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Abstract. Atmospheric CO2 concentrations over urban areas indirectly reflect local fossil fuel emissions and biogenic fluxes,1

offering a potential approach to assess city climate policies. However, atmospheric models used to simulate urban CO2 plumes2

face significant uncertainties, particularly in complex urban environments with dense populations and vegetation. This study3

aims to address these challenges and fill the research gap regarding such vegetated and urbanized areas by conducting a com-4

prehensive analysis of atmospheric CO2 dynamics in the Metropolitan Area of São Paulo, Brazil, and its surroundings, using5

the WRF-GHG atmospheric model. The simulations are evaluated using observations from ground stations collected across6

the METROCLIMA GHG network, the first greenhouse gas monitoring network in South America, and column concentrations7

(XCO2) from the OCO-2 satellite spanning February to August 2019. We also assess and improve the performances of the bio-8

spheric model Vegetation Photosynthesis and Respiration Model (VPRM) by optimizing the model parameters of the dominant9

vegetation types (Atlantic forest, cerrado, sugarcane) using flux measurements from multiple eddy-covariance flux towers. We10

evaluate the atmospheric model’s ability to replicate seasonal variations in CO2 concentrations by comparing the simulations11

with measurements from two sites part of the GHG network in Sao Paulo. We conclude here that atmospheric concentrations12

over metropolitan areas located in tropical areas largely depend on our ability to represent the biogenic contribution from the13

surrounding vegetation, the large-scale contribution in global models, and the model’s ability to represent the local atmospheric14

dynamics.15

1 Introduction16

Urban areas, although occupying only a small fraction of the Earth’s surface, exert an outsized influence on global carbon17

emissions. Accounting for a staggering 70% of CO2 emissions from fossil fuel burning while covering just 2% of the planet’s18
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landmass (Seto et al., 2014; Change et al., 2014), cities have become focal points for climate action. The relentless pace of19

urbanization has further exacerbated this phenomenon, driving up energy consumption and emissions levels (Seto et al., 2012).20

Consequently, combating climate change necessitates a targeted approach, with policies increasingly tailored to address urban21

emissions. In response to the growing need for climate action, initiatives like the International Council for Local Environmen-22

tal Initiatives (ICLEI), the C40 Cities Climate Leadership Group (C40), and the Covenant of Mayors (CoM) have emerged to23

coordinate global efforts and share best practices among cities. These initiatives highlight the crucial role cities play in the fight24

against climate change and the importance of localized mitigation strategies. São Paulo, Brazil’s largest municipality (IBGE,25

2021), is a member of C40 and focuses on reducing greenhouse gas emissions, with transportation accounting for 58% of its26

total emissions (SEEG, 2019). The city is working towards carbon neutrality through projects in green infrastructure, urban27

planning, public transportation improvements, energy efficiency, and waste management (Caetano et al., 2021). These efforts28

aim to reduce emissions and enhance São Paulo’s resilience, fostering a more sustainable urban environment. Central to these29

efforts is the need for accurate data and robust modeling frameworks to inform policy decisions effectively. Urban atmospheric30

networks, such as Metroclima in the Sao Paulo Metropolitan Area (MASP), in Brazil, provide vital insights into greenhouse gas31

concentrations and emission patterns. By leveraging these datasets alongside sophisticated atmospheric transport models and32

statistical techniques, policymakers gain tools for designing targeted interventions and monitoring their efficacy. However, the33

complexity of urban CO2 dynamics presents significant challenges for modeling and analysis. Process-driven biosphere mod-34

els and inverse modeling techniques offer complementary approaches for capturing the intricate spatio-temporal variabilities35

inherent in urban environments (Kaiser et al.; Che et al., 2022; Zhang et al., 2023; Wilmot et al., 2024). Despite advancements36

in modeling capabilities, gaps remain in our understanding of CO2 dynamics, particularly at regional and national scales.37

South America, in particular, suffers from limited data availability, and research focusing on this region is scarce. Additionally,38

vegetation models in tropical regions often exhibit poor performance due to inaccuracies in simulating seasonality, oversim-39

plified representations of biodiversity, and errors in carbon and water cycle interactions. These models struggle to capture the40

complex dynamics of tropical ecosystems, leading to underestimations of productivity and poor predictions of vegetation re-41

sponses to climate variability (De Pue et al., 2023; He et al., 2024). This study aims to address these gaps by conducting a42

comprehensive analysis of anthropogenic and biospheric CO2 dynamics near the MASP. By utilizing the Weather Research43

and Forecasting model coupled with chemistry (WRF-GHG) coupled to the Vegetation Photosynthesis and Respiration Model44

(VPRM) (Mahadevan et al., 2008) integrated with vehicular emissions from VEIN model (Ibarra-Espinosa et al., 2018) and45

industrial sector emissions (EDGAR), we seek to elucidate the underlying drivers of CO2 variability. In addition, we utilized46

data from the OCO-2 satellite to cover the study domain, comparing smoothed XCO2 concentrations derived from WRF-GHG47

(considering biogenic and anthropogenic emissions). Through a combination of model simulations, field observations, and48

satellite data analysis, this study seeks to provide an understanding of CO2 dynamics in urban environments. This is the first49

study in this field conducted in any city in the Global South, making it an innovative effort with significant implications. By50

setting a precedent, this research paves the way for future studies, contributing to a more comprehensive global picture of CO251

dynamics in urban environments.52
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2 WRF-GHG53

2.1 Model set-up54

A set of high-resolution simulations of atmospheric Greenhouse Gas concentrations were performed with the Weather Research55

and Forecasting model coupled with Chemistry (WRF-Chem V4.0) and a modified version of the greenhouse gas chemistry56

module (WRF-GHG) (Beck et al., 2011). The WRF-GHG was used to simulate the transport of the mole fraction of CO2,57

and no chemical processes or reactions have been used in this modified version (Beck et al., 2013). The period that has been58

simulated was from 1 February to 31 August, 2019. This period was selected due to available data from monitoring stations59

from the Metroclima network for CO2. The simulations were made for each month. For each run, the simulation was initiated 560

days before and these 5 days were discarded as spin-up time. The single modeling domain was centered at 23.5°S and 46.3°W61

with a horizontal grid spacing of 3 km as shown in Figure 1, projected on a Lambert plane and consists of 166 grid points62

in the west-east direction, 106 grid points in the north-south direction, and 34 vertical levels that extend from the surface63

up to 50 hPa (20 km), as used in previous studies for this same area (Andrade et al., 2015; Vara-Vela et al., 2016; Gavidia-64

