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Abstract. Atmospheric CO2 concentrations in urban areas reflect a combination of fossil fuel emissions and biogenic fluxes,1

offering a potential approach to assess city climate policies. However, atmospheric models used to simulate urban CO2 plumes2

face significant uncertainties, particularly in complex urban environments with dense populations and vegetation. This study3

addresses these challenges by analyzing CO2 dynamics in the Metropolitan Area of São Paulo (MASP) using the WRF-Chem4

model. Simulations were evaluated against ground-based observations from the METROCLIMA network, the first greenhouse5

gas monitoring network in South America, and column concentrations (XCO2) from the OCO-2 satellite spanning February to6

August 2019. To improve biogenic fluxes, we optimized parameters in the Vegetation Photosynthesis and Respiration Model7

(VPRM) using eddy covariance flux measurements for key vegetation types, including the Atlantic Forest, cerrado, and sug-8

arcane. Results show that at the urban site (IAG), the model consistently underestimated CO2 concentrations, with a negative9

mean bias of -9 ppm throughout the simulation period, likely due to the complexity of vehicular emissions and urban dynamics.10

In contrast, at the vegetated site (PDJ), simulations showed a consistent positive mean bias of 5 ppm and closely matched obser-11

vations. Seasonal analyses revealed higher CO2 concentrations in winter, driven by greater atmospheric stability and reduced12

vegetation uptake estimated by VPRM, while summer exhibited lower levels due to increased mixing and higher agricultural13

productivity. A comparison of biogenic and anthropogenic scenarios highlights the need for integrated emission modeling and14

improved representation of biogenic fluxes, anthropogenic emissions, and boundary conditions for high-resolution modeling15

in tropical regions.16
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1 Introduction17

Urban areas, although occupying only a small fraction of the Earth’s surface, exert an outsized influence on global carbon18

emissions. Accounting for a staggering 70% of CO2 emissions from fossil fuel burning while covering just 2% of the planet’s19

landmass (Seto et al., 2014; Change et al., 2014), cities have become focal points for climate action. The relentless pace of20

urbanization has further exacerbated this phenomenon, driving up energy consumption and emissions levels (Seto et al., 2012).21

Consequently, combating climate change necessitates a targeted approach, with policies increasingly tailored to address urban22

emissions. In response to the growing need for climate action, initiatives like the International Council for Local Environmen-23

tal Initiatives (ICLEI), the C40 Cities Climate Leadership Group (C40), and the Covenant of Mayors (CoM) have emerged to24

coordinate global efforts and share best practices among cities. These initiatives highlight the crucial role cities play in the fight25

against climate change and the importance of localized mitigation strategies. São Paulo, Brazil’s largest municipality (IBGE,26

2021), is a member of C40 and focuses on reducing greenhouse gas emissions, with transportation accounting for 58% of its27

total emissions (SEEG, 2019). The city is working towards carbon neutrality through projects in green infrastructure, urban28

planning, public transportation improvements, energy efficiency, and waste management (Caetano et al., 2021). These efforts29

aim to reduce emissions and enhance São Paulo’s resilience, fostering a more sustainable urban environment. Central to these30

efforts is the need for accurate data and robust modeling frameworks to inform policy decisions effectively. Urban atmospheric31

networks, such as Metroclima in the Sao Paulo Metropolitan Area (MASP), in Brazil, provide vital insights into greenhouse gas32

concentrations and emission patterns. By leveraging these datasets alongside sophisticated atmospheric transport models and33

statistical techniques, policymakers gain tools for designing targeted interventions and monitoring their efficacy. However, the34

complexity of urban CO2 dynamics presents significant challenges for modeling and analysis. Process-driven biosphere mod-35

els and inverse modeling techniques offer complementary approaches for capturing the intricate spatio-temporal variabilities36

inherent in urban environments (Kaiser et al.; Che et al., 2022; Zhang et al., 2023; Wilmot et al., 2024). Despite advancements37

in modeling capabilities, gaps remain in our understanding of CO2 dynamics, particularly at regional and national scales. South38

America, in particular, suffers from limited data availability, and research focusing on this region is scarce. Additionally, veg-39

etation models in tropical regions often exhibit poor performance due to inaccuracies in simulating seasonality, oversimplified40

representations of biodiversity, and errors in carbon and water cycle interactions. These models struggle to capture the complex41

dynamics of tropical ecosystems, leading to underestimations of productivity and poor predictions of vegetation responses to42

climate variability (De Pue et al., 2023; He et al., 2024). This study aims to address these gaps by conducting a comprehensive43

analysis of anthropogenic and biospheric CO2 dynamics near the MASP. By utilizing the Weather Research and Forecasting44

model coupled with chemistry (WRF-Chem) offline coupled to the Vegetation Photosynthesis and Respiration Model (VPRM)45

(Mahadevan et al., 2008) integrated with vehicular emissions from VEIN model (Ibarra-Espinosa et al., 2018) and industrial46

sector emissions (EDGAR), we seek to elucidate the underlying drivers of CO2 variability. In addition, we utilized data from47

the OCO-2 satellite to cover the study domain, comparing smoothed XCO2 concentrations derived from WRF-Chem (consid-48

ering biogenic and anthropogenic emissions). Through a combination of model simulations, field observations, and satellite49

data analysis, this study seeks to provide an understanding of CO2 dynamics in urban environments. This is the first study in50
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this field conducted in any city in the Global South, making it an innovative effort with significant implications. By setting a51

precedent, this research paves the way for future studies, contributing to a more comprehensive global picture of CO2 dynamics52

in urban environments.53

2 WRF-Chem54

2.1 Model set-up55

A set of high-resolution simulations of atmospheric Greenhouse Gas concentrations were performed with the Weather Research56

and Forecasting model coupled with Chemistry (WRF-Chem V4.0). The WRF-Chem was used to simulate the transport of the57

mole fraction of CO2, and no chemical processes or reactions have been used. The period that has been simulated was from58

1 February to 31 August, 2019. This period was selected due to available data from monitoring stations from the Metroclima59

network for CO2. The simulations were made for each month. For each run, the simulation was initiated 5 days before and these60

5 days were discarded as spin-up time. The single modeling domain was centered at 23.5°S and 46.3°W with a horizontal grid61

spacing of 3 km as shown in Figure 1, projected on a Lambert plane and consists of 166 grid points in the west-east direction,62

106 grid points in the north-south direction, and 34 vertical levels that extend from the surface up to 50 hPa (20 km), as used in63

previous studies for this same area (Andrade et al., 2015; Vara-Vela et al., 2016; Gavidia-Calderón et al., 2023; Benavente et al.,64

2023). The meteorological initial and boundary conditions to drive the simulations were obtained from the European Centre65

for Medium-Range Weather Forecasts (ECMWF) global ERA5 reanalysis data set with 0.25º × 0.25º horizontal resolution and66

