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Responses to Review Comments 1 by Anonymous Referee #2 

This article analyzes the association between the particle size distribution of windblown dust and 
topographical wind conditions over the Sahara, using linear regression models with inputs from the 
coarse fraction of dust from MONARCH dust reanalysis dataset, the wind conditions from MERRA2 
meteorological reanalysis fields, and surface elevation data. Positive correlations between particle 
size and wind speed and uphill slope wind direction are found in this study. The scope of the 
manuscript is very important. However, I am concerned about the soundness of the method and 
thus the associated interpretation and conclusions.  
Thank you for recognizing the significance of our study and providing valuable comments. We have 
addressed the concerns, particularly those regarding the relative coarse resolution of the 
reanalysis data, the representation of coarse fraction in MONARCH dust concentration, and the 
robustness of our statistical methodology. Please see our specific responses below and refer to the 
revised manuscript with tracked changes. 

General Comments  

1. The linear regression model used in the study to state the relationship could be misleading and 
lack of strong evidence. The dust emissions are inherently nonlinear and vary with the cube 
(subjected to land surface properties) of surface friction velocity. The initiation of dust 
emissions is also subjected to the threshold friction velocity. The application of linear 
regression model and simple treatment of adding interaction terms between independent 
variables impose violation against the nonlinear processes in dust emissions, transport and 
deposition.   
Dust emission models indeed reflected that dust emission flux exhibits a nonlinear relationship 
with the friction velocity and its threshold. However, the understanding of dust size distribution 
of dust remains comparatively limited. While models for dust size distributions exist (Kok, 
2011) how the parameters may vary under changing meteorological conditions is understudied. 
Notably, there is ongoing debate about whether the influence of friction velocity on dust 
particle size is positive or negative (Shao, 2011; Kok, 2011; Malinovskaya et al., 2021). As such, 
the goal of this study is to explore the potential relationship between dust PSD and wind 
conditions by analyzing a larger amount of data, with the initial objective of determining the 
direction of this influence. Linear models are simple to understand and implement, yet they are 
robust and capable of this task. Moreover, they are highly interpretable that coefficients 
directly show the relationship between predictors and the outcome. In addition, we attempted 
alternative traditional non-linear regression models but the coefficients of determination (R2) 
indicate that the alternative traditional regressions only have marginally improved performance 
due to the intrinsic heteroscedasticity of the data (Fig. 6). No apparent non-linear trends 
observed from the explanatory analysis further led us to proceed with the linear model. The 
linear models are not intended for suggesting linear relationships, but rather are used as a tool 
to analyze the sign and magnitude of the influence. The clarification was added to the main text 
(lines 419–421). In addition to the alternative traditional nonlinear models, we further 
constructed the machine learning models, whose prediction accuracy does not outperform the 
linear models. We have added those results to increase the credibility of shared patterns 



2 
 

observed in both linear and machine learning models (lines 408–412, 452–455, 481–485, & 
497–498). 

 
2. The poor explainability from the linear regression model without interaction terms (R2 of 0.224) 

and with interaction terms (R2 of 0.239) between independent variables questions the 
soundness of the results and interpretability. Thus, the interpretation from the manuscript is 
not based on strong evidence and at a worse case potentially causes misleading conclusions.  
The R2 measures how much of the data variability is explained by the model and the low values 
were due to the heteroscedasticity (i.e., varying spread of the data across values) which cannot 
be easily captured by a simple model. The linear model does not perfectly fit all data points but 
captures the average trend in the data. Linear regression models can provide a clear 
understanding of the overall relationships while acknowledging some variability in individual 
points. Despite the variations for individual data points, our model effectively predicts the 
overall trend. The response vs. fitted value plots (Fig. S4) show that the predicted values closely 
align with observed values, clustering around the one-to-one red line. Additionally, we 
examined the prediction intervals for each data point and compared them with observed 
values. In both models, over 94% of these intervals contain the observed coarse fraction 
values, demonstrating strong predictive coverage. The main text was updated accordingly at 
lines 327–330, 410–411, & 421–423.    
In addition to  alternative linear models with transformations, weighted linear regression, and 
beta regression, we further applied machine learning (ML) models.  Specifically, we 
constructed Random Forest and Extreme Gradient Boosting (XGBoost) models which are 
common choices for regression with optimized hyperparameters. Since no missing values are 
allowed in the model, we separated the slope and the wind direction type. The Random Forest 
and XGBoost models attain coefficient of determination (R2) with 10-fold cross validation (CV) 
of 0.259 and 0.273, respectively, which present marginal improvements compared to linear 
models. Their prediction interval accuracy with 10-fold CV are 92.5% and 54.4%, which are 
lower than the 94% of linear models. We therefore adapted the linear models. Interpretations 
of the ML models were made possible by SHapley Additive exPlanations (SHAP); however, 
SHAP can only provide the direction of feature effects, not their magnitudes. The resulting 
summary plots from the SHAP analyses are shown in Fig. S5. The Random Forest model 
suggests that both higher wind speed and steeper slope are associated with higher fraction of 
coarse dust – these findings are consistent with the linear model without interactions; in terms 
of relative wind direction, uphill increases the dust size whereas tangential and downhill are 
correlated to higher fine dust fraction. The descriptions on methods and results of ML models 
have been added to the manuscript (lines 333–346, 408–410, 452–455, 481–485, & 497–498). In 
a nutshell, linear models have competitive performance for our dataset compared with ML 
models. 

