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Abstract. Many of the world’s major rivers originate in mountain regions and a large fraction of the global population relies

on these regions for their water supply. The hydrological cycle of mountain regions and their dependent downstream regions

are often studied using large-scale to global hydrological models (LHMs). The increasing spatial resolution of these models

allows for improved representation of complex mountain topography, but existing model deficiencies in cold and high-elevation

regions limit potential model performance gains. Such model performance gains might be realized by investing into a better5

representation of hydrological processes that are relevant in mountain regions such as snow-accumulation and -melt. However,

how much improved process representation would increase LHM performance remains largely unquantified. Here, we set up

the hyper-resolution global hydrological model PCR-GLOBWB 2.0 (PCRaster Global Water Balance) over the larger Alpine

domain and implement several changes to make it better suited at representing hydrological processes in mountain regions.

These changes include a.) the use of novel high-resolution meteorological forcing datasets; b.) an extended snow module10

based on a seasonally varying degree-day factor and an exponential melt function; c.) a regional calibration of the snow

module against a snow reanalysis product; d.) a new integrated glacier module; and e.) increasing the contributions to the fast

runoff components in the soil. Our evaluation of the effect of these different adjustments on model performance for discharge

shows that while the meteorological forcing has a major effect on discharge simulations, its effect on performance is not

unidirectional over the domain. In addition, the structural and parametric changes, i.e. the snow module modification, glacier15

representation and runoff partitioning, improve discharge simulations in mountain regions: the snow module modification leads

to an improved representation of the snowmelt peak for high-elevation catchments, the glacier module supplies additional water

to glacierized catchments, and runoff partitioning in the soil improves the representation of streamflow in flashy catchments

at lower elevations. We use these insights to present a new setup of the large-scale and hyper-resolution PCR-GLOBWB 2.0

model that is better suited to study hydrological processes in and beyond mountain regions around the world.20
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1 Introduction

Mountain regions play a critical role in supplying water to almost 2 billion people living in downstream regions and are

therefore often referred to as the "water towers" of the world (Viviroli et al., 2007; Immerzeel et al., 2010, 2020). Water storage

in snow and glaciers or a lack thereof is particularly important for drought development and recovery: the snow drought in25

the Italian Alps in 2022 developed into a streamflow drought downstream and affected many communities in the Po Plain

(Colombo et al., 2023), whereas Alpine glaciers provided surrounding rivers with surplus melt-water during the 2003 Central

European Drought thanks to a heatwave (Van Tiel et al., 2023). Hydrological processes in mountain regions thus have an

over-proportional footprint well beyond mountain ranges. Therefore, considering hydrological processes that are particularly

relevant in mountain regions such as snow accumulation or glacier melt is critical when studying hydro-systems in mountains30

and their dependent downstream regions.

Large-scale or global hydrological models (LHMs) are often used to study mountain hydro-systems and their dependent

downstream areas (e.g. Viviroli et al., 2007, 2020; Khanal et al., 2021), but also to examine many other hydrological systems

that exceed the scale of individual catchments. Example applications of such models include water resources (e.g. Dolan et al.,

2021; Leijnse et al., 2024) and climate change impact assessments, such as those performed within the Inter-Sectoral Impact35

Model Intercomparison Project (ISIMIP; Warszawski et al., 2014). However, the coarse spatial resolution of many large-scale

models – often tens of kilometers – limits the usefulness of their output for policymakers, who are often interested in regional-

to local-scale information. This scale gap triggered a call for hyper-resolution, kilometer-scale models that are applicable at

continental to global scales (Wood et al., 2011; Bierkens et al., 2015), which has been addressed by an increasing number of

studies: proposed model solutions include the 1 km setup of the ParFlow model for the Contiguous United States (Yang et al.,40

2023) or the PCR-GLOBWB 2.0 model over Europe at a similar resolution (30 arcsec; Hoch et al., 2023), which Van Jaarsveld

et al. (2024) recently used to perform a first global run at hyper-resolution.

At coarse spatial resolutions, there is ample evidence suggesting that LHMs do not accurately capture mountain processes:

recent evaluations found that global hydrological and land-surface models show particularly poor performance at high eleva-

tions (Heinicke et al., 2024) and in cold climates (Gädeke et al., 2020; Hou et al., 2023) compared to other regions. One of45

the underlying issues is the extreme heterogeneity in mountain regions (e.g. topography, meteorology and soil types). Hyper-

resolution models are expected to represent this heterogeneity better and could thus improve model performance in mountain

catchments (e.g. for snow simulations; Malle et al. (2024)). However, to realize such increased model performance, the pro-

cesses at play also need to be represented and parameterized with sufficient detail and accuracy. Part of the reduced performance

in mountain regions can indeed be attributed to issues with process representation, as indicated by misrepresentations of both50

the volume and timing of snowmelt peaks as well as poor performance in basins where glaciers are not represented (Gädeke

et al., 2020). Furthermore, neglecting glaciers or snow transport also leads to the formation of unrealistic "snow towers" at

high elevations (Freudiger et al., 2017; Hoch et al., 2023). Several studies thus suggest that improving cryospheric process
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representation should be a focus of further LHM development (Gädeke et al., 2020; Heinicke et al., 2024; Van Jaarsveld et al.,

2024).55

Many LHMs represent snow melt using a temperature-index model which relates melt to air temperature via a degree-

day factor (DDF; Telteu et al., 2021). Even though full energy balance models are becoming more popular, especially at the

catchment scale, temperature-index models remain widely used because they come at reduced computational demand, require

minimal meteorological forcing and are accurate when calibrated (e.g. Hock, 2003; Magnusson et al., 2015). However, LHMs

often use very simplistic temperature-index schemes e.g. by using only one constant DDF or by omitting calibration. Snow60

module comparisons at the catchment scale suggest that performance gains might be achieved by changes in the structure of the

snow module (Girons Lopez et al., 2020). Proper evaluation of such improvements hinges on the availability of high quality

reference data to compare how snow is represented by different snow module structures. Evaluations of snow processes in

LHMs are often performed against global products representing snow water equivalent (SWE) or snow cover fraction derived

from satellite measurements or reanalyses (e.g. Schellekens et al., 2017; Gädeke et al., 2020; Van Jaarsveld et al., 2024). Of65

the two, SWE is hydrologically the most relevant in regions with seasonal snow cover, but SWE reanalysis products often

have too coarse spatial resolution (often 25 km or more) to be representative for mountain regions (Mortimer et al., 2020). In

addition, the coarse model resolutions of LHMs themselves have prevented direct comparisons of SWE simulations with SWE

estimates at individual snow measurement stations before the era of high-resolution modeling. Now, higher spatial resolutions

of LHMs and new detailed regional SWE reanalysis products (e.g. Mott et al., 2023; Olefs et al., 2020) enable such direct SWE70

comparisons with the output of LHMs at a regional scale for mountain regions.

Whereas snow modules are present in most LHMs, many models have largely neglected glaciers (Gädeke et al., 2020;

Telteu et al., 2021; Hanus et al., 2024). Glaciers can be an important additional water source during their melt season (e.g.

the average glacier storage change contribution to total runoff near the river mouth for the rivers Rhone in August: 25%,

Rhine in August: 7%, Danube in September: 4%, (Huss, 2011)) or during drought (Van Tiel et al., 2021, 2023). Including75

glaciers in hydrological models can thus potentially improve discharge simulations (Wiersma et al., 2022; Hanus et al., 2024),

although such improvements will be limited to the summer months and to regions with a substantial glacier cover. Glaciers

are represented in hydrological modelling in two ways, namely by a.) including an internal glacier module in the hydrological

model ("integrated models") or b.) using the output from an external glacier model as the input to the hydrological model (i.e.

one-way coupling the models; "coupled models"). An example of a coupled model is the setup created by Hanus et al. (2024),80

who used output from the Open Global Glacier Model (OGGM; Maussion et al., 2019) as the input to the Community Water

Model V1.08 (CWatM; Burek et al., 2020). Similarly, Wiersma et al. (2022) coupled the Global Glacier Evolution Model

(GloGEM; Huss and Hock, 2015) to PCR-GLOBWB 2.0. Alternatively, an example of an integrated model at the catchment

scale is HBV-light (Hydrologiska Byråns Vattenavdelning) (Seibert and Vis, 2012; Seibert et al., 2018a), which calculates

glacier mass balance, area evolution and runoff internally. The external glacier models used in coupled model set ups generally85

have more detailed process representation or more detailed calibration than would be feasible for integrated glaciers in LHMs.

Still, we argue that integrated models can also have certain advantages over coupled models. First, integrated glacier modules

are physically consistent with the surrounding model framework, which is not necessarily the case for externally coupled
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glacier models. For example, large-scale glacier models may use different precipitation correction factors for each individual

glacier, which is inconsistent with the precipitation in non-glacierized gridcells. Furthermore, glacier geometries evolve over90

time and assumptions have to be made on how increases in the non-glacierized area are dealt with by the hydrological model

(e.g. Hanus et al. (2024) assume the same relative glacier area change over all cells covered by a glacier, whereas in reality

area changes mainly affect the glacier terminus). Second, integrated models can be more flexible: an integrated module can –

in contrast to coupled models – be run simultaneously with the hydrological model and avoids the coupling steps related to

transferring data between the models. This could make integrated models easy to use when forcing them with an ensemble of95

meteorological forcing datasets.

Aside from snow and glaciers, rivers in mountainous or hilly regions often respond rapidly to local rainfall events leading

to "flashy" discharge behaviour. These flashy responses are caused by the heavy precipitation, thin soils and steep slopes that

characterize these regions and that makes these regions susceptible to floods (Weingartner et al., 2003). Simplifications in the

representation of soil processes and runoff production seem to limit LHM performance in flashier basins (Gharari et al., 2019).100

Generally, LHMs split the soil into a few layers that store and exchange water, but the exact details can vary significantly: each

model has a different number of soil layers (e.g. CWatM: 3 layers (Burek et al., 2020); WaterGAP: 1 soil layer (Müller Schmied

et al., 2021)) and these layers can have different thicknesses (e.g. CWatM: upper layer 5 cm thick (Burek et al., 2020), Water-

GAP: soil is 0.1 up to 4 m (Telteu et al., 2021)). Interaction between these soil layers determines how water is partitioned over

different runoff processes. Most LHMs are not locally calibrated (Telteu et al., 2021), relying instead on a standard parameter-105

ization rather than a highly-calibrated local parameter setup that can potentially obscure structural deficiencies (Refsgaard and

Storm, 1996; Andréassian et al., 2012). Without representing additional soil processes, we hypothesize that hyper-resolution

LHMs can already realize further performance gains by reconsidering standard parameterizations (Hoch et al., 2023). For

example, on steeper slopes the contribution of near-surface runoff components is larger (Weingartner et al., 2003). Changing

how water fluxes from the soil are partitioned across different processes that contribute to discharge (e.g. reduced groundwater110

recharge and increased saturation excess and interflow) could thus potentially capture more flashy behaviour. This could also

improve the local relevance of these models, although their main focus will remain the larger catchments.

