

1	Coupling relationship between soil properties and plant diversity
2	under different ecological restoration patterns in the abandoned coal
3	mine area of southern China
4	Hao Li ^{1,2} , Wenbo Chen ^{1,3,*} , Cheng Zhang ^{1,3} , Haifen Liang ^{1,3}
5	
6	
7	1 School of Surveying and Geoinformation Engineering, East China University of
8	Technology, Nanchang, 330013, China
9	2 Jiangxi Bureau of Geology Energy Geology Brigade, Nanchang 330200, China
10	3 Jiangxi Key Laboratory of Watershed Ecological Process and Information, East
11	China University of Technology, Nanchang, 330013, China
12	
13	
14	
15	*Corresponding Author: Wenbo Chen. Email: cwb1974@126.com

16 Abstract

17 Understanding the effects of ecological restoration in abandoned coal mine on soil and plant is important to improve the knowledge of ecosystems evolution and 18 19 facilitate taking appropriate ecological restoration management practices. This study aims to evaluate the coupling relationship between plant diversity and soil properties 20 after ecological restoration in abandoned coal mine area. The plant diversity and soil 21 22 properties were investigated in four sites of different ecological restoration patterns in 23 Fengcheng county, a typical coal- rich area in the history of southern China. The results indicated that: 1) the PSR (Pinus massoniana and Schima superba gardn 24 restoration) site had higher Shannon-Wiener index and Simpson index values than PR 25 (Pinus massoniana restoration) site, and in herb layer, the plant diversity was 26 significantly higher than other layers; 2) in the PSR site, the soil properties were 27 improved more notably than that of PR and NR (nature restoration) sites, and the 28 plant diversity were also better than PR site; 3) Clay, SOM (soil organic matter), and 29 MBC (microbial biomass carbon) made a great contribution to the plant diversity. It 30 was concluded ecological restoration patterns had significant effects on soil nutrient 31 32 content and plant diversity, and there exists evident coupling relationship between 33 plant diversity and soil properties. This study has important effects of ecological 34 restoration and management in abandoned coal mine area.

Keywords: Ecological restoration, Plant diversity, Soil properties, Vegetation
 configuration, Abandoned coal mine area

38 **1 Introduction**

Coal is one of the three primary energy resource in the world, and the exploited 39 of coal accounts for one-third of the world's energy consumption (Gao et al., 2021). 40 41 China is the largest country of coal production, and coal is also the mainly energy resource in the nation's energy supply, such as power fuel and to generate electricity, 42 and its dominance will continue for a long time (Ruan et al., 2022; Wu et al., 2020b; 43 Yuan et al., 2022). Coal mining activities cause environmental damage, such as 44 landscape fragmentation, species loss, vegetation elimination, soil degradation (Babí 45 Almenar et al., 2019; Liu et al., 2019; Yang et al., 2022). Moreover, underground coal 46 mining may cause land subsidence and produce large quantities of mine waste, having 47 a irreversible damage to ecosystem development (Du et al., 2021; Lechner et al., 2016; 48 Xu et al., 2023). The ecological environment background conditions of coal mine 49 areas are always very poor, due to coal excavation, coal washing and coal gangue 50 51 disposal, seriously threatening the safety of people and property (Ahirwal and Maiti, 2018). In China, coal resource utilization has recently increased rapidly due to the 52 53 long-term dependence of the economic development (Xie et al., 2023). The area destroyed by mining activities has increased to 120,000 km² in 2020, and the number 54 of abandoned coal mines was more than 12,000 (Wang et al., 2022). Furthermore, in 55 56 2022, abandoned mines account for 30.35% of the mine development area, and only 57 4.64% has been restored (Lyu et al., 2022). Therefore, the implementation of ecological restoration in abandoned coal mine area is expecially urgent. Ecological 58 restoration is a main measure to maintain the stability of the ecosystem, and how to 59 60 scientifically and effectively conducted ecological restoration has been highly valued by many researches (Ismaeel and Ali, 2020). The United Nations General Assembly 61 proclaimed a ten-year plan on ecosystem restoration to facilitate the restoration of 62 damaged ecosystems (UNEP, 2019), and the "13th Five-Year Plan (2016-2020)" in 63 China has given priority to ecological restoration of mining areas. 64

Recently, many studies on ecological restoration of abandoned coal mine area
have concentrated ecological restoration measures to improve soil properties, restore
ecosystem structure and function, and improve biodiversity (Chen et al., 2020; Du et

al., 2021). Vegetation restoration plays an important role in improving soil quality and
restoring other ecological services in abandoned coal mine area (Chen et al., 2020;
Kaiser-Bunbury et al., 2017; Lu et al., 2022). Additionally, vegetation restoration is
not only low costs and environment friendly, but also bring aesthetic value and
produce social economic benefits (Pathak S et al., 2020; Sun et al., 2021).

73 Re-vegetation can improve the soil structure and property (Zhao et al., 2022a). 74 Appropriate vegetation restoration projects can significantly improve soil nutrient and activity (Yuan et al., 2018; Deng et al., 2018b). It is well know that soil properties are 75 conducive to the maintenance of plant diversity (Gong et al., 2019). Some researches 76 reported that soil nutrients, soil pH, soil water content (SWC), and soil bulk density 77 (SBD) had significant effect on plant diversity (Damgaard et al., 2013; Yan et al., 78 79 2015). Soil pH can change soil enzyme activity and nutrient, thus affecting plant diversity (Cambrollé et al., 2014). SWC and SBD plays a key role in soil hydrological 80 81 processes, and the improvement of which is beneficial to improving ecosystem productivity and plant diversity (Boluwade and Madramootoo, 2016; Katherine et al., 82 2010). Soil nitrogen (N) and phosphorus (P) affect plant diversity by limiting the 83 84 growth of vegetation, whereas soil organic matter (SOM) is significantly correlated with available nitrogen (AN) and available phosphorus (AP) (Chen et al., 2019; Liu et 85 86 al., 2021). Previous researches reported that soil heterogeneity and nutrients was 87 thought to improve diversity and spatial heterogeneity of plant communities (Schweiger et al., 2016). Meanwhile, vegetation restoration can improve soil nutrient 88 availability, and improve ecosystem productivity (Bakker et al., 2019; Chen et al., 89 90 2019). However, the influential mechanisms of soil properties on plant diversity are complex, and few studies are available for it (Lü et al., 2019; Wu et al., 2019). 91

Plant diversity is one of the most important feature in biodiversity, which can describe the structural complexity of plant community (Sun et al., 2019). Plant diversity can be measured through the metrics of Margalef index (M), Simpson index (H), Shannon-Wiener index (D), and Pielou index (J) (Bennett et al., 2006). Current researches on the coupling relationship between soil properties and plant diversity always concentrate on forest rather than coal mine restoration area. How soil

98 properties affect plant diversity, and their interactions under different vegetation 99 configuration are still needed to be studied. Therefore, the research of coupling 100 relationship between soil properties and plant diversity under different ecological 101 restoration patterns plays an important role in providing theoretical guidance for 102 abandoned coal mine restoration.

In this study, we analyze the effects of different vegetation restoration patterns on 103 104 plant diversity and soil property, as well as the relationship between them in abandoned coal mine area. The aims of this study are to: 1) evaluate the change trend 105 of soil properties and plant diversity in abandoned coal mine under different 106 vegetation restoration patterns, 2) discover the relationship between soil properties 107 and plant diversity, 3) determine impacting fators of soil properites and plant diversity 108 109 from plant community's point of view. It is expected to better understand the ecosystem process happened in abandoned coal mine area for better ecological 110 111 restoration benefits.

112 2 Materials and methods

113 **2.1 Study sites**

114 The study was carried out in the abandoned coal mines of Liushe, Shanxi and 115 Longxi coal mine area (115°48'30"~115°57'30" E, 27°56'00"~27°59'30" N), located 116 in Fengcheng county, Jiangxi province, China (Fig.1). The altitude ranges from 45 to 117 75 m, with an average of 60 m. The study sites are suitable for the growth of broadleaved forest and subtropical coniferous forest species, such as Pinus 118 massoniana, Cunninghamia lanceolata. and Schima superba gardn. The shrubs in the 119 120 study area are mainly Osmanthus fragrans var.semperflorens, Photinia × fraseri Dress, Camellia japonica L, and Lagerstroemia indica L., and the herbs are Cynodon 121 122 dactylon L., Setaria viridis L., Dendranthema indicum, and Poa annua L.