6-hourly intervals (Hersbach, 2016), while chemical initial and boundary conditions were obtained from Carbon Tracker and67

have a horizontal resolution of 3° in longitude and 2° in latitude, with 25 vertical layers (http://carbontracker.noaa.gov). This68

global dataset was interpolated to provide the lateral boundary conditions for CO2 simulations and ensure consistency with the69

input data for WRF-Chem. The main physics and chemistry options used in this study are listed in Table 1.70

2.1.1 Anthropogenic Emissions71

In the Metropolitan Area of São Paulo (MASP), the vehicular fleet is the primary source of CO2 emissions (CETESB, 2019).72

For this study, we employed the Vehicle Emission Inventory model (VEIN), a tool designed to estimate emissions from mobile73

sources. VEIN accounts for both exhaust and evaporative emissions performs speciation, and includes functions to generate74

and spatially allocate emissions databases (Ibarra-Espinosa et al., 2018). The model enables the use of customized emission75

factors, which in this study were derived from experimental campaigns conducted in traffic tunnels within São Paulo (Nogueira76

et al., 2021). VEIN processes vehicle fleet age distributions extrapolates hourly traffic data, and estimates emissions with high77

temporal and spatial resolution. For consistency with the WRF-Chem model domain, VEIN emissions were aggregated to a78

3 km spatial resolution. Additionally, we included a figure (Fig. B4) in Appendix B illustrating the daily mean and hourly79

temporal variation of vehicular emissions for all months in the study period. In contrast, emissions from the energy and80

industrial sectors were obtained from the EDGAR v6.0 GHG inventory for 2018 (Crippa et al., 2021). EDGAR provides81
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Figure 1. The first panel represents the terrain height and urban boundaries of the MASP area within the model domain (D01) used in the

WRF-Chem model. The station classifications are represented by different symbols: Urban (⋆), Urban Park (✚), and Park (▲). The second

panel represents the land use category map for the same domain (D01), used in the VPRM model to calculate CO2 fluxes. The station colors

represent the variables measured at each location: red indicates stations measuring meteorological variables (Met) and CO2 concentrations,

green denotes stations measuring only meteorological variables, dark yellow represents stations measuring both meteorological variables

and CO concentration, and black represents stations measuring only CO2 concentrations. The IAG station is (✚), the PDJ station is (▲),

Pinheiros station is (⋆), Guarulhos and Parque D.Pedro II are (⋆).

global emission data with a spatial resolution of 0.1° × 0.1°. These emissions were processed to match the 3 km spatial82

resolution of the WRF-Chem model using interpolation techniques. However, EDGAR emissions lack temporal variability and83

were assumed constant throughout the day, as the inventory does not provide hourly profiles (Fig. in B5 Appendix B).84

2.1.2 Biogenic Fluxes85

Biogenic CO2 fluxes were simulated offline using the Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan86

et al., 2008), such as a flux input incorporated within the WRF-Chem simulations as input data. This model estimates net87

ecosystem exchange (NEE) by calculating the difference between gross ecosystem exchange (GEE) and ecosystem respiration88

(R), where negative fluxes indicate CO2 absorption by ecosystems (Equation 1).89

NEE =GEE−R (1)90
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Table 1. WRF-Chem Simulation Design.

Atmosphere Schemes

Scheme Type Description/Reference

Microphysics Two-moment Morrison scheme (Morrison et al., 2009)

Longwave radiation RRTMG (Iacono et al., 2008)

Shortwave radiation RRTMG (Iacono et al., 2008)

Boundary layer YSU (Hong et al., 2006)

Land surface Noah LSM Unified scheme (Tewari et al., 2007)

Initial and Lateral Boundary Conditions

Meteorological ERA5 0.25◦, 34 pressure levels

Chemical Carbon Tracker 25 vertical layers

Emissions Inventories/Model

Anthropogenic EDGAR v6.0 (Crippa et al., 2021) and VEIN (Ibarra-Espinosa et al.,

2018)

Biogenic VPRM (Mahadevan et al., 2008)

The meteorological variables 2m air temperature (T2m) and downward shortwave radiation (PAR) from WRF model simula-91

tions were used to calculate the GEE (Equation 2) and Respiration (Equation 3) fluxes. Additionally, factors such as the light92

use efficiency (λ), PAR saturation (PAR0), and the Enhanced Vegetation Index (EVI), which refer to the fraction of shortwave93

radiation absorbed by leaves were used to calculate GEE. The temperature sensitivity of the photosynthesis parameter (Tscale)94

and the effects of leaf age on canopy photosynthesis parameter (Pscale) were both calculated as functions of the land surface95

water index (LSWI) to identify the green-up (leaf expansion) and senescence phases (Mahadevan et al., 2008). These vegeta-96

tion indices were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data from MOD09A197

Version 6 (Vermote, 2021).98

GEE = λ×Tscale ×Pscale ×Wscale ×EV I × 1

1+ PAR
PAR0

×PAR (2)99

Respiratory fluxes (R) were estimated using a linear model based on air temperature and two parameters that represent the100

linear sensitivity of respiration to air temperature (α) and the baseline respiration (β), as defined in Mahadevan et al. (2008).101

R= α×T2m +β (3)102

The land cover data used by the VPRM were derived from the MapBiomas data (Souza Jr et al., 2020). The VPRM param-103

eters (λ, PAR0, α, β) were optimized against flux tower NEE for the main land cover type over the study domain described in104

section 2.2.2.105
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2.1.3 Meteorological data106

Meteorological data from the São Paulo State Environmental Protection Agency (CETESB) air quality network were used to107

evaluate the model’s performance in simulating meteorological fields. CETESB manages automatic and manual air quality108

stations over São Paulo state. These stations provide hourly information on meteorological and pollutant parameters, such109

as air temperature, wind speed, and wind direction (Table 2), as well as the concentration of air pollutants. Monitoring fol-110

lows instrumentation standards and directives from the Environmental Protection Agency (US EPA) and the World Health111

Organization (WHO) respectively for air pollutants, and from the World Meteorological Organization (WMO) for meteoro-112

logical variables (CETESB, 2019). The air quality and meteorological data are continuously published on the Qualar website113

(https://qualar.cetesb.sp.gov.br/qualar/). This study used data from four stations located in the MASP (Figure 1): Parque D.114

Pedro II, PDJ, Guarulhos, and Pinheiros. Table 2 provides the location of the sites, the classification type of the stations, the115

observed variables, and the data source.116

Table 2. Location of the sites used for the model evaluation of the meteorological drivers, together with a list of the meteoro-

logical variables included in the analysis.

Sites Location Classification Variables Source Data

Parque D.Pedro II 23.54S, 46.63W Urban T2m, WD, WS CETESB

PDJ 23.45S, 46.76W Park T2m, WD, WS and CO2 CETESB/ METROCLIMA

Guarulhos 23.46S, 46.52W Urban T2m, WD, WS CETESB

Pinheiros 23.46S, 46.70W Urban T2m, WD, WS and CO CETESB

IAG 23.55S, 46.73W Urban Park CO2 METROCLIMA

Note: Air temperature at 2 m (T2m), wind speed (WS), and wind direction (WD).