Generally, hydrological modeling is sensitive to the meteorological forcing dataset used as input (e.g. Raimonet et al., 2017;

Tang et al., 2023; Gebrechorkos et al., 2024). For hyper-resolution LHMs, the horizontal resolution of the meteorological forc-

ing dataset is of particular importance as using too coarse meteorological forcing can severely reduce potential performance115

gains from moving towards hyper-resolution hydrological modelling (Hoch et al., 2023). High-resolution meteorological re-

analysis products can be derived by downscaling coarser reanalyses products by exploiting statistical, physical or heuristic

relationships or by using dynamically generated regional reanalysis products, both of which often outperform coarser global

reanalyses products, e.g. in representing precipitation (e.g. Karger et al., 2021b; Keller and Wahl, 2021). Furthermore, high

resolution products represent temperature gradients with elevation in more detail, which can be important for snow modelling120

(Malle et al., 2024). In addition, regional reanalysis products also explicitly represent higher resolution atmospheric dynamics

not present in the statistically or heuristically downscaled products. While Hoch et al. (2023) studied the effect of the spa-

tial resolution of the meteorological forcing dataset (using statistical downscaling) on hyper-resolution LHM performance, it
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remains to be assessed how the exact procedure of deriving data at higher spatial resolutions influences model performance.

Furthermore, despite improved resolutions, precipitation products in particular are known for large uncertainties over mountain125

regions (e.g. Isotta et al., 2015; Gampe and Ludwig, 2017; Bandhauer et al., 2022). It is thus important to assess how sensitive

hydrological model performance in mountain regions is to the specific biases and large uncertainties of meteorological forcing

datasets by using multiple input datasets.

While large-scale hydrological simulations at higher spatial resolution have become feasible thanks to increasingly available

computational resources, it is yet unclear by how much hydrological simulations can improve when combining such high-130

resolution models with improved process representation and the latest generation of meteorological forcing datasets. Therefore,

we here aim to explore the effect of (1) improving snow and glacier representations, (2) changing runoff partitioning in the soil,

and (3) using different meteorological datasets in PCR-GLOBWB 2.0 on discharge simulations over the larger Alpine region.

We hypothesize that hyper-resolution LHM performance for discharge in mountain regions will increase by (H1) improving

the representation of mountain hydrological processes, such as snow and ice melt; (H2) reviewing standard parameterizations;135

and (H3) using dynamical dowscaled forcing products that include a representation of smaller-scale atmospheric dynamics

compared to other forcing products. To test these hypotheses, we first assess how strongly discharge simulations are affected

by the meteorological forcing chosen to drive the model. Second, we quantify the effect of structural changes in the model

setup on model performance, namely by expanding the existing snow module and adding a new glacier module. Third, we

study the effect of parameter changes on model performance by calibrating SWE against a regional SWE reanalysis product140

and changing parameters controlling the volumes of soil compartments.

2 Methods

2.1 Model setup and study outline

We use the PCR-GLOBWB 2.0 model (Sutanudjaja et al., 2018) in the 30-arcsec setup developed by Hoch et al. (2023) (approx.

1 km at the equator, 650 m in longitudinal direction in the Alps). The model runs at a daily time step. PCR-GLOBWB 2.0145

is a global hydrological model and contains different modules, which represent both natural processes related to vegetation,

snow, soil, groundwater and river routing and anthropogenic processes such as human water use and irrigation. Here, we use

a regional model setup (longitude: 3-18◦; latitude: 43-51◦) covering the Alps and the upstream parts of the catchments of four

major Central European rivers (i.e. the Rhone, Rhine, Danube, and Po; Figure 1). We focus on the period 1990–2019, as all

forcing datasets are available for this time period and initial glacier volumes are often only available for around the year 2000.150

We implement the different forcing datasets and model changes in a step-by-step manner and thus perform several model

runs. A schematic overview and further details on the sequential model runs performed in this study are provided in Figure 2

and Table 1, respectively.

5

https://doi.org/10.5194/egusphere-2024-3072
Preprint. Discussion started: 16 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Figure 1. Overview of the model domain, highlighting the larger Alpine countries, major rivers and river basins, topography, and glaciers.

The inset map shows the resolution of the model around the Aletsch Glacier (the largest glacier in the Alps). Elevations are derived from the

upscaled MERIT Hydro DEM (Yamazaki et al., 2019).

2.2 Forcing and datasets

To quantify the sensitivity of hydrological models to the choice of the forcing dataset, we assess how discharge simulations155

vary under different meteorological forcing datasets. We focus on the input variables precipitation rate and near-surface air

temperature as these are available for a wide range of potential meteorological datasets. Evaporation is then calculated within

PCR-GLOBWB 2.0 using the method from Hamon (1963). For our comparison, we use the following meteorological datasets:

(1) "STANDARD" input for hyper-resolution PCR-GLOBWB 2.0, (2) Climatologies at High resolution for the Earth’s Land

Surface Areas v2.1 (CHELSA) and (3) Copernicus European Regional ReAnalysis (CERRA), further downscaled with the160

CHELSA algorithm (CERRA-CHELSA).
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Figure 2. Overview of the different model runs performed in this study. (1) The standard model set-up with standard parameterization is our

benchmark model and we run it with different forcing datasets. (2) Several changes are implemented in the snow module in different runs.

(3) A new glacier module is added. (4) Runoff partitioning is adjusted, which is the final model change.

The STANDARD forcing was created by Van Jaarsveld et al. (2024). They created an internal meteorological downscaling

scheme in PCR-GLOBWB 2.0. This scheme uses coarser scale meteorological input, in this case the W5E5 v2.0 (WFDE5

over land merged with ERA5 over the ocean) dataset (Lange et al., 2021), which has a spatial resolution of 0.5 degrees. This

coarser dataset is then downscaled to 30 arcsec spatial resolution using monthly climatologies from CHELSA-BIOCLIM+165

(Climatologies at High resolution for the Earth’s Land Surface Areas - bioclimatic variables plus) (Karger et al., 2017; Brun

et al., 2022b). CHELSA (Karger et al., 2017, 2021a) is a downscaled reanalysis product based on the ERA5 product (Hersbach

et al., 2020). CHELSA uses heuristic and physical relationships to downscale this forcing data to 30 arcsec spatial resolution.

Downscaling is performed using topography, atmospheric lapse rates (for temperature; Karger et al. (2023)), spatial wind

fields, and the height of the boundary layer (for precipitation; Karger et al. (2021b)). Finally, CERRA (Schimanke et al., 2021;170

Ridal et al., 2024) is a regional reanalysis product over Europe provided at 5.5 km spatial resolution (approx. 180 arcsec).

CERRA-Land is the associated surface analysis (Verrelle et al., 2022), which includes also additional data-assimilation of

precipitation observations. We decided to use precipitation directly from CERRA-Land, since this dataset is already near the

effective resolution of precipitation and the terrain effect could be over-represented by downscaling the data further (Daly

et al. (1997); Karger et al. (2021b) uses 3 km). In contrast, near-surface air temperature can be further downscaled to guarantee175

accurate spatial melt patterns at 30 arcsec resolution. Therefore, we created a new "CHELSA-CERRA" temperature dataset, for

which temperature was taken from the CERRA dataset and was downscaled using the topographical CHELSA v2.1 algorithm

(Karger et al., 2023). For simplicity, we refer to the combined meteorological product as "CERRA-CHELSA" in the remainder

of this paper.

Within this study, we use several reference datasets against which we compare model inputs (forcing) and outputs such as180

streamflow, SWE, and glacier changes (Table 2). As a reference meteorological dataset, we use the Alpine Gridded Precipitation
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Run name Snow Glaciers Soil Forcing Time period Purpose

STANDARD

benchmark

Standard,

without snow

transport

No Standard STANDARD
Evaluation II:

2010-2019

Comparing meteoro-

logical input; Bench-

mark

CHELSA

benchmark

Standard,

without snow

transport

No Standard CHELSA
Evaluation II:

2010-2019

Comparing meteoro-

logical input

CERRA-

CHELSA

benchmark

Standard,

without snow

transport

No Standard
CERRA-

CHELSA

Evaluation II:

2010-2019

Comparing meteoro-

logical input; Bench-

mark

Transport

Standard,

with snow

transport

No Standard
CERRA-

CHELSA

Evaluation II:

2010-2019

Effect of snow trans-

port

Uncalibrated

snow
Updated, but

uncalibrated
No Standard

CERRA-

CHELSA

Evaluation II:

2010-2019

Effect of model

structure changes

Calibrated

snow Updated No Standard
CERRA-

CHELSA

Evaluation II:

2010-2019

Effect of snow cali-

bration

Snow and

glaciers Updated Yes Standard
CERRA-

CHELSA

Evaluation II:

2010-2019
Effect of glaciers

Full model Updated Yes Updated
CERRA-

CHELSA

Full period:

1990-2019

Effect of runoff par-

titioning
Table 1. List of the sequential model runs performed within this study.

Dataset (APGD; Isotta et al., 2014). This is a gridded product at 5 km spatial resolution covering the period 1971–2008 and is

based on interpolated rain gauge data over the Alps. We choose this dataset as a reference, because unlike the other datasets

it is specifically created for the Alps, does not use reanalyses, and has been used as a reference meteorological dataset before

(Isotta et al., 2015). The dataset was however not corrected for undercatch (which can be tens of percentage points in the Alps185

(Sevruk, 1985)). Please note that we do not use this dataset as the forcing input, since LHMs are generally run at larger scales

and therefore we used forcing products that are at least available at the continental scale.