Calderón et al., 2023; Benavente et al., 2023). The meteorological initial and boundary conditions to drive the simulations were65

obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) global ERA5 reanalysis data set with66

0.25º × 0.25º horizontal resolution and 6-hourly intervals (Hersbach, 2016), while chemical initial and boundary conditions67

were obtained from Carbon Tracker and have a horizontal resolution of 3° in longitude and 2° in latitude, with 25 vertical68

layers (http://carbontracker.noaa.gov). This global dataset was interpolated to provide the lateral boundary conditions for CO269

simulations and ensure consistency with the input data for WRF-Chem. The main physics and chemistry options used in this70

study are listed in Table 1.71

2.1.1 Anthropogenic Emissions72

In MASP, the vehicular fleet represents the main source of CO2 emissions (CETESB, 2019). Therefore, in this study, we73

used the Vehicle Emission Inventory model (VEIN), developed to identify the emissions contribution from mobile sources,74

considering exhaust, and evaporative, performing speciation, and incorporating functions to generate and spatially allocate75

emissions databases (Ibarra-Espinosa et al., 2018). It allows the users to load their emission factors, which we used derived76

from experimental campaigns conducted in different traffic tunnels in the megacity of São Paulo (Nogueira et al., 2021). The77

VEIN model reads and distributes by age of use, extrapolates hourly traffic data, and estimates emissions hourly and spatially.78

We also incorporated other emissions from the energy and industrial sectors obtained from EDGAR (Crippa et al., 2021).79

2.1.2 Biogenic Fluxes80

Biogenic CO2 fluxes were simulated offline using the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan81

et al., 2008), implemented as a module within the WRF-GHG. This model estimates net ecosystem exchange (NEE) by calcu-82
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Figure 1. (a) The terrain height and highlight of the MASP area and (b) land use category map of the model domain (D01) considered in the

WRF-GHG model and the locations of the CETESB and METROCLIMA monitoring stations.

Table 1. WRF-GHG Simulation Design.

Atmosphere Schemes

Scheme Type Description/Reference

Microphysics Two-moment Morrison scheme (Morrison et al., 2009)

Longwave radiation RRTMG (Iacono et al., 2008)

Shortwave radiation RRTMG (Iacono et al., 2008)

Boundary layer YSU (Hong et al., 2006)

Land surface Noah LSM Unified scheme (Tewari et al., 2007)

Initial and Lateral Boundary Conditions

Meteorological ERA5 0.25◦, 34 pressure levels

Chemical Carbon Tracker 25 vertical layers

Emissions Inventories/Model

Anthropogenic EDGAR v6.0 (Crippa et al., 2021) and VEIN (Ibarra-Espinosa et al.,

2018)

Biogenic VPRM (Mahadevan et al., 2008)
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lating the difference between gross ecosystem exchange (GEE) and ecosystem respiration (R), where negative fluxes indicate83

CO2 absorption by ecosystems (Equation 1).84

NEE = GEE−R (1)85

The meteorological variables 2m air temperature (T) and downward shortwave radiation (PAR) from WRF model simula-86

tions were used to calculate the GEE (Equation 2) and Respiration (Equation 3) fluxes. Additionally, factors such as the light87

use efficiency (λ), PAR saturation (PAR0), and the Enhanced Vegetation Index (EVI), which refer to the fraction of shortwave88

radiation absorbed by leaves were used to calculate GEE. The temperature sensitivity of the photosynthesis parameter (Tscale)89

and the effects of leaf age on canopy photosynthesis parameter (Pscale) were both calculated as functions of the land surface90

water index (LSWI) to identify the green-up (leaf expansion) and senescence phases (Mahadevan et al., 2008). These vegeta-91

tion indices were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data from MOD09A192

Version 6 (Vermote, 2021).93

GEE = λ×Tscale ×Pscale ×Wscale ×EV I × 1
1 + PAR

PAR0

×PAR (2)94

Respiratory fluxes (R) were estimated using a linear model based on air temperature and two parameters that represent the95

linear sensitivity of respiration to air temperature (α) and the baseline respiration (β), as defined in Mahadevan et al. (2008).96

R = α×T + β (3)97

The land cover data used by the VPRM were derived from the MapBiomas data (Souza Jr et al., 2020). The VPRM param-98

eters (λ, PAR0, α, β) were optimized against flux tower NEE for the main land cover type over the study domain.99

2.1.3 Meteorological data100

Meteorological data from the São Paulo State Environmental Protection Agency (CETESB) air quality network were used to101

evaluate the model’s performance in simulating meteorological fields. CETESB manages automatic and manual air quality102

stations over São Paulo state. These stations provide hourly information on meteorological and pollutant parameters, such103

as air temperature, wind speed, and wind direction (Table 2), as well as the concentration of air pollutants. Monitoring fol-104

lows instrumentation standards and directives from the Environmental Protection Agency (US EPA) and the World Health105

Organization (WHO) respectively for air pollutants, and from the World Meteorological Organization (WMO) for meteoro-106

logical variables (CETESB, 2019). The air quality and meteorological data are continuously published on the Qualar website107

(https://qualar.cetesb.sp.gov.br/qualar/). This study used data from four stations located in the MASP (Figure 1): Parque D.108

Pedro II, Pico do Jaraguá, Guarulhos, and Pinheiros. Table 2 provides the location of the sites, the classification type of the109

stations, the observed variables, and the data source.110

5

https://doi.org/10.5194/egusphere-2024-3060
Preprint. Discussion started: 24 October 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 2. Location of the sites used for the model evaluation of the meteorological drivers, together with a list of the meteorological variables

included in the analysis.

