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Abstract. The leveling errors are defined as the data difference among flight lines in airborne geophysical data. The 

differences of the signal leveling always show as a striping pattern parallel to the flight lines on the imaged maps. The fixed 10 

structured pattern inspires us to structure a guided leveling error model by an anisotropic Gabor filter. Then we embed the 

leveling error model in total variational framework to flexibly calculate leveling errors. The guided leveling error model 

constrain the noise term of total variation rather than just blind removal. Moreover, we can also apply the structured 

variational method to remove other noises in airborne geophysical data. It would just require replacing the noise prior 

models in the proposed method. We have applied the method to the airborne electromagnetic, magnetic data, and apparent 15 

conductivity data collected by Ontario Geological Survey to confirm its validity and robustness by comparing the results 

with the published data. The structured variational method can better level airborne geophysical data based on the space 

properties of leveling error. 

1 Introduction 

Airborne geophysical exploration is loaded on an aircraft which moves at a high speed and at a certain elevation. The 20 

dynamic measuring mode brings convenience and efficiency, but also constantly changes surrounding environment of the 

aircraft (Luyendyk, 1997; Gao et al., 2021). The aircraft data are acquired under different flight conditions and have the 

unequal data levels which defined as leveling errors. Leveling errors showed as the striping pattern along the flight direction 

because of continuous “S-type” flight mode (Hood, 2007).  

Airborne geophysical survey is commonly carried out in a long-term and large-scale measurement. Mathematically, a variety 25 

of factors contribute to the leveling errors which are described as distributed parameter model. The uncontrollable external 

environment is the main source of the leveling errors in airborne geophysical survey. The seasonal and regional climate 

brings with the temperature fluctuations and natural wind changes. The temperature influences the internal aircraft 

configuration, and the wind directly changes the external inclination angle of aircraft (Huang and Fraser, 1999; Valleau, 

2000; Siemon, 2009). It concludes that the external environment cannot be deemed a lumped parameter model and indirectly 30 

affects the data levels of each survey point. 
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Other factors are related to the intrinsic property of airborne measuring. Airborne survey routinely flies in a continuous “S-

type” flight mode under the certain elevation. When the aircraft changes the flying direction, the aircraft sides on the left and 

right are alternately to face the same surrounding environment. The opposite direction between adjacent lines makes the 

minor difference of flight attitude angle and other system configurations (Yin and Fraser, 2004; Huang, 2008). In addition, it 35 

is unavoidable to keep constant flying altitude, no matter how advanced systems are and how experienced personnel operate 

(Tezkan et al., 2011; Eppelbaum and Mishne, 2011). The minor fluctuation factors are hard to control and measure that 

contribute to leveling errors. 

The sources of the leveling errors are multiplicative and unable to quantitatively describe. It is hard to set up mechanism 

modelling of leveling errors. Currently, geophysicists base on the definition of leveling error and carry out data processing. 40 

1.1 Tie-line leveling method 

A traditional but effective method is tie-line leveling. Compared the flight line data with tie line data at the same survey 

point, the operators correct the crossover point based on the differences of the tie lines and flight lines. The accuracy of tie-

line leveling mainly relies on whether the differences can match with the leveling errors. Many geophysicists have proposed 

algorithms to improve matching precision (Foster et al., 1970; Yarger et al., 1978; Bandy et al., 1990; Mauring et al., 2002; 45 

Srimanee et al., 2020). However, the flight line data and the tie line data are flown in different aircraft configuration and 

external environment. Moreover, airborne electromagnetic data are relatively sensitive to altitude compared with airborne 

magnetic data. The leveling error is not the only cause to accumulate the differences of the crossover point. It is hard to 

separate the leveling errors from differences. Furthermore, virtual tie lines (Huang and Fraser, 1999; Fan et al., 2016; Zhang 

et al., 2018) are skillfully constructed to level geophysical data instead of tie lines. 50 

1.2 Block leveling method 

From the definition of leveling error, the inconsistent data level in flight lines is attributed to leveling errors which are not 

continuous between adjacent flight lines. However, survey area geology changes quite slowly, it is reasonable to assume the 

nature survey points are correlate in a certain region. Then the leveling errors can be derived line-to-line based on the 

differences between adjacent flight lines (Green, 2003; Huang, 2008; Zhu et al., 2020). Moreover, geophysicists skilfully 55 

constructed one-dimensional (1D) flight line windows and two-dimensional (2D) planar windows, considering the statistical 

parameters difference between the flight line data and region data. The leveling errors are calculated point-to-point by 

matching with the difference between the 1D and 2D window values (Mauring, 2006; Beiki, 2010; Ishihara, 2015). 