Reference measurements of discharge in rivers around the Alps were taken from both national and regional agencies (sources

listed in Table A1). We only selected stations in the basins of the Po, Rhine, Rhone and Danube rivers, leaving us with 2426

stations in total for the period 1990–2020. Please note that for evaluations, we only use stations that have at least 3 years190

of data over the considered evaluation period (see Section 2.4). Since this dataset is an extended and updated version of the
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Large-sample hydro-meteorological dataset for the Alps (LHDA) from Schlemper et al. (2024), we refer to this dataset as the

LHDA+ dataset. For each of these catchments, we derived a range of catchment characteristics. Catchment area and reservoirs

were both derived from government agencies or derived from databases (see Table A1). Although our reservoir database is

more detailed than other large-scale databases such as the one by Lehner et al. (2005), it does not provide a complete overview195

of all reservoirs in the region. The fraction of the catchment covered by glaciers was computed from the Randolph Glacier

Inventory 6.0 (Pfeffer et al., 2014; RGI Consortium, 2017). Snowfall fraction and potential evapotranspiration per catchment

were calculated based on our own simulated model output.

For SWE comparisons, we use a set of different SWE products. We use two 1 km-gridded SWE regional reanalysis prod-

ucts at daily resolution, namely 1) a product by the Operational Snow Hydrological Service (OSHD) over (hydrological)200

Switzerland (Mott et al., 2023), which is available for the period 1998–2022, and 2) a product over Austria created with the

SNOWGRID model (Olefs et al., 2013, 2020) for the period 1961–2020. Furthermore, we use the spatially much coarser

SWE output from two atmospheric reanalysis products, namely CERRA-Land (5.5 km; 1984–2021) (Verrelle et al., 2022) and

ERA5-Land (0.1 degree resolution (approx. 9 km); 1950–present) (Copernicus Climate Change Service, 2019). Finally, we

use data from 1047 Alpine measurement stations (251 in hydrological Switzerland) where SWE was inferred from snow depth205

(Fontrodona-Bach et al., 2023b).

For glaciers, we use spatially explicit maps on glacier elevation changes derived from satellite observations at 100 m spatial

resolution (Hugonnet et al., 2021a), that are then upscaled to match the 30 arcsec model resolution. Here, we refer to this dataset

as the "Glacier elevation change maps" (GECM). We use maps from two ten-year periods, namely 2000–2010 and 2010–2020.

We further use individual glacier mass balance measurements from the World Glacier Monitoring Service (WGMS) (World210

Glacier Monitoring Service (WGMS), 2023, version from 09-2023) and the Glacier Monitoring in Switzerland (GLAMOS)

(GLAMOS - Glacier Monitoring Switzerland, 2022) datasets. We only considered glaciers that had at least six years of mass

balance data over the study period and glaciers that have a minimum size of 3 km2 (roughly 4-5 grid cells). Finally, we use

glacier response time estimates from Zekollari et al. (2020b) (see Section 2.4) and glacier outlines and surface area estimates

from Raup et al. (2007) and GLIMS Consortium (2018).215

For soil moisture, we use the European Space Agency Climate Change Initiative (ESACCI) COMBINED soil moisture data

v8.1 (Gruber et al., 2019; Dorigo et al., 2017; Preimesberger et al., 2021). The ESACCI dataset includes satellite observations

of soil moisture in the top 5 cm of the soil at a resolution of 0.25 degrees.

Finally, for analyses that use elevation, we use the Multi-Error-Removed Improved-Terrain Hydro Digital Elevation Model

(MERIT Hydro DEM) (Yamazaki et al., 2019). The MERIT Hydro DEM was upscaled from its original 3 arcsec resolution to220

30 arcsec resolution by Hoch et al. (2023), who used it as the default DEM of the 30 arsec version of PCR-GLOBWB 2.0.

2.3 Model development

Based on the initial regional model setup introduced in Section 2.1, we further develop the representation of cryospheric and

soil processes to improve discharge simulations in mountain regions. We aim to find a regionally valid setup that works well

for a larger domain and that is thus not directly fine-tuned for individual catchments, in line with the philosophy of many225
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Table 2. List of used datasets and their description.

Name Variables Spatial

coverage

Temporal

coverage

Spatial resolution Temporal

resolution

Reference

Meteorology

STANDARD Precipitation and

temperature

Global 1979-2019 30 arcsec daily Van Jaarsveld et al. (2024)

CHELSA

(v2.1)

Precipitation and

temperature

Global 1979-2019 30 arcsec daily Karger et al. (2021a, b, 2023)

CERRA and

CERRA-Land

(for CERRA-

CHELSA)

Precipitation and

temperature

Europe 1984-2021 5.5 km (temp.

downscaled to 30

arcsec)

daily Schimanke et al. (2021); Verrelle

et al. (2022); Ridal et al. (2024)

APGD Precipitation Alps 1971-2008 5 km daily Isotta et al. (2014); Isotta and Frei

(2013)

Discharge

LHDA+ Discharge,

catchment

attributes

Alps 1990-2020 Stations daily based on Schlemper et al. (2024)

Snow

OSHD SWE Switzerland 1998-2022 1 km daily Mott et al. (2023); Mott (2023)

SNOWGRID SWE Austria 1961-2020 1 km daily Olefs et al. (2020)

ERA5-Land SWE Global 1950-present 0.1 degree daily Copernicus Climate Change

Service (2019)

CERRA-Land SWE Europe 1984-2021 5.5 km daily Verrelle et al. (2022)

NH-SWE SWE Northern

Hemisphere

1950-2022 Stations daily Fontrodona-Bach et al. (2023b)

Glaciers

GECM Elevation changes Global 2000-2009;

2009-2019

100 m (upscaled to

30arcsec)

10 years Hugonnet et al. (2021a)

WGMS Mass balance Global Varying Glaciers Yearly World Glacier Monitoring Service

(WGMS) (2023)

Consensus

Estimate

Glacier volumes Global Varying,

approx. 2003

Varies per glacier

(max. 200 m)

- Farinotti et al. (2019)

Response times Glacier response

times

Alps 2018 Zekollari et al. (2020b, a)

GLIMS Glacier outlines

and area estimates

Alps Varying Raup et al. (2007); GLIMS

Consortium (2018)

Soil

ESACCI Soil moisture Global 1978-2023 0.25 degrees daily Gruber et al. (2019); Dorigo et al.

(2017); Preimesberger et al. (2021);

Dorigo et al. (2023)

Elevation

MERIT Hydro

DEM

Elevation Global - 3 arcsec (upscaled to

30 arcsec)

- Yamazaki et al. (2019)
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global hydrological models. The next few sections describe the structural changes made to the PCR-GLOBWB 2.0 model. The

parameters used in the equations are listed in Table S1. The calibration strategy for specific parameters is then further outlined

in Section 2.3.4.

2.3.1 Snow module

The existing version of PCR-GLOBWB 2.0 includes a snow module consisting of a temperature index approach with a constant230

DDF. A temperature-index model generally has the following form:

M = DDF(T −Tthresh), (1)

where M represents the melt rate (m day−1), DDF the degree-day factor (m◦C−1day−1), T the daily average temperature (◦C),

and Tthresh the temperature threshold above which melt occurs. We build on this existing setup and expand it with elements of

the snow model outlined in Magnusson et al. (2014), namely (1) a seasonally varying DDF, (2) exponential dependence on235

temperature, and (3) a rain-to-snowfall transition temperature range.

First, we replace the constant DDF with a seasonally varying one to capture the effects of changes in the solar declination

throughout the year, following the approach outlined in Slater and Clark (2006):

DDF =
DDFmax + DDFmin

2
+ sin(

k2π

366
)(

DDFmax−DDFmin

2
) (2)

For the Northern Hemisphere, DDFmax is the degree-day factor on 21st of June (summer solstice; m◦C−1day−1) and DDFmin240

is the degree-day factor on 22nd of December (winter solstice; m◦C−1day−1). k represents the day of the year since 21st of

March (equinox; -). Second, we implement an exponential relationship between temperature and melt following Magnusson

et al. (2014). This formulation makes the melt more sensitive to temperature than under the assumption of a linear relationship

and allows for limited melt below the threshold temperature, to account for days when the average temperature is below the

threshold temperature, but the maximum temperature surpasses it.245

M = DDF mm

(
T −Tthresh

mm
+ ln

(
1 + exp(−T −Tthresh

mm
)
))

, (3)

where mm is a parameter controlling the transition between melt and no melt (◦C).

Third, we adapt the snowfall and rainfall partitioning to account for snow and rainfall coincidence by creating a temperature

transition zone where rainfall smoothly changes into snowfall (Magnusson et al., 2014).

Psnowfall =
P

1 + exp(T−Tsnowfall
mp

)
, (4)250

where Psnowfall represents precipitation falling as snow (m/day), P total precipitation (m day−1), T daily average temperature

(◦C), Tsnowfall temperature below which most precipitation falls as snow (◦C), and the parameter mp determines the range where

snow and rainfall co-occur (◦C). Aside from additions to the snow module, we also ignore refreezing in the snowpack, since

previous analyses showed it did not improve simulations (Magnusson et al., 2014; Girons Lopez et al., 2020).
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Figure 3. Schematic overview of the glacier module.

Furthermore, we also include the lateral snow transport scheme introduced by Van Jaarsveld et al. (2024) as a separate255

development step to better quantify its effect against the other development steps in the snow and glacier modules. Van Jaarsveld

et al. (2024) implemented a lateral snow transport scheme based on Frey and Holzmann (2015) to avoid unrealistic snow

accumulation at high elevations. This scheme transports part of the snow downhill based on the surface slope whenever the

snowcover exceeds a certain SWE content. However, the transported snow is part of the glacier accumulation in many locations,

which is why we here apply the lateral transport scheme only outside of glaciers and define the accumulated snow on glaciers260

as glacier accumulation. When we introduce the glacier module, we thus restrict lateral snow transport to non-glacierized areas

only. Note that this means that snow can be transported onto glaciers.