126 **2.2 Sites selection, plant investigation and soil sampling**

127 The *Pinus massoniana* and *Schima superba gardn* were important for 128 re-vegetation and afforestation on abandoned coal mine area due to its strong 129 adaptability (Pietrzykowski, 2014), and were native dominant plant species in south 130 China. Based on the environment factors, ecological restoration patterns, and the 131 scope of coal mine, we selected the ecological restoration areas with different 132 restoration patterns of the same vegetation restoration year in abandoned coal mining

133 areas. Four typical sites of different ecological restoration patterns were selected: PR (Pinus massoniana restoration), PSR (Pinus massoniana and Schima superba gardn 134 restoration), NR (nature restoration), and NA (nature undisturbed area) as a control 135 136 (Table 1). For each ecological restoration pattern, considering both the location and slope, we choose two sample sites in the study area, and randomly established five 137 plots in each site. The latitude, longitude, altitude and dominant species were recorded 138 139 in each study sites. We made ground vegetation inv to collect data on plant diversity in June 2022. The investigation sites were depended on the plant community size,10 140 m \times 10 m quadrat were selected in ten study sites as arbor layer, ten 5 m \times 5 m 141 quadrat were mechanically arranged as shrub layer squares in the arbor quadrat, and 142 one 1 m \times 1 m herb layer quadrat was set in the center of each shrub quadrat. We 143 recorded the species name, quantities of trees, height, the branch diameter and 144 coverage of arbor layers, names, heights, the number of shrubs. In the herb layer, 145 146 species name, average coverage and average height of each species occurring were recorded. 147

Considering the characteristics of soil properties in the top layer, each soil profile 148 was sampled for every 10 cm by auger from three layers: 0-10 cm, 10-20 cm, and 149 150 20-30 cm. Soil samples (8-10) were collected along an S-shaped pattern from each 151 study site, and a total of 100 soil samples were collected for soil properties 152 determination. At each sampling site, approximately 0.5-1 kg of soil sample was selected according to the quartet method after removing plant roots, stones, weeds and 153 litter. After air-drying, the collected soil samples were crushed, and passed through a 154 155 sieve. Finally, the physical and chemical properties of soil were determined.

Types	Altitude (m)	Longitude	Latitude	Restoration years	Dominant species
PR	68.23	115°50'36"	27°57′21″	10	Pinus massoniana, Camellia japonica L., Photinia × fraseri Dress
PSR	75.44	115°52′35″	27°57′38″	10	Pinus massoniana, Schima superba gardn, Photinia × fraseri Dress
NR	65.37	115°52′16″	27°58'48″	10	Pinus massoniana, Cunninghamia lanceolata, Camellia japonica L., Pyracantha fortuneana
NA	46.54	115°52′15″	27°56'42"	>20	Cunninghamia lanceolata, Schima superba gardn, Osmanthus fragrans var. Semperflorens, Photinia × fraseri Dress

Table 1 Information on the five study sites

157 2.3 Plant diversity analysis and soil properties measurement

The importance value (IV) and plant diversity index of different plant layers were calculated through the plant investigation data. IV is an essential species diversity index and the IV value can directly indicate the relative importance of plant species in a community (Zhang et al., 2011). In this study, the plant diversity index H, D, J, and M were calculated to describe the plant diversity in different ecological restoration patterns area (Kumar et al., 2015; Zhou et al., 2016). The calculation methods were as follows:

165Important value (IV) = (Relative density + Relative frequency + Relative

```
166 coverage) /3
```

where the relative density is the density of a species / sum of the densities of all species; the relative frequency is the frequency of a species / sum of the frequencies of all species; the relative coverage is the plant coverage of a species / sum of plant coverage of all species.

(1)

171 Shannon–Wiener diversity index (H):

$$H = -\sum_{i=1}^{S} P_i \ln P_i$$
(2)

173

Simpson diversity index (D):

$$D = 1 - \sum_{i=1}^{s} P_{i}^{2}$$
(3)
Pielou evenness index (J):

$$J = \frac{H}{\ln S}$$
(4)
Margalef richness index (M):

$$M = \frac{(S-1)}{\ln N}$$
(5)
where P_i is the ratio of the number of individuals, i is the base of the logarithm,
P_i = n_i/n and i=1, 2, 3,...n_i, of species i in the sample to the total number of

 $P_i = n_i/n$ and $i=1, 2, 3,...n_i$, of species i in the sample to the total number of individuals, n, of the species in the sample, S is the number of species in the sample quadrat, and N is the number of all plants in the sample quadrat.

SBD and SWC were determined separately by the stainless-steel cylinder and 183 184 gravimetric method, and the soil mechanical composition (clay/silt/sand) was measured using the dry sieving method. Soil pH was measured using a water-soil 185 ratio of 2.5:1.0 and the potentiometric method. SOM was measured by the K2Cr2O7 186 187 oxidation-external heating method. The contents of soil AN was measured by NaOH hydrolysis proliferation by the alkalihydrolysis method, AP was measured using the 188 189 molybdenum-antimony colorimetric method and AK was measured by flame atomic 190 absorption spectrophotometry method (Liao et al., 2014). The contents of soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) were 191 determined by the chloroform fumigation extraction method (Dong et al., 2018). 192

193 2.4. Statistical analysis

One-way analysis of variance (ANOVA) was used to analyze the significance of the difference among soil properties in different ecological restoration patterns and different soil layers at a significance level of P < 0.05. Statistical analysis was performed using SPSS 26 (IBM SPSS Statistics 26). Person's correlation coefficient was used to quantify the relationship between soil properties and species diversity. The corresponding relationships between soil properties and species diversity were quantified and the ordination map was drawn using redundancy analysis (RDA) by

- 201 the Canoco 5.0, and Origin 2019 was used to draw the graphs.
- 202 **3 Results**

203 **3.1 Plant diversity and community composition under different ecological**

204 restoration patterns

The composition of the plant communities in each study area were shown in 205 Table 2. In the sample plots, a total of 21 families, 29 genera, and 31 species were 206 observed. A total of 24 species appeared in the NA site, and the dominant species in 207 arbor layer were Cunninghamia lanceolata and Schima superba gardn, the dominant 208 species in shrub layer were Osmanthus fragrans var. Semperflorens, Photinia × 209 fraseri Dress, the dominant species in herb layer were Setaria viridis L., 210 Dendranthema indicum, Poa annua L., and Miscanthus. Under the PR site, the 211 212 number of plant species was 19, Pinus massoniana was the dominant species in arbor layer, and the shrub layer mainly contain Photinia × fraseri Dress and Camellia 213 214 japonica L, the dominant species in herb layer were Cynodon dactylon L, Setaria 215 viridis L., Poa annua L., Clover. There were 24 species in the PSR site, Pinus 216 massoniana and Schima superba gardn were re-vegetation plant species in arbor layer, 217 the dominant species in shrub layer were *Photinia* × fraseri Dress, Camellia japonica L., and Pyracantha fortuneana, and the herb layer mainly contain Cynodon dactylon 218 219 L., Dendranthema indicum, Poa annua L, Clover. Under the NR site, the number of 220 plant species was 27, and the dominant species in arbor layer were Pinus massoniana 221 and Cunninghamia lanceolata, the shrub layer and herb layer had the most abundant in all treatments, including Osmanthus fragrans var. Semperflorens, Osmanthus 222 223 fragrans cv.tbubergii, Camellia japonica L., Pyracantha fortuneana, Cynodon dactylon L., Dendranthema indicum, Poa annua L., Clove, Miscanthus. 224

The plant diversity index H (**Fig. 2a**) and D (**Fig. 2b**) values did not differ significantly among the 4 study sites, while they had significant difference (P < 0.05) in the 3 forest layers. The NR site had higher D and H values than PR site and PSR site, and the order of them was: NR>NA>PSR>PR. In the four study sites, there were significantly higher diversity for herbs layer than for arbors and shrubs layers. The plant diversity index J values had no significant differences among the 4 study sites

and 3 forest layers (Fig. 2c). It reached the highest in the PR site shrub layer, with the 231 lowest value observed in the NA site herb layer. As it was seen in Fig. 2d, The plant 232 diversity index M had significant difference (P < 0.05) in different ecological 233 restoration patterns, and the highest value was appeared in NR site while the lowest 234 value was in PR site. The shrub layer showed the lowest Margalef richness index (M) 235 value in PSR, NR and NA site, and the order of them was: NR>NA>PSR. However, 236 in the PR site, there was the highest value in shrub layer and the lowest value in herb 237 layer. Overall, the plant diversity was slightly higher in the NR and NA site than those 238 in PR and PSR sites. The results indicated that re-vegetation restoration community 239 240 led to lower plant diversity than natural succession community did. 241

242 Table 2 The composition of plant communities under different ecological restoration

243 patterns.