Moreover, the geophysical data can be microleveled using the statistical approach in designed moving window (Davydenko 

and Grayver, 2014; Groune et al., 2018). 60 
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1.3 Global leveling method 

The line-to-line and point-to-point methods only level small amounts of data in each loop that can be deemed as block 

processing methods. A common problem is cumulative inaccuracies when the leveled data are used to level in next loop. In 

contrast, global processing methods operate the entire region data instead of only part data in every iteration. The global 

processing methods available mainly focus on airborne magnetic data leveling based on the separated long-wavelength 65 

components (Urquhart, 1988; Nelson, 1994; Luo et al., 2012; White et al., 2015; Zhang et al, 2021). The directional filters 

are designed and leveled the geophysical data (Minty, 1991; Ferraccioli et al., 1998; Siemon, 2009; Gao et al., 2021). 

In summary, the conventional block processing methods would inevitably transfer errors. The global processing methods 

mainly focus on leveling airborne magnetic data. As the leveling error properties discussed above, the leveling error is an 

additive drift, presented as the inconsistent data level among the flight lines. The inconsistent is affected by a variety of 70 

factors that we are hard to construct the mechanism model of leveling error. But the striping errors would increase the total 

variation of the measuring area. Then total variational theory inspires us to leveling data by inducing an energy functional. 

The proposed method is described as follows. 

2 Proposed Method 

As the survey area space analysis, leveling errors are formed along with the flight lines and have definitive directional 75 

distribution property (Zhang, 2022). The directional stripes would further cause the discontinuity from the vertical direction 

and increase the horizontal gradient amplitude. Total variational model can detect and remove all the components which 

impair the total smoothness. While we specifically focus on leveling errors, a detailed constraint is helpful. So, we build a 

leveling error model based on its prior information and properly embed the model in the total variational model. In the 

proposed method, only the leveling errors are extracted and removed through solving the constrained and structured 80 

variational model. 

2.1 Total Variational Model 

The theoretical basis of most leveling techniques is that the geophysical field is continuous. The observed data tend to show 

significant correlations with their neighboring points. But the leveling errors are not continuous between adjacent flight lines 

(Huang, 2008). When the assumption is valid, the geophysical data with leveling errors will have a large variation amplitude, 85 

compared with nature geophysical data. Then it is advisable to estimate the leveling error components based on total 

variation model. 

We simply deemed the survey data consists of two parts: 

𝐒𝐒(𝑖𝑖, 𝑗𝑗) = 𝐄𝐄(𝑖𝑖, 𝑗𝑗) + 𝐃𝐃(𝑖𝑖, 𝑗𝑗),            (1) 
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where 𝐒𝐒(𝑖𝑖, 𝑗𝑗) is the 𝑖𝑖th survey data in the 𝑗𝑗th flight line, 𝐄𝐄(𝑖𝑖, 𝑗𝑗) is the leveling error component of the survey point, 𝐃𝐃(𝑖𝑖, 𝑗𝑗) is 90 

the leveled data. Here the survey data are considered as a 2D function in entire region Ω, (𝑖𝑖, 𝑗𝑗) define the 𝑖𝑖th survey data in 

the 𝑗𝑗th flight line. 

Rudin, Osher, and Fatem (1992) introduced total variation norm and proposed ROF total variation model which has been 

widely used in image-denoising applications. Based on total variational model, we can estimate the leveling error 

components by constructing an energy functional, 95 

𝐹𝐹(𝐃𝐃) = ∫ ‖𝐒𝐒 − 𝐃𝐃‖2 
Ω + 𝜆𝜆𝜆𝜆𝜆𝜆(𝐃𝐃),          (2) 

where 𝜆𝜆 is the regularization coefficient that quantifies the degree of smoothness. Based on the multiscale hierarchical 

decomposition theory (Tadmor, 2003), we can determine the regularization coefficient by the spatially adaptive multi-scale 

model (Zhang, 2022). 𝑇𝑇𝑇𝑇(𝐃𝐃) is the total variation of the estimated solution 𝐃𝐃 expressed as, 