 
3. The coarse resolution of input data and the validity of capturing fine-scale terrain induced wind 

fields and dust emissions are not strongly evaluated. The coarse resolution of MERRA2 at 0.5°	×	
0.625° cannot resolve localized wind fields over regions with steep slopes, and the usage of 2-m 
winds from MERRA2 cannot represent actual localized 2-m winds due to elevation averaging. 
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The manuscript is heavily based on the MONARCH dust reanalysis dataset. Although it has 
satellite assimilation embedded and shows generally agreement against regional mean 
measurements, it is still questionable to resolve the fine-scale dust emissions or 
concentrations. Considering the target of this manuscript over locations with prominent 
surface elevation changes, fine-scale variability is especially important to gain insights. Thus, 
the coarse resolution of independent variables, and questionable fine-scale validity of 
dependent dust concentrations from MONARCH can impose severe reliability of the 
interpretation and conclusions from this manuscript.  
Although the resolution of MERRA-2 reanalysis limits the ability to resolve fine-scale gusts or 
localized orographic wind channeling, the upsampled wind fields effectively represent the 
spatially averaged wind conditions that govern dust emissions over large regions. The primary 
signal of interest of this study is the broad-scale modulation of dust emissions induced by 
terrain, rather than the microscale fluctuations. In this context, the MERRA-2 wind fields are 
interpreted as representative of the effective wind forcing over each grid cell. The robust 
physical parameterizations on the MONARCH model and satellite-derived dust optical depth 
assimilation, complimented by validation against independent observations for fresh dust 
emission demonstrate the capability of the reanalysis in capturing dominant regional patterns. 
While we acknowledge the inherent limitations on resolution of the reanalysis datasets, the 
integration of data assimilation, upsampling techniques, and a focus on regional-scale 
patterns ensures that our conclusions regarding the impact of topography on dust variability 
remain interpretable. We added clarifications on this point to the main text (lines 185–187). 

 
4. As said in the paper, MONARCH assimilates coarse dust optical depth (DOD) from satellite 

with fixed first-guess particle size distribution of emitted dust. How would the uncertainties for 
the assimilation of coarse DOD propagate into the particle size distribution of dust?  
Assimilating the coarse-mode DOD provides a strong constraint on the total coarse dust mass 
in the model and was used to adjust the dust concentration in the five coarse bins (1.2–20 µm). 
Although it is unclear how the increments were distributed among these bins, if the prior size 
partitioning is reasonably accurate, this correction will lead to a better representation of the 
coarse dust distribution relative to a purely free-running model. Nevertheless, there remain 
uncertainties in how those increments propagate into (or remain uncorrected in) the finer bins. 
Overall, while the coarse-DOD assimilation demonstrably enhances the particle size 
distribution beyond the first-guess, any significant biases in the prior size partition may still 
persist in the reanalysis. Discussion on this issue has been added to the main text (lines 104–
112).   
 

5. The article uses coarse fraction of dust concentrations as a surrogate for the particle size 
distribution. This is an important piece of information. I recommend clarifying it in the abstract.  
The abstract has been revised to explicitly state that the coarse dust fraction was used as a 
surrogate for the dust size distribution (lines 15–16).    

Specific Comments  
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1. Line 101-103: what is the performance of first-guess particle size distribution of emitted dust 
compared to Fennec?  
We have included the first-guess size distribution in Fig. 3 for comparison (line 223). 
Additionally, the dust particles density used for volume-to-mass conversion has been updated 
to align with the MONARCH model (Klose et al., 2021). Overall, the dust concentration 
reanalysis shows improved agreement with observations compared to the first-guess 
estimates.  
 