.	F 1	G		Ι	mportan	ice value	e
Layer	Family	Genus	Species	PR	PSR	NR	NA
	Pinaceae	Pinus	Pinus massoniana	0.66	0.31	0.17	0.11
	Pinaceae	Pseudolarix	Pseudolarix amabilis	0.1	0.13	0.13	0.12
	Cupressaceae	Sabina mill.	Sabina chinensis	0.05	0.06	0.12	-
	Taxodiaceae	Cunninghamia	Cunninghamia lanceolata	0.12	0.12	0.21	0.18
Arbor	Salicaceae	Salix	Salix matsudana	0.04	-	0.08	0.10
layer	Lauraceae	Cinnamomum	Cinnamomum camphora	-	0.05	0.10	0.07
	Scrophulariaceae	Paulownia	Paulownia	-	0.06	-	0.06
	Leguminosae sp.	Robinia L.	Robinia pseudoacacia L.	0.03	-	0.05	0.08
	Elaeocarpaceae	Elaeocarpus	Elaeocarpus decipiens	-	-	0.03	0.07
	Theaceae	Schima reinw.	Schima superba gardn	-	0.27	-	0.21
	Osmanthus fragrans	Osmanthus	Osmanthus fragrans var. semperflorens	0.14	0.06	0.12	0.32
	Rosaceae	Photinia Lindl.	Photinia × fraseri Dress	0.25	0.23	0.08	0.21
	Osmanthus fragrans	Osmanthus Lour.	Osmanthus fragrans cv.tbubergii	0.1	0.12	0.15	-
Shrub	Theaceae Mirb.	Camellia L.	Camellia japonica L.	0.37	0.16	0.23	0.18
layer	Rosaceae	Rose L.	Rosa chinensis	-	0.13	0.06	-
	Rosaceae	Pyracantha	Pyracantha fortuneana	0.06	0.15	0.17	0.14
	Theaceae Mirb.	Camellia L.	Camellia oleifera abel.	0.08	-	0.05	-
	LYTHRACEAE	Lagerstroemia L.	Lagerstroemia indica L.	-	0.12	0.08	0.16
	Malvaceae	Hibiscus L.	Hibiscus mutabilis L.	-	0.03	0.06	-
	Gramineae	Cynodon dactylon	Cynodon dactylon L.	0.23	0.27	0.13	0.05
	Gramineae	Setaria beauv.	Setaria viridis L.	0.12	0.09	0.06	0.19
	Asteraceae	Dendranthema	Dendranthema indicum	0.08	0.11	0.10	0.22
	Poaceae	Poa L.	Poa annua L.	0.21	0.23	0.11	0.15
	Compositae	Artemisia	Artemisia hedinii	-	0.04	0.08	0.10
Herh	Leguminosae sp.	Trifolium	Clover	0.16	0.11	0.16	-
laver	Poaceae	Miscanthus	Miscanthus	0.05	0.04	0.10	0.17
layer	Poaceae	Lolium	Lolium perenne L.	-	0.06	0.06	0.03
	Poaceae	Zoysia	Zoysia japonica Steud	-	-	0.08	0.02
	Poaceae	Buchloe engelm.	Buchloe dactyloides	-	0.05	-	0.05
	Poaceae	Eremochloa Buse	Eremochloa ophiuroides	0.07	-	0.07	-
	Poaceae	Zoysia	Zoysia pacifica goudswaard	0.08	-	0.05	0.02

Fig. 2 Diversity indices of different ecological restoration patterns in the 4 study sites ; (a) Shannon-Wiener index (H), (b) Simpson index (D), (c) Pielou index (J), (d) Margalef index (M). Different lowercase letters indicate significant difference under ecological restoration years (one-way ANOVA, P < 0.05). Different uppercase letters indicate significant difference among different soil depths at the same sites (one-way ANOVA, P < 0.05).

251 **3.2** Soil properties under different ecological restoration patterns

Fig. 3 showed the soil mechanical composition for different ecological 252 restoration patterns. The PSR site and the NA site had a similar soil texture, which 253 were significantly better (P < 0.05) than other ecological restoration patterns, 254 indicating that if the time of the mixed vegetation restoration is more than 10 years, 255 the soil mechanical composition was close to the nature undisturbed area. The clay 256 content in PSR site was 17.1% and 7.6 % higher than that in PR and NR 257 258 site, respectively, but at the same time, the sand content in PSR site was 34.6% and 29.3% lower than that in PR and NR site. The clay and sand contents increased slowly 259

260 with the increasing of soil depth, but the silt content had a opposite trend. PR site was significantly higher (P < 0.05) than the other sites in terms of silt content in the 20-30 261 cm soil layer, and PSR site was significantly higher than the other sites on sand 262 content in the 0-10cm soil layer. In Fig. 4a, SBD was shown significantly lower (P < 263 0.05) in the PSR site than that in the PR and NR sites. Moreover, with the increase of 264 soil depth, the SBD values showed an upward trend in all the 4 study sites . The NA 265 site had the lowest SBD value in the 0-10 cm soil layer. In Fig. 4b, NA and PR sites 266 were seen higher SWC value than the other study sites on the 0-10 soil layer. 267 Moreover, the PSR site was seen to be significantly higher (P < 0.05) than the other 268 study sites on the 20-30 cm soil layer and the NR site showed lowest SWC on the 269 0-10 cm soil layer. PR and PSR site were seen lower pH value than the other study 270 sites on all the soil layers (Fig. 4c). Specifically, except for NA site the highest pH 271 value on 10-20 cm soil layer, PS, PSR, and NR sites had the highest pH value on 272 273 20-30 cm soil layer. Furthermore, NA PS, PSR, and NR sites had the lowest value on 274 the 0-10 soil layer, and the highest pH value was seen in NR site on the 20-30 cm soil 275 layer in all the 4 study sites. The results indicated that PSR site had better physical 276 properties.

Fig. 5 showed the effects of different ecological restoration patterns on soil 277 278 chemical properties. In Fig. 5a, PSR site was significantly higher (P < 0.05) than that 279 of the other study sites and exhibited the highest SOM value. Additionally, the SOM had a decrease trend with the increase of soil depth except PR site, and the lowest 280 SOM was seen in NR site 20-30 cm soil layer, which was 0.4 time of the highest 281 282 value in PSR site 0-10 cm soil layer. As it was seen in Fig. 5b, AK showed significant difference in PR, PSR and NR sites, and PSR site was significantly higher (P < 0.05) 283 than that of PR and NR sites, but PR and NA site had no significant difference, and 284 NA site showed the highest AK value. Meanwhile, similar to SOM, AK value 285 decreased with the increasing of soil depth, and NR site was seen significantly lower 286 AK on 20-30 cm soil layer. Similar to AK, PSR site was seen higher AP value than 287 that of PR and NR sites, and NA site showed the highest AP value on 0-10 cm soil 288 layer (Fig. 5c). On 20-30 cm soil depth, there was no significant difference between 289

PSR, NR, and NA sites, and NR site had the lowest AP value. In Fig. 5d, AN showed significant difference in the 4 study sites, with the highest value observed in NA site and the lowest value in NR site. In the PR and NR site, the lowest AN value appeared on 10-20 cm soil layer, while PSR and NR site observed the lowest value on 20-30 cm soil layer. The results indicated that PSR site can significantly improve the chemical properties.

Soil microbial properties of different ecological restoration patterns were showed 296 in Fig. 6. The MBC in PR, PSR, NR, and NA sites had significant difference, and the 297 MBC values in PR and PSR sites were significantly (p < 0.05) higher than that in NR 298 site (Fig. 6a). Meanwhile the MBC did not differ significantly among all soil layers in 299 each study sites. The MBC value decreased slowly with the increasing of soil depth, 300 and the lowest MBC value was seen in NR site 20-30 cm soil layer. In Fig. 6b, the 301 MBN was significantly higher in PSR site than that in PR and NR sites, and the MBN 302 value decreased as follows: NA>PSR>PR>NA. Additionally, in PR and NR site, the 303 MBN value was decrease with the increasing of soil depth, while the highest MBN 304 value in PSR site and the lowest value in NA site were observed on 10-20 cm soil 305 306 layer.

307

Fig. 3 Mechanical composition (%) for different ecological restoration patterns at
different study sites. (a) 0-10 cm soil layer, (b) 10-20 cm soil layer, (c)20-30 cm soil

310 layer.

311

312 Fig. 4 Soil physical indicators of different ecological restoration patterns in the 4

313 study sites on different soil layers. (a) SBD; (b) SWC; (c) pH.

315 Fig. 5 Soil chemical indicators of different ecological restoration patterns in the 4

316 study sites on different soil layers. (a) SOM ; (b) AK ; (c) AP; (d) AN.

318 Fig. 6 Soil microbial properties of different ecological restoration patterns in the 4

319 study sites on different soil layers. (a) MBC and (b) MBN.