Sites Location Classification Variables Source Data

Parque D.Pedro II 23.54S, 46.63W Urban T2, Wd, Ws CETESB

Pico do Jaraguá (PDJ) 23.45S, 46.76W Park T2, Wd, Ws and CO2 CETESB/ METROCLIMA

Guarulhos 23.46S, 46.52W Urban T2, Wd, Ws CETESB

Pinheiros 23.46S, 46.70W Urban T2, Wd, Ws and CO CETESB

IAG 23.55S, 46.73W Urban Park CO2 METROCLIMA

2.2 CO2 observational data111

2.2.1 Ground-based observations112

For the surface model evaluation, we used CO2 data from the METROCLIMA network in São Paulo (see Table 2), the first113

conventional in situ greenhouse gas measurement network established in South America (www.metroclima.iag.usp.br). The114

network comprises four continuously operating monitoring stations, all located within the MASP and equipped with cavity115

ring-down spectroscopy instruments (Picarro) that measure the concentrations of CO2 following the directives from WMO.116

The monitoring stations are located at various locations within MASP: in a vegetated area at the extreme west (Pico do Jaraguá,117

PDJ); in a suburban area in the center-west, inside the campus of the University of São Paulo (IAG); at the top of a 100 m118

building (ICESP); and in an urban area in the east zone characterized by heavy traffic in the neighborhood (UNICID). However,119

we only used data from the IAG and PDJ sites, the only two that monitored CO2 for the period chosen in this study, before the120

Covid-19 pandemic period (Souto-Oliveira et al., 2023).121

2.2.2 CO2 fluxes data122

In this study, the VPRM model computed the biosphere fluxes for 5 different plant functional types (PFT), representing different123

vegetation land covers, and for that required a set of four model parameters for each vegetation class, dependent on the region124

of interest. Ideally, these parameters are optimized using a network of eddy flux towers for each PTF over the domain. The125

VPRM parameters were optimized for only three plant functional types (PFT) corresponding to the three ecosystems observed126

by eddy-covariance flux towers. However, these three PFT represent almost 60% of land covers over the domain (i.e. sugarcane127

- 23.86%, Atlantic Forest - 34.86%, and cerrado - 0.91%). We used a set of parameters optimized by Botía et al. (2022) for the128

remaining PFT’s, such as grasses and mixed forest, based on measurements from sites in the Amazon region in Brazil, deployed129

in the context of the Large Scale Biosphere-Atmosphere Experiment (LBA-ECO) (Botía et al., 2022). The methodology for130

optimizing the VPRM parameters for the Atlantic Forest used data from Serra do Mar State Park in São Paulo State, Brazil131

(23°17’, 45°03’ at 900 m altitude) for the period from January to 2015 to December 2015 (Freitas, 2012). For cerrado, we132

used observed data from Pé Gigante, in São Paulo, Brazil (21° 36 ’S, 47° 34’W at 660m) from January 2015 to January 2017133
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(Rocha et al., 2002). For sugarcane we used data from the municipality of Pirassununga, in São Paulo State, Brazil (21° 57’S,134

47° 20’W at 655 m altitude) for the period from November 2016 to August 2017 (Cabral et al., 2020). The VPRM parameters135

were optimized separately for each PFT using half-hourly observed fluxes from the flux towers over the entire observation136

periods. We optimized the parameters for the GEE and R simultaneously, and for the default VPRM parameters we used137

non-linear least squares minimization, between the modeled NEE and the flux tower estimation of the observed NEE. In the138

optimization, the VPRM model is driven by the meteorological measurements of the sites and their specific land covers. The139

vegetation indices (EVI and LSWI) were derived from the product MOD09A1 of MODIS at 500 m resolution and 8-daily140

frequency using Google Earth Engine.141

2.2.3 XCO2 satellite observations142

Satellite-based XCO2 observations were utilized in addition to surface CO2 measurements over the study domain. OCO-2,143

NASA’s inaugural Earth remote sensing satellite dedicated to atmospheric CO2 observations, was launched in 2014 (Crisp,144

2015). Operating on a solar synchronous orbit, OCO-2 conducts global measurements of CO2 absorption and emission at 13:30145

Local Solar Time. The OCO-2 observation data utilized were ACOS L2 Lite Output Filtered with oco2-lite_fle_prefilter_b9,146

which were converted from Level 1 radiance to Level 2 data using the ACOS retrieval algorithm developed by O’Dell et147

al. (2012). Data quality assessment for OCO-2 observations can be performed using the xco2_quality_flag and warn_level148

parameters, as detailed in the OCO-2 Data Product User’s Guide (Osterman et al.). In this study, we considered only OCO-2149

data with a ’0’ xco2_quality_flag value that indicates "good" quality. Initially, simulated CO2 concentrations were interpolated150

to match the latitude, longitude, horizontal resolution, and vertical levels of OCO-2 data. Due to the difference in data types151

and units between the simulated CO2 concentrations and observed XCO2 from satellites, a conversion was necessary prior to152

comparison. Consequently, CO2 concentrations simulated at each pressure level in WRF-GHG were transformed into XCO2153

concentrations following the methods by Connor et al. (2008) and O’Dell et al. (2012), as follows:154

XCOmodel
2 = XCO2a +

∑

i

wT
i Ai(COinterp

2 −CO2a)i (4)155

where XCO2a is a priori XCO2, wT
i is the pressure weighting function, Ai is the column averaging kernel, COinterp

2 is the156

interpolated simulated CO2 concentrations of WRF-GHG, and CO2a is a priori CO2.157

2.3 Evaluation metrics158

Several statistical metrics are available for assessing the effectiveness of atmospheric models. These include mean bias er-159

ror (bias, Equation 5), indicating the average difference between the simulation and the observation; root-mean-square error160

(RMSE, Equation 6), which quantifies the square root of the average squared deviation between simulation and observation;161

and the correlation coefficient (R2, Equation 7), representing the degree and direction of the linear connection between the162

simulation and the observation. To evaluate the model results, bias, root mean square error (RMSE), and correlation (R2) were163

utilized and computed as follows:164
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Bias =
∑N

i=1(predi − obsi)
N

(5)165

RMSE =

√∑N
i=1(predi − obsi)2

N
(6)166

R2 =
∑N

i=1(predi − predi)(obsi − obsi)√∑N
i=1(predi − predi)2

∑N
i=1(obsi − obsi)2

(7)167

where predi is the model simulation value, obsi is the observed value, and N is the number of observations.168