2. Line 109-111: How would the interpretation be sensitive to the definition of coarse fraction 
used here? For example, how would the results change when using coarse fraction as the mass 
of largest dust bin over the total mass of dust?   
To assess the sensitivity of our findings to the definition of coarse fraction, we compared the 
results using different coarse fraction metrics. In addition to the definition used in the study 
(mass fraction of the top two bins of 6–20 µm, namely “cf2”), we also computed the coarse 
fraction for only the top bin (12–20 µm, namely "cf1“) and for the top three bins (3.6–20 µm, 
namely “cf3). Resulting coefficients of linear models without interactions constructed based 
on each definition are presented in Table S4. The results for cf1 shows distinct patterns, 
whereas results for cf2 and cf3 are largely consistent. Given that dust in the 12–20 µm bin falls 
into the “super coarse” dust category (Meng et al., 2022), this suggests that the super coarse 
dust responds differently to the varying wind conditions compared to other coarse dust. Since 
“super coarse” dust alone is not an adequate proxy for “coarse” dust in the context of regional-
scale emission and transport, we conclude that cf2 or cf3 provide more suitable 
representations of the coarse fraction. Relevant statements have been added to the methods 
and results sections in the main text (lines 125–128 & 445–450). 
 

3. Line 186-189: From Figure 3, it looks like the size distribution for size bins of 0.6-12 μm is 
overestimated by MONARCH compared to Fennec. How would that affect the analyses for 
particle size distribution of dust?  
The overestimations of dust concentrations in the 0.6–1.2 µm size range by MONARCH lead to 
an underestimation of the fraction of dust in the coarsest bin. However, this effect is mitigated 
by defining the coarse fraction based on a broader range of size bins. Sensitivity analysis using 
different definitions of the coarse fraction confirms the robustness of the chosen definition 
(see Specific Comment 2).  
 

4. For Figure 6, the points overlap with each other too much, making it hard to see clearly. Could it 
help to show the results with the number of points color coded?  
Figure 6 has been improved by color-coding the scatter points based on the number of 
overlapping points in the upper left panel for wind speed (line 384). The updated plot displays 
condensed data points around the trendline, particularly at lower wind speeds.  
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Responses to Review Comments 2 from Anonymous Referee #1 

General comments:  

The manuscript titled “Impact of Topographic Wind Conditions on Dust Particle Size Distribution: 
Insights from a Regional Dust Reanalysis Dataset” by Huang et al. is a manuscript that attempts to 
investigate what factors change the emitted dust particle size distribution (PSD). They did this 
analysis by employing the MONARCH chemical transport model with the assimilated dust optical 
depth (DOD). The authors claimed that by assimilating MONARCH dust using observed DOD, 
MONARCH has the ability to produce adequate emitted dust PSD. The authors used the MONARCH 
surface dust concentrations to construct atmospheric dust concentration PSD, claiming this 
represent the emitted dust PSD. The authors tried to truncate aged transport dust and retain fresh 
dust by selecting only strongly and freshly emitting dust events using several criteria. Then, the 
authors performed a multiple linear regression (MLR) analysis to quantify the sensitivity of coarse 
dust fraction (coarse dust concentration divided by total dust concentration) to various 
meteorological (wind speed, wind direction) and land-surface variables (e.g., topography, soil 
texture, soil moisture). The authors found out a predictor model that shows that coarse dust 
fraction increases with wind speed and with hillslope. They also showed that some times of the day 
or some seasons favor the production of coarse dust.   

This is an interesting and impactful study showing that the observed coarse dust might not be 
decreasing with or invariant with wind speed as some of the previous theories depicted (e.g., Shao, 
2001; Kok, 2011). Therefore, the contribution of this paper is significant. The paper is also nicely 
written. However, since the paper is based on model/reanalysis and not observations, the authors 
need to show enough evidence to convince us that MONARCH produces correct dust PSDs. I have 
some major and minor comments below concerning some parts of the arguments and analysis, 
and I suggest a major revision.  

Thank you for acknowledging the contribution of this paper and providing insightful feedback. We 
highly appreciate your comments and tried to address them below. Please refer to the revised 
manuscript with tracked changes for the corresponding line numbers. 