2.3.2 Glacier module

We introduce a new glacier module to PCR-GLOBWB 2.0. To create glacierized cells, we derive glacier geometries and

volumes from volume estimates by Farinotti et al. (2019), which are representative for the year 2003 for most glaciers. We then265

resample and regrid these volumes to the model raster of 30 arcsec, applying a correction factor to preserve the total ice volume

of the glaciers. A cell is considered glacierized when any ice is present and there are no partially glacierized cells. The static

part of the glacier scheme is based on Seibert et al. (2018a) and is schematically shown in Figure 3. The glacier consists of two

parts: an ice reservoir and a water reservoir, representing water contained within the glacier. The glacier only melts when it is

not covered by snow, following a simple temperature-index scheme (see Equation 1) using the DDF for snow multiplied with270

a correction factor (Cice) to account for the higher albedo of the glacier ice surface (Seibert et al., 2018a). The glacier water
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reservoir grows through the addition of glacier melt, snowmelt occurring on the glacier, and precipitation falling on the glacier

during times when no snow is present. The water is then released from each individual glacier cell in the following way (Stahl

et al., 2008):

Q = S(Kmin + Krange ∗ e−AgSWE), (5)275

where Q is the glacial water release (m/day), S the glacial water storage (m), and SWE the snow water equivalent on the glacier

cell (m). Kmin, Krange (day−1) and Ag (m−1) are additional parameters determining the rate of melt water release.

For glacier accumulation, we deviate from Seibert et al. (2018a) and transfer all of the snow that is still covering the glacier

on the 1st of September to glacier ice following Boscarello et al. (2014), instead of continuous conversion of a fraction of the

snow to ice. The chosen approach facilitates comparisons with the OSHD dataset, which uses this date as the beginning of their280

hydrological year on which the model is reset to avoid unrealistic snow accumulation (Scherrer et al., 2024).

Glacier geometries change over time depending on their mass balance, which affects the quantity of melt over time. To

account for such temporal changes, we implement the empirical ∆h-parameterization scheme from Huss et al. (2010), as im-

plemented in HBV (Seibert et al., 2018a). The ∆h-parameterization (Huss et al., 2010) is based on the assumption that changes

in glacier mass balance lead to specific patterns of change in glacier ice surface elevation. Huss et al. (2010) identified specific285

parameterizations for glaciers of different sizes that relate changes in mass to surface elevation changes. Note that we do not

apply the width-scaling applied by Seibert et al. (2018a), as we are running the model in a spatially-distributed way. Before

running the model, we create offline maps of distributed glacier thickness, where all glaciers lose a specific fraction of their

mass (e.g. in steps of 1 percent mass loss) following Seibert et al. (2018a). During the hydrological model runs after the 1st

of September of each year (i.e. after the glacier accumulation in our model), we update each individual glacier by reading290

in the distributed glacier thickness from these offline maps based on the mass balance simulated for the previous year. Mass

changes do not necessarily occur in steps of 1 percent, leading to leftover mass or mass loss: for example, if total mass loss is

2.3 percent of the initial volume, we are left with 0.3 percent of leftover mass loss. To address this, we distribute such leftover

mass or mass loss evenly over the glacier area. Under the ∆h-parameterization, glaciers can only grow to their original extent.

If glaciers gain mass compared to their initial extent, we add the additional mass to the gridcell downstream of the glacier. A295

full description of the ∆h-parameterization is provided in the Appendix B.

2.3.3 Soil module

In the original model setup, each grid cell in PCR-GLOBWB 2.0 has two main soil layers and can contribute to river flow

in three main ways: via direct runoff (infiltration or saturation excess), interflow, or groundwater contributions (Sutanudjaja300

et al., 2018). The first two components can be considered "fast" components, whereas the latter represents a "slow" component.

Initial model runs performed with this standard setup suggested that the model produces too slow runoff responses and can not

properly represent the fast components. Therefore, we introduced some measures to allow the model to produce more flashy

runoff responses. Based on several model experiments, we decided to reduce the size of the top soil layer by making it half
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as thick everywhere, while maintaining the total soil thickness constant. Since the maximum depth of the upper soil layer in305

PCR-GLOBWB 2.0 is by default set to 30 cm (Bierkens and Van Beek, 2009), halving the thickness still corresponds to a

thickness of 15 cm, which is in line with the range of thicknesses that other LHMs are able to resolve (Telteu et al., 2021). This

simple change should better represent the behaviour of thin soils often found on steep slopes (Weingartner et al., 2003), and

makes saturation excess and interflow occur more rapidly and thus enables faster runoff responses.

2.3.4 Calibration310

Although PCR-GLOBWB 2.0 is generally not calibrated, we do calibrate the degree-day factors of snow and ice to increase

regional applicability and to ensure realistic glacier geometry evolution, since this evolution can be sensitive to biases in glacier

mass balance. We calibrate on the specific process (e.g. on SWE) instead of discharge to avoid compensating with parameter

calibration for deficiencies in other processes and to increase the stability of these parameters under varying temperatures

(Sleziak et al., 2020). We try to find one parameter set that is regionally valid. To save computational time, we perform the315

calibration of snow and glacier parameters offline, i.e. we run the snow and glacier component separately without running

the rest of PCR-GLOBWB 2.0 and compare it to the reference datasets. We use dynamically dimensioned search (Tolson and

Shoemaker, 2007) as implemented in the SPOTPY python package (Houska et al., 2015). In contrast, model evaluation is

performed using the full model run. The considered calibration period is 2000–2009 (see Section 2.4).

The updated snow module required the calibration of 2 parameters, namely DDFmax and DDFmin. As a reference dataset,320

we used a snow water equivalent reanalysis product over Switzerland (Mott et al., 2023). We chose this dataset because of its

spatial continuity, its high quality which is unmet by products covering larger spatial domains (e.g. ERA5-Land or CERRA-

Land), and because Switzerland covers diverse climatic regions. To explicitly account for elevation-dependent melt patterns,

we averaged SWE spatially over partially-overlapping elevation zones (500-1500 m, 1000-2000 m, 1500-2500 m, 2000-3000

m, 2500-3500 m and Switzerland) and maximized the average Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970)325

across these elevation bands.

After the snow calibration, we calibrate the glacier module. This module only required the calibration of one glacier correc-

tion factor for the DDF. We used satellite measurements of glacier elevation changes (Hugonnet et al., 2021a) as a reference

dataset due to their coverage of all glaciers in the calibration domain (Switzerland for consistency with the snow calibration).

We calculated the elevation changes between the beginning and end of the calibration period (corrected for density differences330

between ice and water (ρice = 916.7 kg m−3 ; ρwater = 1000 kg m−3) and only focusing on locations with larger elevation

changes (>2 m) to avoid noise) and minimized the mean absolute error for the elevation changes.

2.4 Evaluation

The aim of our evaluation is to assess the effect of the model development both on simulated discharge and the representation

of individual processes such as snow accumulation and melt. We thus evaluate the forcing datasets for precipitation and the335

model output for streamflow, SWE, glacier mass balance changes, glacier surface elevation evolution and soil moisture. We

generally evaluate the daily simulations, except for the glaciers for which we use annual mass balances. For evaluation, we
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split the study period into three blocks with different annual mean air temperature characteristics: (1) the calibration period

(2000–2009), (2) a colder evaluation period (Evaluation I, 1990–1999); and (3) a warmer evaluation period (Evaluation II,

2010–2019) (see Figure 11A). The main evaluation is performed over Evaluation period II, which is also the period considered340

if a specific time interval is not specified. In Section 3.5, we use both evaluation periods to assess the transferability of the

new model set up to different climatic regimes within the framework of a differential split sample test (DSST; Klemeš, 1986;

Seibert, 2003).

The evaluation of the meteorological forcing focuses on precipitation, which is more spatially heterogeneous than temper-

ature. We try to analyze the differences between the datasets and their realism, acknowledging the large uncertainties around345

high-altitude precipitation. We resample all three forcing datasets (STANDARD, CHELSA and CERRA; see Section 2.2) to

the grid points of the coarser reference APGD and calculate both the Pearson correlation and the absolute bias against the

APGD.

We evaluate the performance of the daily discharge simulations by comparing simulated discharge against observed stream-

flow, i.e. the station data from the LHDA+. We matched model grid cells to discharge stations by matching the catchment350

contours following Godet et al. (2024). We then evaluate discharge simulation performance by comparing the simulated to the

observed time series using the Kling-Gupta efficiency (KGE; Gupta et al., 2009), using only stations that have at least three

years of data over the considered evaluation period (number of valid stations: Evaluation period I: 1790; Calibration period:

2019, Evaluation period II: 2270). The KGE is defined as:

KGE = 1−
√

(r− 1)2 + (
µsim

µobs
− 1)2 + (

σsim

σobs
− 1)2, (6)355

where, r is the Pearson correlation coefficient between observations and simulations, µobs is the mean over the observations,

µsim is the mean over the simulations, σobs is the standard deviation over the observations, and σsim is the standard deviation

over the simulations. KGE scores above -0.41 indicate that model simulations improve performance compared to assuming a

constant flow corresponding to the average of the observed discharge time series (Knoben et al., 2019). To assess whether and

by how much a specific change in model structure improves model performance for discharge, we use the KGE skill score360

(KGESS) as used by Knoben et al. (2020) and Van Jaarsveld et al. (2024), which compares the KGE score of a model run with

a new setup against a model benchmark:

KGESS =
KGEmodel−KGEbench

1−KGEbench
, (7)

where, KGEmodel is the KGE score of the new model run and KGEbench is the KGE score of a benchmark model run, which

represents an intermediate step within the model improvement chain. The Alpine region contains many reservoirs for water365

regulation, especially for hydropower production (Lehner et al., 2005; Brunner and Naveau, 2023), and their presence and

how they are represented can influence model performance (e.g. Hanasaki et al., 2006; Abeshu et al., 2023). Therefore, we

investigate how model performance for discharge varies among natural and regulated catchments. To separate regulated from

natural catchments, we used a metric describing the deviation from a closed water balance (WB) assuming no long-term storage
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effects (Salwey et al., 2023).370

WB =
Q

P
− (1− EP

P
), (8)

where Q is the (observed) averaged discharge (mm/day), P is the precipitation (mm/day), and EP is the potential evapotranspi-

ration (mm/day) averaged over the catchment and study period. Salwey et al. (2023) have shown that this metric can be used

to identify catchments affected by hydropower production and water transfers. As other factors such as errors in the meteo-

rological forcing or additional water input from glaciers can also lead to strong water balance deviations, we use this metric375

only as a rough indication for water transfers, hydropower production and other water balance deviations in combination with

catchment-based information on reservoirs.

In addition to discharge, we evaluate model performance for SWE by calculating spatial averages over different elevation

bands (0-1000 m, 1000-2000 m, 2000-3000 m or the entire country) both over Switzerland and over Austria. Then, we compute

the average seasonal SWE cycle over these zones and compare it to the seasonal SWE cycles derived from different snow380

reanalysis products (OSHD, SNOWGRID; see Table 2). Furthermore, we calculate the KGE for SWE by comparing modelled

SWE and SWE inferred from observations at specific measurement stations (NH-SWE; see Table 2).