3 Results169

Hourly simulations were conducted from 1 February to 31 August 2019, with each month simulation including a five-day170

spin-up period. In the following sections, the performance of meteorological drivers will be first presented, followed by the171

terrestrial surface CO2 fluxes and atmospheric CO2 concentrations from the IAG station and Pico do Jaraguá (PDJ) stations.172

These measurements were used to evaluate the model performances and to assess the local impacts of the main CO2 sources173

and sinks on atmospheric CO2 concentrations.174

3.1 Model performance for meteorological drivers175

The assessment of the meteorological model performances is essential for accurately simulating greenhouse gas concentrations.176

In this study, the model represented the temporal variability and trends of 2-meter temperature (T2m), 10-meter wind speed177

(WS), and direction (WD) throughout the simulation period, as illustrated in Fig. 2 and the supplementary material. The WRF-178

GHG model effectively captured significant changes in the observed variables, although it failed to accurately represent the179

maximum and minimum peaks, particularly for wind speed. The simulated 2-meter temperature tended to overestimate values180

at specific sites, such as Parque D. Pedro II (bias = 0.5°C), Guarulhos (bias = 0.1°C) (see figure A1a and A2a in Appendix), and181

PDJ (bias = 0.7°C) (see Figure 2a). However, at the Pinheiros station, the simulated surface temperature was underestimated182

(bias = -0.7°C) (Figure A3a in Appendix).183

In terms of biases, the model overestimated the wind speed at all sites (bias < 1.5 ms−1), with Pico do Jaraguá exhibiting the184

highest mean bias (1.4 ms−1). This overestimation could be attributed to the model’s misrepresentation of land use, leading185

to elevated wind speeds in areas classified as urban rather than vegetated. Notably, numerical models tend to lack sensitivity186

in simulating very low-velocity speeds due to imperfections in land surface processes and the model’s ability to accurately187

resolve topographical features (Shimada et al., 2011; Zhang et al., 2009; Vara-Vela et al., 2018, 2021). The model’s wind188

directions showed sufficient sensitivity, aligning accurately with observed values. Both the model and observations indicated189
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Figure 2. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and b) show 10 m wind speed (WS)

compared to observed data from the PDJ station. The figure illustrates the relationship between modeled and observed data. The panels in

c) show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction (WD).

Black line represents the observed data and red line represents the model simulation.
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that prevailing winds were predominantly from the southeast. In summary, the WRF model showed proficiency in reproducing190

atmospheric conditions in the study area, particularly concerning air temperature and wind Direction, with similar performances191

as previous studies (Feng et al., 2016; Deng et al., 2017).192

3.2 The VPRM Model: Evaluation with Flux Tower Data193

The optimization results are shown in Table 3. Substituting alpha and beta back into the respiration equation led to a better194

model representation of NEE compared to NEE values simulated with default parameters (Mahadevan et al., 2008) for the195

main PFT across the domain (Figure 3).

Table 3. Default (Mahadevan et al., 2008) and Optimized VPRM parameters (highlighted) for atlantic forest, cerrado and sugarcane, and for

mixed forest and grasses from Botía et al. (2022).

Default Optimized & Botía et al. (2022)

Type of Vegetation (PTFs) PARo λ α β PARo λ α β

Atlantic forest 570 0.127 0.271 0.250 178615 0.008 -0.211 4.715

Mixed forest 629 0.123 0.244 0.240 206 0.255 0.342 0.000

Grasses 321 0.122 0.028 0.480 15475 0.056 0.312 7.337

Cerrado 3241 0.057 0.012 0.580 2300 0.616 0.070 1.665

Sugarcane 2051 0.200 0.209 0.802 14550 0.049 -0.339 10.052

Urban area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

196

The optimized VPRM parameters for the Atlantic Forest exhibited the greatest discrepancies compared to other vegetation197

classes. The geomorphological characteristics of the Atlantic forest differ from those of the evergreen forest studied by (Ma-198

hadevan et al., 2008), where the default parameters (VPRM_default, represented by the red curve in Figure 3) were used. The199

optimized VPRM parameters (VPRM_opt, shown as the purple curve in Figure 3) more accurately captured the seasonal cycle200

in the daily average NEE for the three PFTs optimized in this study. The model was particularly successful in capturing the201

seasonal profile for the agricultural ecosystem, which can be attributed to the more pronounced seasonal transitions of sugar-202

cane (as indicated by the EVI), even though the low-resolution satellite indices do not fully capture the onset of the growing203

season. However, this allowed the model to better represent the GEE equation for this ecosystem. For the cerrado, the model204

smoothed the NEE peaks, and the GEE and respiration equations were also smoothed with the optimization. Optimizing the205

VPRM parameters improved the representation of the growing season, especially for the Atlantic Forest and sugarcane, while206

using either optimized or default parameters for the cerrado resulted in similar NEE simulation.207

The first panel in Figure 4 shows the monthly net CO2 flux simulated by the VPRM model for 2019. February represents a208

summer month, while August represents a winter month. The second panel shows the monthly daily net CO2 flux simulated209

at the three flux tower sites used to optimize the VPRM model parameters. In February, negative NEE values are found in the210

northern part of the MASP, while the southern part exhibits positive NEE fluxes in the coastal region. This gradient reflects211

the distribution of vegetation types, their phenology, and productivity, as well as the impact of urbanization, with null fluxes212
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Figure 3. Daily variability of NEE fluxes from the flux tower (black line), alongside NEE fluxes simulated by the VPRM model using the

default (red line) and optimized (purple line) parameters.
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observed in highly urbanized regions such as downtown MASP. In the summer season in the Southern Hemisphere, vegetation213

productivity reaches its peak across all land cover classes, leading to more negative NEE values (Figure 4a) specially for the214

Cerrado, and sugarcane (within the state of São Paulo), but less intense in the Atlantic Forest in the southern coastal region.215

This results in negative NEE fluxes (dark green across the domain), indicating that these areas acted as a CO2 sink.216

Figure 4. First panel shows the monthly hourly average of net ecosystem exchange (NEE) for February (a) and August (b) 2019. The second

panel (c) shows the daily profile for the same months and for three different PTFs sites.