Major Comments:  

1a. What I concern the most is that the findings from this paper are highly contingent upon how 
successfully MONARCH assimilates the fresh dust concentration PSD. All major findings of this 
paper are based not on observations but on the MONARCH reanalysis data. As the authors said, 
the correlation between coarse dust ‘concentration’ fraction and wind speed can be due to other 
reasons (e.g., turbulence can hold coarse dust longer in the atmosphere). Even though the authors 
tried to focus on fresh dust events to minimize the transport effect, the correlation could still be 
just because there are just more fresh dust particles that contains coarse dust, as the authors 
referred to Cristina’s argument several times (Gonzales-Florez et al., 2023). This means that the 
correlation the authors found will only be valid for atmospheric dust concentration PSD, but not for 
dust emission PSD.  
Clarifying the definition of “dust emissions” is indeed critical. To improve clarity, we updated the 
abstract (lines 15–16) and the summary of study in the Introduction (line 85) to explicitly 
differentiate the concept of dust emission PSD from the dust concentration PSD.  
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1b. Following the previous point, it is great that MONARCH shows this correlation between coarse 
dust concentration fraction and wind speed, but this is not only the evidence in concentration (not 
in emission) but also model evidence (not from in-situ measurements). So, the current evidence to 
me is not strong enough to reject Shao’s saltation bombardment theory (Shao, 2001) or Kok’s 
brittle fragmentation theory (Kok, 2011), which focused on the dust ‘emission’ PSD. But, at least, if 
MONARCH’ dust PSD is correct, then other chemical transport models using Shao or Kok’s 
theories should still replicate this correlation between coarse dust concentration and wind speed.   
We compared the observed trend with Shao’s and Kok’s theories in order to understand the 
underlying mechanisms behind the observed trends, and we agree that our results based on 
regional dust emissions (with a portion of transported dust) do not necessarily reject these theories 
which are validated against measurements in wind tunnels or over local sites. The MONARCH 
ensemble simulations adapted dust emission schemes developed by Marticorena and Bergametti 
(1995), Ginoux et al. (2001) with modifications, and Kok et al. (2014) (Klose et al., 2021), which 
should be comparable to simulations from other chemical transport models. We rephrased the 
discussion to emphasize that  the observed trend is contradictory to the implications of the theory, 
instead of the theory itself (line 456), as well as highlighting that “another potential explanation is 
unrelated to the emission, but to the transport process” (line 470).  

2. Line 103: Why do you think that MONARCH, by only assimilating coarse-mode DOD (and not 
finemode DOD), is enough to fully constrain the whole dust PSD? (I surely know we can hardly 
isolate fine dust from other fine-mode aerosols in MODIS). The PSD curve has two ends, and 
MONARCH only assimilates coarse-mode DOD, which constrains the right/high end. There is no 
information to constrain the left/low end, and MONARCH could be underestimating fine dust by not 
assimilating fine-mode dust. The correlation between coarse dust and wind speed might be a 
spurious artifact from MONARCH.  
We appreciate this important question. In principle, omitting an explicit assimilation of fine-mode 
DOD does introduce some uncertainty regarding the fine end of the dust size distribution. 
Nonetheless, the MONARCH data assimilation framework and its physical parameterizations exert 
constraints across all dust size bins, including fine-mode dust, through the following procedures: 
In MONARCH, the dust state vector being updated through the 4D-LETKF assimilation includes the 
total coarse dust mixing ratio, which is distributed across five size bins from 1.2 to 20 µm (Di 
Tomaso et al., 2022). Although the assimilated observations represent exclusively coarse-mode 
DOD, the model’s internal representation ties adjustments in the coarse bins to the overall dust 
mass and emission fluxes. Therefore, any increment that corrects coarse-mode dust fields 
effectively modifies total dust emissions, transport, and deposition in ways that also affect smaller 
particles. Further, the fine dust bins (0.2–1.2 µm) are not treated as independent of the coarse bins. 
After the assimilation step, increments in coarse dust are consistently “scaled down” to the fine 
bins (proportional to their relative mass in the model) so that the overall partitioning remains 
physically plausible. Although this approach does not fully replace assimilating fine-mode 
retrievals, it prevents fine-mode dust from being unbounded or disconnected from the coarse-
mode reanalysis. Thus, in practice, all eight dust bins (0.2–20 µm) are updated. Finally, the 
ensemble-based 4D-LETKF simultaneously optimizes the coarse dust field at each time window 
using flow-dependent background error covariances. Hence, if fine bins become inconsistent with 
the observed coarse dust or the model’s internal aerosol processes, the ensemble spread (which 
includes perturbations in emission fluxes and size distribution) allows the assimilation to reduce 
the gap to reach physically consistent states. This ensemble-driven error covariance is a key 
reason why even partial observational constraints can significantly improve unobserved parts of 
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the state vector. Ultimately, we acknowledge that residual uncertainties remain in the exact fine-
to-coarse partition and additional constraints can be beneficial for capturing sub-micrometer dust 
more precisely, but validation against AERONET observations suggest that fine dust is adequately 
captured. To clarify this, we highlighted and re-emphasized this point in the manuscript:  
“…although MONARCH reanalysis does not directly assimilate fine-mode DOD, corrections in the 
coarse bins propagated to the entire PSD through the assimilation state vector and physical 
parameterizations, aligning the PSD more closely with dust-specific observations... validation 
against AERONET data indicates that fine dust is still captured satisfactorily (Di Tomaso et al., 
2022; Mytilinaios et al., 2022), supporting the reliability of the dataset to investigate dust PSD”(lines 
104–112).   