We evaluate glacier simulations both in terms of their mass balance and their geometry evolution. Simulated mass balances

were summed over the hydrological year (starting in October to facilitate comparisons with the observations of WGMS and

GLAMOS; see Table 2) and compared to observed time series as well as to observed average mass loss. We only took time385

series with more than six data points over the Evaluation period II. To evaluate spatial patterns in glacier evolution, we visually

compared spatial patterns of glacier surface elevation changes against observations (GECM; see Table 2). It is difficult to

evaluate the long-term response of simulated glaciers to climate forcing given the relatively short study period. To address this

problem, we repeat an experiment by Zekollari et al. (2020b), in which glaciers are continuously forced (for 300 years) with

the modelled mean mass balance for the period before 2018. The glaciers respond to this forcing by changing their shapes390

and they stabilize when they are in balance with the applied forcing. We then calculate the e-folding time scale (i.e. the time

interval after which glaciers still had 1/e of their initial volume) and compare this to the estimates of Zekollari et al. (2020b).

We evaluate soil moisture against the ESACCI soil moisture dataset. This evaluation is more difficult than the evaluation

of other variables, since the satellite data are not directly comparable to our model output: they measure soil moisture in the

top 5 cm of the soil, whereas we model moisture in the top 15 cm or 30 cm (see Table 2). Furthermore, the resolution of the395

observations is much coarser than the one of the simulations. Therefore, we resample our simulations to the resolution of the

satellite data using spatial averages and only select locations with at least 50 percent of valid daily data over Evaluation period

II. We calculate the Spearman rank correlation coefficient between the daily model simulations and the satellite observations

to assess model performance, because this metric should be applicable despite the different soil moisture depths.
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3 Results400

3.1 Effect of meteorological forcing

Precipitation in all three meteorological forcing datasets used in this comparison correlate well with gridded precipitation

station data from the APGD (see Figure 4). Precipitation from CERRA-CHELSA shows generally higher correlations with

observed precipitation than the precipitation of the STANDARD and CHELSA input datasets (compare Figures 4A and B with

C). The correlation between the three datasets and the reference dataset varies across the Alps and is especially low in the Po405

Plain. All meteorological datasets show a positive bias in precipitation over the Alps and a negative bias over the Apennines (see

Figures 4D,E,F). Around the Alps, the STANDARD and CHELSA forcings show slightly positive biases, whereas CERRA-

CHELSA shows a slightly negative bias. Overall, CERRA-CHELSA and CHELSA have a smaller precipitation bias than the

STANDARD dataset (mean absolute bias: CERRA-CHELSA: 0.4 mm/day; CHELSA 0.5 mm/day; STANDARD: 3 mm/day).

The choice of meteorological forcing has a strong effect on simulated discharge, but the effect is not uniform across catch-410

ments. Using the STANDARD forcing, we see generally better model performance for discharge over the Alps than the sur-

rounding areas (see Figure 4G). However, although performance is decent overall, locally there is poor model performance

for discharge in certain catchments in the western Alps, southern Switzerland and eastern Austria. Forcing the model with

CERRA-CHELSA leads to improved performance in these regions, as well as in southern Germany (see Figure 4H). In con-

trast, CERRA-CHELSA leads to reductions in model performance for discharge in eastern France, parts of Switzerland and415

western Austria. Using CHELSA leads to a slight worsening of model performance for discharge compared to runs with

STANDARD or CERRA-CHELSA forcing, except in parts of the Alps (see Figure 4I).

In summary, we find that discharge simulations generated with the CERRA-CHELSA and STANDARD forcing datasets are

generally better than those generated with the CHELSA dataset (see Figure 4J). As the precipitation of the CERRA-CHELSA

dataset aligns better with the reference precipitation dataset than the STANDARD dataset (see Figure 4A, B, D and E), we420

performed all further analyses with the CERRA-CHELSA dataset.

3.2 Snow representation

SWE representation benefits to some degree from the proposed adjustments of the snow module (see Figure 5). The intro-

duction of the snow transport scheme only improved snow representation at the highest elevations (2000–3000 m), where

snow towers were a major issue (compare the Transport run with the CERRA-CHELSA benchmark run in Figure 5 C and F).425

Without calibration, further structural changes to the snow module (i.e. the seasonally varying DDF, exponential temperature

dependence, and a rain-to-snowfall transition temperature range) lead to an improvement of the SWE representation at most

elevations, except at the lowest elevations, where they lead to slightly too low melt rates (compare Uncalibrated snow and

Transport runs in Figure 5A, B, D, and E). These differences between elevation zones suggest that the model structure is able

to capture the elevation dependence of melt rates. Calibrating the DDF in the snow module against SWE leads to realistic but430

slightly too high melt rates over Switzerland (see Calibrated snow run in Figure 5A, B, and C). In Austria, the Calibrated snow

run is, while slightly less accurate than in Switzerland, the most accurate of the presented model runs, even though no Austrian
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Figure 4. Differences in meteorological forcing datasets and the effect of their choice on model performance for discharge over the larger

Alpine domain. The top row compares the correlation of precipitation in the (A) STANDARD, (B) CHELSA, and (C) CERRA-CHELSA

datasets with observed precipitation (APGD, 2000–2008). The middle row shows the bias of mean daily precipitation against observed

precipitation for the (D) STANDARD, (E) CHELSA, and (F) CERRA-CHELSA datasets. The bottom row compares discharge simulations

generated with the different forcing datasets: (G) KGEs for the STANDARD benchmark run. KGESS for the CHELSA benchmark run (H)

and the CERRA-CHELSA benchmark run (I) against the STANDARD benchmark run. (J) Ridge line plots showing the distribution of KGEs

(in number of catchments) for the three benchmark runs. Note that roughly 6 percent of stations have a KGE smaller than -1 and fall outside

of the bounds in J. 18
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SWE data was used for calibration (see Figure 5D, E and F). This demonstrates that the snow module is generally transferable

to other regions. The comparison of our model runs against SWE estimates at measurement stations (see Figures 5G and H)

confirms that SWE simulations profit from the introduction of an improved snow transport scheme, seasonally varying degree435

day factors, and their calibration.

Changes in SWE performance are reflected in the performance of discharge simulations (see Figure 6). Snow transport

improves discharge simulations in the highest parts of the Alps, but has hardly any effect outside of the mountains (see Figure

6B). Structural changes to the snow module lead to an improvement of discharge simulations in catchments at the highest

elevations, but a worsening in catchments at lower elevations (see Figure 6C). Finally, calibrating SWE improves discharge440

representation in most of the catchments that worsened from the structural changes, with a few exceptions in the Alps (see

Figure 6D). Figure 7A, B, and C illustrate that calibration mainly decreases model performance for discharge in catchments

with reservoirs and/or a negative water gap.

3.3 Glacier representation

The new glacier module captures the general behaviour of glaciers: both spatial patterns of glacier elevation changes and445

temporal patterns of mass balances are roughly reproduced (see Figure 8A,B,C,D,E, and F), even though the model shows

biases for individual glaciers in mass balance (see Figure 8G) or retreat (see rapid retreat of Mer de Glace in Figure 8B).

Generally, mass balances are slightly better captured for larger (area > 8 km2) than for smaller glaciers (see Figure 8G).

Figures 8H and I show the results from the equilibrium-experiment based on Zekollari et al. (2020b). We see that most larger

glaciers find an equilibrium over time, although there is significant commited mass loss with some glaciers collapsing over time450

(Figure 8I). Overall, we end up with 40% committed mass loss in 2018, which was also found by Zekollari et al. (2020b). Our

modelling scheme thus captures the general behaviour of long-term glacier responses, with glacier retreat adjusting to a new

steady-state condition. However, on average glaciers respond relatively faster than in the reference dataset, both for the total

ice volume (Zekollari et al. (2020b): 33 years in 2018; here we have 24 years) and for the individual glaciers (Zekollari et al.

(2020b): on average 49 years; here 43 years). Again, larger glaciers show better performance than smaller glaciers (Figure 8H).455

In conclusion, our model evaluation shows that the new glacier module works reasonably well for the total of alpine glaciers

(see Figure 8I) and for larger glaciers (see Figure 8G and H), while it can be significantly biased at the scale of individual or

small glaciers (see Figure 8G, H and I).

The addition of the glacier module mainly improves discharge simulations in highly glacierized catchments (see Figure 6E

and Figure 7F). The positive effect of glaciers is much less visible in catchments with a small snow fraction, although some460

individual rainfall-dominated catchments also show a slight improvement in discharge simulations as a result of adding a glacier

module (see Figure 7E). Furthermore, our results indicate that in certain regions, especially around the Rhone river in south-

western Switzerland, discharge performance can decrease with the addition of glaciers (see Figure 6E). Such performance

decrease generally occurs in catchments with a negative water gap or reservoirs (see Figure 7F).
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Figure 5. Snow representation for different elevation zones and regions. Average snow climatology over Switzerland (top row) and Austria

(middle row) for grid cells at elevations between 0-1000 m (A and D), 1000-2000 m (B and E) and 2000-3000 m (C and F) derived from the

gridded simulations and reanalysis products. The reference products are the OSHD reanalysis for Switzerland and the SNOWGRID product

for Austria. The bottom row shows KGEs of SWE time series at different measurement stations of Fontrodona-Bach et al. (2023b) over

Switzerland (G; 251 stations) and the full Alpine domain (H; 1047 stations) for different model runs and reanalysis products. For G and H,

note that roughly 3 to 10 per cent of stations have a KGE < -1 (>30 per cent for CERRA-Land and ERA5-Land).
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Figure 6. Model performance and its changes for discharge at the measurement stations for different adjustments in the snow routine.

(A) Absolute KGEs for the CERRA-CHELSA benchmark run. Changes in performance (KGESS) with respect to the CERRA-CHELSA

benchmark run for different model configurations: (B) Transport, (C) Uncalibrated snow, (D) Calibrated snow, (E) Snow and glacier and

(F) Full model (including soil thickness change). (G) Distribution of KGE scores for the different model runs across catchments. Note that

roughly 6 percent of stations have a KGE smaller than -1 and fall outside of the bounds.