2.2 CO2 observational data117

2.2.1 Ground-based observations118

For the surface model evaluation, we used CO2 data from the METROCLIMA network in São Paulo (see Table 3 and Figure 1),119

the first conventional in situ greenhouse gas measurement network established in South America (www.metroclima.iag.usp.br).120

The network comprises four continuously operating monitoring stations, all located within the MASP and equipped with cavity121

ring-down spectroscopy instruments (Picarro) that measure the concentrations of CO2 following the directives from WMO.122

The monitoring stations are located at various locations within MASP: in a vegetated area at the extreme west (Pico do Jaraguá,123

PDJ); in a suburban area in the center-west, inside the campus of the University of São Paulo (IAG); at the top of a 100 m124

building (ICESP); and in an urban area in the east zone characterized by heavy traffic in the neighborhood (UNICID). However,125

we only used data from the IAG and PDJ sites, which are 13 km apart, as these were the only two stations monitoring CO2126

during the selected study period, prior to the Covid-19 pandemic (Souto-Oliveira et al., 2023).127

6



Table 3. Description of the METROCLIMA monitoring stations utilized in this study.

Station Instrument Inlet elevation (m) Altitude (m)

PDJ G2301 II 3 1079

IAG G2301 II 15 731

2.2.2 CO2 fluxes data and VPRM optimization128

In this study, the VPRM model computed the biosphere fluxes for 5 different plant functional types (PFT), representing different129

vegetation land covers, and for that required a set of four model parameters for each vegetation class, dependent on the region130

of interest. Ideally, these parameters are optimized using a network of eddy flux towers for each PFT over the domain. The131

VPRM parameters were optimized for only three plant functional types (PFT) corresponding to the three ecosystems observed132

by eddy-covariance flux towers. However, these three PFT represent almost 60% of land covers over the domain (i.e. sugarcane133

- 23.86%, Atlantic Forest - 34.86%, and cerrado - 0.91%). We used a set of parameters optimized by Botía et al. (2022) for the134

remaining PFT’s, such as grasses and mixed forest, based on measurements from sites in the Amazon region in Brazil, deployed135

in the context of the Large Scale Biosphere-Atmosphere Experiment (LBA-ECO) (Botía et al., 2022). The methodology for136

optimizing the VPRM parameters for the Atlantic Forest used data from Serra do Mar State Park in São Paulo State, Brazil137

(23°17’S, 45°03’W at 900 m altitude) for the period from January to 2015 to December 2015 (Freitas, 2012). For cerrado, we138

used observed data from Pé Gigante, in São Paulo, Brazil (21°36’S, 47°34’W at 660m) from January 2015 to January 2017139

(Rocha et al., 2002). For sugarcane we used data from the municipality of Pirassununga, in São Paulo State, Brazil (21°57’S,140

47°20’W at 655 m altitude) for the period from November 2016 to August 2017 (Cabral et al., 2020). The VPRM parameters141

were optimized separately for each PFT using half-hourly observed fluxes from the flux towers over the entire observation142

periods. We optimized the parameters for the GEE and R simultaneously, and for the default VPRM parameters we used143

non-linear least squares minimization, between the modeled NEE and the flux tower estimation of the observed NEE. In the144

optimization, the VPRM model is driven by the meteorological measurements of the sites and their specific land covers. The145

vegetation indices (EVI and LSWI) were derived from the product MOD09A1 of MODIS at 500 m resolution and 8-daily146

frequency using Google Earth Engine.147

2.2.3 XCO2 satellite observations148

Satellite-based XCO2 observations were utilized in addition to surface CO2 measurements over the study domain. OCO-2,149

NASA’s inaugural Earth remote sensing satellite dedicated to atmospheric CO2 observations, was launched in 2014 (Crisp,150

2015). Operating on a solar synchronous orbit, OCO-2 conducts global measurements of CO2 absorption and emission at 13:30151

Local Solar Time. The OCO-2 observation data utilized were ACOS L2 Lite Output Filtered with oco2-lite_fle_prefilter_b9,152

which were converted from Level 1 radiance to Level 2 data using the ACOS retrieval algorithm developed by O’Dell et153

al. (2012). Data quality assessment for OCO-2 observations can be performed using the xco2_quality_flag and warn_level154

parameters, as detailed in the OCO-2 Data Product User’s Guide (Osterman et al., 2018). In this study, we considered only155
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OCO-2 data with a ’0’ xco2_quality_flag value that indicates "good" quality. Initially, simulated CO2 concentrations were156

interpolated to match the latitude, longitude, horizontal resolution, and vertical levels of OCO-2 data.Additionally, to ensure157

consistency in the comparison, the simulated data were selected to correspond as closely as possible to the OCO-2 overpass158

time (13:30 Local Solar Time) over the study region. Due to the difference in data types and units between the simulated159

CO2 concentrations and observed XCO2 from satellites, a conversion was necessary prior to comparison. Consequently, CO2160

concentrations simulated at each pressure level in WRF-Chem were transformed into XCO2 concentrations following the161

methods by Connor et al. (2008) and O’Dell et al. (2012), as follows:162

XCOmodel
2 =XCO2a +

∑
i

wT
i Ai(COinterp

2 −CO2a)i (4)163

where XCO2a is a priori XCO2, wT
i is the pressure weighting function, Ai is the column averaging kernel, COinterp

2 is the164

interpolated simulated CO2 concentrations of WRF-Chem, and CO2a is a priori CO2.165

2.3 Evaluation metrics166

Several statistical metrics are available for assessing the effectiveness of atmospheric models. These include mean bias error167

(bias, Equation A1), indicating the average difference between the simulation and the observation; root-mean-square error168

(RMSE, Equation A2), which quantifies the square root of the average squared deviation between simulation and observation;169

and the correlation coefficient (R2, Equation A3), representing the degree and direction of the linear connection between the170

simulation and the observation. To evaluate the model results, bias, root mean square error (RMSE), and correlation (R2), the171

equations are described in Appendix A.172

3 Results173

Hourly simulations were conducted from 1 February to 31 August 2019, with each month simulation including a five-day174

spin-up period. In the following sections, the performance of meteorological drivers will be first presented, followed by the175

terrestrial surface CO2 fluxes and atmospheric CO2 concentrations from the IAG and PDJ stations. These measurements were176

used to evaluate the model performances and to assess the local impacts of the main CO2 sources and sinks on atmospheric177

CO2 concentrations.178

3.1 Model performance for meteorological drivers179

The assessment of the meteorological model performances is essential for accurately simulating greenhouse gas concentrations.180

In this study, the model represented the temporal variability and trends of 2-meter temperature (T2m), 10-meter wind speed181

(WS), and direction (WD) throughout the simulation period, as illustrated in Fig. 2 and the supplementary material. The WRF-182