3. Lines 106-107: Following the first point, dust surface concentration PSD is not dust emission 
PSD, although they tend to correlate more in fresh dust events. It inevitably includes also 
transported dust, and so using dust concentrations PSD already underestimates coarse dust 
particles. Does this partially weaken the slope and R2 you found?   
It is indeed possible for the deposition of dust particles to affect the variation of coarse fraction and 
thus the R2.The weak correlation may indicate the presence of factors—in addition to deposition 
and transport—that are not accounted for in the model, such as variability within the same soil 
texture type or differences in the nature of emission events occurring at similar times of day. We 
updated the main text to comment on this point (lines 395–397). 

4. Lines 176-180: I am curious about Claire Ryder’s FENNEC data. Since they have several FENNEC 
flights, did the authors see a correlation between the coarse dust fraction from her fresh dust PSD 
and wind speed? It would be better to look at observed correlations too. 
During the Fennec campaign, dust was sampled through wind-mounted instruments on aircrafts at 
altitudes of approximately 1–6 km. Therefore, the dust PSD measurements were subjected to 
transport and deposition, making  them unsuitable for analyzing the relationship between wind 
conditions and fresh dust emissions. For example, among the  three flights selected for evaluation 
in our study, the b600, which was conducted in early morning after notable dust uplift by low-level 
jets, detected the coarsest dust during the entire campaign of up to 300 µm, whereas dust 
collected from the b601 and b602 flights, conducted in the afternoon and the following morning, 
contained less pronounced coarse dust due to vertical mixing and deposition (Ryder et al., 2015).  

5a. Line 189: Since the whole paper’s findings is contingent upon the accuracy of MONARCH’s 
assimilated dust concentration PSD, I am not sure if one plot (Fig. 3) of MONARCH vs FENNEC is 
enough for model evaluation. Fig. 3 only shows that MONARCH’s simulating adequate coarse dust, 
but it does not show that the posterior (assimilated PSD) is doing better than the prior (first guess 
PSD), and it is hard to judge from Fig. S1. Could you include the first guess in Fig. 3 in a different 
color and describe how the assimilated PSD is better than the first guess?  
We have revised Figure 3 to include the first-guess size distribution for a clearer comparison 
between the prior and the reanalysis. While a comprehensive evaluation of MONARCH reanalysis is 
beyond the scope of this study, we particularly examined one case to show that the predicted dust 
concentration falls within the reasonable range compared to observations of freshly emitted dust. 
Further details on the performance of MONARCH reanalysis can be found in Di Tomaso et al. (2022) 
and Mytilinaios et al. (2022). The main text has been updated accordingly to address this point 
(lines 196–197 & 201–202).  
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5b. Moreover, this evaluation in Fig. 3 does not show that the correlation between coarse dust 
fraction and wind will hold true in observations.  
Fig. 3 was intended to demonstrate that MONARCH reanalysis reasonably captures the PSD for 
fresh emissions, but was not meant to serve as a comprehensive evaluation. We are unable to 
conduct robust statistical analysis based on merely measurements due to its limited availability, 
and we utilize the MONARCH reanalysis to investigate the relationship between dust size and wind 
conditions with full awareness of its uncertainties.  