3.4 Soil partitioning465

Model performance for soil moisture varies over the domain (see Figure 9A and B), with generally higher performance in

flatter low-elevation areas (such as the Rhone Valley, the Po Plain or the Rhine Valley) and lower performance over hilly or

mountain areas. Implementing the soil changes has a mixed effect on performance: generally it improves performance in areas

where the model was already performing well (i.e. the lower flatlands) and worsens performance in locations with lower model

performance (see Figure 9C).470

Over the entire domain, the changes made to the soil module, i.e. to the runoff partitioning, generally increase model perfor-

mance for discharge (see Figures 6F). The improvements in discharge performance are strongest in catchments with lower snow

fractions (<0.3; see Figure 7H) and are generally independent of the catchment area (see Figure 7G). Discharge performance

slightly decreases in catchments with negative water balance gaps (see Figure 7G, H, and I).
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Figure 7. Model performance change for discharge (KGESS) at the measurement stations after introducing different adjustments to the

model. The model performance changes are compared to catchment characteristics. Top row: effect of the combined snow changes on

discharge simulations (difference between the Calibrated snow and the CERRA-CHELSA benchmark runs); middle row: effect of the intro-

duction of glaciers (Snow and glaciers vs. Calibrated snow); and bottom row: effect of the changes made to the soil (Full model vs. Snow and

glaciers). (A), (D) and (G) show the dependence of model performance changes for discharge on the water gap and catchment area; (B), (E)

and (H) on the water gap and snowfall fraction; and (C), (F), and (I) on the water gap and glacier area fraction. Note that roughly 3 percent

of stations have a water gap larger than 1 and fall outside of the figure bounds.
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Figure 8. Evaluation of the glacier scheme newly integrated in the hydrological model. Top row shows the elevation change over 2010–

2019 for the region around Glacier d’Argentière (A. observations; B. model) and around the Aletsch Glacier (C. observations; D. model).

Observations from Hugonnet et al. (2021a), outlines from GLIMS Consortium (2018). (E) and (F): Annual time series of simulated against

observed mass balance in meters water equivalent per year (observations Aletsch: GLAMOS - Glacier Monitoring Switzerland (2022);

Argentière: World Glacier Monitoring Service (WGMS) (2023)). (G) Comparison of modelled mean mass balance (2010–2019) of small

and large glaciers against observations in meter water equivalent per year (16 glaciers;World Glacier Monitoring Service (WGMS) (2023)).

Finally, the response of glaciers to continuous forcing with the mean mass balance from 1990–2018 (see Section 2.4). (H) Comparison of

e-folding response time to modelled estimates from Zekollari et al. (2020b) (136 glaciers). (I) Evolution of glacier volume over time under

this continuous forcing.
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Figure 9. Comparison of soil moisture simulations against the ESACCI satellite observations. We show the Spearman correlation between

the Snow and glacier (A) and Full model runs (B) against the ESACCI observations. (C) Difference in Spearman correlation coefficients

between the Full model and the Snow and glaciers run. White areas indicate regions which had too many days without data (more than 50%

of the time).

Table 3. Summary of the effect of the different model implementations on discharge simulations. The symbols have the following meaning:

↑: improvement, ↑↑: large improvement, ↓: worsening, ↓↓: large worsening, -: no effect, ∼: substantial but mixed effect.

Catchment type Meteorological forcing Snow module Glacier module Soil partitioning

Small catchments ∼ - - ↑
Large catchments ∼ - - ↑

Natural rainfall dominated catchments ∼ - - ↑↑
Natural snowfall dominated catchments ∼ ↑ ↑ ∼

Natural glacierized catchments ∼ ↑ ↑↑ -

Regulated catchments ∼ ↓ ↓ -

3.5 Evaluation of new model setup and its transferability in time475

Our new model setup, which includes updated snow, glacier and soil modules, leads to general performance increases in

streamflow simulations compared to the existing PCR-GLOBWB 2.0 setup, with performance depending on catchment char-

acteristics (see Figure 10 and the summary provided in Table 3 and Figure 12). Catchment area and the water balance gap are

major controls of absolute model performance for discharge in terms of KGE, which is highest in large and natural catchments,

in which the water balance is nearly closed (see Figure 10A). Similarly, the model performs well in snow covered and glacier-480

ized catchments, where the model additions lead to a substantial improvement in model performance for discharge (see Figure

10B, C, E, and F). In contrast, the model adjustments can decrease performance in catchments with a water balance gap (see

Figure 10D, E, and F).
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Figure 10. Model performance of the Full model run for discharge (top row) and the total model performance changes for discharge compared

to the CERRA-CHELSA benchmark run (bottom row) in the evaluation catchments in relation to different catchment characteristics: water

gap and catchment area (A,D), water gap and snowfall fraction (B,E), and water gap and glacier area fraction (C,F). Note that roughly 3

percent of stations have a water gap larger than 1 and fall outside of the figure bounds.

Finally, we study the extent to which model performance for SWE and streamflow simulations remains stable under varying

climate conditions, i.e. for periods with low vs. high average temperature. Model performance for discharge and SWE differs485

between the two evaluation periods representing different average temperature conditions, with performance change depending

on the region (see Figure 11). The simulated average snow conditions over Switzerland still match observations very well

over both evaluation periods (see Figure 11C). In contrast, simulated discharge performance differs for the calibration and

evaluation periods (see Figure 11D and E). However, performance of discharge simulations can both increase and decrease

during the evaluation period as compared to the calibration period depending on the catchment. These changes have similar490

magnitudes as the changes due to different forcing datasets (compare to Figure 4G,H, and I). Overall, the warmer Evaluation

II period shows a slight drop in median performance of streamflow simulations compared to Evaluation I period (see Figure

25

https://doi.org/10.5194/egusphere-2024-3072
Preprint. Discussion started: 16 December 2024
c© Author(s) 2024. CC BY 4.0 License.



19
92

19
96

20
00

20
04

20
08

20
12

20
16

8

10

12

Te
m

pe
ra

tu
re

 [
C

]

Evaluation I Evaluation IICalibration

A.

Annual temperature
Mean 1990-1999

Mean 2000-2009
Mean 2010-2019

Sep Dec Mar Jun Sep0.0

0.1

0.2

0.3

SW
E 

[m
]

B.
Average over Switzerland

2000-2009
OSHD Mean
OSHD Std
Full model

Sep Dec Mar Jun Sep0.0

0.1

0.2

0.3

SW
E 

[m
]

C.
Average over Switzerland

2010-2019

4°E 8°E 12°E 16°E

44°N

46°N

48°N

50°N

D. Evaluation I vs Calibration

0.25 0.00 0.25
KGESS

4°E 8°E 12°E 16°E

E. Evaluation II vs Calibration

0.25 0.00 0.25
KGESS

Evaluation I

C
alibration

Evaluation II

1.0

0.5

0.0

0.5

1.0

KG
E

F.

Median

0 30 60  #

0 30 60  #

0 30 60  #

Catchment:
with reservoir without reservoir

Figure 11. Dependence of model performance of the Full model run on time period and average temperature climatology. (A) Mean annual

air temperature during the two evaluation and the calibration periods. Average climatology of snow over Switzerland for (B) 2000–2010 and

(C) 2010–2019. Comparison of the performance of discharge simulations (KGESS) for (D) Evaluation period I and (E) Evaluation period II

against the one in the calibration period. (F) Distribution of KGE scores over the three periods across the evaluation catchments.

11F). This change is, however, small, indicating that performance remains stable over time and is only weakly influenced by

changing climate conditions such as increasing temperatures.

4 Discussion495

4.1 Evaluation and recommendations for further model development

Our new model setup generally led to increased model performance compared to the old setup: structural and parameter

changes applied to the snow, glacier and soil modules improved both SWE and discharge simulations (Figures 6, 7, 5, and 10).

This highlights the importance of improving process representation in hyper-resolution modelling efforts.

Updating the runoff partitioning in the soil leads to a clear improvement in the simulation of discharge in natural catchments500

(Figures 6F and 7G,H, and I; column "Soil partitioning" in Table 3), with rainfall-dominated catchments (≈ less than 30%

snowfall) benefiting the most (Figure 7G,H). This major increase in model performance is caused by a modest change in the

26

https://doi.org/10.5194/egusphere-2024-3072
Preprint. Discussion started: 16 December 2024
c© Author(s) 2024. CC BY 4.0 License.



soil parameters, supporting the suggestion that the move to hyper-resolution requires careful review of parameterizations in

LHMs (Hoch et al., 2023). Still, absolute performance in smaller rainfall-dominated catchments remains relatively limited

(Figure 10A and B). In addition, soil moisture representation did not improve in regions that already had poor performance505

(Figure 9C and D). Please note that the reference product used for computing model errors can have its own biases (Dorigo

et al., 2015, 2017) and error estimates might therefore not be entirely representative. The representation of soil moisture and

fast discharge responses thus needs to be further improved if LHMs are supposed to be applicable at smaller spatial scales.

These further improvements can come from two directions: first, soil heterogeneity could be included in models in more detail.

For example, Van Jaarsveld et al. (2024) suggested that sub-grid scale land cover variability could still be important in hyper-510

resolution modelling and we hypothesize that this would also improve the representation of spatial variations in discharge

behaviour. However, including this information would come at the cost of increased computational demands. Second, more

explicit consideration of hill-slope processes such as preferential flow in the model structure (e.g. Rahman and Rosolem, 2017;

Gharari et al., 2019; Fan et al., 2019) could lead to further improvements in the simulation of flashy runoff responses.

