables for time and surface characteristics. The model including all significant 478 

interactions is shown in Eq. (4). Results for coefficients related to the interactions are shown in Table 3 and the complete 479 

results are included in Table S5.  480 

 481 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥5 + 𝛽6𝑥6 + 𝛽7𝑥7 + 𝛽8𝑥8 + 𝛽9𝑥9 + 𝛽15𝑥1𝑥5 + 𝛽16𝑥1𝑥6 + 𝛽18𝑥1𝑥8 + 𝛽25𝑥2𝑥5 +482 

𝛽26𝑥2𝑥6 + 𝛽28𝑥2𝑥8 + 𝛽35𝑥3𝑥5 + 𝛽38𝑥3𝑥8 + 𝛽46𝑥4𝑥6 + 𝜖,       (4) 483 

 484 

where, 𝑥1– 𝑥9, 𝑦, and 𝛽1– 𝛽9 are the same as in Eq. (3). The  𝛽𝑖𝑗 are coefficients for interactions between 𝑥𝑖  (1 ≤ 𝑖 ≤ 4) and 485 

𝑥𝑗  (5 ≤ 𝑗 ≤ 9) and their interpretations are described in Section 2.4.  486 

With interactions in the model, the coefficient β1 indicates the slope of linear correlation between wind speed and the coarse 487 

fraction when the variables that have interactions with wind speed are at the reference levels for categorical variables (i.e., 488 

“afternoon” for time of day and “DJF” for season) or at zero for continuous variable (i.e., soil moisture). Adjustments of the 489 

correlation under other conditions are indicated by the coefficients for interactions with wind speed (β15, β16, and β18). The 490 

overall coefficient for wind speed stays positive with varying time of day and season, except for the rare cases when soil 491 

moisture is high (> 50%), which agrees with the results from the model without interactions (Table 2). As suggested by the 492 

adjustments of coefficients, the positive correlation between wind speed and coarse fraction is weakened during events that 493 

happen in the afternoon, in summer, or are associated with higher soil moisture. All these conditions are typical for haboob 494 

dust storms which are capable of generating intense dust emissions (Heinold et al., 2013; Knippertz, 2017). Therefore, a 495 
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potential explanation for the observed patterns is that the dust PSD dependency on wind speed is reduced during convective 496 

conditions associated with haboobs. Reasons behind the weakened correlation could be related to turbulent atmospheric 497 

conditions. Based on the above assumption that the coarse fraction increases with wind speed due to the associated higher 498 

proportion of fresh emissions, during convective events, the role of turbulent flows in keeping dust particles suspended 499 

regardless of the magnitude of wind speed may blur the effects of wind speed. Moreover, the positive relationship between 500 

wind speed and coarse fraction diminishes with soil moisture. Higher soil moisture may inhibit fresh dust emissions, which, 501 

as discussed in Section 3.3, potentially contribute to the positive correlation between wind speed and coarse dust fraction, 502 

thereby weakening the correlation.  503 

 504 

Table 3. Estimates, standard errors, and p-values of the interaction coefficients for the multiple linear model of dust coarse 505 

fraction. The model includes the independent variables of wind conditions (i.e., wind speed and slope under three wind 506 

direction types), time of day, season, year, soil moisture, and soil texture, as well as significant interaction terms between wind 507 

conditions and other independent variables. The interaction coefficients represent wind conditions (speed and direction) under 508 

various situations of time of day, season, and soil moisture. The symbols of coefficients are defined in Eq. (3) and (4). 509 

Statistically significant (at 0.05 significance level) coefficients are bolded and their p-values are marked with “*”, among 510 

which the negative coefficients are italicized.  511 

Multiple linear model coefficients for wind speed under various conditions 

 Estimates Standard errors p-values 

Afternoon, DJF, and soil moisture of 0 

(reference levels; β1) 
0.0076 0.0007 <0.0001* 

Adjustments with time of day (β15)  

evening 0.0122 0.0006 <0.0001* 

morning 0.0016 0.0006 0.0058* 

Adjustments with season (β16) 