6. Lines 115-117: I am concerned that this paper would yield very different regression results if the 
authors used MONARCH’s predictor variables rather than MERRA-2’s fields. Please describe how 
MONARCH has its own driving meteorology. Did they do any meteorological assimilation or was it a 
complete free run? Please also briefly describe how we should expect MONARCH's met fields to be 
different from MERRA-2's met fields, and the implications on your regression analysis (e.g., will the 
sensitivities of coarse dust to wind directions largely enhance using MONARCH’s meteorology?)  
The MONARCH dataset estimated dust emissions using an ensemble where the meteorological 
inputs were perturbed. Specifically, the wind fields were re-initialized daily using reanalysis from 
either MERRA-2 dataset (for 6 out of the 12 ensemble members) or ERA-Interim dataset (for the 
other 6 ensemble runs; see Table S1 in Di Tomaso et al., 2021). Previous evaluations suggest that 
the meridional and zonal winds in these reanalysis are strongly constrained by observations 
(Fujiwara et al., 2024; Rienecker et al., 2008). The observational data assimilated by ERA-Interim 
were all included and made up the majority of the assimilation data used for MERRA-2 – including 
wind observations from the ERS-1, ERS-2, QuikSCAT datasets (Dee et al., 2011; Gelaro et al., 2017).  
Furthermore, performance of both reanalysis were pretty similar over specific sites (Santos et al., 
2019). In general, considering that the MONARCH’s dust emission partially rely on meteorological 
inputs from MERRA-2 and the comparable results between MERRA-2 and ERA-Interim, it is 
reasonable to use MERRA-2 wind variables to represent the wind conditions in the MONARCH 
reanalysis.  
The main text was updated accordingly at lines 131–134: “MONARCH ensemble simulations 
applied meteorological inputs from two reanalysis datasets (i.e., MERRA-2 and ERA-Interim). Given 
that wind from both reanalyses are highly constrained by observations, and there is a substantial 
overlap in the assimilated data used by the two (Fujiwara et al., 2024; Rienecker et al, 2008; Dee et 
al., 2011; Gelaro et al., 2017) , it is reasonable to use MERRA-2 wind vectors to inform the wind 
conditions of MONARCH dust reanalysis.”  

7a. Line 255-257: Since year, season, and time of day are correlated with winds and soil moisture, 
adding them in your regression analysis likely weakens the R2 of winds and soil moisture on dust 
PSD. Please comment on how this collinearity between predictor variables impacts the regression 
results.  
Collinearity or multicollinearity among predictor variables can inflate standard errors and reduce 
the statistical significance of regression coefficients. To assess this, we calculated the Generalized 
Variance Inflation Factors (GVIFs) for all predictors in our model without interactions (Eq. (3)) using 
the VIF function in R software, and then adjusted the GVIF by the degree of freedom (Df) of 

categorical variables (adjusted GVIFs are expressed as 𝐺𝑉𝐼𝐹
!

"∙$%). An adjusted GVIF of 1 (the 
smallest) indicates no collinearity and typically values smaller than 5 suggest low and acceptable 
collinearity. Our results show that all adjusted GVIF values were below 2 with most values close to 
1 (Table S2), indicating that multicollinearity is not a concern in this regression model. We updated 
the main text accordingly in lines 304–308 & 423–425. 
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7b. Following the previous comment, wind speed and soil moisture are highly correlated. Including 
soil moisture likely highly changes the value of β1.  
We examined whether soil moisture in the regression model significantly alters the estimated 
coefficient for wind speed (β1) using the Pearson correlation coefficient between wind speed and 
soil moisture and the adjusted GVIF values. The correlation coefficient was -0.161 and the adjusted 
GVIFs for both variables were low (Table S2), suggesting that the potential inflation of β1’s standard 
error is minimal and acceptable.  

8. Lines 313: I agree with another reviewer that the R2 of the regression analysis is rather low. From 
Fig. 6, it looks like to me that instead of a spatial regression analysis, it might be better construct 
regression models for each grid/small region rather than putting them together into a single plot.   
We agree that the spatial variations in dust size should be considered when constructing the 
model, but defining meaningful sub-domains presents challenges due to the complex and 
continuous nature of soil properties. Therefore, we decided to incorporate soil texture as an 
independent variable into our regression models for the entire study domain considering that the 
differences among geographic locations are mostly related to soil properties. To test the sensitivity 
of the models to spatial variability, we performed 10-fold cross-validations, in which the dataset 
was randomly split into 10 even subsets. The model was trained on 9 subsets and tested on the 
remaining subset in each iteration, with 10 iterations in total till all subsets were used for testing. 
This approach yields coverage rates of 94%, suggesting that 94% of the coarse fraction values from 
MONARCH reanalysis in the test subset are covered by the prediction intervals of the model. The 
low R2 suggests high variability in the data due to the heteroscedasticity as shown in Fig. 6, and 
separate models constructed for sub-domains may reduce the R2 due to smaller sample sizes and 
variability. However, the high coverage rates from cross-validation suggest that the observed 
trends remain generally invariant across different sub-domains.  