𝑇𝑇𝑇𝑇(𝐃𝐃) = ∫ |∇𝐃𝐃| 
Ω = ∫ ��𝑑𝑑𝐃𝐃

𝑑𝑑𝑑𝑑
�
2

+ �𝑑𝑑𝐃𝐃
𝑑𝑑𝑑𝑑
�
2 

Ω 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.         (3) 100 

In the total variational model, ∫ ‖𝐒𝐒 − 𝐃𝐃‖2 
Ω  is a fidelity term which ensures the similarity between the original data 𝐒𝐒 and the 

clear data 𝐃𝐃. In Eq. (2), L-2 norm is selected to build the fidelity term as its excellent edge-preserving performance. 

𝑇𝑇𝑇𝑇(𝐃𝐃) serves as the regularization term, aiming at penalizing the undesirable damage in data. The regularization term is the 

total variation of the estimated solution. It means that gradient-domain sparse constraints are imposing along horizontal and 

vertical directions. Combining with prior information, the leveling error components can be computed by minimizing total 105 

variation model in Eq. (2). Total variational model has applied on the striping noise removal (Zhang and Zhang, 2016; Liu et 

al., 2019). 

2.2 Leveling Error Model 

Accurate extracting leveling errors requires to combine the total variation model with as much prior information of 

leveling error as possible. Leveling errors present a significant directional property and showed as the striping pattern 110 

along the flight direction. Then we can design an anisotropic Gabor filter with principal axis directed by the leveling 

error. 

In geophysical exploration, the leveling error model should estimate the intensity at each survey point that can be 

modeled as, 

𝐄𝐄 = α ∗ 𝐆𝐆,              (4) 115 

where α is the weight coefficient which describes the intensities of leveling error, 𝐆𝐆 is the noise pattern. We model 

stripes as anisotropic Gaussian function defined by: 

𝐆𝐆(𝑖𝑖, 𝑗𝑗) = 𝑒𝑒
−
𝑥𝑥𝑖𝑖
2

𝜎𝜎𝑖𝑖
2−

𝑦𝑦𝑗𝑗
2

𝜎𝜎𝑗𝑗
2
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�
𝑥𝑥𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗   
𝑦𝑦𝑗𝑗 = −𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗.           (5) 

In the Eq. (5), (𝑖𝑖, 𝑗𝑗) defines the location of the 𝑖𝑖th survey data in the 𝑗𝑗th flight line. 𝜃𝜃 represents the normal’s orientation 120 

to the Gabor function’s parallel stripes, that is, the flight line direction. 𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑗𝑗 are the Gaussian envelope’s standard 

deviation of 𝑥𝑥 direction and flight line direction respectively. 

The pattern of leveling error is mainly described by the Gaussian function. We can obtain the parameters in Eq. (5) 

combined prior shape information. The weight coefficient defines the leveling error intensity that is necessary to solve 

from the overall view. 125 

2.3 Structured Variational Model 

When we guide the total variational model leveling by leveling error model, the structured variational model provides 

an accurate geophysical processing design. We obtain the following objective function: 

𝐹𝐹(α, λ) = ∫ ‖α ∗ 𝐆𝐆‖2 
Ω + 𝜆𝜆𝜆𝜆𝜆𝜆(𝐒𝐒 − α ∗ 𝐆𝐆).          (6) 

Equation (6) contains two coefficients α and 𝜆𝜆 to balance the fidelity term and regularization term. It is permitted to 130 

reasonably merge the two coefficients and express Eq. (6) as, 

𝐹𝐹(α) = ∫ ‖α ∗ 𝐆𝐆‖2 
Ω + 𝑇𝑇𝑇𝑇(𝐒𝐒 − α ∗ 𝐆𝐆).          (7) 

Then we use alternating direction method of multipliers (ADMM) to solve nonconvex optimization problems. ADMM 

converts the original problem into subproblems with closed-form solutions. It is an effective approach in a sequence of 

iterative sub-optimizations (Bertsekas, 1982). 135 

While the leveling error intensity for each survey point is solved, we complete the data leveling using Eq. (1) and Eq. 

(4) under the structured variational model. 