321 **3.3** Coupling relationship between plant diversity and soil properties

The correlation matrix and the corresponding significance level of the 4 plant 322 diversity indexes in 3 different forest layers (arbor layer Shannon-Wiener index (AH), 323 324 shrub layer Shannon-Wiener index (SH), herb layer Shannon-Wiener index (HH), arbor layer Simpson index (AD), shrub layer Simpson index (SD), herb layer Simpson 325 index (HD), arbor layer Pielou index (AJ), shrub layer Pielou index (SJ), herb layer 326 Pielou index (HJ), arbor layer Margalef index (AM), shrub layer Margalef index (SM), 327 herb layer Margalef index (HM)) were shown in Fig. 7. For Shannon-Wiener index, 328 AH had a significant positive relationship with HH ($R^2 = 0.91$, P < 0.05), while AH 329 and SH, HH and SH had no significant correlation ($R^2 = 0.41$, P > 0.05; $R^2 = 0$, P >330 0.05, respectively). For Simpson index, there was significant positive relationship 331 between AD and HD ($R^2 = 0.61$, P < 0.05), while AD and HD, SD and HD had no 332 significant correlation ($R^2 = -0.22$, P > 0.05; $R^2 = 0.33$, P > 0.05, respectively). For 333 334 Pielou index, there was no significant correlation between AJ and HJ, SJ and HJ ($R^2 =$ 0.16, P > 0.05; $R^2 = -0.15$, P > 0.05, respectively), SJ had a significant positive 335 relationship with HJ ($R^2 = 0.85$, P < 0.05). For Margalef index, AM demonstrated a 336 significant positive relationship with HM ($R^2 = 0.93$, P < 0.05), while AM and SM, 337 HM and SM had no significant correlation ($R^2 = 0.28$, P > 0.05; $R^2 = 0$, P > 0.05, 338 339 respectively). In order to eliminate redundancy, the significantly correlated indices in 340 each plant diversity indexes were eliminated in this study. Finally, the HS, HH, AD, HD, AJ, SJ, SM, and AM were screened out. 341

Similarly, we analyzed the correlation and significance of main soil properties. It 342 343 can be found from Fig. 8 that in the soil physical properties, the mechanical composition were significantly correlated with each other, and the coefficient was 344 more than 0.8 at the 0.01 significance level. SWC, SBD, and pH were not seen 345 significant correlation in this study. For soil chemical properties, SOM, AK, AP and 346 AN all had a significant positive relationship with each other. For soil microbial 347 properties, there was positive significant correlation between MBC and MBN ($R^2 =$ 348 0.93, P < 0.01). Finally, the six soil properties (Clay, SBD, SWC, pH, SOM, and MBC) 349 were screened out. 350

351 We calculated the correlation coefficients between the remaining plant diversity indexes (HS, HH, AD, HD, AJ, SJ, SM, AM) and soil properties (Clay, SBD, SWC, 352 pH, SOM, MBC) in different soil depths to reveal the effects of plant diversity on soil 353 properties of ecological restoration area (Fig. 9). The SH and SJ had a negative 354 relationship with clay, SOM, and MBC, but had a positive relationship with SBD. 355 Meanwhile, the correlation coefficient had a decreased trend with the increase of soil 356 357 depth. While the SM had a positive relationship with clay, SOM, and MBC. Especially, on the 0-10 cm soil layer, the correlation among SH, SJ, and SM, and clay, 358 SWC, SOM, and MBC became more significant. It indicated that the Shannon-Wiener 359 index, Pielou index, and Margalef index in shrub layer significantly affected the 360 topsoil properties. AD and AM had a significant negative relationship with SWC and 361 pH on 10-20 cm soil layer, and had a significant positive relationship with clay on the 362 0-30 cm soil layer. SBD was positively correlated with AJ while SOM showed a 363 negative correlated with AJ on all the soil layers. This result indicated that the plant 364 diversity indexes in arbor layer had great contribution to the soil properties. Under 365 each soil depths, HH had a significant positive relationship with clay, while a negative 366 367 correlation with SWC and pH. And there were significant negative correlations between the HD and the SOM. The above analysis results indicated that the plant 368 369 diversity of all layers had a deep impact on soil properties.

AH	AH		*		*		*		0			
SH	0.41	SH	0	0							*	
нн	0.91		HH	*						*		*
AD	0.85		0.99	AD						*		*
SD	0.85	0.78	0.64	0.61	SD		*				*	
HD	0.31	0.56		-0.22	0.30	HD						
AJ	0.95	0.66	0.73	0.66	0.93	0.50	AJ					
SJ	-0,40	0,63	-0.62	-0.59				SJ	*	*		
НJ	-0.017	0.68			0.50	-0:18		0.85	HJ		*	
AM	0.71	-0.35	0.88	0.85	0.25		0.47	-0.92	-0.59	AM		*
SM	-0.47	-0.97	-0.17	-0.14	-0.86	-0.35	-0.68	-0.62	-0.79	0.28	SM	
HM	0.80	-0.17	0.98	0.99	0.48	-0.23	0.58	-0.72	-0.25	0.93	0.020	HM
n<=0	05 M	S H	HH	Ŋ	ŝD	ĦD	P.J	e)	HJ	n'n	SW	HM

Fig. 7 Correlation analysis of plant diversity indexes. AH: arbor layer
Shannon-Wiener index, SH: shrub layer Shannon-Wiener index, HH: herb layer
Shannon-Wiener index, AD:arbor layer Simpson index, SD: shrub layer Simpson
index, HD: herb layer Simpson index, AJ: arbor layer Pielou index, SJ: shrub layer
Pielou index, HJ: herb layer Pielou index, AM: arbor layer Margalef index, SM: shrub
layer Margalef index, HM: herb layer Margalef index. *, significance at P < 0.05
level.

Clay	Clay	*	*			*		*	*			*	
Silt	0.83	Silt	*	*				*	*			*	
Sand	-0.96	-0.95	Sand	*		*		*	*		*	*	
SBD	-0.70	-0.82	0.79	SBD			*	*	*	*	*	*	
SWC	-0.0063				SWC							•	
рН	-0.83	-0.62	0.77	0.63		pН		*	*			*	
SOM	0.47	0.50	-0.51	-0.81		-0.66	SOM			*			
AK	0.85	0.86	-0.89	-0.92		-0.72	0.63	AK	*	*	*	*	
AP	0.90	0.91	-0.95	-0.91		-0.75	0.61	0.98	AP	*	*	*	
AN	0.59	0.67	-0.66	-0.91		-0.59	0.79	0.89	0.83	AN	*	*	
MBC	0.69	0.69	-0.72	-0.80		-0.61	0.64	0.85	0.77	0.83	MBC	*	
MBN	0.77	0.77	-0.81	-0.86	0.17	-0.72	0.69	0.87	0.84	0.80	0.93	MBN	
* p<=0.0	1 Charl	şilt	Sand	ŞBD	SWC	pH	SOM	A.	₽ ₽	24	NBC	MBI	

378

Fig. 8 Correlation analysis of main soil properties. Indicated values represent the correlation coefficients. The red color indicates a positive correlation, and the blue color indicates a negative correlation, *, significance at P < 0.01 level.

382

Fig. 9 Correlation coefficients between soil properties and plant diversity indexes of
different ecological restoration patterns sites at different soil depth layers. (a) 0-10 cm
soil layer; (b) 10-20 cm soil layer; (c) 20-30 cm soil layer.

386 In order to deeply discover how plant diversity and soil property affect plant 387 community, RDA model was used to analyze the corresponding relationships of soil 388 properties in different soil depth layers and plant diversity of all layers (Fig. 10, Table 3).. The results indicated that species composition was significantly affected soil 389 properties on different soil depth layers. Clay, SOM, and MBC made a great 390 391 contribution to the plant diversity. They were the most important explanatory variables in the RDA developed to explain plant diversity. In particular, Clay had 392 substantially greater explanatory power for plant diversity than other soil properties, 393 394 indicating that soil physical property mechanical composition can explain plant diversity patterns better. 395

Index	Soil depth (cm)	Explains %	Contribution %	F	Р
	0-10	26.6	58.1	13.7	0.002**
Clay	10-20	29.2	58.5	15.7	0.002**
	20-30	25.2	54	12.8	0.002**
	0-10	11.5	25.2	6.9	0.002^{**}
SOM	10-20	8.4	16.9	5	0.002^{**}
	20-30	8.5	18.3	4.8	0.002^{*}
	0-10	4.1	8.9	2.5	0.044*
MBC	10-20	6.6	13.2	4.2	0.006^{*}
	20-30	6.7	14.3	4	0.01^{**}
	0-10	2.2	4.7	1.4	0.226
pН	10-20	3	6	2	0.084
	20-30	3.2	6.8	2	0.082
	0-10	0.6	1.3	0.4	0.848
SBD	10-20	1.7	3.5	1.1	0.322
	20-30	1.6	3.4	1	0.392
	0-10	0.8	1.7	0.5	0.78
SWC	10-20	1	2	0.7	0.616
	20-30	1.5	3.1	0.9	0.45

- 397 Table 3 Soil properties explanatory variables and contributions to the vegetation
- 398 composition.

- 399 Notes, ** P < 0.01
- 400 * P < 0.05

401

Fig. 10 Redundancy analysis of soil 1 properties and plant diversity indexes of tree,
shrub and herb layers at at different soil depth layers. (a) 0-10 cm soil layer; (b) 10-20
cm soil layer; (c) 20-30 cm soil layer.