9. Lines 364-365: This statement does not sound correct to me. A multiple linear regression (MLR) 
analysis does not give the slope/sensitivity of a predictor variable while holding other predictor 
variables constant, i.e., it is not a partial differential !(#$%&'(	*+',)

!('.$/()
. The magnitude of the slope from 

MLR is heavily impacted by the multicollinearity among different predictor variables. It is all right to 
say that coarse dust increases with slope regardless of wind direction, but other factors are not 
held constant In the MLR when this slope is estimated. Please clarify this sentence.  
While MLR models estimate the effect of each predictor while accounting for others, it does not 
compute a partial derivative  !(#$%&'(	*+',)

!('.$/()
 in the calculus sense. The regression model is stochastic 

rather than deterministic, so its interpretation does not rely on partial derivatives. Instead, the 
regression coefficient represents the expected change in the dependent variable given a unit 
change in the predictor, assuming all other variables remain at constant values. The magnitude of 
regression slope can be influenced by multicollinearity among predictors. However, as noted in our 
response to Comment 7a, the GVIF analyses indicate no evidence of multicollinearity among the 
independent variables, suggesting that interpreting the trends in coarse fraction from the 
regression coefficients is reasonable. To avoid ambiguity, we updated the text in line 479. Note that 
the estimated slopes (coefficients) are subject to interactions among variables even though the 
regression model accounts for effects of other predictors.  

10. Lines 372-376: The model shows that regardless of wind direction (uphill, tangential, downhill), 
coarse dust fraction increases with slope. Normally we will expect if coarse dust increases with 
more uphill slope, then the opposite should be true (fine dust increases with more downhill slope). 



10 
 

The three explanations to why increasingly uphill, tangential, and downhill slopes can all generate 
more coarse dust fraction sound a little ad hoc. Under what circumstance should the fine particle 
fraction increase?  
Due to the complex nature of wind flows over varying terrain, it is difficult to predict the net effects 
of slope on dust particle size from the physical basis, and we do not necessarily expect the effects 
of uphill and downhill winds to be opposite. Instead, both our linear models and the Random 
Forest model suggest a consistent positive correlation between slope and coarse fraction, 
regardless of wind direction (Table 2 and Fig. S5). This trend potentially reflects the modulation of 
wind flow or soil conditions by topography (Rosenberg et al., 2014; Samuel-Rosa et al., 2013). 
However, the impact is stronger for uphill winds than tangential or downhill winds, as the Random 
Forest model suggests negative impacts of these directions. These updates have been reflected in 
the final paragraph of Section 3.3.  

 

Other comments:  

Lines 72-74: Does this finding come from Malinovskaya 2021? Please cite if so. Does this conflict 
this paper’s findings?  
Yes, the finding comes from Malinovskaya et al. (2021) and we have clarified this in lines 73–74. 
Their conclusion about the influence of wind direction on dust size is opposite to our findings. 
However, this does not necessarily reject their theory, and may instead indicate that other factors 
(such as near-source transport) overshadow the impacts of microphysics of dust emission at a 
regional scale. The relevant statements can be found at lines 491-493. 

Lines 97-99: A reference is needed on how coarse-mode DOD was obtained from Aqua/MODIS, so 
people do not need to go to MONARCH’s paper to look for it. Is it Paul Ginoux’s method?  
The method follows the derivation of DOD in Ginoux et al. (2012), with adaptations for MODIS 
Collection 6 data as described in Pu and Ginoux (2016). We have added the references for the 
derivation of the coarse-mode DOD (line 100). 

Lines 100-102: What prior (first guess) dust PSD does MONARCH assume? This requires a more 
detailed description here. How much is the posterior dust PSD (after assimilation) dependent on 
the assumed prior dust PSD? This question also needs some elaboration.  
MONARCH’s first-guess dust PSD is based on a sectional representation of dust across eight bins 
spanning from 0.2 to 20 µm in diameter. The assumed emission-size distribution (PSD) follows the 
brittle-fragmentation theory of Kok (2011) with perturbations across 12 ensemble members (Table 
S1 in Di Tomaso et al, 2022). Because only coarse-mode dust optical depth is assimilated, the 
observational constraint applies to the aggregate dust mass in bins covering approximately 1.2–
20 µm. The partition of increments among dust bins are implicit, and the total mass of finer modes 
(0.2–1.2 µm) is adjusted proportionally based on the coarse-to-fine ratio in the first-guess. 
Consequently, if the prior PSD is biased—for instance, by allocating too much mass in the largest 
bin or not enough in a mid-sized bin—that bias may persist to some extent after assimilation. 
Despite the limitation, assimilating DODcoarse effectively reduces large-scale biases in coarse dust 
load compared to a free-running model and can improve the dust size distribution, provided that 
the prior size partitioning is not severely erroneous.  The procedures of adjusting dust PSD through 
assimilation and associated uncertainties are also elaborated in our response to Major Comment 
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2. To clarify this point in the manuscript, we have updated the main text at lines 100–102 & 104–
112.  