Chem model effectively captured significant changes in the observed variables, although it failed to accurately represent the183

maximum and minimum peaks, particularly for wind speed. The simulated 2-meter temperature tended to overestimate values184
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at specific sites, such as Parque D. Pedro II (bias = 0.5°C), Guarulhos (bias = 0.1°C) (see figure B1a and B2a in Appendix B),185

and PDJ (bias = 0.7°C) (see Figure 2a). However, at the Pinheiros station, the simulated surface temperature was underestimated186

(bias = -0.7°C) (Figure B3a in Appendix B).187

In terms of biases, the model overestimated the wind speed at all sites (bias < 1.5 ms−1), with PDJ exhibiting the high-188

est mean bias (1.4 ms−1). This overestimation could be attributed to the model’s misrepresentation of land use, leading to189

elevated wind speeds in areas classified as urban rather than vegetated. Notably, numerical models tend to lack sensitivity190

in simulating very low-velocity speeds due to imperfections in land surface processes and the model’s ability to accurately191

resolve topographical features (Shimada et al., 2011; Zhang et al., 2009; Vara-Vela et al., 2018, 2021). The model’s wind192

directions showed sufficient sensitivity, aligning accurately with observed values. Both the model and observations indicated193

that prevailing winds were predominantly from the southeast. In summary, the WRF model showed proficiency in reproducing194

atmospheric conditions in the study area, particularly concerning air temperature and wind direction, with similar performances195

as previous studies (Feng et al., 2016; Deng et al., 2017).196

3.2 The VPRM Model: Evaluation with Flux Tower Data197

The optimization results are shown in Table 4. Substituting alpha and beta back into the respiration equation led to a better198

model representation of NEE compared to NEE values simulated with default parameters (Mahadevan et al., 2008) for the199

main PFT across the domain.

Table 4. Default (Mahadevan et al., 2008) and Optimized VPRM parameters (highlighted) for atlantic forest, cerrado and sugarcane, and for

mixed forest and grasses from Botía et al. (2022).

Default Optimized & Botía et al. (2022)

Type of Vegetation (PFTs) PARo λ α β PARo λ α β

Atlantic forest 570 0.127 0.271 0.250 178615 0.008 -0.211 4.715

Mixed forest 629 0.123 0.244 0.240 206 0.255 0.342 0.000

Grasses 321 0.122 0.028 0.480 15475 0.056 0.312 7.337

Cerrado 3241 0.057 0.012 0.580 2300 0.616 0.070 1.665

Sugarcane 2051 0.200 0.209 0.802 14550 0.049 -0.339 10.052

Urban area 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

200

The optimized VPRM parameters for the Atlantic Forest exhibited the greatest discrepancies compared to other vegetation201

classes. The geomorphological characteristics of the Atlantic forest differ from those of the evergreen forest studied by (Ma-202

hadevan et al., 2008), where the default parameters (VPRM_default, represented by the red curve in Figure 3) were used. The203

optimized VPRM parameters (VPRM_optimized, shown as the green curve in Figure 3) more accurately captured the seasonal204

cycle in the daily average NEE for the three PFTs optimized in this study. The model was particularly successful in capturing205

the seasonal profile for the agricultural ecosystem, which can be attributed to the more pronounced seasonal transitions of sug-206

arcane (as indicated by the EVI), even though the low-resolution satellite indices do not fully capture the onset of the growing207
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Figure 2. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and b) show 10 m wind speed (WS)

compared to observed data from the PDJ station. The figure illustrates the relationship between modeled and observed data. The panels in

c) show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction (WD).

Black line represents the observed data and red line represents the model simulation.
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season. However, this allowed the model to better represent the GEE equation for this ecosystem. For the cerrado, the model208

smoothed the NEE peaks, and the GEE and respiration equations were also smoothed with the optimization. Optimizing the209

VPRM parameters improved the representation of the growing season, especially for the Atlantic Forest and sugarcane, while210

using either optimized or default parameters for the cerrado resulted in similar NEE simulation.211

Figure 3. Daily variability of NEE fluxes (µmolm−2 s−1) from the flux tower (black line), compared with NEE fluxes simulated by the

VPRM model using default (red line) and optimized (green line) parameters for the Atlantic Forest, Cerrado/Savanna, and Sugarcane.

The first panel in Figure 4 shows the monthly net CO2 flux simulated by the VPRM model for 2019. February represents a212

summer month, while August represents a winter month. The second panel shows the monthly daily net CO2 flux simulated213
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at the three flux tower sites used to optimize the VPRM model parameters. In February, negative NEE values are found in the214

northern part of the MASP, while the southern part exhibits positive NEE fluxes in the coastal region. This gradient reflects215

the distribution of vegetation types, their phenology, and productivity, as well as the impact of urbanization, with null fluxes216

observed in highly urbanized regions such as downtown MASP. In the summer season in the Southern Hemisphere, vegetation217

productivity reaches its peak across all land cover classes, leading to more negative NEE values (Figure 4a) specially for the218

cerrado, and sugarcane (within the state of São Paulo), but less intense in the Atlantic Forest in the southern coastal region.219

This results in negative NEE fluxes (dark green across the domain), indicating that these areas acted as a CO2 sink.220

Figure 4. The first panel shows the monthly mean diurnal cycle of net ecosystem exchange (NEE) (mol km−2 h−1) for February (a) and

August (b) 2019. The second panel (c) presents the daily variability of NEE (µmolm−2 s−1) for the same months (February and August) at

three different PFTs: Atlantic Forest, Cerrado/Savanna, and Sugarcane.
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In August, the cold and dry conditions, due to reduced solar radiation and a lower leaf area index, resulted in positive fluxes221

across most of the domain and low negative fluxes in only a few areas (Figure 4b). The highest positive NEE values are found in222

the southern coastal region. Generally, larger areas with negative CO2 fluxes are observed in February compared to August for223

the same dominant land cover classes. This indicates greater CO2 absorption by agriculture in February compared to forested224

regions. Conversely, in August, CO2 fluxes are predominantly lower and negative across most of the domain, with higher225

positive values in the coastal area, especially in the south. Overall, the domain acts as a net CO2 sink during summer, while226

vegetation becomes a CO2 source in winter, except for the Atlantic Forest in the southern part of the study area. The second227

panel also shows simulated fluxes for the same flux tower sites, with negative net fluxes in February, particularly in the Atlantic228

forest, sugarcane, and cerrado. This underscores the reduction in negative fluxes during winter, as seen in the August data for229

all three vegetation types. Unfortunately, observed data from these flux towers for this period were not available for statistical230

model evaluation. However, Figure 4 illustrates the significant influence of climatic drivers on reduced flux trends, consistent231

with findings by Raju et al. (2023) for a tropical region. Note that the respiration equation in Mahadevan et al. (2008) is a232

simple linear function of temperature and does not account for seasonal or spatial variability in biomass and litter inputs to soil233

carbon pools Gourdji et al. (2022), which is particularly relevant for forest ecosystems like the Atlantic Forest.234

