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Abstract. Seasonal and regional changes in carbon dynamics in the Wadden Sea, the world’s largest intertidal sand and mud
flats system, were anahyzedanalysed to quantify the influence of biogeochemical processes (CaCOs-dissolution-and-formation;
phetosynthesis—respiration)-on the carbonate system at the land-sea interface. With a focus on the East Frisian Wadden Sea
and-the-highhyturbid-Ems-River-estuary;(EFWS), we successfully implemented-the-proxy-efused the difference between total
alkalinity (TA) and dissolved inorganic carbon (DIC) ([TA-DIC]), as well as the calculated parameters AT Aexcess, ADICexcess
and ATAp to identify how ongoing biogeochemical processes regulate the carbonate system dynamics—and-the-land-sea
interface.

In spring, a phytoplankton bloom with high biological activity-was, indicated by (a) supersaturated oxygen (up to 180 in %
saturation), (b) elevated chlorophyll a (up to 151.7-xg- ug L) and (c) low pCO; (as low as 141.3-patm)—As-a-result— patm),
resulted in decrease in nitrate (NO33NOs~, 19.29 + 18.11 pmelumol kg*)) and DIC (159.4 + 125.4 pmelumol kg-7%)
decreased; whereas—'), and a slight increase in TA slightly-increased-(9.1 + 29.2 pmolumol kg4)-in-the-intertidal regions from
Mareh-2022-to-May-most-tikehy-through-nitrate-assimilation-1). The regression analysis of the 20-differences between March

and May 2022 in NOs~ concentrations (ANO3") against the differences in DIC (ADIC) between-March-and-May-2022-yielded
a slope of 6.90-which-isclese-to-, matching the Redfield ratio-0f-6.625-forthe-C:N ratio-offreshlyproduced-phytoplankton

biemass, and suggesting that uptake of nitrate by primary producers increased total alkalinity during the spring bloom.

complemented-the BIC-dynamies.In summer, we assume that organic matter remineralization, along with CaCQs dissolution

in sediments, enhances TA production in the coastal and nearshore regions of the Western EFWS (up to 2400 umol kg™!). In

the Eastern EFWS, enhanced CaCOs formation may consume TA ([TA-DIC] < 200 umol kg™"). but the region still acts as a

net source of TA, likely due to sedimentary processes such as organic matter decomposition, which follow the time of increased

biological activity during the spring bloom. The increase of TA enhances the coastal ocean’s ability to absorb and store CO»
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p; and suggests that the intertidal
regionsEFWS can be a source of total-alkalinity-TA to the coastal regions during the warm productive seasons. FheThis study
highlights the complex relationships efbetween these factors, emphasizing the need for a comprehensive understanding of

regional and seasonal variations to better assess the role of coastal systems in carbon cycling, storage and climate regulation.

1 Introduction

Coastal oceans are biogeochemically active regions, which play a significant role in biogeochemical cycles, despite covering
less than 10 % of the oceanic realm (Gattuso et al., 1998).)- Coastal regions are directly affected by input-ef-terrestrial organic
matter and nutrients through river run-off-and, groundwater discharge-and, atmospheric deposition, withand exchange of large
amounts of matter and energy with the open ocean (Borges et al., 2006; Gattuso et al., 1998).}. Overall, coastal oceans also
support approximately 14— - 23 % of the ocean carbon dioxide uptake, 10— - 30 % of the primary production, 80 % of organic
matter burial, 90 % of sedimentary mineralization and 75— - 90 % of the oceanic sink of suspended river loads (Bauer et al.,
2013; Gattuso et al., 1998).)-