Discharge simulations also benefit from the structural changes made to the snow module, especially in snow-dominated515

catchments (Figures 6C and 7E; column "Snow module" in Table 3). Similarly, Girons Lopez et al. (2020) found for the catch-

ment model HBV that exponential melt combined with seasonally varying DDFs improved discharge simulations, whereas

the rain-to-snow transitions improved SWE representation but led to slightly poorer results for discharge. However, whereas

our discharge simulations in most snow-dominated mountain catchments improved due to these structural changes, we noted

a slight decrease in discharge performance at lower elevations where snow contributions are less important. One reason for520

why the structural changes to the snow module are better suited for catchments in mountainous terrain might be differences in

dominant snow processes between high and low elevations, such as the frequency of rain-on-snow events. Since Magnusson

et al. (2014) built their snow model for alpine Switzerland, they might have prioritized representing melt patterns at higher

elevations with thick snow cover over patterns in flatter terrain with only limited snowfall. For example, our scheme does not

explicitly include melt due to liquid precipitation. Another reason for this slight decrease in discharge performance at lower525

elevations could be related to our choice of regionally-averaged DDFs, since in reality these DDFs show smaller-scale vari-

ability in space (e.g. with aspect, albedo, elevation,..) (e.g. Hock, 2003; Ismail et al., 2023). Such variability is not accounted

for in our model since we focused on regionally valid parameterizations instead of local solutions. However, ignoring this

variability could lead to biases in SWE representation in specific locations. More elaborate snow module formulations, such

as parameterizations that include aspect (e.g. Immerzeel et al., 2012) or radiation (e.g. Hock, 1999), could increase our ability530

to capture more detailed spatial melt patterns. However, they come at the cost of increased model complexity and a larger

number of input variables. In any case, the slight decrease in discharge performance at lower elevations was reduced via the

calibration of modelled SWE against a regional SWE reanalysis, leaving us with a good overall discharge and SWE simulation

performance (compare Figure 6C and D). The improved discharge representation after calibration highlights the performance

gains that can be achieved by including more regional data into LHMs. However, regional calibration is only possible due to535

the comparably high quality of observational and reanalysis data in Switzerland. Many other regions around the globe remain

faced with a lack of observations of water balance components (Wilby, 2019), which can make accurate regional calibration
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challenging. Furthermore, the slightly reduced performance in SWE representation over Austria (which was excluded from

calibration) compared to Switzerland already indicates that parameters can vary between regions (compare Figure 5D,E,F with

Figure 5A,B,C). Highly-detailed calibration in one region might give a false sense of accuracy when applying the set-up outside540

of the calibration region. Regionally valid datasets must thus be chosen with care .

Adding a glacier module led to general improvements in discharge simulations in glacierized catchments in the Alps, espe-

cially in catchments with a negligible or positive water gap (i.e. more observed discharge than is "expected"; see Figure 7F;

column "Glacier module" in Table 3). The effect of glaciers on general discharge performance further downstream remains545

limited (see Figure 6E), although this effect might be larger for certain months or seasons (Wiersma et al., 2022). Aside from

discharge, glacier mass balances and spatial patterns in elevation changes are also reasonably well represented (see Figure 8).

Still, we note that individual and especially smaller glaciers can show significant biases in the mass balance (see Figure 8G) and

in the response times (see Figure 8H). The generally shorter response times than in previous experiments might be partly ex-

plained by the ∆h-parameterization, which ignores potential delays in glacier response to mass changes (Seibert et al., 2018a).550

Further biases in both mass balance estimates and response times are likely related to the relatively coarse spatial resolution

of our model compared to the size of individual glaciers, which makes it more difficult to accurately describe patterns in melt

or snow accumulation for small glaciers consisting of only a few grid cells. Melt representation of individual glaciers could be

improved by resolving glaciers at higher spatial resolution than the one of the LHM, for example by including elevation zones

(Seibert et al., 2018a). Resolving glaciers at higher spatial resolution could also lead to even more realistic glacier retreat, since555

the ∆h-parameterization was originally designed for higher spatial resolutions (Huss et al., 2010) and is likely less accurate at

the coarser 30-arcsec model grid. Further gains in glacier representation could be realized by improving glacier accumulation

estimates by further developing the snow component, or by improving spatial melt patterns by varying the glacier DDF in

space (analogously to what we suggested for snow).

While the improvements in process representation generally lead to an increase in model performance for discharge, there560

are regions where the performance of discharge simulations decreases after implementing the structural and parametric changes

(see Figure 10D,E,and F). Our analysis shows that such performance decreases are common in catchments with gaps in the

water balance, which can be related to issues with the meteorological forcing, glacier melt estimates or with the representation

of water abstractions or (hydropower) reservoirs in the model. Indeed, the strongest negative performance changes after the

introduction of snow and glaciers often occur in catchments with reservoirs (see Figure 7B and F; row "Regulated catchments"565

in Table 3). In the Alps, significant glacier or snow melt occurs above hydropower reservoirs (e.g. in Switzerland, 4% of all

hydropower is related to glacier mass loss (Schaefli et al., 2019)). Hydropower severely changes flow seasonality (Arheimer

et al., 2017), essentially decoupling observed streamflow from snow and ice melt. Accurate representation of river regulation

and hydropower reservoirs is thus important, but LHMs appear to have difficulty with modelling streamflow in these regulated

catchments (Veldkamp et al., 2018; Tu et al., 2024, e.g.). These issues might become even more apparent at hyper-resolution,570

because a.) small rivers are now represented and might be affected by reservoirs that are not represented in the model, and b.)

reservoir schemes in LHMs were developed to represent regulation behaviour on a coarse grid (e.g. they mimic the combined
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effect of all reservoirs within a 50 by 50 km grid cell) and likely need an update when moving to higher spatial resolutions

(Shin et al., 2019). However, even if more reservoirs were introduced to the model, accurate discharge modelling in regulated

systems likely remains challenging due to limited data on operation strategies and regulations (Turner and Voisin, 2022). Thus,575

both improving the representing of human water management in models and collecting new data should remain an active area

of research.

Besides model structure and parameterization, the meteorological reanalysis forcing has a major influence on model perfor-

mance for discharge (see Figure 4G,H, and I; column "Meteorological forcing" in Table 3). This implies that improvements in

simulation performance that can potentially be achieved by structural changes are bounded by the quality of the meteorological580

forcing dataset, especially in a non-calibrated model set-up. Replacing the STANDARD meteorological forcing product with

CERRA-CHELSA led to an overall increase in correlation with the reference dataset (compare Figure 4A and C), but showed

mixed performance changes for discharge over the model domain (compare Figure 4G and I). This apparent inconsistency

could be related to uncertainties affecting our precipitation evaluation and the LHM. Our precipitation evaluation is likely

affected by uncertainties in the reference APGD: although the APGD is based on a particularly dense network of direct obser-585

vations, it still has uncertainties related to precipitation undercatch (for which it was not corrected), and in regions with less

dense station coverage (Isotta et al., 2015). Our evaluation of the precipitation products should therefore be interpreted as an

indication of consistency with interpolated surface measurements but not necessarily as an indication of absolute performance.

Collecting new, better, and more observations of meteorological variables over mountainous regions should thus remain a pri-

ority. The limited performance for discharge in small flashy catchments, as was pointed out before, might further prevent the590

direct translation from more accurate precipitation input to improved discharge performance. The ever-present uncertainty in

forcing datasets and their evaluation also highlights the advantage of the calibration strategy we proposed and applied here,

which focuses on processes like snow or glaciers rather than on discharge. Calibrated models can compensate for meteorologi-

cal uncertainty and model deficiencies (Refsgaard and Storm, 1996). Including the representation of processes such as snow or

glaciers into the calibration procedure avoids some parameter equifinality and preserves internal relationships (e.g. when SWE595

is accurately represented, this should lead to relatively accurate melt contributions to discharge) (e.g. Duethmann et al., 2014;

Finger et al., 2015), which facilitates identifying where models are in need for improvements. Finally, as presented in the Meth-

ods section, the STANDARD and CHELSA meteorological forcing datasets were derived using statistical or physical/heuristic

downscaling, whereas the CERRA-CHELSA dataset is based on a dynamically generated regional reanalysis product. None

of these methods used to create the hyper-resolution forcing datasets led to general improvements in simulation performance600

across the full domain. Regional differences between the datasets, observational uncertainty and deficiencies in hydrological

model structure did have a pronounced effect on model performance for discharge.

4.2 Applicability and limitations

Our new model setup generally shows a better representation of discharge than the existing hyper-resolution version of PCR-

GLOBWB 2.0 (see Figure 10 D, E, and F). Absolute discharge performance is generally satisfactory, especially at larger spatial605

scales and in natural rivers (see Figure 10 A, B, and C) and spatial patterns can be resolved in high detail (see Figure 12 A
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Figure 12. Illustration of the discharge simulations of the model with examples from hydrologically diverse river stations. (A) Average

discharge (1990–2019) over the model domain. (B.) Average discharge (1990–2019) over the Swiss canton of Grisons. The bottom two rows

show climatologies (2010–2019) of observed vs. simulated discharge for the glacier-dominated Massa at Blatten (C), the rain-dominated

Thur at Halden (D), snow-dominated Inn at Innsbruck (E), and the larger river Danube at Hainburg (F).
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and B). Applications of such hyper-resolution LHMs should thus make use of these strengths by studying spatial patterns at

larger spatial scales. Still, the model shows poor discharge simulation performance in some catchments, especially in smaller

catchments at lower elevations and in heavily regulated rivers. Users should thus be aware of such limitations when looking

at individual catchments. While the hyper-resolution simulations might not be completely accurate in certain places, they can610

still be valuable in helping to complete the spatial picture and enable studying spatial variability (Seibert et al., 2018b). This is

especially true in regions where no observational data are available. There, these LHMs provide a first order estimate of river

discharge, without requiring local calibration.

Aside from discharge, LHMs provide also information on other variables such as SWE. Although there exist many local or

national snow reanalysis products that are more accurate than our SWE simulations, semi-global products are often unrepresen-615

tative for mountain regions, since their coarse-resolution makes it difficult to represent complex terrain (Mortimer et al., 2020;

Mudryk et al., 2024). Our analysis shows that our higher resolution model setup outperforms coarser reanalysis products such

as CERRA-Land and ERA5-Land (Figure 5), but does not quite reach the performance of national-scale reanalysis products

such as the OSHD product (Figure 5G). Hyper-resolution LHMs could thus provide additional SWE products bridging the

quality gap between national and global datasets.620

How suitable is the model for climate impact assessments – a typical application that hydrological models struggle with?

While many larger-scale climate change impact assessments still use temperature-index based approaches, including studies

focusing on snow (e.g. Kraaijenbrink et al., 2021; Yang et al., 2022) or glaciers (e.g. Kraaijenbrink et al., 2017; Van Tiel et al.,

2023; Hanus et al., 2024), there is discussion about the robustness of degree-day approaches under climatic change (Carletti

et al., 2022). Our evaluation, which explicitly addressed model transferability, shows that model performance for discharge625

and SWE remains mostly consistent over the warmer and colder evaluation periods compared to the reference period (Figure

11). Furthermore, we specifically aimed for increased robustness of parameters by focusing on SWE or glacier melt instead of

streamflow during calibration. Sleziak et al. (2020) showed that the stability of hydrological model parameters such as DDFs

across periods with different climate conditions can be increased by emphasizing snow representation during calibration. We

therefore have some confidence in the transferability of our model to warmer climate conditions. Still, the general caveats of630

the model remain applicable when extrapolating into the future. For example, the glacier module shows a realistic dynamic

response to climate over larger regions, but not necessarily for each individual glacier (Figure 8). Users should be mindful of

this uncertainty in individual glacier responses to climate change. Over time, continued glacier retreat will reduce glacier melt

contributions to discharge, since globally most glaciers have either already surpassed their peak in glacier melt contributions or

will do so in the coming decades (Huss and Hock, 2018). This will lead rivers to shift towards more snow-dominated regimes635

(Farinotti et al., 2012). Further into the future (i.e. near the end of the century) the exact response will thus be less important.