In exploration field, airborne geophysical measurement data contains a large amount of noise due to atmospheric flow, 

lightning, aircraft vibration, and unstable speed factors (Yin C. C. et al, 2015). In addition to leveling errors, different 

kinds of noises damage the measurement data simultaneously. Here, we simply assume the measurement data contains 140 

leveling errors and Gaussian white noise. In that case, the proposed leveling method has an obvious advantage 

compared with other leveling methods. The proposed method constructs an energy functional as Eq. (2). For other 

noise, we can consider the denoising problem under the framework similarly. The noise model in Eq. (4) describes the 

noise distribution and geometrical structure. When we try to remove several kinds of several kinds of disturbances, Eq. 

(4) is extended as, 145 

𝐄𝐄 = ∑ α𝑖𝑖 ∗ 𝐆𝐆𝑖𝑖𝒏𝒏
𝒊𝒊=𝟏𝟏 ,             (8) 

where n is the number of noise type. 

For Gaussian white noise, it can be obtained by convolving a Dirac function with a sample of white Gaussian noise. 
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The proposed method simultaneously removes the leveling errors and Gaussian white noise in one step processing 

which helps to improve electromagnetic exploration accuracy. 150 

Thus, there are three evident advantages in proposed leveling method: 

(1) Total variation model designs the total energy as a constraint condition and obtains the constrained gradient 

minimization by the regularization coefficient. When we use total variational model to deal with survey area data, it 

can reasonably remove the leveling errors that increase the gradient of survey area data. 

(2) Due to the complexity of airborne geophysical field measurement, there are multiple components in airborne 155 

geophysical data. To focus on leveling error extracting, we construct a rough leveling error model based on the striping 

pattern. Then the leveling error model is embedding into the gradient minimization functional and clearly solved in the 

structured variational model. 

(3) The structured variational model can be carried over into other noise. If it is accessed the noise characteristic and 

established the noise model, we can speculate that the structured variational model can remove other noises. The 160 

framework may take effect based on precise noise model. 

We have verified the advantages through experiments. 

3. Results 

3.1 Airborne magnetic data leveling 

3.1.1 Real dataset example 165 

The leveling method has been tested on magnetic field data obtained by Geotech Limited. Figure 1 shows the magnetic data 

before and after leveling. The survey area data include 117 flight lines with a line spacing of 200 m and contain striped 

leveling errors along flight-line direction. In the example, we only focus on leveling errors in Fig. 1(a). The noise pattern in 

Eq. (5) is set based on the prior information about leveling errors. For example, we set the normal’s orientation 𝜃𝜃 as 90° 

because the flight line direction is vertical in the general coordinate system. The Gaussian envelope’s standard deviation 𝜎𝜎𝑖𝑖 170 

and 𝜎𝜎𝑗𝑗 decide the number of stripes. And the ratio of  𝜎𝜎𝑖𝑖 and 𝜎𝜎𝑗𝑗 represents the spatial shape of the Gabor function. When we 

use the Gabor function to describe leveling errors, 𝜎𝜎𝑖𝑖/𝜎𝜎𝑗𝑗 should be much less than 1. Figure. 1(b) shows the processed data by 

the proposed leveling method. And Fig. 1(c) presents the leveled data by the classic Tie-line leveling method. 
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Figure 1: Airborne magnetic data leveling. (a) Raw magnetic data. (b) Leveling results by the proposed leveling method. (c) 175 
Leveling results by Tie-line leveling method. 

3.1.2 Synthetic dataset example 

The example is from a synthetic magnetic dataset with additional Gaussian white noise and leveling errors. We selected the 

leveling results by Tie-line leveling method as the clean data. The data have been explained in Real dataset example and 

presented in Fig. 1(c). Then we tested our algorithm on the noisy magnetic data as Fig. 2 and Fig.3 shown. There are three 180 

experiments, including specific clean data with Gaussian white noises, clean data with leveling errors, and clean data with 

Gaussian white noises and leveling errors. 

The first synthetic dataset focuses on removing Gaussian white noises. We required to estimate and obtain the noise model 

by white noise estimation method. Then the structured variational model will be guided to remove the corresponding noise 

type. Figures 2(a) and 2(d) show the data before and after processing. The second synthetic dataset focuses on removing 185 

leveling errors. Figure 2(b) is the clean data with leveling errors. We use a Gabor filter to simulate the leveling error model. 