405 4 Discussion

406 **4.1 Plant diversity in different ecological restoration patterns**

407 The improvement of the ecosystem services and functions can be reflected through the changes in plant diversity (Xu et al., 2022b). Furthermore, the plant 408 diversity index H, D, J, and M could quantification the plant community composition 409 410 and diversity (Zhu et al., 2017). In this study, the plant diversity index H, D, J, and M 411 in the different ecological restoration patterns were gradually close to the NA site, 412 indicating that re-vegetation is beneficial to reestablish plant community and restore 413 plant diversity in abandoned mines, which was similar to other studies (Zhang et al., 2023). However, high plant diversity index did not mean stable community (Wang et 414 415 al., 2019). Compared to the M, D and H (Jiang et al., 2022; Wang et al., 2019), the J

436

416 in the plant communities can also help maintain the community stability (Zhang et al., 417 2023). In this study, the plant diversity index M, D and H were higher in the NR site than those in other sites. The PSR site showed similar plant diversity index with 418 419 NA site and lower than NR site (Fig. 2), which indicated that although the plant 420 diversity was lower, the the community structure was more stable (Thomas S et al., 421 2007). The Pinus massoniana was native dominant economic forest in south China, 422 and was often used in vegetation ecological restoration projects in post-mining areas 423 due to the characteristics of evergreen (Zhao et al., 2021). Re-vegetation in abandoned 424 area using *Pinus massoniana* mixed with other plant species was more conducive to improve soil properties and structure (Dou et al., 2013; Wang et al., 2023). In this 425 study, the plant diversity index (Fig. 2) in PSR site which was re-vegetation by *Pinus* 426 massoniana mixed with Schima superba gardn, was much higher than the 427 re-vegetation only by Pinus massoniana in PR site, indicating that ecological 428 429 restoration patterns of mixed vegetation was more effective in promoting the re-vegetation process of plant diversity. The results also indicated that for the 430 431 abandoned coal mine area vegetation ecological restoration, planting dominant plants 432 mixed with other vegetation was a suitable measure to efficiently rebuilt ecological functions in abandoned coal mine area. Therefore, identification of dominant plants in 433 434 re-vegetation is of great importance for the species selection in abandoned coal mine 435 area.

4.2 Soil properties in different ecological restoration patterns

The vegetation restoration was a effective measurement in improvement of soil 437 438 properties and had a significant effect in the ecological restoration of abandoned coal 439 mine areas (Bi et al., 2021). In this study, soil properties in most of study sites were 440 significantly improved, indicating that soil nutrient content improved significantly 441 with the process of vegetation restoration (Deng et al., 2018a). The changes in plant 442 diversity resulted in the efficient utilization of soil nutrients, and increased soil productivity (Deng et al., 2018b; Wu et al., 2020a). Furthermore, different vegetation 443 types can affect soil properties through the nutrient release of litter and plant roots, 444

445 therefore had significant differences in soil quality (Danise et al., 2021; Yu et al., 2018). In this study, significant change was also observed in soil mechanical 446 composition. In the NSR site, the clay and sand contents were higher than those in PR 447 448 and NR sites (Fig. 3), but the silt was lower, indicating that mixed vegetation restoration can improve soil particles and prevent the loss of soil nutrients (Gao and 449 Huang, 2020). SBD played an important role in soil development by affecting water 450 infiltration, plant growth, and nutrient utilization (Mora and Lázaro, 2014; Salazar et 451 al., 2009). In this study, PSR and NA sites showed lower SBD than other sites, and 452 with the increase of soil depth, SBD had a increase trend (Fig. 4). The lower SBD 453 mainly due to the growth of plant root systems can help to improve the compactness 454 of soil (Yan et al., 2019), and the decomposition of litter improve the topsoil structure 455 (Freschet et al., 2013). Meanwhile, the soil pH in PR and PSR sites was significantly 456 lower than that in other sites. This is because the increase of organic acid produced by 457 458 the the decomposition of conifer litter from *Pinus massoniana* (Vittori Antisari et al., 459 2011). The lower pH and SBD in restoration area could in turn accelerated vegetation succession. 460

461 Studies have reported that SOM was the basis for other soil properties, and vegetation restoration can promote the SOM input and significantly improve the soil 462 nutrient availability (Bakker et al., 2019; Deng et al., 2017; Jia et al., 2017). In PSR 463 site, SOM was significantly higher than that of PR and NR sites, indicating slow 464 decomposition of litter and absorption of soil nutrient of Pinus massoniana needles 465 (Ali et al., 2019; Chen and Cao, 2014). The plant root exudate and litter provided 466 467 carbon sources to soil, and with vegetation succession, the plant root exudate and litter can promote the increase of SOM (Bu et al., 2018; Zhu et al., 2010). Therefore, 468 in the Pinus massoniana restoration area, the withered pine needles covered on the 469 surface soil layer caused litter decomposition slowly, and thus Pinus massoniana 470 471 species restoration should mix with broad-leaved species. Our results also showed that 472 in the vertical soil profile of different study sites, the SOM in the topsoil was significantly higher than that on other soil layers (Fig. 5), because of the promotion of 473 nutrient absorption of the dense roots on soil surface (Liu et al., 2020). In our study, 474

475 the SWC in NR site was lower than that of other sites because of the lower SOM. High SOM was conductive to improve SWC, because SOM can improve plant root 476 growth and water absorption, therefore enhance water retention (de Oliveira Garcia et 477 478 al., 2018). SWC and soil nutrients were important indicators in evaluating the effects of vegetation restoration and soil quality (Liu et al., 2022). Studies have shown that 479 the SOM played an important role in AN and AP, because SOM increased soil 480 microbial activity, and enhanced soil nitrogen (N) and phosphorus (P) mineralization 481 (Chen et al., 2019). Our results showed that in the vertical soil profile of different 482 study sites, AK, AN, and AP had a downward trend (Fig. 5), this is probably because 483 of soil leaching characteristics and changes in the soil microbial and biomass (Zhao et 484 al., 2022a). In addition, deeper soil obtains limited nutrients from the decomposition 485 486 of litter, resulting in higher nutrients in topsoil layer (Zhao et al., 2022b).

Soil microbial biomass mainly include MBC and MBN, which can impact the 487 488 cycling of SOM and soil nutrients (Yang et al., 2010). Our results showed that the MBC and the MBN in PSR site were significantly higher than that in PR and NR sites 489 490 (Fig. 6). Compared to the Pinus massoniana forest, Pinus massoniana species mixed 491 with broad-leaved species forest decomposed litter more effectively, and had higher effectiveness of microbial substrate. Furthermore, there was more supported microbial 492 493 groups and quantities in the Pinus massoniana species mixed with broad-leaved 494 species forest than Pinus massoniana forest, resulted in lower MBC and MBN contents in the PR site. 495

496 **4.3 Coupling relationship between plant diversity and soil properties**

497 It was well known that plant diversity was strongly related to soil properties, which can determine the distribution of plant species (Wang et al., 2018). Our results 498 indicated that the relationship between plant diversity and soil properties in different 499 layers was significant, and the correlation trend on 10-20 cm soil layer was stronger 500 501 than that on other layers (Fig. 9). The main reason was that the litter decomposition 502 and roots activity provided nutrients, soil-vegetation ecosystem had feedback mechanisms between soil and vegetation, and they can interact with each other (Li et 503 al., 2021). SOM was an important factor in plant diversity to sustain the function of 504

505 plant growth (Kooch et al., 2020). In this study, SOM was negatively correlated with the Shannon-Wiener index, Simpson index, and Pielou index but negatively correlated 506 with Margalef index. On one hand, under the condition of poor soil nutrients, 507 508 vegetation improved the growth through the increase of water availability and degree of mineralization, while sufficient soil nutrients can also improve the growth of 509 vegetation (Petersen et al., 2015). On the other, the soil microbial activity can promote 510 SOM accumulation, resulted in increased plant pathogen attack, deterioration plant 511 living environment (Bongiorno et al., 2019; Hagen-Thorn et al., 2004). Therefore, 512 513 only optimum soil nutrient conditions can improve plant diversity. Our results indicated that SBD was positively correlated with the Shannon-Wiener index, 514 Simpson index, and Pielou index but negatively correlated with Margalef index, while 515 SWC was positively correlated with plant diversity in the surface soil layer, indicating 516 that SBD was significantly affect the plant diversity. SBD and SWC played an 517 518 important role in soil hydrological processes (Katherine et al., 2010), and affected the geochemical cycle of plants and microorganisms (Vereecken et al., 2014). Studies 519 520 have reported that soil pH decrease resulted in the degradation of plant diversity (Xu 521 et al., 2022a; Xue et al., 2019). However, although the decrease of soil pH had a negative effect on plant growth, it provided more space for increasing plant diversity 522 523 (Zhao et al., 2022b). This indicated that species composition led to changes in 524 community environment, resulted in complex interaction among plant and soil and 525 resources for plant growth, which might diminish the importance of soil properties on plant diversity (Härdtle et al., 2003; Pérez-Bejarano et al., 2008). Therefore, the plant 526 527 growth in abandoned coal mine was not only a process of plant adaptation to soil nutrients, but also the interaction of plant growth and soil properties. In summary, 528 mixed coniferous with broad-leaved forests can improve SBD and SWC better, and is 529 beneficial to improve soil nutrient conditions, which plays an important role in the 530 531 enhancement of soil ecosystem functions in abandoned coal mine area.