In summary, the presented model setup adds value to regional scale hydrological studies, focusing on general patterns and on

larger rivers which are nearly natural to moderately regulated. Caution should be taken when interested in individual, small or

heavily regulated rivers, where catchment-scale modelling likely performs better. Still, in regions with limited data availability,

large scale model runs with global parameterization might remain the best option available even for such small rivers.640
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5 Conclusions

Hydrological processes in mountain regions control the supply of water to dependent downstream regions and are therefore im-

portant well beyond the fringe of mountains. An accurate representation of these processes in LHMs is thus crucial, especially

now that these models are moving towards higher spatial resolutions. In this paper, we proposed different model adjustments to

the well-known and frequently used PCR-GLOBWB 2.0 model in its high-resolution version to make large-scale models fitter645

for applications in mountain regions. We studied how meteorological forcing and an improved representation of snow, glaciers

and soil affect discharge in the larger Alpine region. We conclude that:

– An improved representation of snow and glaciers improves SWE and discharge simulations in high Alpine catchments

with natural flow conditions (Hypothesis 1 is supported).

– The introduction of better runoff partitioning in the soil leads to an improvement of discharge simulations in smaller650

rain-dominated catchments by increasing their flashy response to rainfall peaks. However, these catchments still show

overall weak model performance for discharge, suggesting that there is more to gain from improved routing in the soil

(Hypothesis 2 is supported).

– Meteorological forcing is uncertain over Alpine regions and different forcing datasets lead to major differences in model

performance for discharge. These differences vary spatially between different forcing datasets.655

– Discharge simulations forced by a dynamically-downscaled product (CERRA-CHELSA) did not consistently outperform

runs with the other forcing products (STANDARD and CHELSA; Hypothesis 3 is not supported)

– A major control limiting model performance for discharge in Alpine catchments remains water management such as

through hydropower plants or water transfers that are not accurately represented in the model, which should be a priority

of future model development.660

– Finally, we presented a new model setup with an improved representation of hydrological processes relevant in alpine

regions, which is well suited to study regional and larger-scale streamflow and snow patterns in and around mountain

regions. This new setup can be used to find answers to remaining questions on water resources, environmental problems

and climate impacts in the Alps and around the world.

Code and data availability.665

Code

The existing version of PCR-GLOBWB 2.0 is available on https://github.com/UU-Hydro/PCR-GLOBWB_model. The new

model changes will be made available as a separate branch on https://gitlab.ethz.ch/gjanzing/PCR-GLOBWB_model/-/tree/

alpine_model?ref_type=heads.
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Data670

We used meteorological data from several different sources. The downscaled STANDARD forcing over the model domain

from (Van Jaarsveld et al., 2024) will be uploaded to the repository EnviDat upon acceptance of this manuscript. The source

dataset W5E5v2.0 is available at (Lange et al., 2021) and the CHELSA-BIOCLIM+ climatologies are available at Brun et al.

(2022a). Forcing from the CHELSA v2.1 can be downloaded from Karger et al. (2021a). This dataset on ENVIDAT will be

updated to cover the full study period. Temperature from CERRA can be downloaded from Schimanke et al. (2021), whereas675

the precipitation of CERRA-Land can be retrieved from Verrelle et al. (2022). The downscaled CHELSA-CERRA temperature

data will be made available on EnviDat upon acceptance of this manuscript. Finally, precipitation from the APGD is available

at Isotta and Frei (2013).

The MERIT Hydro DEM is available from Yamazaki et al. (2019). For our model domain, the upscaled version will be

provided on EnviDat upon acceptance of this manuscript together with STANDARD forcing and PCR-GLOBWB 2.0 input.680

The upscaled MERIT Hydro DEM is also available at (Verkaik and Sutanudjaja, 2024).

Data on discharge, catchment area and reservoirs can be requested from the agencies or downloaded from the sources listed

in Table A1. The DEM used for catchment delineation is the COPERNICUS DEM, which is available at European Space

Agency and Airbus (2022).

The SWE OSHD dataset for Switzerland is available at Mott (2023) and the SNOWGRID dataset for Austria can be down-685

loaded from GeoSphere Austria (2022). Further snow reanalysis products used are ERA5-Land, available at Copernicus Cli-

mate Change Service (2019), and CERRA-Land, available at Verrelle et al. (2022). Finally, estimates of SWE from station data

can be downloaded from Fontrodona-Bach et al. (2023a).

Glacier volumes are available from Farinotti (2019). Remotely-sensed glacier elevation changes can be downloaded from

Hugonnet et al. (2021b). Data on mass balances of individual glaciers can be retrieved from World Glacier Monitoring Service690

(WGMS) (2023) and from GLAMOS - Glacier Monitoring Switzerland (2022). Glacier response times can be downloaded

from Zekollari et al. (2020a) and glacier outlines and glacier outlines and areas from GLIMS Consortium (2018). Glacier

percentage per catchment can be calculated from the Randolph Glacier Inventory (Pfeffer et al., 2014) and using the catchment

outlines in Table A1.

Soil moisture data (v8.1) from the ESACCI can be downloaded from Dorigo et al. (2023).695
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Appendix A: Sources for streamflow, catchment shapes and reservoirs

Table A1. Agencies and databases as sources for data on streamflow, catchment shapes and reservoirs. 1: DEM used is the COPERNICUS

DEM (European Space Agency and Airbus, 2022).

Country Data Type Sources Link

Austria Streamflow Austrian Ministry of Agriculture,

Forestry, Regions and Water

Management

https://ehyd.gv.at/

Catchment Shapes Large-Sample Data for Hydrology and

Environmental Sciences for Central

Europe (Klingler et al., 2021)

Reservoirs Austrian Ministry of Agriculture,

Forestry, Regions and Water

Management; Simmler (1961); Partl

(1977)

https://www.bml.gv.at/

France Streamflow Ministry of the Environment,

Sustainable Development and Energy

(Banque HYDRO)

https:

//www.hydro.eaufrance.fr/

Catchment Shapes delineated from DEM1

Reservoirs Comité Français des Barrages et

Réservoirs

https:www.barrages-cfbr.eu

Germany Streamflow Bavarian State Office for the

Environment and the State Institute for

the Environment Baden-Württemberg

https://www.lfu.bayern.de and

https://www.lubw.

baden-wuerttemberg.de

Catchment Shapes State Institute for the Environment

Baden-Württemberg, delineated from

DEM1

https://www.lubw.

baden-wuerttemberg.de

Reservoirs Speckhann et al. (2020, 2021)

Italy Streamflow Regional Environmental Agencies

from Lombardia, Aosta, and Piemonte

https://www.arpalombardia.it;

http://presidi2.regione.vda.it/

str_dataview_download and

http://www.arpa.piemonte.it

Catchment Shapes delineated from DEM1

Reservoirs AQUASTAT Geo-referenced Database

on Dams; the Italian Ministry of

Infrastructure; OpenStreetMap

https://www.fao.org/aquastat/

en/databases/dams;

http://dati.mit.gov.it/catalog/

dataset/grandi-dighe-italiane

Switzerland Streamflow Federal Office for the Environment https://www.bafu.admin.ch

Catchment Shapes Federal Office for the Environment https://www.bafu.admin.ch

Reservoirs Federal Office for the Environment https://www.bafu.admin.ch

34

https://doi.org/10.5194/egusphere-2024-3072
Preprint. Discussion started: 16 December 2024
c© Author(s) 2024. CC BY 4.0 License.



Appendix B: ∆ h-parameterization

The following detailed description of the ∆ h-parameterization is based on Seibert et al. (2018a) and Huss et al. (2010).

Each glacier has a minimum surface elevation Emin and a maximum surface elevation Emax. This topographic range of the

glacier surface can be split into N elevation zones (in our case into 20 steps, with Emin and Emax rounded to the nearest multiple700

of 50). Each elevation zone Ei with 1 <= i <= N is then normalized to :

Ei,norm =
Emax−Ei

Emax−Emin
(B1)

The surface elevation of a glacier responds to glacier mass loss in a specific way that depends on its surface elevation. Huss

et al. (2010) provided an empirical relationship between the normalized elevation zone Ei,norm and the normalized (unitless)

change in water equivalent of the glacier ice within this elevation zone ∆hi,norm;705

∆hi,norm = (Ei,norm + a)γ + b(Ei,norm + a) + c, (B2)

with a, b, c, and γ as empirical coefficients. Huss et al. (2010) provided three different sets of values for these empirical

coefficients based on the initial surface area of the glacier.

Next, we need to couple this theoretical unitless ice thickness change to the actual observed mass loss. This is done by

means of a scaling factor fS (m). This scaling factor is the ratio between the total mass loss over the glacier ∆M (m) and the710

integrated normalized change in surface elevation, scaled by the surface area of the elevation zone Ai (as a fraction of the total

glacier area).

fS =
∆M

∑N
i=1 Ai ∗∆hi,norm

(B3)

Now, we can compute the new water equivalent for each elevation zone after a certain amount of mass loss.

hi,k+1 = hi,k + fS∆hi,norm, (B4)715

with k = 0 as the initial glacier profile and hi (m) is the ice thickness (m water equivalent) in each cell in that specific elevation

zone. Huss et al. (2010) restricted surface elevation lowering at the edge of the glacier (where h < 10 m). Here, we do not

apply this because our grid cells are much coarser than those they used and the ice thickness is thus almost never that thin.

Finally, we make sure that cells can not have less than 0 ice thickness. Any leftover mass loss is distributed over the rest of the

glacier. Note that we apply this procedure to all glaciers independent of size. However, this scheme will hardly affect glaciers720

consisting of only a few cells, which are mostly governed by the mass balance per grid cell. For larger glaciers, this scheme

becomes more important.
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Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari,

M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily precipitation in the
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