ForyearsSince the start of the industrial era, the levels of CO- in the atmosphere have been-inereasingincreased from ~280
ppm in-the-preindustrial-period-to over ~419 ppm due to human activities (Friedlingstein et al., 2023). About)—Fhe-uptake-of

atmospheric-CO,-by-the-ocean—estimated-to-about 30 % of the-anthropogenic CO, emissions since the industrial period have
been absorbed by the ocean (Friedlingstein et al., 2023). The uptake increases the concentration of )causes-an-inerease-in

protons [H*}'] and a-decrease-of decreases the carbonate ion concentration [COs* ] which-CO5>], leading to lower the-pH and

a reduced saturation state of calcium carbonate, a process known as ocean acidification (Orr et al., 2005).}- Depending on the

different model scenarios, it is predicted that surface pH in the ocean might decline by about 0.3— — 0.4 pH units by 2100,
corresponding to a decrease of about 40— — 50 % of carbonate ions in the seawater (Feely et al., 2009; Orr et al., 2005).)- The
future capacity of the ocean to take up CO», can affect the precipitation and dissolution of the carbonate minerals, as well as

the survival of marine organisms {(Duan et al., 2023; Kroeker et al., 2013; Liang et al., 2023; Ricour et al., 2023).}- Whereas

oceans are a significant sink for anthropogenic CO3; it is not well known how this uptake will further change under the continual

increase of anthropogenic CO; in the atmosphere {(Lorkowski et al., 2012; Sabine et al., 2004; Thomas et al., 2007).}- However,

rising atmospheric CO- will influence carbon stocks and fluxes in the pelagic, benthesbenthic and coastal zone, particularly in
shelf seas, which are annually mixed and ventilated (Legge et al., 2020). }-

Total alkalinity (TA) represents the buffering capacity of the ocean and is controlled by many factors including
erosion/weathering precessespathways on land (Lehmann et al., 2023)and respiration of organic matter (OM) along anaerobic
metabolic precessespathways, mostly generated in shallow marine and shelf sediments (Dickson, 1981).}- These processes are
directly influenced by terrestrial and anthropogenic nutrient inputs (Van Beusekom and De Jonge, 2002; Burt et al., 2016;
Thomas et al., 2009), as well as-and-by increased sedimentation of reactive organic matter (OM) (Al-Raei et al., 2009; Bottcher

et al., 1998).)- Coastal seas and shelf seas, like the North Sea often have relatively high rates of primary production in spring,
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leading to drawdown in DIC, pCO; and a consequent pH increase (Macovei et al., 2021; Thomas et al., 2005).2005a)- In
addition, nutrient loads from land ean-contribute to enhanced primary production, and increased carbon remineralization
{Fhomas(Prowe et al., 2009; Thomas et al., 2009).}; and subsequent changes in the carbonate system. tn-addition-there-have

beenPrevious studies {Fhemas-et-al—2009:Voyneva—et-al—2019)-which-suggestsuggested that intertidalregions-tike-the
Wadden Sea-can-play, a large network of intertidal sand and mudflats bordering the North Sea along the Dutch, German and

Danish coasts (Staneva et al., 2009), plays a significant role in modulating local carbonate system dynamics {(Thomas et al.,
2009; Voynova et al., 2019).)- The seasonal TA productionwhichranged-between 117 -26.8- mmoelm—=-d™ in the spring-and
surmmer-months-and-southern North Sea, exhibited a regional TA variability-efup-te-100-tumelks -, which was attributed to
the influence of the extensive-sand-and-mudflats-inthe-Wadden Sea (Voynova et al., 2019),}; and to benthic TA production
(Brenner et al., 2016).}- The observed seasonal changes of TA can affect the coastal ocean capacity to absorb carbon from the
atmosphere (Burt et al., 2016; Gruber et al., 2019; Li et al., 2024; Schwichtenberg et al., 2020).}-

This study offers a detailed analysis of seasonal and inter-annual carbonate system dynamics in the EFWS, a key region within

the world’s largest intertidal sand and mudflat system (UNESCO World Heritage Centre, n.d.). As an essential component of

coastal carbon cycling, and a land-sea junction, this area requires a deeper understanding of the processes influencing TA and

DIC. The research focuses on seasonal and regional variations, and particularly on the drivers of TA production in spring-

summer. By examining changes in TA, DIC, and other biogeochemical parameters, this study identifies key mechanisms

affecting carbonate chemistry, including calcium carbonate (CaCQOs) dissolution and formation, photosynthesis and respiration.