532 Based on the current situation of China, ecological restoration such as planting 533 trees, tillage or grass on rights sites should be a good choice for abandoned mines 534 restoration. The goal of ecological restoration in abandoned coal mine area was to

535 create an healthy ecosystem of harmonious coexistence between human and nature. 536 Therefore, a vegetation configuration that mixed coniferous and broad-leaved 537 vegetation was worthy of consideration. This is not only beneficial to improve soil 538 properties, but also increases plant diversity and enhance soil ecosystem functions. 539

5 Conclusion

The ecological restoration of abandoned mining area should pay attention to the 540 enhancement of soil ecosystem functions and achieving sustainable development. The 541 542 vegetation configuration of ecological restoration plays a crucial role in accomplishing these goals. Our study showed that 1) there was significant differences 543 in plant diversity and ecological restoration patterns. The PSR site had higher 544 Shannon-Wiener index and Simpson index values than PR site did, and the plant 545 diversity of herb layer was significantly improved than that of the arbor and shrub 546 layers. The plant diversity was slightly higher in the NR and NA site than those of PR 547 548 and PSR sites. 2) Ecological restoration patterns had a significant effect on the soil properties, and SBD, SWC, SOM, and MBC also significantly affected plant diversity. 549 3) Identification of dominant plants in re-vegetation is of great importance for the 550 species selection in abandoned coal mine area. 4) It was recommend that vegetation 551 configuration was of great significance in improving soil properties and increasing 552 plant diversity, vegetation restoration of mixed coniferous with broad-leaved forests 553 should be paid enough attention to abandoned coal mines ecological restoration. 554

556 **Declaration of competing interest**

- 557 We declare that we do not have any commercial or associative interest that
- represents a conflict of interest in connection with the work submitted.

559 Acknowledgments

- 560 We thank the financial support for this research provided by the National Natural
- 561 Science Foundation of China (NO. 42261021, NO. 41961036). We also thank the
- 562 editor and anonymous reviewers for their valuable comments and suggestions on
- 563 improving this manuscript.

564 Author contribution:

- 565 Author Contributions: Hao Li, Wenbo Chen, Conceptualization, methodology,
- 566 and validation; Hao Li, Cheng Zhang, soil sampling and measurement; Haifen Liang,
- 567 data curation; Hao Li, writing-original draft; All authors have read and agreed to the
- 568 published version of the manuscript.

569 Data Availability Statement

- 570 The data presented in this study are available in this manuscript.
- 571
- 572

	Reference
574	Ahirwal, J., Maiti, S.K.: Development of Technosol properties and recovery of carbon
575	stock after 16 years of revegetation on coal mine degraded lands, India. Catena,
576	166, 114-123, 2018.
577	Ali, A., Dai, D., Akhtar, K., Teng, M., Yan, Z., Urbina-Cardona, N., Mullerova, J.,
578	Zhou, Z.: Response of understory vegetation, tree regeneration, and soil
579	quality to manipulated stand density in a Pinus massoniana plantation. Glob.
580	Ecol. Conserv., 20, e00775-e00789, 2019.
581	Babí Almenar, J., Bolowich, A., Elliot, T., Geneletti, D., Sonnemann, G., Rugani, B.:
582	Assessing habitat loss, fragmentation and ecological connectivity in
583	Luxembourg to support spatial planning. Landscape Urban Plann., 189,
584	335-351, 2019.
585	Bakker, M.R., Brunner, I., Ashwood, F., Bjarnadottir, B., Bolger, T., Børja, I., Carnol,
586	M., Cudlin, P., Dalsgaard, L., Erktan, A., Godbold, D., Kraigher, H., Meier,
587	I.C., Merino-Martín, L., Motiejūnaitė, J., Mrak, T., Oddsdóttir, E.S., Ostonen,
588	I., Pennanen, T.L., Püttsepp, Ü., Suz, L.M., Vanguelova, E.I., Vesterdal, L.,
589	Soudzilovskaia, N.A.: Belowground Biodiversity Relates Positively to
590	Ecosystem Services of European Forests. Front. For. Glob. Change, 2, 6-28,
591	2019.
592	Bennett, A.F., Radford, J.Q., Haslem, A.: Properties of land mosaics: Implications for
593	nature conservation in agricultural environments. Biol. Conserv., 133(2),
594	250-264, 2006.
595	Bi, Y., Wang, K., Du, S., Ma, S., Zhang, J., Xie, L.: Shifts in arbuscular mycorrhizal
596	fungal community composition and edaphic variables during reclamation
597	chronosequence of an open-cast coal mining dump. Catena, 203,
598	105301-105309, 2021.
599	Boluwade, A., Madramootoo, C.A.: Independent principal component analysis for
600	simulation of soil water content and bulk density in a Canadian Watershed. Int.
601	Soil Water Conse., 4(3), 151-158, 2016.

602	Bongiorno, G., Bünemann, E.K., Oguejiofor, C.U., Meier, J., Gort, G., Comans, R.,
603	Mäder, P., Brussaard, L., de Goede, R.: Sensitivity of labile carbon fractions to
604	tillage and organic matter management and their potential as comprehensive
605	soil quality indicators across pedoclimatic conditions in Europe. Ecol. Indic.,
606	99, 38-50, 2019.
607	Bu, W., Huang, J., Xu, H., Zang, R., Ding, Y., Li, Y., Lin, M., Wang, J., Zhang, C.:
608	Plant Functional Traits Are the Mediators in Regulating Effects of Abiotic Site
609	Conditions on Aboveground Carbon Stock-Evidence From a 30 ha Tropical
610	Forest Plot. Front Plant Sci., 9, 1958-1968, 2018.
611	Cambrollé, J., Muñoz-Vallés, S., Mancilla-Leytón, J.M., Andrades-Moreno, L., Luque,
612	T., Figueroa, M.E.: Effects of soil physicochemical properties on plant
613	performance of Glaucium flavum Crantz. Plant Soil, 386(1-2), 185-193, 2014.
614	Chen, J., Mo, L., Zhang, Z., Nan, J., Xu, D., Chao, L., Zhang, X., Bao, Y.: Evaluation
615	of the ecological restoration of a coal mine dump by exploring the
616	characteristics of microbial communities. Appl. Soil Ecol., 147,
617	103430-103438., 2020
618	Chen, L., Xiang, W., Wu, H., Ouyang, S., Zhou, B., Zeng, Y., Chen, Y., Kuzyakov, Y.:
619	Tree species identity surpasses richness in affecting soil microbial richness and
620	community composition in subtropical forests. Soil Biol. Biochem., 130,
621	113-121, 2019.
622	Chen, Y. and Cao, Y Response of tree regeneration and understory plant species
623	diversity to stand density in mature Pinus tabulaeformis plantations in the hilly
624	area of the Loess Plateau, China. Ecol. Eng., 73, 238-245, 2014.
625	Damgaard, C., Ejrnaes, R., Stevens, C.J., Halvorsen, R.: Intra-specific spatial
626	aggregation in acidic grasslands: effects of acidification and nitrogen
627	deposition on spatial patterns of plant communities. J. Veg. Sci., 24(1), 25-32,
628	2013.
629	Danise, T., Innangi, M., Curcio, E., Fioretto, A.: Covariation between plant
630	biodiversity and soil systems in a European beech forest and a black pine
631	plantation: the case of Mount Faito, (Campania, Southern Italy). J. Forestry

632	Res., 33(1), 239-252, 2021.
633	De Oliveira Garcia, W., Amann, T., Hartmann, J.: Increasing biomass demand
634	enlarges negative forest nutrient budget areas in wood export regions. Sci Rep,
635	8(1), 5280-5286., 2018
636	Deng, L., Kim, D.G., Peng, C., Shangguan, Z.: Controls of soil and
637	aggregate-associated organic carbon variations following natural vegetation
638	restoration on the Loess Plateau in China. Land Degrad. Dev., 29(11),
639	3974-3984, 2018a.
640	Deng, L., Liu, S., Kim, D.G., Peng, C., Sweeney, S., Shangguan, Z.: Past and future
641	carbon sequestration benefits of China's grain for green program. Global
642	Environ. Change, 47, 13-20, 2017.
643	Deng, L., Wang, K., Zhu, G., Liu, Y., Chen, L., Shangguan, Z.: Changes of soil carbon
644	in five land use stages following 10 years of vegetation succession on the
645	Loess Plateau, China. Catena, 171, 185-192, 2018b.
646	Dong, L., Zhang, H., Wang, L., Yu, D., Yang, F., Shi, X., Saleem, H., Saleem Akhtar,
647	M.: Irrigation with sediment-laden river water affects the soil texture and
648	composition of organic matter fractions in arid and semi-arid areas of
649	Northwest China. Geoderma, 328, 10-19, 2018.
650	Dou, X., Deng, Q., Li, M., Wang, W., Zhang, Q., Cheng, X.: Reforestation of Pinus
651	massoniana alters soil organic carbon and nitrogen dynamics in eroded soil in
652	south China. Ecol. Eng., 52, 154-160, 2013.
653	Du, H.D., Wang, S.M., Nie, W.J., Song, S.J.: Soil Properties and Bacterial Community
654	Dynamics in a Coal Mining Subsidence Area: Active Versus Passive
655	Revegetation. J. Soil Sci. Plant Nut., 21(3), 2573-2585, 2021.
656	Freschet, G.T., Cornwell, W.K., Wardle, D.A., Elumeeva, T.G., Liu, W., Jackson, B.G.,
657	Onipchenko, V.G., Soudzilovskaia, N.A., Tao, J., Cornelissen, J.H.C., Austin,
658	A.: Linking litter decomposition of above- and below-ground organs to
659	plant-soil feedbacks worldwide. J. Ecol., 101(4). 943-952, 2013.
660	Gao, H. and Huang, Y.: Impacts of the Three-North shelter forest program on the main