JJA -0.0028 0.0007 <0.0001* 

MAM -0.0023 0.0006 0.0003* 

SON -0.0003 0.0007 0.6500 

Adjustments with soil moisture (β18) -0.0154 0.0029 <0.0001* 

Multiple linear model coefficients for slope with uphill winds under various conditions 

 Estimates Standard errors p-values 

Afternoon, DJF, and soil moisture of 0 

(reference levels; β2) 
0.0135 0.0030 <0.0001* 

Adjustments with time of day (β25) 

evening 0.0061 0.0024 0.0118* 

morning 0.0159 0.0026 <0.0001* 

Adjustments with season (β26)    

JJA -0.0098 0.0028 0.0005* 

MAM -0.0138 0.0029 <0.0001* 

SON -0.0056 0.0031 0.0672 

Adjustments with soil moisture (β28) 0.0521 0.0107 <0.0001 

Multiple linear model coefficients for slope with tangential winds under various conditions 

 Estimates Standard errors p-values 

Afternoon, soil moisture of 0  -0.0038 0.0025 0.1261 
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(reference levels; β3) 

Adjustments with time of day (β35) 

evening 0.0134 0.0024 <0.0001* 

morning 0.0110 0.0027 <0.0001* 

Adjustments with soil moisture (β38) 0.0351 0.0115 0.0022* 

Multiple linear model coefficients for slope with downhill winds under various conditions 

 Estimates Standard errors p-values 

DJF (reference level; β4) 0.0148 0.0026 <0.0001* 

Adjustments with season (β46)    

JJA -0.0101 0.0031 0.0011* 

MAM -0.0105 0.0032 0.0011* 

SON -0.0090 0.0036 0.0116* 

 512 

The adjustments of the relationship between slope and coarse fraction with other environmental variables are generally 513 

consistent across three wind direction types. Overall, the coefficients for slope with three wind directions stay positive under 514 

most circumstances, aligning with results from the model without interactions (Table 2). Notably, the effect of the uphill slope 515 

is strongest in the morning. Unlike Harmattan surges, which can induce dust emission throughout the day, or haboob storms, 516 

which mostly occur in the afternoons, dust uplift due to the breakdown of night-time low-level jets (NLLJs) is limited to the 517 

period around sunrise to midday (Fiedler et al., 2015; Heinold et al., 2013). Therefore, the result indicates that the role of uphill 518 

slope in facilitating transport of coarse dust is particularly relevant during emissions related to NLLJs. Moreover, the effect of 519 

slope in increasing coarse fraction is weakest during afternoon events under both uphill and tangential winds. With both uphill 520 

and downhill winds, the positive correlation between slope and coarse fraction is the strongest in winter, and the weakest in 521 

spring and summer. The reduced correlation of dust PSD with uphill slope in both afternoon and summer suggests a diminished 522 

effect of slope during haboob dust storms. This can be explained by the stronger turbulence associated with convective storms, 523 

which readily stirs up the air and facilitate particle transport, thereby weakening the additional effect of uphill slope by 524 

elevating coarse particles through flow separation.  525 

The effect of slope on increasing coarse fraction of dust also becomes more apparent with increasing soil moisture under uphill 526 

and tangential winds. Low soil moisture might be associated with low water vapor content in lower-Saharan Air Layer, which 527 

can lead to continued vertical motions of the atmosphere into the night due to increased atmospheric longwave heating (Ryder, 528 

2021). Conversely, the air is more stable with higher relative humidity, making the enhancement by topography more critical 529 

for the transport of coarse dust. 530 

 531 
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4 Conclusion 532 

This study aims to explore the relationship between topographic wind conditions and particle size distribution (PSD) of dust 533 

emissions on a regional scale through data analysis. The Multiscale Online Nonhydrostatic AtmospheRe Chemistry model 534 

(MONARCH) dust concentrations were first evaluated against flight measurements of fresh dust emissions from the 2011 535 

Fennec campaign and were proven to be effective in capturing concentrations of coarse to super coarse dusts in fresh dust 536 

emissions. For our analysis, size-resolved surface dust mass concentrations from the MONARCH dust reanalysis over the 537 