In August, the cold and dry conditions, due to reduced solar radiation and a lower leaf area index, resulted in positive fluxes217

across most of the domain and low negative fluxes in only a few areas (Figure 4b). The highest positive NEE values are found in218

the southern coastal region. Generally, larger areas with negative CO2 fluxes are observed in February compared to August for219

the same dominant land cover classes. This indicates greater CO2 absorption by agriculture in February compared to forested220

12

https://doi.org/10.5194/egusphere-2024-3060
Preprint. Discussion started: 24 October 2024
c© Author(s) 2024. CC BY 4.0 License.



regions. Conversely, in August, CO2 fluxes are predominantly lower and negative across most of the domain, with higher221

positive values in the coastal area, especially in the south. Overall, the domain acts as a net CO2 sink during summer, while222

vegetation becomes a CO2 source in winter, except for the Atlantic Forest in the southern part of the study area. The second223

panel also shows simulated fluxes for the same flux tower sites, with negative net fluxes in February, particularly in the Atlantic224

forest, sugarcane, and cerrado. This underscores the reduction in negative fluxes during winter, as seen in the August data for225

all three vegetation types. Unfortunately, observed data from these flux towers for this period were not available for statistical226

model evaluation. However, Figure 4 illustrates the significant influence of climatic drivers on reduced flux trends, consistent227

with findings by Raju et al. (2023) for a tropical region. Note that the respiration equation in Mahadevan et al. (2008) is a228

simple linear function of temperature and does not account for seasonal or spatial variability in biomass and litter inputs to soil229

carbon pools Gourdji et al. (2022), which is particularly relevant for forest ecosystems like the Atlantic Forest.230

3.3 Seasonal variations in observed and modeled CO2 mixing ratios231

Figure 5 and Table 4 depict the monthly mean, standard deviation, bias and RMSE of CO2 concentrations at two sites in the232

MASP. In 2019, the IAG station recorded CO2 values ranging from 406 to 464 ppm. The seasonal variation peaked during233

autumn (435.7± 29.1 ppm), followed by winter (434.6± 30.8 ppm), with the lowest values observed in summer (434.0± 26.1234

ppm). This variation in CO2 levels is primarily influenced by factors such as the latitude of the observation site, meteorological235

conditions including wind speed and atmospheric stability, as well as seasonal patterns of photosynthesis and vehicular traffic.236

The maximum and minimum monthly CO2 concentrations at IAG were recorded in June (442.8 ± 32.8 ppm), during the237

winter season, and March (430.2 ± 24.9 ppm), during the summer season, respectively. During the summer months in MASP,238

high humidity, wind speed, and circulation patterns typically lead to lower atmospheric stability and increased dispersion of239

various gasses and particles. Meanwhile, at the Pico do Jaraguá station, CO2 levels ranged from 407 ppm to 425 ppm. The240

seasonal variation peaked during summer (416.5 ± 10.7 ppm), followed by autumn (416.4± 9.1 ppm), with the lowest values241

observed in winter (414.4 ± 6.7 ppm). The maximum monthly CO2 mean at PDJ was identified in May (417.3 ± 9.1 ppm),242

corresponding to the autumn season, while the minimum was recorded in July (414.0 ± 6.3 ppm), during the winter season.243

Monthly values at PDJ exhibited less variability and a smaller standard deviation compared to the IAG site. This result was244

expected, considering that the IAG site is significantly impacted by vehicular traffic in its vicinity. In contrast, PDJ is located at245

a higher elevation in a more vegetated area, with less influence from local anthropogenic sources. Additionally, it was expected246

that PDJ would show lower CO2 concentrations during the summer due to the stronger vegetation signal at Pico do Jaraguá247

compared to the IAG site. However, PDJ actually shows peak CO2 levels in summer and the lowest values in winter, indicating248

that additional ecological and ecosystem variables need to be considered for a better understanding of this location.249

The simulated CO2 concentrations for the IAG station ranged from 410 ppm to 436 ppm, with a seasonal variation peaking250

in autumn (425.0 ± 15.0 ppm), followed by winter (422.8 ± 12.2 ppm), and the lowest values occurring in summer (416.8 ±251

8.3 ppm), mirroring the observed data. Notably, the highest and lowest monthly CO2 concentrations at IAG were identified252

in June (431.7 ± 17.0 ppm) and February (414.6 ± 5.3 ppm), respectively. Although the maximum monthly value from the253

model coincided with the observed data, the month with the minimum concentration was February, which may be attributed to254
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Figure 5. Monthly variations in CO2 concentration observed and simulated at IAG and Pico do Jaraguá stations in 2019. Error bars represent

the monthly standard deviation.

gaps in measurement, which were not considered when calculating the mean, thereby influencing the observed monthly mean.255

The CO2 concentrations at Pico do Jaraguá ranged from 415 ppm to 424 ppm, with seasonal variation peaking in autumn256

(419.9 ± 9.9 ppm), followed by winter (418.7 ± 8.7 ppm), and the lowest values occurring in summer (416.5 ± 7.5 ppm).257

The model data profile for Pico do Jaraguá more closely resembles the simulated IAG profile than the PDJ station’s observed258

profile, likely due to the model’s resolution, its limitations in representing land use, and underestimated vehicular emissions259

in these areas. However, negative biases were observed for all seasonal periods at IAG, indicating an underestimation of CO2260

concentrations and higher root mean square errors compared to the statistics for the PDJ station. The PDJ station exhibited low261

positive biases, indicating better agreement between the model and observations across all periods and lower errors between262

the model and observations.263

Table 4. Monthly means and standard deviation of CO2 concentrations for IAG and Pico do Jaraguá (PDJ) stations.