And Fig. 2(e) show the data after processing. The third synthetic dataset is designed with two noise components as Fig. 2(c) 
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shown. While the proposed method intends to remove the noises simultaneously, the noise model in Eq. (8) must include 

Gaussian white noise model and leveling error model. Then the proposed method removes the two noises in an objective 

function. Figures 2(c) and 2(f) show the noisy magnetic data before and after processing. 190 
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Figure 2: Synthetic airborne magnetic data processing. (a) Magnetic data with Gaussian white noises. (b) Magnetic data with 
leveling errors. (c) Magnetic data with Gaussian white noises and leveling errors. (d) Denoised results of Fig.(a) data. (e) Denoised 
results of Fig.(b) data. (f) Denoised results of Fig.(c) data. (a), (b), and (c) have been adjusted to the same colorbar. (d), (e), and (f) 
have been adjusted to the same colorbar. 195 

Furthermore, we calculated the signal to noise ratio (SNR) for the three experiments. The quantitative comparison is shown 

in Tab. 1. And Fig. 3 illustrates the transient data to compare the results in greater detail. There are four flight lines locally 

enlarged, corresponding to the black dotted rectangle in Fig. 2. The three subgraphs analyzed separately the three 

experiments above. In every subgraph, the blue curve represents the clean magnetic data, the red curve represents the noisy 

magnetic data, and green curve represents the denoised magnetic data. 200 
Table 1: SNR of synthetic airborne magnetic data processing 

 Gaussian white noises Leveling errors Gaussian white noises and 
leveling errors 

Before data processing 65.62 dB 51.44 dB 51.40 dB 

After data processing 72.34 dB 75.94 dB 65.30 dB 
 

 
Figure 3: Leveling result analysis of synthetic airborne magnetic data. (a) Magnetic data with Gaussian white noises. (b) Magnetic 
data with leveling errors. (c) Magnetic data with Gaussian white noises and leveling errors. 205 

3.2 Apparent conductivity data leveling 

We also tested the leveling method on the apparent conductivity data provided by Ontario Airborne Geophysical 
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Surveys. The dataset used in the paper is formed by 70 flight lines named L310-L1000 as a part of Geophysical Data 

Set 1076 measured in the surveys (Ontario Geological Survey, 2014). Geotech Limited carried out a helicopter-borne 

combined aeromagnetic and electromagnetic survey for the Ministry of Northern Development and Mines in 2014 in 210 

the Nestor Falls area in north-western Ontario. Based on Resistivity depth imaging (RDI) technique (Meju, 1998), 

Geotech Limited converted the EM profile decay data into an equivalent resistivity versus depth cross-section, by 

deconvolution of the measured TEM data. Data compilation and processing were carried out using Geosoft® OASIS 

montaj™ and programs proprietary to Geotech Ltd (Ontario Geological Survey 2014).   

Figure 4 presents the apparent conductivity data before and after leveling processing. As Fig. 4(a) presented, there are 215 

only slight striped errors along the flight line direction in the apparent conductivity data. While the electromagnetic 

data are transformed into conductivity parameters, the altitude sensitivity is weakened strongly (Fraser, 1972; Huang 

and Fraser, 1999). 

Then we applied the structured variational model to the apparent conductivity data and got the leveling results as Fig. 

4(b) shown. In the analysis of the data, it is assumed that the leveling error is only noise source. Figure 5 illustrates the 220 

transient data to compare the results in greater detail. Two part data are plotted corresponding to the black rectangle in 

Fig. 4. The first part including 10 flight line data as shown in Fig.5 (a). Then we selected a small data scope (0-2.4*10-3 

S/m) to locally enlarge and drawn the data in Fig.5 (b). Figures 5(c) and 5(d) are drawn by the 5 flight line data which 

are corresponding to the black dash-dot rectangle in Fig.4. 

 225 
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Figure 4: The leveling of the apparent conductivity data. (a) The raw data. (b) Leveling results by the proposed leveling method. 