Line 103: Did MONARCH “nudge” the size-resolved concentrations or used a Kalman filter? They 
are different methods.  
MONARCH reanalysis of the dust mixing ratio in the five coarse bins was generated using the four-
dimensional Local Ensemble Transform Kalman Filter (4D-LETKF).  The term “nudge” was used 
loosely in the sense of “pushing toward”. To avoid ambiguity, we have rephrased the description for 
the assimilation methods  at lines 102-104.  

Lines 129-131: A description of how MERRA-2’s assumed topography can alter MERRA-2’s winds is 
needed. MERRA-2 has a coarse grid resolution of 0.5°, so the winds can only see a regional 
topographic slope. Also, I think that SRTM GL3’s topographic slope map and MERRA-2’s 
topographic slope map could be quite different. Please comment in the manuscript how this 
discrepancy impacts the calculation of wind directions and slopes in Fig. 1.  
The MERRA-2 wind reanalysis is generated through the Goddard Earth Observing System (GEOS) 
atmospheric model with data assimilation (Gelaro et al., 2017). Wind vectors at 2m height are 
interpolated from wind simulations in the lowest model layer using the Monin-Obukhov equation. 
MERRA-2 topography is derived from the USGS Global 30 arc-second elevation (GTOPO30) dataset, 
and sub-grid topographic slope and variation were statistically represented to account for gravity 
waves and turbulence-induced wind adjustments (Rienecker et al., 2008).  
Since both GTOPO30 and SRTM are seamless elevation dataset available at resolution much finer 
than that of MERRA-2 grids (Gesch et al., 2001), their spatial averages are expected to be 
comparable. Moreover, MERRA-2 wind vectors are strongly-constrained by assimilated wind 
observations from various sources (Fujiwara et al., 2024; Rienecker et al, 2008), further reducing 
their sensitivity to underlying topographic inputs. Overall, discrepancies between SRTM and 
MERRA-2 topography should have a limited impact on the wind reanalysis. We have added the 
clarifications to the manuscript at lines 149–152. 

Line 187: It looks like this is the first appearance of the term super coarse dust. Please include a 
diameter range for super coarse dust.  
Super coarse dust is defined as dust particles with diameters above 10 µm (Meng et al., 2022). This 
definition has been added to the manuscript (line 213).  

Line 276: I think you can mention here that you eventually adopted the multiple linear regression 
(MLR) model.  
We have updated the main text to explicitly mention the selection of multiple linear regression 
models at the end of Section 2.4 for Statistical Analysis (lines 347–349).  

Lines 305-307: For Fig. 6, can you color code the three panels for three wind directions by the value 
of wind speed? I am curious how wind speed varies with those vertically aligned scattered points.  
The three panels for slopes in Fig. 6 have been updated (line 384), with scatter points now color-
coded by wind speed associated with the dust events. The vertically aligned points generally 
display varying colors, indicating that dust events at the same location or locations with the same 
slope experienced different wind speeds. 

Line 314: For Fig. 6, I am also interested in looking at a plot for soil moisture (can be in the supp). 
The scatter plot of coarse fraction versus soil moisture, including a trend line, has been included in 
Fig. S2. The trend line shows a negative relationship, suggesting that an increase in soil moisture 
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corresponds to a lower fraction of coarse dust. This finding aligns with the results from the linear 
model without interactions (Table S3) but is counterintuitive. This discrepancy may be due to 
interactions with other variables, as suggested by the model with interactions (Eq. (4) & Table S5), 
where the coefficient (β8) for soil moisture is positive.  

Lines 339-340: Instead of seeing the relationship between coarse dust fraction and the 16 soil 
type/class, readers might be more interested to see the relationship between coarse dust fraction 
and clay fraction.  
Since our soil texture variable has a category for clay and potentially accounts for the spatial 
variations in chemical composition, we decided to adhere to the categorical predictor of soil 
texture.  

Line 360: For table 2, I am curious about the statistics of the five other predictor variables. Please 
include them in Table 2 or in the supp.  
Please refer to Table S3 for coefficients for all the independent variables.  
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