Station Season CO2 Observed (ppm) CO2 Simulated (ppm) Bias (ppm) RMSE (ppm)

IAG

Summer (February to March) 434.0 ± 26.1 416.8 ± 8.3 -16.6 28.3

Autumn (March to June) 435.7 ± 29.1 425.0 ± 15.0 -10.9 26.7

Winter (June to August) 434.6 ± 30.8 422.8 ± 12.2 -11.8 30.8

PDJ

Summer (February to March) 416.5 ± 10.7 416.5 ± 7.5 0.15 9.9

Autumn (March to June) 416.4± 9.1 419.9 ± 9.9 3.50 11.4

Winter (June to August) 414.4 ± 6.7 418.7 ± 8.7 4.37 10.2
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3.3.1 Distribution of surface CO2 concentrations264

In addition to the simulations conducted for the period from February to August 2019, using the same configurations and265

input data, we performed simulations involving variable emission scenarios for the summer (February) and winter (August)266

seasons. The aim was to comprehensively understand the dynamics of CO2 concentration in the metropolitan region and267

surrounding areas during these distinct seasonal periods. Figure 6 shows the monthly average spatial distributions of simulated268

CO2 concentrations under four conditions: a) Background without emissions, considering only boundary and initial conditions269

(BCK); b) considering both anthropogenic emissions and biogenic fluxes (see Table 1) (ALL); c) considering biogenic fluxes270

only (BIO); and d) considering anthropogenic emissions (industrial and vehicular) only (ANT).271

Figure 6. Atmospheric CO2 concentrations under different emission scenarios (refer to the text). The panels in the first row represent the

monthly mean concentration for February (a, b, c, d), while the panels in the second row represent the monthly mean concentration for the

August period (e, f, g, h). Panels a) and e) represent the background scenario. Panels b) and f) represent simulation of total (background,

anthropogenic and biogenic) emissions scenario, panels c) and g) represent simulation of only background and biogenic scenario, and d) and

h) represent simulation of only background and anthropogenic scenario.

Figure 6a shows that the simulated background CO2 concentration in February ranged around 408 ppm across most of272

the domain. For biogenic simulations (Fig. 6c), we observed an average increase of 14 ppm across the domain compared273

to the previous simulation. The increase, however, was only 6 ppm in downtown MASP. Although the VPRM model does274

not calculate CO2 fluxes in the urban area, we can observe the influence of biogenic signals being transported to this area.275
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The coastal region southwest of MASP, characterized by a dense forest region, did exhibit the highest CO2 concentrations,276

between 420-424 ppm. The simulation with anthropogenic emissions (Figure 6d) stands out elevated CO2 concentrations277

over the center of the city of São Paulo, characterized by high vehicle emissions, as well as over other two urban areas in278

the north and northeast of MASP. The monthly mean CO2 concentration in these two urban areas was roughly 420 ppm,279

attributed to emissions from refineries represented by the EDGAR datasets as well as vehicles. Figure 6b shows the simulated280

CO2 concentration considering both vegetation fluxes and anthropogenic emissions. As expected, this simulation combines281

both contributions, resulting in high CO2 concentrations over urban areas and along the coastal region. For August, it can be282

observed that the background concentrations (Figure 6e) were slightly higher around MASP. Additionally, the monthly mean283

CO2 concentration for the scenario in August with only biogenic sources was 8 ppm higher than that in February, which can284

be explained by the lower photosynthetic rates in this period, as observed in Figure 4. The Atlantic forest in the coastal region285

exhibits more positive CO2 fluxes and lower photosynthetic activities, characterized by lower amounts of rainfall in the region286

that contribute to this reduced photosynthetic production by vegetation. The simulation with only anthropogenic emissions287

(Figure 6h) shows higher CO2 concentrations compared to those in February. This increase in CO2 levels in August is attributed288

to a lower planetary boundary layer height. However, it is important to point out that the EDGAR anthropogenic emission289

inventory generally overestimates the emissions around local anthropogenic sources (e.g., urban areas) (Seo et al., 2024). The290

higher simulated CO2 concentration for August compared to February, in the scenario with both biogenic and anthropogenic291

sources, is largely dependent on factors such as atmospheric stability and meteorological conditions. Atmospheric stability,292

along with meteorological variables such as humidity, solar radiation, and temperature, plays a crucial role in determining293

biogenic CO2 concentrations. In addition, under stable atmospheric conditions, such as those often observed during winter294

periods, CO2 concentrations tend to accumulate near the surface, resulting in higher concentrations, especially in urban areas.295

Therefore, the comparative analysis between simulations of CO2 concentrations during summer and winter periods highlights296

the importance of considering not only anthropogenic emissions but also biogenic fluxes from vegetation, along with local297

atmospheric conditions.298

3.3.2 Evaluation of sources contribution299

In Figure 7, we applied a data selection scheme to all-time series to minimize the effects of local contributions and increase300

the spatial representativeness of each record, it consists of retaining mid-afternoon (09–17 h local) data, when the air is well-301

mixed, providing a large spatial representativeness with minimum influence from local sources (Gerbig et al., 2008; Ramonet302

et al., 2020). Figure 7, shows the comparison of the daily mid-afternoon average CO2 concentrations simulated by the model303

for February and August 2019, considering both biogenic and anthropogenic sources (see Figures 6b and 6f), at both IAG and304

PDJ sites. The left panels (Figures 7a, 7c, 7e, and 7g) depict the simulated CO2 concentration considering both anthropogenic305

and biogenic sources (all_sources, in gray), alongside observed concentrations (observed, in purple) for both sites. Conversely,306

the right panels (Figures 7b, 7d, 7f, and 7h) display the different simulations considering anthropogenic and biogenic sources307

separately to the daily concentration. In Figure 7a, which represents the sole summer month with observed data in February308