3.3 Seasonal variations in observed and modeled CO2 mixing ratios235

Figure 5 and Table 5 depict the monthly mean, standard deviation, bias and RMSE of CO2 concentrations at two sites in the236

MASP. In 2019, the IAG station recorded CO2 values ranging from 406 to 464 ppm. The seasonal variation peaked during237

winter (June to August, 437.3 ± 32.2 ppm), followed by autumn (March to May, 433.0 ± 26.0 ppm), with the lowest values238

observed in summer (February, 432.7 ± 24.6 ppm). This variation in CO2 levels is primarily influenced by factors such239

as the latitude of the observation site, meteorological conditions including wind speed and atmospheric stability, as well as240

seasonal patterns of photosynthesis and vehicular traffic see Fig.B4 in Appendix B. The maximum and minimum monthly241

CO2 concentrations at IAG were recorded in June (442.5 ± 32.8 ppm), during the winter season, and March (430.2 ± 24.5242

ppm), during the autumn season, respectively. During this month, the MASP experiences changes in synoptic circulation and243

atmospheric moisture that typically reduce atmospheric stability and increase the dispersion of various gases and particles244

(Chiquetto et al., 2024). Meanwhile, at the PDJ station, CO2 levels ranged from 414 ppm to 417 ppm. The seasonal variation245

peaked during autumn (416.8 ± 9.5 ppm), closely followed by summer (416.0± 10.3 ppm), with the lowest values observed in246

winter (414.6 ± 7.4 ppm). The maximum monthly CO2 mean at PDJ was identified in May (417.3 ± 9.1 ppm), corresponding247

to the autumn season, while the minimum was recorded in July (414.0 ± 6.3 ppm), during the winter season. Monthly values at248

PDJ exhibited less variability and a smaller standard deviation compared to the IAG site. This result was expected, considering249

that the IAG site is significantly impacted by vehicular traffic in its vicinity. In contrast, PDJ is located at a higher elevation250

in a more vegetated area, with less influence from local anthropogenic sources. Additionally, it was expected that PDJ would251

show lower CO2 concentrations during the summer due to the stronger vegetation signal at PDJ compared to the IAG site.252

However, PDJ actually shows peak CO2 levels in summer and the lowest values in winter, indicating that additional ecological253

and ecosystem variables need to be considered for a better understanding of this location.254
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Figure 5. CO2 concentration seasonality observed and simulated at IAG and PDJ stations in 2019. Error bars represent the monthly standard

deviation.

The simulated CO2 concentrations for the IAG station ranged from 410 ppm to 437 ppm, with a seasonal variation peaking255

in winter (429.4 ± 19.2 ppm), followed by autumn (425.2 ± 15.1 ppm), and the lowest values occurring in summer (422.3 ±256

12.3 ppm), mirroring the observed data. Notably, the highest and lowest monthly CO2 concentrations at IAG were identified257

in June (438.7 ± 22.5 ppm) and February (418.1 ± 10.0 ppm), respectively. Although the maximum monthly value from the258

model coincided with the observed data, the month with the minimum concentration was February, which may be attributed to259

gaps in measurement, which were not considered when calculating the mean, thereby influencing the observed monthly mean.260

The CO2 concentrations at PDJ ranged from 415 ppm to 426 ppm, with seasonal variation peaking in winter (421.8 ± 11.8261

ppm), followed by autumn (420.4 ± 10.1 ppm), and the lowest values occurring in summer (419.0 ± 8.8 ppm). The model262

data profile for PDJ more closely resembles the simulated IAG profile than the PDJ station’s observed profile, likely due to the263

model’s resolution, its limitations in representing land use, and underestimated vehicular emissions in these areas. However,264

negative biases were observed for all seasonal periods at IAG, indicating an underestimation of CO2 concentrations and higher265

root mean square errors compared to the statistics for the PDJ station. The PDJ station exhibited low positive biases, indicating266

better agreement between the model and observations across all periods and lower errors between the model and observations.267

The higher elevation and vegetation cover at PDJ simplify seasonal trend modeling, reducing the impact of urban factors and268

making model predictions more accurate (see Figure B6 in Appendix B).269

14



Table 5. Seasonality means and standard deviation of CO2 concentrations for IAG and Pico do Jaraguá (PDJ) stations.

Station Season Observed (ppm) Simulated (ppm) Bias (ppm) RMSE (ppm)

IAG

Summer (February) 432.7± 24.6 422.3± 12.3 -12.1 25.2

Autumn (MAM) 433.0± 26.0 425.2± 15.1 -7.5 24.8

Winter(JJA) 437.3± 32.2 429.4± 19.2 -7.2 31.1

PDJ

Summer (February) 416.0± 10.3 419.0± 8.8 3.6 11.1

Autumn (MAM) 416.8± 9.5 420.4± 10.1 3.6 12.0

Winter (JJA) 414.6± 7.4 421.8± 11.8 7.3 13.8

3.3.1 Distribution of surface CO2 concentrations270

In addition to the simulations conducted for the period from February to August 2019, using the same configurations and271

input data, we performed simulations involving variable emission scenarios for the summer (February) and winter (August)272

seasons. The aim was to comprehensively understand the dynamics of CO2 concentration in the metropolitan region and273

surrounding areas during these distinct seasonal periods. Figure 6 shows the monthly average spatial distributions of simulated274

CO2 concentrations under four conditions: a) Background without emissions, considering only boundary and initial conditions275

(BCK); b) considering both anthropogenic emissions and biogenic fluxes (see Table 1) (ALL); c) considering biogenic fluxes276

only (BIO); and d) considering anthropogenic emissions (industrial and vehicular) only (ANT).277

Figure 6a shows that the simulated background CO2 concentration in February ranged around 408 ppm across most of278

the domain. For biogenic simulations (Fig. 6c), we observed an average increase of 14 ppm across the domain compared279

to the previous simulation. The increase, however, was only 6 ppm in downtown MASP. Although the VPRM model did280

not explicitly calculate CO2 fluxes in urban areas due to limited vegetation coverage, the transport of biogenic signals from281

the surrounding vegetated regions into the urban area is evident. The southwest region of the domain, characterized by the282