 
Figure 5: Leveled apparent conductivity data. (a) 10 flight line data, corresponding to the black dotted rectangle in Fig.4. (b) Local 
enlarged curves of Fig.(a) data. (c) 5 flight line data, corresponding to the black dash-dot rectangle in Fig.4. (d) Local enlarged 
curves of Fig.(c) data. 230 

4 Discussions 

Firstly, we analyzed and discussed the leveling results in airborne magnetic data example in Fig. 1. As seen in Fig. 1(b) and 

(c), most of the striped leveling errors have been removed by the proposed leveling method and Tie-line leveling method. 

Careful contrast of the two results shows Tie-line leveling method remains some weak leveling errors which is clear in the 

black dotted bordered rectangle in Fig. 1.  235 

The residues in Tie-line leveling method may be caused by the incompatible data alignment. Although the leveling errors 

show striped pattern in survey area map, they are slowly changing from point to point in certain flight line. Tie-line leveling 

method adjusts the flight line data to match tie line data. Because tie line number is much less than point survey number, it 

needs to build a model by the crossover point differences of the tie lines and flight lines. When a few tie line data are used to 

calculate the leveling error of every point, it is hard to balance every point by an exact model.  240 

In the paper we proposed a new technology based on the ROF total variation model which focuses on the gradient change of 

measured data. As the basic principle of data leveling, theoretical geophysical data have continuous change regularities. And 

leveling errors break the continuity and increase the total variation of survey area data (Zhang et al, 2022). In the proposed 
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leveling method, the structured variational model aims at minimizing the energy functional that can better explore the 

leveling errors in the data. 245 

Then we evaluated a synthetic magnetic example to further analyze the results. There are three experiments with different 

noises: (1) Gaussian white noises; (2) leveling errors; (3) mixed noises with Gaussian white noises and leveling errors. As 

shown in Fig. 2, the structured variational model can visibly remove the noises. In theory, noises increase the gradient 

amplitude. The proposed model can be robust to smooth the gradient of survey area data in an energy functional. 

There is a transient data comparison in Fig. 3. In the three experiments, the results of (green lines) are highly similar to clean 250 

data (blue lines). And the data processing is without the localized anomalies being trimmed. Three groups of SNR are 

calculated in Tab.1. The robustness of proposed model means it can deal with different noise type. Suitable noise model still 

needs to be set, otherwise, it may lead to over-smoothing effect. 

Finally, we test the leveling method on apparent conductivity data. Compared with Figs. 1(a) and 4(a), apparent conductivity 

as response domain are slightly effected by leveling errors. However, the differences in data levels still interfere data 255 

interpretation. Figure 5 can better evaluate how well the method is working. We deem the bottom of data curve represents 

the data level and enlarge the small data scope as Figs. 5(b) and 5(d) shown. And a black dashed line is added as a measured 

rule. The blue lines in Fig. 5 are the apparent conductivity data without leveling. It is obvious that the bottom of blue lines 

hover around the black dashed lines in Figs. 5(b) and 5(d). When we adjusted the data, the data levels are united as the red 

lines shown in Fig. 5. The slight leveling errors are tested and removed by the proposed leveling method. The method is 260 

effective to time-domain airborne electromagnetic data and response-domain airborne electromagnetic data. 

5 Conclusions 

In this paper, we proposed a leveling method based on a structured variational method. The basis is that leveling errors 

increase the gradient of survey area data. The ROF total variation model is proposed by Rudin, Osher, and Fatem (1992) and 

designed with the total energy as a constraint condition. Moreover, it has a potential performance in smoothing the total 265 

gradient by minimizing the constrained gradient. The regularization coefficient plays a role in controlling the smoothness. 

The ROF total variation model can adjust the airborne electromagnetic data by smoothing the total gradient. 

A rough leveling error model is constructed to focus on leveling error accurately. Based on the leveling error characteristic, 

we introduced the Gabor filter to match the leveling error with the striping pattern. Furthermore, the rough leveling error 

model is embedded into the ROF total variation model to construct a structured variational model. The proposed model is 270 

guided to deal with the additional gradient caused by leveling errors. We have confirmed the method’s reliability by 

applying it to the magnetic, synthetic magnetic, and apparent conductivity data. 

Besides, the synthetic magnetic example has tested the structured variational model, which can also handle other noise. A 

suitable noise model still needs to be embedded into the ROF total variation model. Otherwise, it may lead to an over-

smoothing effect and loss of accuracy.  275 
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