661 soil nutrients in Northern Shaanxi China: A meta-analysis. For. Ecol. Manage.,

662	458, 117808-117815,	2020.
-----	---------------------	-------

663	Gao, X., Xie, Y., Gao, W., Zhang, L., Wu, Y., Zhou, R.: Comprehensive Evaluation of
664	Soil Quality: a Case Study from a Semi-Arid Area Experiencing Coal Mine
665	Related Subsidence in China. Pol. J. Environ. Stud., 30(5), 4531-4544, 2021.
666	Gong, Y., Ling, H., Lv, G., Chen, Y., Guo, Z., Cao, J.: Disentangling the influence of
667	aridity and salinity on community functional and phylogenetic diversity in
668	local dryland vegetation. Sci. Total Environ., 653, 409-422, 2019.
669	Hagen-Thorn, A., Callesen, I., Armolaitis, K., Nihlgård, B.: The impact of six
670	European tree species on the chemistry of mineral topsoil in forest plantations
671	on former agricultural land. For. Ecol. Manage., 195(3), 373-384, 2004.
672	Härdtle, W., von Oheimb, G., Westphal, C.: The effects of light and soil conditions on
673	the species richness of the ground vegetation of deciduous forests in northern
674	Germany (Schleswig-Holstein). For. Ecol. Manage., 182(1-3), 327-338, 2003.
675	Ismaeel, W.S.E., Ali, A.A.M.: Assessment of eco-rehabilitation plans: Case study
676	'Richordi Berchet' palace. J. Clean. Prod., 259, 120857-12086, 20208.
677	Jia, X.X., Yang, Y., Zhang, C.C., Shao, M.A., Huang, L.M.: A State-Space Analysis of
678	Soil Organic Carbon in China's Loess Plateau. Land Degrad. Dev., 28(3),
679	983-993, 2017.
680	Jiang, X., Gao, S., Jiang, Y., Tian, Y., Jia, X., Zha, T.: Species diversity, functional
681	diversity, and phylogenetic diversity in plant communities at different phases
682	of vegetation restoration in the Mu Us sandy grassland. Biodivers. Sci., 30(5),
683	21387-21400, 2022.
684	Kaiser-Bunbury, C.N., Mougal, J., Whittington, A.E., Valentin, T., Gabriel, R., Olesen,
685	J.M., Bluthgen, N.: Ecosystem restoration strengthens pollination network
686	resilience and function. Nature, 542(7640), 223-227, 2017.
687	Katherine, G., Cale, A., Bridget, K., Susan, H., Yoram, R.: Characterization of Soil
688	Water Content Variability and Soil Texture using GPR Groundwave Techniques.
689	J. Environ. Eng. Geoph., 15(3), 93-110, 2010.
690	Kooch, Y., Ehsani, S., Akbarinia, M.: Stratification of soil organic matter and biota

691 dynamics in natural and anthropogenic ecosystems. Soil Till. Res., 200,

692	104621-104631,	2020
-----	----------------	------

693	Kumar, P., Pandey, P.C., Kumar, V., Singh, B.K., Tomar, V., Rani, M.: Efficient
694	Recognition of Forest Species Biodiversity by Inventory-Based Geospatial
695	Approach Using LISS IV Sensor. IEEE Sens. J., 15(3), 1884-1891, 2015.
696	Lechner, A.M., Baumgartl, T., Matthew, P., Glenn, V.: The Impact of Underground
697	Longwall Mining on Prime Agricultural Land: A Review and Research
698	Agenda. Land Degrad. Dev., 27(6), 1650-1663, 2016.
699	Li, W., Wang, J., Zhang, Y., Zhang, M.: A novel characterization on the interaction of
700	soil and vegetation in a reclaimed area of opencast coalmine based on joint
701	multi-fractal method. Ecol. Indic., 121, 107094-107106, 2021.
702	Liao, Y., Min, X., Yang, Z., Chai, L., Zhang, S., Wang, Y.: Physicochemical and
703	biological quality of soil in hexavalent chromium-contaminated soils as
704	affected by chemical and microbial remediation. Environ. Sci. Pollut. Res. Int.,
705	21(1), 379-88, 2014.
706	Liu, J., Wang, Z., Hu, F., Xu, C., Ma, R., Zhao, S.: Soil organic matter and silt
707	contents determine soil particle surface electrochemical properties across a
708	long-term natural restoration grassland. Catena, 190, 104526-104533, 2020.
709	Liu, Q., Dai, H., Gui, D., Hu, B.X., Ye, M., Wei, G., Qin, J., Zhang, J.: Evaluation and
710	optimization of the water diversion system of ecohydrological restoration
711	megaproject of Tarim River, China, through wavelet analysis and a neural
712	network. J. Hydrol., 608, 127586-127601, 2022.
713	Liu, X., Tan, N., Zhou, G., Zhang, D., Zhang, Q., Liu, S., Chu, G., Liu, J.: Plant
714	diversity and species turnover co-regulate soil nitrogen and phosphorus
715	availability in Dinghushan forests, southern China. Plant Soil, 464(1-2),
716	257-272, 2021.
717	Liu, Y., Lei, S., Gong, C.: Comparison of plant and microbial communities between
718	an artificial restoration and a natural restoration topsoil in coal mining
719	subsidence area. Environ. Earth Sci., 78(6), 204-2, 201916.
720	Lü, X.T., Hu, Y.Y., Wolf, A.A., Han, X.G., Le Bagousse-Pinguet, Y.: Species richness

721 mediates within-species nutrient resorption: Implications for the

722	biodiversity-productivity relationship. J. Ecol., 107(5), 2346-2352, 2019.
723	Lu, Z.X., Wang, P., Ou, H.B., Wei, S.X., Wu, L.C., Jiang, Y., Wang, R.J., Liu, X.S.,
724	Wang, Z.H., Chen, L.J., Liu, Z.M.: Effects of different vegetation restoration
725	on soil nutrients, enzyme activities, and microbial communities in degraded
726	karst landscapes in southwest China. For. Ecol. Manage., 508, 120002-120012,
727	2022.
728	Lyu, X., Yang, K., Fang, J.: Utilization of resources in abandoned coal mines for
729	carbon neutrality. Sci. Total Environ., 822, 153646-153656, 2022.
730	Mora, J.L. and Lázaro, R.: Seasonal changes in bulk density under semiarid patchy
731	vegetation: the soil beats. Geoderma, 235-236, 30-, 201438.
732	Pathak S, Agarwal AV, VC, P.: Phytoremediation-a holistic approach for remediation
733	of heavy metals and metalloids. Bioremediat. Pollut., 3-16, 2020.
734	Pérez-Bejarano, A., Mataix-Solera, J., Zornoza, R., Guerrero, C., Arcenegui, V.,
735	Mataix-Beneyto, J., Cano-Amat, S.: Influence of plant species on physical,
736	chemical and biological soil properties in a Mediterranean forest soil. Eur. J.
737	Forest Res., 129(1), 15-24, 2008.
738	Petersen, J.E., Brandt, E.C., Grossman, J.J., Allen, G.A., Benzing, D.H.: A controlled
739	experiment to assess relationships between plant diversity, ecosystem function
740	and planting treatment over a nine year period in constructed freshwater
741	wetlands. Ecol. Eng., 82, 531-541, 2015.
742	Pietrzykowski, M.: Soil quality index as a tool for Scots pine (Pinus sylvestris)
743	monoculture conversion planning on afforested, reclaimed mine land. J. Forest
744	Res., 25(1), 63-74, 2014.
745	Ruan, M., Hu, Z., Duan, X., Zhou, T., Nie, X.: Using UAV and Field Measurement
746	Technology to Monitor the Impact of Coal Gangue Pile Temperature on
747	Vegetation Ecological Construction. Remote Sens., 14(2), 353-368, 2022.
748	Salazar, M., Bosch-Serra, n., Estudillos, G., Poch, R.M.: Rehabilitation of Semi-Arid
749	Coal Mine Spoil Bank Soils with Mine Residues and Farm Organic
750	By-Products. Arid Land Res. Manage., 23(4), 327-341, 2009.
751	Schweiger, A.K., Schütz, M., Risch, A.C., Kneubühler, M., Haller, R., Schaepman,