Atlantic Forest, exhibits the highest CO2 concentrations in this scenario, ranging from 420 to 424 ppm. This dense vegetation283

region and higher ecosystem respiration contribute to elevated CO2 levels, underscoring the influence of biogenic sources on284

regional concentration patterns. This region has altitudes lower than 200 m and the CO2 released to the atmosphere by the285

vegetation is trapped due to the Serra do Mar, with altitudes higher than 500 m. The Atlantic Forest present on the northern286

coast, on the other hand, is concentrated on the plateau of Serra do Mar, and thus, the CO2 released is better dispersed287

to other areas. The simulation with anthropogenic emissions (Figure 6d) stands out elevated CO2 concentrations over the288

center of the city of São Paulo, characterized by high vehicle emissions, as well as over other two urban areas in the north289

and northeast of MASP. The monthly mean CO2 concentration in these two urban areas was roughly 420 ppm, attributed290

to emissions from refineries represented by the EDGAR datasets as well as vehicles. Figure 6b shows the simulated CO2291

concentration considering both vegetation fluxes and anthropogenic emissions. As expected, this simulation combines both292

contributions, resulting in high CO2 concentrations over urban areas and along the coastal region. For August, it can be293

observed that the background concentrations (Figure 6e) were slightly higher around MASP. Additionally, the monthly mean294
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Figure 6. Atmospheric CO2 concentrations under different emission scenarios (refer to the text). The panels in the first row represent the

monthly mean concentration for February (a, b, c, d), while the panels in the second row represent the monthly mean concentration for the

August period (e, f, g, h). Panels a) and e) represent the background scenario. Panels b) and f) represent simulation of total (background,

anthropogenic and biogenic) emissions scenario, panels c) and g) represent simulation of only background and biogenic scenario, and d) and

h) represent simulation of only background and anthropogenic scenario.

CO2 concentration for the scenario in August with only biogenic sources was 8 ppm higher than that in February, which can295

be explained by the lower photosynthetic rates in this period, as observed in Figure 4. The Atlantic forest in the coastal region296

exhibits more positive CO2 fluxes and lower photosynthetic activities, characterized by lower amounts of rainfall in the region297

that contribute to this reduced photosynthetic production by vegetation. The simulation with only anthropogenic emissions298

(Figure 6h) shows higher CO2 concentrations compared to those in February. This increase in CO2 levels in August is attributed299

to a lower planetary boundary layer height. However, it is important to point out that the EDGAR anthropogenic emission300

inventory generally overestimates the emissions around local anthropogenic sources (e.g., urban areas) (Seo et al., 2024). The301

higher simulated CO2 concentration for August compared to February, in the scenario with both biogenic and anthropogenic302

sources, is largely dependent on factors such as atmospheric stability and meteorological conditions. Atmospheric stability,303

along with meteorological variables such as humidity, solar radiation, and temperature, plays a crucial role in determining304

biogenic CO2 concentrations. In addition, under stable atmospheric conditions, such as those often observed during winter305

periods, CO2 concentrations tend to accumulate near the surface, resulting in higher concentrations, especially in urban areas.306
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Therefore, the comparative analysis between simulations of CO2 concentrations during summer and winter periods highlights307

the importance of considering not only anthropogenic emissions but also biogenic fluxes from vegetation, along with local308

atmospheric conditions.309

3.3.2 Evaluation of sources contribution310

In Figure 7, we applied a data selection scheme to all-time series to minimize the effects of local contributions and increase311

the spatial representativeness of each record, it consists of retaining mid-afternoon (09–17 h local) data, when the air is well-312

mixed, providing a large spatial representativeness with minimum influence from local sources (Gerbig et al., 2008; Ramonet313

et al., 2020). Figure 7, shows the comparison of the daily mid-afternoon average CO2 concentrations simulated by the model314

for February and August 2019, considering both biogenic and anthropogenic sources (see Figures 6b and 6f), at both IAG and315

PDJ sites. The left panels (Figures 7a, 7c, 7e, and 7g) depict the simulated CO2 concentration considering both anthropogenic316

and biogenic sources (all_sources, in gray), alongside observed concentrations (observed, in purple) for both sites. Conversely,317

the right panels (Figures 7b, 7d, 7f, and 7h) display the different simulations considering anthropogenic and biogenic sources318

separately to the daily concentration. In Figure 7a, which represents the sole summer month with observed data in February319

2019, the simulated values generally underestimated the observed concentrations. While the observed average CO2 concentra-320

tion stood at 424.0 ppm, this figure was somewhat compromised by missing data in the observed profile, whereas the simulated321

average was 416 ppm, indicating an approximate 8 ppm discrepancy below the monthly average observed in February. For322

the anthropogenic sources the simulation is aligned with the expectations that the emission is dominated by vehicular emis-323

sions around this vicinity (Fig. 7b). However, on February 23rd, 24th and 25th, there was a distinct peak in the observed CO2324

concentrations. This spike is absent in both the all-source and anthropogenic simulations, suggesting that other localized or325

transient activities, not accounted for in the emissions inventory, may have contributed. This discrepancy likely arises because326

the inventories assume identical emissions for all days with only hourly variations. As a result, specific events or activities that327

occur on these particular days are not captured in the simulations. Furthermore, on February 2nd, 21st, and 22nd, observed328

CO2 peaks were captured by the model with the same magnitude only when both anthropogenic and biogenic emissions329

were included. Simulations considering only anthropogenic sources underestimated these peaks, highlighting the importance330

of biogenic contributions to accurately representing observed concentrations.331

At the PDJ site, the mean observed and simulated CO2 concentration for the study period was 414 ppm. The model captures332

the overall trend and major peaks of CO2 variability during this period, with biogenic contributions more pronounced at PDJ333

compared to the IAG site (Figure 7d). This higher biogenic influence in PDJ is attributed to its location in a vegetated area and334

localized in higher altitude than IAG, relatively isolated from vehicular emissions and other anthropogenic sources typical of335

urban environments, as previously discussed.336

In August, characterized by a drier, more stable boundary layer and lower wind speed, observed data for IAG showed an337

average of 426 ppm (Figure 7e), while with the model showed a monthly average of 413 ppm, resulting in a discrepancy338

of only 13 ppm, i.e. a closer approximation compared to February. In terms of the contributions of the sources (Figure 7f),339

simulations showed similar daily patterns, with a few days where CO2 contributions from biogenic fluxes exceeded those340
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Figure 7. Daily mean CO2 concentrations simulated and observed for the IAG site in February 2019 (a), for the PDJ site in February (c),

for the IAG site in August (e), and for the PDJ site in August (g). And the daily simulated at the BCK (background), VPRM (biogenic), and

ANTH (anthropogenic) scenarios for the IAG site during February (b), for the PDJ site in February (d), for the IAG site during August (f),

and for the PDJ site in August (h).
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from anthropogenic emissions. Oppositely, for PDJ (Figure 7g), the monthly average concentration stood at 412 ppm, slightly341

surpassing the simulated average of 412 ppm. While the model slightly underestimated the monthly average, it generally342

captured the observed variability. The higher monthly mean in the observations was influenced by a peak in mid-August, but343

differences between observed and simulated values varied throughout the month. Before late August, observed values tended344

to be higher than the simulations, whereas, in the final days of the month, the model overestimated CO2 concentrations. This345

highlights the role of both biogenic and meteorological processes in shaping CO2 variability at this site (Fig. 7h), emphasizing346

the importance of considering these dynamics in future simulations. Additionally, Figure 4 illustrates more positive CO2 fluxes347