Sahara during 2007–2016 were condensed into an index of coarse fraction (the ratio of the sum of concentrations in the top 538 

two bins (6–20 µm) to the total concentration in eight bins (0.2–20 µm)), serving as the proxy for size distribution. Information 539 

on wind vectors and soil moisture, elevation, and soil texture was obtained from the Modern-Era Retrospective analysis for 540 

Research and Applications (MERRA-2) reanalysis data, the NASA Shuttle Radar Topography Mission Global 3 arc-second 541 

(SRTM GL3) dataset, and the inputs to the Global Land Data Assimilation System version 2 (GLDAS2) Noah land surface 542 

model, respectively. Several highly selective criteria were applied to maximize the probability of selecting fresh dust emissions 543 

with typical wind conditions over topography. Scatter plots of coarse fraction against four wind conditions variables (i.e., wind 544 

speed, slope under uphill, tangential, and downhill winds) reveal unevenly distributed variance without obvious non-linear 545 

trends. We utimately selected the multiple linear models after testing several model variations to quantify and explain the 546 

trends in data, with key findings cross-validated using machine learning models.  547 

The linear model without and with significant interaction terms can explain 22% and 24% of the variability of coarse fraction, 548 

respectively. The model, however, fails to fulfil the assumptions on homoscedasticity (constant variance) and normality, and 549 

this issue could not be resolved by other parametric modelling approaches including linear regression models with 550 

transformations of variables, weighted least square, or Beta regression models with several options for link functions. The 551 

strong intrinsic pattern of non-constant variance and the abundance of data points require more advanced models, which is 552 

beyond the scope of our current work. Other uncertainties arose from the varying original resolution of datasets and the 553 

resampling process. Moreover, even though we applied multiple criteria to exclusively pick fresh dust emissions, we cannot 554 

totally exclude the portion of transported dust. The analysis focuses on the general trend for North Africa, and more detailed 555 

insights rely on analysis for smaller geographic domains.  556 

Despite some limitations, the multiple linear models achieved high predictive accuracy—over 94% under 10-fold cross-557 

validation (CV)—demonstrating their capability to provide meaningful insights for interpretation. The optimized Random 558 

Forest model, which attained 92% predictive accuracy with 10-fold CV despite potential overfitting, adding insights to the 559 

influence of each predictor by applying the SHapley Additive exPlanations (SHAP) analysis. Both the linear and machine 560 

learning models consistently reveal positive associations between coarse dust fraction and both wind speed and slope. The 561 

impact of wind speed may possibly be attributed to a higher proportion of fresh emissions, or a greater  resistance of surface 562 

soil to disintegration into fine dust particles. The persistent influence of slope on increasing coarse fraction might be related to 563 

meteorological (e.g., the orographic wind channelling) and soil conditions (e.g., increased availability and gravatational 564 
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mobility of coarser particles on hills). The effect of slope is most pronounced under uphill winds, highlighting the transport 565 

enhancement by topography over distances of hundreds to thousands of meters, which overrides the potential impact of local 566 

emission mechanisms at scales of centimeters to meters. Including interaction terms in the model allows us to investigate shifts 567 

in the effects of wind conditions on dust size under different environmental conditions. The positive correlation between wind 568 

speed and coarse fraction diminishes during afternoon and summer events and under high soil moisture. This reduction is 569 

likely due to decreased differences in dust size distribution by deposition during haboob convective storms when turbulence 570 

is strong. The uphill slope exhibits the strongest effect on increasing dust size in the morning, suggesting that the enhanced 571 

vertical transport is particularly effective in uplifting coarse dust during emissions related to the breakdown of night-time low-572 

level jets. The effect of uphill slope is weakened during summer and afternoons, indicating that turbulence during haboob dust 573 

storms has competing effects in sustaining airborne coarse dust.  574 

This work provides insights into the controlling factors of dust PSD on a regional scale using a meta-analysis of a 10-year dust 575 

reanalysis dataset, which complements the accumulating knowledge from recent field measurements. The study highlights the 576 

overlapping effects and interactions among various environmental factors on size distribution of dust emissions and calls for 577 

more work focusing on different factors and their interactions at various scales. Meanwhile, the workflow for screening fresh 578 

dust events developed in this study will facilitate future work of utilizing datasets at different scales. 579 
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