752	M.E., Chisholm, R.: How to predict plant functional types using imaging
753	spectroscopy: linking vegetation community traits, plant functional types and
754	spectral response. Methods Ecol. Evol., 8(1), 86-95, 2016.
755	Sun, H., Zhang, J., Wang, R., Li, Z., Sun, S., Qin, G., Song, Y.: Effects of Vegetation
756	Restoration on Soil Enzyme Activity in Copper and Coal Mining Areas.
757	Environ. Manage., 68(3), 366-376, 2021.
758	Sun, Y., Shi, Y., Tang, Y., Tian, J., Wu, X.: Correlation between Plant Diversity and
759	the Physicochemical Properties of Soil Microbes. Appl. Ecol. Environ. Res.,
760	17(5), 10371-10388, 2019.
761	Thomas S, N., Amy, W., Tara, R.: A reexamination of restored wetlands in Manitowoc
762	County, Wisconsin. Wetlands, 27(4), 999-1015, 2007.
763	UNEP ,https://www.unep.org/news-and-stories/story/when-we-protect-nature-pature
764	rotects-us United Nations Environment Programme, 2019.
765	Vereecken, H., Huisman, J.A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena,
766	H., Weihermüller, L., Herbst, M., Martinez, G., Vanderborght, J.: On the
767	spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol., 516,
768	76-96, 2014.
769	Vittori Antisari, L., Marinari, S., Dell'Abate, M.T., Baffi, C., Vianello, G.: Plant cover
770	and epipedon SOM stability as factors affecting brown soil profile
771	development and microbial activity. Geoderma, 161(3-4), 212-224, 2011.
772	Wang, H., Huang, Q., Chen, C.: Ecological Management and Land Rehabilitation in
773	Mining Areas from the Perspective of Actor-Network Theory-A Case Study
774	of Lizuizi Coal Mine in China. Land, 11(12), 2022.
775	Wang, L., Wang, P., Sheng, M., Tian, J.: Ecological stoichiometry and environmental
776	influencing factors of soil nutrients in the karst rocky desertification
777	ecosystem, southwest China. Glob. Ecol. Conserv., 16, e00449-e00464, 2018.
778	Wang, P., Yu, H., Xiao, H., Wan, J., Ma, Q., Tao, G., Wang, Q., Jiang, W., Ma, L.:
779	Effects of habitat factors on the plant diversity on naturally-restored wind farm
780	slopes. PeerJ, 11, e14912-e14926, 2023.
781	Wang, X., Tong, S., Li, Y., Qi, Q., Zhang, D., Lyu, X., Guo, Y., Liu, Y.: Plant

782	Diversity Performance After Natural Restoration in Reclaimed Deyeuxia
783	angustifolia Wetland. Chinese Geogr. Sci., 29(3), 437-445, 2019.
784	Wu, C., Deng, L., Huang, C., Chen, Y., Peng, C.: Effects of vegetation restoration on
785	soil nutrients, plant diversity, and its spatiotemporal heterogeneity in a
786	desert-oasis ecotone. Land Degrad. Dev., 32(2), 670-683, 2020a.
787	Wu, H., Xiang, W., Ouyang, S., Forrester, D.I., Zhou, B., Chen, L., Ge, T., Lei, P.,
788	Chen, L., Zeng, Y., Song, X., Peñuelas, J., Peng, C., Gallery, R.: Linkage
789	between tree species richness and soil microbial diversity improves
790	phosphorus bioavailability. Funct. Ecol., 33(8), 1549-1560, 2019.
791	Wu, Z., Sun, L., Li, Y., Sun, Q.: Shifts in Vegetation-Associated Microbial
792	Community in the Reclamation of Coal Mining Subsidence Land. Environ.
793	Eng. Sci., 37(12), 838-848, 2020b.
794	Xie, L., Bi, Y., Zhang, Y., Guo, N.: Effect of Coal Mining on Soil Microorganisms
795	from Stipa krylovii Rhizosphere in Typical Grassland. Int. J. Env. Res. Public
796	Health, 20(4), 3689-3702, 2023.
797	Xu, H., Liu, Q., Wang, S., Yang, G., Xue, S.: A global meta-analysis of the impacts of
798	exotic plant species invasion on plant diversity and soil properties. Sci. Total
799	Environ., 810, 152286-152295, 2022a.
800	Xu, Q., Xia, G., Wei, Y., Aili, A., Yuan, K.: Responses of Vegetation and Soil to
801	Artificial Restoration Measures in Abandoned Gold Mining Areas in Altai
802	Mountain, Northwest China. Diversity, 14(6), 427-440, 2022b.
803	Xu, Z., Xu, W., Zhou, P., Zhu, Z., Zhao, J., Gao, P.: Research on Coal Mine Goaf
804	Restoration Based on Stability of Overlying Rocks and Numerical Simulation
805	Analysis: A Case Study of Jingmen Garden Expo Park. Sustainability, 15(2),
806	1464-1489, 2023.
807	Xue, W., Bezemer, T.M., Berendse, F.: Soil heterogeneity and plant species diversity
808	in experimental grassland communities: contrasting effects of soil nutrients
809	and pH at different spatial scales. Plant Soil, 442(1-2), 497-509, 2019.
810	Yan, M., Cui, F., Liu, Y., Zhang, Z., Zhang, J., Ren, H., Li, Z.: Vegetation type and
811	plant diversity affected soil carbon accumulation in a postmining area in

812	Shanxi Province, China. Land Degrad. Dev., 31(2), 181-189, 2019.
813	Yan, N., Marschner, P., Cao, W., Zuo, C., Qin, W.: Influence of salinity and water
814	content on soil microorganisms. Int. Soil Water Conse. Res., 3(4), 316-323.,
815	2015
816	Yang, K., Wang, S., Cao, Y., Li, S., Zhou, W., Liu, S., Bai, Z.: Ecological Restoration
817	of a Loess Open-Cast Mining Area in China: Perspective from an Ecological
818	Security Pattern. Forests, 13(2), 269-286, 2022.
819	Yang, K., Zhu, J., Zhang, M., Yan, Q., Sun, O.J.: Soil microbial biomass carbon and
820	nitrogen in forest ecosystems of Northeast China: a comparison between
821	natural secondary forest and larch plantation. J. Plant Ecol., 3(3), 175-182,
822	2010.
823	Yu, P., Liu, S., Zhang, L., Li, Q., Zhou, D.: Selecting the minimum data set and
824	quantitative soil quality indexing of alkaline soils under different land uses in
825	northeastern China. Sci. Total Environ., 616-617, 564-571, 2018.
826	Yuan, M., Ouyang, J., Zheng, S., Tian, Y., Sun, R., Bao, R., Li, T., Yu, T., Li, S., Wu,
827	D., Liu, Y., Xu, C., Zhu, Y.: Research on Ecological Effect Assessment
828	Method of Ecological Restoration of Open-Pit Coal Mines in Alpine Regions.
829	Int. J. Env. Res. Public Health, 19(13), 7682-7695, 2022.
830	Yuan, Y., Zhao, Z., Niu, S., Li, X., Wang, Y., Bai, Z.: Reclamation promotes the
831	succession of the soil and vegetation in opencast coal mine: A case study from
832	Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. Catena, 165,
833	72-79, 2018.
834	Zhang, Y., Duan, B., Xian, J., Korpelainen, H., Li, C.: Links between plant diversity,
835	carbon stocks and environmental factors along a successional gradient in a
836	subalpine coniferous forest in Southwest China. For. Ecol. Manage., 262(3),
837	361-369, 2011.
838	Zhang, Y., Wang, G., Gou, Q., Zhang, Y., Liu, J., Gao, M.: Succession of a natural
839	desert vegetation community after long-term fencing at the edge of a desert
840	oasis in northwest China. Front Plant Sci, 14, 1091446-1091458, 2023.
841	Zhao, W., Li, T., Cui, Y., Huang, J., Fu, H., Yang, X., Li, S.: Demographic

842	performance of a pioneer tree species during ecological restoration in the soil
843	erosion area of southeastern China. Glob. Ecol. Conserv., 32, e01936-e01949,
844	2021.
845	Zhao, X., Liu, P., Feng, Y., Zhang, W., Njoroge, B., Long, F., Zhou, Q., Qu, C., Gan,
846	X., Liu, X.: Changes in Soil Physico-Chemical and Microbiological Properties
847	During Natural Succession: A Case Study in Lower Subtropical China. Front
848	Plant Sci, 13, 878908-878990, 2022a.
849	Zhao, Y., Zhao, M., Qi, L., Zhao, C., Zhang, W., Zhang, Y., Wen, W., Yuan, J.:
850	Coupled Relationship between Soil Physicochemical Properties and Plant
851	Diversity in the Process of Vegetation Restoration. Forests, 13(5), 648-665,
852	2022b.
853	Zhou, L., Cai, L., He, Z., Wang, R., Wu, P., Ma, X.: Thinning increases understory
854	diversity and biomass, and improves soil properties without decreasing growth
855	of Chinese fir in southern China. Environ. Sci. Pollut. R., 23(23),
856	24135-24150, 2016.
857	Zhu, B., Li, Z., Li, P., Liu, G., Xue, S.: Soil erodibility, microbial biomass, and
858	physical-chemical property changes during long-term natural vegetation
859	restoration: a case study in the Loess Plateau, China. Ecol. Res., 25(3),
860	531-541, 2010.
861	Zhu, J., Mao, Z., Hu, L., Zhang, J.: Plant diversity of secondary forests in response to
862	anthropogenic disturbance levels in montane regions of northeastern China. J.
863	Forest Res., 12(6), 403-416, 2017.
864	
865 866	