2019, the simulated values generally underestimated the observed concentrations. While the observed average CO2 concentra-309
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tion stood at 424.0 ppm, this figure was somewhat compromised by missing data in the observed profile, whereas the simulated310

average was 412.4 ppm, indicating an approximate 11 ppm discrepancy below the monthly average observed in February. For311

the anthropogenic sources the simulation is aligned with the expectations that the emission is dominated by vehicular emissions312

around this vicinity (Fig. 7b). However, on February 22nd and 23rd, there was a peak in the CO2 concentration of the observed313

data, but this was not represented in the simulations with all sources and in the anthropogenic simulation, but in the biogenic314

simulation, this same period stood out but with less intensity.315

For the PDJ site, the observed average concentration was 414.3 ppm, with a simulated average of 412.2 ppm, marking a316

marginal difference of 2 ppm between observed and simulated concentrations. The model effectively captured peaks and pro-317

files for this period and location (Figure 7c), with biogenic contributions emerging as more substantial (Figure 7d) compared318

to the IAG site. This difference arises because PDJ is located in a vegetated area away from traffic sources. In August, char-319

acterized by a drier, more stable boundary layer and lower wind speed, observed data for IAG showed an average of 426.2320

ppm (Figure 7e), while with the model showed a monthly average of 413.2 ppm, resulting in a discrepancy of only 13.0 ppm,321

i.e. a closer approximation compared to February. In terms of the contributions of the sources (Figure 7f), simulations showed322

similar patterns, with a few days where CO2 contributions from biogenic fluxes exceeded those from anthropogenic emissions.323

Oppositely, for PDJ (Figure 7g), the monthly average concentration stood at 412.6 ppm, slightly surpassing the simulated av-324

erage of 412.0 ppm. While the model slightly underestimated the monthly average by 0.5 ppm, it exhibited a profile akin to325

the observed data, with a more pronounced biogenic signal compared to anthropogenic contributions in the CO2 simulation326

(Fig. 7h), underscoring vegetation’s substantial role as an important CO2 source to consider in the simulations for both sites.327

Additionally, Figure 4 illustrates more positive CO2 fluxes (representing CO2 emissions to the atmosphere) by the VPRM328

model during this period. The bias and RMSE for each simulation at the IAG and PDJ sites for February and August 2019, are329

illustrated (see Figure A4 in Appendix). Overall, the bias tended to be negative across the board, indicating that the simulated330

surface CO2 concentrations generally underestimated the observed values. Notably, with the exception of the ALL_PDJ simu-331

lation for August (Figure 8c), which displayed a small negative bias, CO2 simulations consistently fell below-observed levels332

at this site. Among the six sets of simulations, PDJ exhibited the smallest bias, averaging at -3.0 ppm, while IAG displayed333

a larger average bias of -13.3 ppm. Further analysis revealed that simulations incorporating both biogenic and anthropogenic334

sources (ALL_*) consistently yielded the smallest biases. RMSE values at PDJ remained below 12 ppm, while those at IAG335

exceeded this threshold. Notably, simulations focusing solely on anthropogenic sources at PDJ exhibited the poorest RMSE for336

both February and August, highlighting the significance of vegetation fluxes at this site. On the other hand, at IAG, simulations337

relying solely on biogenic sources in February and on anthropogenic sources in August resulted in the highest RMSE val-338

ues, highlighting the importance of anthropogenic emissions, especially traffic ones. In February, simulations ALL_IAG and339

ALL_PDJ displayed the lowest RMSEs at 25.25 ppm and 10.15 ppm, respectively (Figure A2b). In August, these figures stood340

at 26.24 ppm and 6.91 ppm (Figure A2d), respectively. Overall, simulations incorporating both biogenic and anthropogenic341

sources yielded better results in terms of RMSE and bias, indicating a closer alignment between simulated and observed surface342

CO2 concentrations. Additionally, CO2 simulations at PDJ demonstrated the closest resemblance to observed values among343

the six simulations.344
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Figure 7. Daily mean CO2 concentrations simulated and observed for the IAG site in February 2019 (a), for the PDJ site in February

(c), for the IAG site in August (e), and for the PDJ site in August (g). And the daily simulated background concentrations, anthropogenic

concentrations, and biogenic concentrations for the IAG site during February (b), for the PDJ site in February (d), for the IAG site during

August (f), and for the PDJ site in August (h).
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Figure 8. The hourly correlation between observed and simulated CO2 concentrations at the IAG site and CO concentrations measured at

the Pinheiros station.

Considering that CO serves as a vehicular tracer, we analyzed CO concentrations at the Pinheiros site using data from the345

CETESB network (see Figure 1 and Table 1) to compare with CO2 concentration profiles at the IAG site, located less than346

3 kilometers away from the Pinheiros site. The hourly correlation between observed CO2 concentrations at the IAG site and347

observed CO concentrations at Pinheiros was determined, along with the correlation between simulated CO2 concentrations348

for IAG and observed CO concentrations. In Figure 8, both bar graphs of the hourly correlation between CO2 vs. CO concen-349

trations show a correlation above 0.5 for observed CO2 and 0.25 for simulated CO2 during the early hours of the day until350

10h, and again in the late afternoon after 19h, which corresponds to periods of high vehicular traffic in this region. Midday,351

this correlation decreases and even turns negative for the simulated CO2 vs. CO graph, suggesting the influence of vegetation352

on CO2 concentrations that is also visible in the observed data. The similarity between the trend lines of the hourly correlation353

profiles for observed CO2 vs. CO and simulated CO2 vs. CO is evident.354

In addition to the correlation between gases, Figure 9 indicates that both profiles (modeled and simulated CO2) suggest355

that a significant portion of the CO2 concentrations at the IAG site originates from vehicular sources, as carbon monoxide is356

a trace gas associated with traffic emissions Nogueira et al. (2021). Peaks in the CO2 time series at IAG are observed at the357

beginning, where the model fails to capture the magnitude of these concentrations. These peaks also appear in the observed358

CO profile, confirming that a large part of the CO2 concentrations at IAG comes from vehicular sources, particularly on days359

with high concentrations, which are also reflected in the CO profile. However, the model struggles to simulate these high CO2360

concentrations since it assumes that emissions follow the same diurnal variation every day of the month. For the model to361

accurately simulate these high concentrations, the emissions must better represent the reality of urban emissions.362
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Figure 9. The hourly correlation between observed and simulated CO2 concentrations at the IAG site and CO concentrations measured at

the Pinheiros station.