(representing CO2 emissions to the atmosphere) by the VPRM model during this period.348

The bias and RMSE for each simulation at the IAG and PDJ sites for February and August 2019, are illustrated (see Figure349

B7 in Appendix B). Overall, the bias tended to be negative across the board, indicating that the simulated surface CO2 con-350

centrations generally underestimated the observed values. Notably, with the exception of the ALL_PDJ simulation for August351

(Figure 7c), which displayed a small negative bias, CO2 simulations consistently fell below-observed levels at this site. Among352

the six sets of simulations, PDJ exhibited the smallest bias, averaging at -3.0 ppm, while IAG displayed a larger average bias of353

-13.3 ppm. Further analysis revealed that simulations incorporating both biogenic and anthropogenic sources (ALL_*) consis-354

tently yielded the smallest biases. RMSE values at PDJ remained below 12.0 ppm, while those at IAG exceeded this threshold.355

Notably, simulations focusing solely on anthropogenic sources at PDJ exhibited the poorest RMSE for both February and356

August, highlighting the significance of vegetation fluxes at this site. On the other hand, at IAG, simulations relying solely on357

biogenic sources in February and on anthropogenic sources in August resulted in the highest RMSE values, highlighting the358

importance of anthropogenic emissions, especially traffic ones. In February, simulations ALL_IAG and ALL_PDJ displayed359

the lowest RMSEs at 22.63 ppm and 10.12 ppm, respectively (Figure B7b in Appendix B). In August, these figures stood360

at 26.90 ppm and 6.83 ppm (Figure B7d in Appendix B), respectively. Overall, simulations incorporating both biogenic and361

anthropogenic sources yielded better results in terms of RMSE and bias, indicating a closer alignment between simulated and362

observed surface CO2 concentrations. Additionally, CO2 simulations at PDJ demonstrated the closest resemblance to observed363

values among the six simulations.364

Considering that CO serves as a vehicular tracer, we analyzed CO concentrations at the Pinheiros site using data from365

the CETESB network (see Figure 1 and Table 1) to compare with CO2 concentration profiles at the IAG site for February366

to August 2019, located less than 3 kilometers away from the Pinheiros site. The hourly correlation between observed CO2367

concentrations at the IAG site and observed CO concentrations at Pinheiros was determined, along with the correlation between368

simulated CO2 concentrations for IAG and observed CO concentrations. In Figure 8, both bar graphs of the hourly correlation369

between CO2 vs. CO concentrations show a correlation above 0.5 for observed CO2 and 0.25 for simulated CO2 during the370

early hours of the day until 10h, and again in the late afternoon after 19h, which corresponds to periods of high vehicular traffic371

in this region. Midday, this correlation decreases and even turns negative for the simulated CO2 vs. CO graph, suggesting372

the influence of the photosynthesis process on CO2 concentrations, which is also evident in the observed data. The similarity373

between the trend lines of the hourly correlation profiles for observed CO2 vs. CO and simulated CO2 vs. CO is evident.374
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Figure 8. Hourly correlation between CO2 concentrations observed at the IAG site and CO concentrations observed at the Pinheiros site

(blue bars), and between simulated CO2 concentrations at the IAG site and observed CO concentrations at the Pinheiros site (orange bars)

for the period from February to August 2019

Figure 9. Daily mean concentrations of CO2 observed concentrations (black dashed line), CO2 simulated concentrations (purple line), and

CO observed concentrations (red dotted line) at the IAG site during August 2019.
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In addition to the correlation between gases, Figure 9 indicates that both the modeled and observed CO2 profiles suggest375

that a significant portion of the CO2 concentrations at the IAG site originates from vehicular sources, as carbon monoxide is376

a trace gas associated with traffic emissions (Nogueira et al., 2021). Peaks in the CO2 time series at IAG are observed at the377

beginning, where the model fails to capture the magnitude of these concentrations. These peaks also appear in the observed CO378

profile at the begin of the month, confirming that a large part of the CO2 concentrations at IAG comes from vehicular sources,379

particularly on days with high concentrations, which are also reflected in the CO profile. However, the model struggles to380

simulate this high CO2 concentrations since it assumes that emissions follow the same diurnal variation every day of the381

month. Additionally, a distinct increase in CO concentrations without a corresponding rise in CO2 was observed between382

August 18 and 21 and August 27 and 28, which coincided with the long-range transport of smoke plumes from Amazon forest383

fires to São Paulo (Bencherif et al., 2020). While biomass burning emits both CO and CO2, their atmospheric transport and384

dispersion differ significantly. CO is more prevalent in incomplete combustion and tends to be transported at altitudes that385

favor long-range dispersion, whereas CO2 concentrations are more influenced by local emissions and atmospheric mixing386

(Gatti et al., 2010). These transport dynamics, combined with the long distance of the event’s origin, likely explain why the387

CO peak was detected at Pinheiros but not accompanied by a significant CO2 enhancement at the IAG site.388

3.3.3 Model evaluation against OCO-2 and XCO2 observations389

Figure 10a shows the monthly boxplots of observed and all_sources simulated XCO2 concentrations for the period from 1390

April 2019 to 31 August 2019. However, due to insufficient OCO-2 data over MASP during this period, the analysis covers all391

simulated domains rather than solely the metropolitan area. Regarding temporal variability, a clear seasonal cycle of XCO2 is392

evident from its smooth month-to-month variation (green boxes in Figure 10a). The simulated XCO2 concentrations, i.e., the393

simulated profiles with smoothing, generally captured this cycle, although with a less dispersion (length of the box) compared to394

the observed XCO2 concentrations. Notably, model-observation discrepancies are most pronounced during the winter months,395

with differences in median concentrations ranging from 0.8 to 1.5 ppm, while they are minimized during the autumn season,396

with differences in median concentrations between 0.5 and 0.6 ppm. The simulated XCO2 concentrations demonstrate similar397

trends within the same range but tend to slightly underestimate values on most days.398

When generating time-averaged modeled values, we only take into account the measurement period as previously mentioned.399

Regarding XCO2, the smoothed column concentrations (depicted by red dotted lines in Figure B8 in Appendix B) consistently400

fall below the observed values on a global scale. Figure 10b depicts the bias and RMSE, respectively, calculated across the pixel-401

by-pixel domain. Higher RMSE values are evident in the eastern region of MASP and along the border of São Paulo and Rio de402

Janeiro states. In these areas, characterized by heavy vehicular traffic, the model tends to overestimate XCO2 concentrations.403

Conversely, for the central region of the domain, we observe slightly negative bias values accompanied by higher RMSE404

values, indicating an underestimation of XCO2 concentrations.The uncertainties surrounding XCO2 simulation stem from405

various factors, including potential biases in the model’s wind representation, particularly in urban areas, consideration of406

emissions solely at the surface rather than at different pressure levels, as well as errors in the initial and boundary conditions of407
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Figure 10. a) Monthly boxplots of observed and simulated XCO2 concentrations for the period from 1 April 2019 to 31 August 2019, b)

Bias and c) RMSE calculated by pixel over the study domain.

concentration provided by the Carbon Tracker, which has also been seen in other studies (Chen et al., 2019; Lian et al., 2021;408

Peiro et al., 2022).409

4 Conclusions410

A comprehensive assessment of atmospheric CO2 concentrations in the metropolitan region of São Paulo (MASP) and its411

surroundings was conducted, utilizing the WRF model coupled to a greenhouse gas module. Given the burgeoning demand412

for research in this domain, particularly in South America, where urban areas are marked by significant emission sources,413

this study aimed to furnish a broad understanding of the key characteristics of CO2 concentrations. To ensure an accurate414

estimation of CO2 levels in MASP, the initial focus of the evaluation was on the model’s capability to simulate meteorological415
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variables. Biogenic fluxes were derived from the VPRM model, which was fine-tuned with flux tower data. Our results show416

that using this local data significantly improved simulated biogenic CO2 fluxes, highlighted the model’s capacity to represent417

key seasonal dynamics, with negative net ecosystem exchange (NEE) values predominating in February (summer) and posi-418

tive values in August (winter). However, we recommend the deployment of additional flux towers and targeted measurement419

campaigns to improve the characterization other ecosystems. A more comprehensive representation of PFTs is essential, as420

vegetation processes play a fundamental role in shaping CO2 patterns in tropical regions. The availability of additional flux421

tower data would enable a more refined optimization approach, enhancing the characterization of parameters for each veg-422

etation type. Anthropogenic emissions were curated from vehicular model and global inventory to provide a comprehensive423

representation of urban emissions, incorporating spatial and temporal resolution for key sources such as vehicular traffic for424

our domain. Boundary and initial conditions were scrutinized using global products. The WRF-Chem model demonstrated425

skill in simulating meteorological variables, particularly temperature; however, discrepancies in local wind speed and direction426

persisted. These differences are attributed to the region’s complex topography and the model’s resolution (3 km), which limits427

its ability to capture fine-scale dynamical processes.428

Simulated CO2 concentrations exhibited distinct diurnal cycles influenced by local emissions, boundary layer dynamics, and429

vegetation fluxes. The model’s performance varied between monitoring stations, highlighting the interplay between urban and430

vegetative environments. At the IAG site, CO2 concentrations were consistently underestimated, with negative biases of -9.17431

ppm in February and -12.83 ppm in August. This underestimation was closely linked to the model’s difficulty in capturing432

the impact of high vehicular emission densities, as indicated by the correlation with CO concentrations. Conversely, at the433

vegetated and elevated PDJ site, the model closely matched observational data, with minimal biases of 0.73 ppm in February434

and -0.61 ppm in August. In suburban locations such as the PDJ site, distant from urban sources, anthropogenic emissions di-435

minish, and the vertical gradient of CO2concentration generated by city emissions attenuates through atmospheric convection436

and diffusion processes. However, during the growing season, the contribution of biogenic flux to CO2 concentration warrants437

attention, especially concerning the simulation of nocturnal CO2 concentrations and ecosystem respiration. Improvements in438

the respiration equation of the VPRM model (Gourdji et al., 2022) could enhance the accuracy of these simulations. Impor-439

tantly, the modeled CO2 concentrations exhibited high sensitivity not only to atmospheric vertical mixing near the surface440

but also to the prescribed temporal profiles of anthropogenic and biogenic emissions, highlighting the underestimation of ve-441

hicular emissions. These sources of error, particularly pronounced in winter, present challenges in accurately quantifying city442

emissions.443

In general, the WRF-Chem model demonstrated proficiency in simulating seasonal variations, including XCO2, with profiles444

akin to OCO-2 data. This study underscores the imperative for further investigations and applications of the WRF-Chem model445

in uncharted regions such as the MASP, showcasing its prowess in simulating meteorological fields and CO2 observations.446

Code availability. The WRF-Chem model code version 4.0 is freely distributed by NCAR at https://www2.mmm.ucar.edu/wrf/users/download/447

(Skamarock et al., 2019). The VPRM code adapted from https://github.com/Georgy-Nerobelov/VPRM-code (Nerobelov et al., 2021). VEIN448
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Appendix A: Metrics evaluation462

Bias=

∑N
i=1(predi − obsi)

N
(A1)463

RMSE =

√∑N
i=1(predi − obsi)2

N
(A2)464

R2 =

∑N
i=1(predi − predi)(obsi − obsi)√∑N

i=1(predi − predi)2
∑N

i=1(obsi − obsi)2
(A3)465

where predi is the model simulation value, obsi is the observed value, and N is the number of observations.466

Appendix B: Supplementary figures467
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This appendix contains figures that give some additional insight to the conclusions given in the sections above and are refer-468

enced in the text.469
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Figure B1. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and b) show 10 m wind speed (WS)

compared to observed data from the Parque D.Pedro II station. The figure illustrates the relationship between modeled and observed data.

The panels in c) show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind

direction (WD). Black line represents the observed data and red line represents the model simulation.
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Figure B2. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and b) show 10 m wind speed (WS)

compared to observed data from the Guarulhos station. The figure illustrates the relationship between modeled and observed data. The panels

in c) show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction (WD).

Black line represents the observed data and red line represents the model simulation.
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Figure B3. The panels in a) show the scatter plots of hourly measurements of 2 m air temperature (T2m) and b) show 10 m wind speed (WS)

compared to observed data from the Pinheiros station. The figure illustrates the relationship between modeled and observed data. The panels

in c) show the daily averages from February to August 2019 of 2 m air temperature (T2m), 10 m wind speed (WS), and wind direction (WD).

Black line represents the observed data and red line represents the model simulation.
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Figure B4. Daily mean of CO2 emissions by the VEIN model for each month (a) to (g) and (h) Hourly mean profile at IAG site.

29



Figure B5. Daily mean of CO2 emissions by EDGAR for each month.
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Figure B6. Diurnal cycle of in situ CO2 concentration and planetary boundary layer (PBL) height for the entire simulated period. The black

line represents the median hourly concentrations from WRF-Chem, while the purple line corresponds to the observed values. The shaded

areas indicate the interquartile ranges. Panel a) shows the observed and simulated surface CO2 concentration at the IAG site; b) the simulated

PBL height at the IAG site; c) the observed and simulated surface CO2 concentration at the PDJ site; and d) the simulated PBL height at the

PDJ site.
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Figure B7. Bias (ppm) and RMSE (ppm) for each simulation at the surface CO2 observation sites. Panels (a) and (b) represent the simulations

for February, while panels (c) and (d) represent the simulations for August (ALL_*: black, ANTH_*: red, VPRM_*: green) *Represents the

observation sites, e.g. IAG and PDJ.

Figure B8. Time series of smoothed column concentrations observed (black) and modeled (red) for the period from 1 April 2019 to 31

August 2019.
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