3.3.3 Model evaluation against OCO-2 and XCO2 observations363

Figure 10a shows the monthly boxplots of observed and all_sources simulated XCO2 concentrations for the period from 1364

April 2019 to 31 August 2019. However, due to insufficient OCO-2 data over MASP during this period, the analysis covers all365

simulated domains rather than solely the metropolitan area. Regarding temporal variability, a clear seasonal cycle of XCO2 is366

evident from its smooth month-to-month variation (green boxes in Figure 10a). The simulated XCO2 concentrations, i.e., the367

simulated profiles with smoothing, generally captured this cycle, although with a less dispersion (length of the box) compared to368

the observed XCO2 concentrations. Notably, model-observation discrepancies are most pronounced during the winter months,369

with differences in median concentrations ranging from 0.8 to 1.5 ppm, while they are minimized during the autumn season,370

with differences in median concentrations between 0.5 and 0.6 ppm. The simulated XCO2 concentrations demonstrate similar371

trends within the same range but tend to slightly underestimate values on most days.372

When generating time-averaged modeled values, we only take into account the measurement period as previously mentioned.373

Regarding XCO2, the smoothed column concentrations (depicted by red dotted lines in Figure A5 in Appendix) consistently374

fall below the observed values on a global scale. Figure 10b depicts the bias and RMSE, respectively, calculated across the375

pixel-by-pixel domain. Higher positive RMSE values are evident in the eastern region of MASP and along the border of São376

Paulo and Rio de Janeiro states. In these areas, characterized by heavy vehicular traffic, the model tends to overestimate XCO2377

concentrations. Conversely, for the central region of the domain, we observe slightly negative bias values accompanied by378

higher RMSE values, indicating an underestimation of XCO2 concentrations. The uncertainties surrounding XCO2 simulation379

stem from various factors, including the model’s tendency to overestimate winds, particularly in urban areas, consideration of380

emissions solely at the surface rather than at different pressure levels, as well as errors in the initial and boundary conditions381

of concentration provided by the Carbon Tracker.382
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Figure 10. a) Monthly boxplots of observed and simulated XCO2 concentrations for the period from 1 April 2019 to 31 August 2019, b)

Bias and c) RMSE calculated by pixel over the study domain.

4 Conclusions383

A comprehensive assessment of atmospheric CO2 concentrations in the metropolitan region of São Paulo (MASP) and its384

surroundings was conducted, utilizing the WRF model coupled to a greenhouse gas module. Given the burgeoning demand385

for research in this domain, particularly in South America, where urban areas are marked by significant emission sources,386

this study aimed to furnish a broad understanding of the key characteristics of CO2 concentrations. To ensure an accurate387

estimation of CO2 levels in MASP, the initial focus of the evaluation was on the model’s capability to simulate meteorological388

variables. Biogenic fluxes were derived from the VPRM model, which was fine-tuned with flux tower data. Our results show389

that using this local data significantly improved simulated biogenic CO2 fluxes. Anthropogenic emissions were curated from390

diverse models and products to accurately reflect real urban conditions. Boundary and initial conditions were scrutinized391

using global products. The spatial and temporal distribution of modeled CO2 concentrations, stemming from anthropogenic,392

biogenic, and background emission processes, underwent comprehensive analysis. Wind dynamics emerged as a pivotal factor,393
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underscoring the importance of precise simulation of wind speed, wind direction, and planetary boundary layer dynamics.394

The WRF-GHG model adeptly replicated meteorological variables such as temperature, however discrepancies in local wind395

speed and direction persisted. This can be attributed to the intricate topography and the limited model resolution (3 km),396

which impedes the capture of nuanced local dynamical processes. Surface CO2 concentrations unveiled distinct diurnal cycles397

shaped by local anthropogenic emissions, boundary layer dynamics, and vegetation respiration. Importantly, the modeled CO2398

concentrations exhibited high sensitivity not only to atmospheric vertical mixing near the surface but also to the prescribed399

temporal profiles of anthropogenic and biogenic emissions, highlighting the underestimation of vehicular emissions. These400

sources of error, particularly pronounced in winter, present challenges in accurately quantifying city emissions. In suburban401

locations such as the PDJ site, distant from urban sources, anthropogenic emissions diminish, and the vertical gradient of402

CO2 concentration generated by city emissions attenuates through atmospheric convection and diffusion processes. However,403

during the growing season, the contribution of biogenic flux to CO2 concentration warrants attention, especially concerning the404

simulation of nocturnal CO2 concentrations and ecosystem respiration, improving the respiration equation in the VPRM model405

(Gourdji et al., 2022). In general, the WRF-GHG model demonstrated proficiency in simulating seasonal variations, including406

XCO2, with profiles akin to OCO-2 data. This study underscores the imperative for further investigations and applications of407

the WRF-GHG model in uncharted regions such as the MASP, showcasing its prowess in simulating meteorological fields and408

CO2 observations.409
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Figure A1. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and 10 m wind speed (WS)

compared to observed data from the Parque D.Pedro II. The figure illustrates the relationship between modeled and observed data. The

panels in b) show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction

(WD). Black line represents the observed data and red line represents the model simulation.
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Figure A2. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and 10 m wind speed (WS)

compared to observed data from the Guarulhos. The figure illustrates the relationship between modeled and observed data. The panels in b)

show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction (WD).

Black line represents the observed data and red line represents the model simulation.
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Figure A3. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and 10 m wind speed (WS)

compared to observed data from the Pinheiros. The figure illustrates the relationship between modeled and observed data. The panels in b)

show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction (WD).

Black line represents the observed data and red line represents the model simulation.
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Figure A4. Bias (ppm) and RMSE (ppm) for each simulation at the surface CO2 observation sites. Panels (a) and (b) represent the simulations

for February, while panels (c) and (d) represent the simulations for August (ALL_*: black, ANT_*: red, VPRM_*: green) *Represents the

observation sites, e.g. IAG and PDJ.

Figure A5. Time series of smoothed column concentrations observed (black) and modeled (red).
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