Our findings highlight the complex interactions among these factors, emphasizing the need for a comprehensive understanding

of regional and seasonal variations to better assess the role of coastal systems in carbon cycling, storage, and climate requlation.

Moreover, observed TA and DIC distributions provide valuable insights into potential carbon and TA sources within this

dynamic environment.

2 Material and Methods

2.1 Study Side

The German Bight region is bordered by Germany, Denmark and the Netherlands, and-is-situated in the southeastern corner
of the North Sea (Fig. 1a). The East Frisian Wadden Sea_ (EFWS) is one of the shallowest regions of the German Bight,
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characterized by a series of barrier islands; (Fig. 1b), each 5— — 17 km long and 2— — 3 km wide (Staneva et al. 2009).}- The
system is_an intertidal region, influenced by semidiurnal tides with a tidal range from approximately 2.2— - 2.8 m (Grunwald
et al. 2009; Staneva et al. 2009) and up to ~ 3.5 m in the Elbe River mouth (Staneva et al. 2009).

We separated the study area in two regions (Western WS & Eastern WS; Fig. 1b) due to the differences in the tidal dynamics

and hydrodynamic properties (Herrling and Winter, 2015), which drive the area's carbon dynamics, sediment transport, and

overall ecological functioning. The tidal range increases from 2.4 m at Borkum to 3.0 m at Wangerooge, with the Eastern

region experiencing stronger tidal influences (Herrling and Winter, 2015). In the Langeooq basin, wind effects cause the largest

relative increase in residual discharge, while Norderney experiences the largest absolute increase in water flux. Westerly winds

influence residual circulation and sediment transport differently in each region. The flow dynamics between the basins of

Baltrum and Langeoog are interconnected, whereas the flow regime between Borkum and Norderney is more independent

from the dominant circulation patterns and inter-basin exchange (Herrling and Winter, 2015).

}-Seasonal cruises were completed in the Wadden Sea (WS) and North Sea around the East Frisian Islands (and the Ems River
estuary-en) with the research vessel (RV) “Burchana? (Lower Saxony department of water management, coastal protection,
and nature protection (NLWKN; Fig. ises

focused exclusively on the intertidal mudflats of the EFWS. The RV Burchana, with a draft of 1.3 meters, allowed sea water

sampling even during low tide, providing the opportunity to collect samples at various tidal stages. Sampling took place during

daylight hours, typically starting in the morning at low tide and continuing throughout the day, with no nighttime samples

collected. Both shallow intertidal areas (accessible due to the vessel's low draft) and deeper subtidal channels were sampled to

ensure comprehensive spatial coverage.
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Later cruises extended into the Ems River Estuary, from the island of Borkum (Bork, Fig. 1b) to Weener (53°09'55.4"N

120 7°20'39.9"E), a town located upstream the Ems River. These additional data from the Ems River will be presented in a
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subsequent paper.
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Figure 1:1: Study area, (@) The German Wadden Sea (=WS), (shown in grey) with the German Exclusive Economic Zone (hatched
region) and the East-FrisianWSEFWS region (grey box). (b) Zoom into the East-FrisianWSEFWS, showing the sampling stations
(blackred dots) in the different regions in-the EastFrisian\WS-(Western WS and Eastern WS) considered in this study. The different
Islands are labeledlabelled with theirthe first few_ Ietters of thelr names (Bork— Borkum Jmst Nor— Norderney, Lang Langeoog,
Spiek= Spiekeroog, Wang= Wangeoog). Fhe fy g

W%WMGMGFFGHF}%MGG—M—NGHMWThG map in this Flgure was generated using ArcGIS. Data sources: (_)
Esri, TomTom, Garmin, FAO, NOAA, USGS; (b) Earthstar Geographics. © 2024 Julia Meyer.

2.2 FerryBox measurements

A FerryBox system (4H-JENA engineering GmbH, Jena, Germany) was operated during all cruises efon board the RV
Burchana (NLWKN), measuring the following parameters every minute: temperature (SBE38, Sea-Bird Scientific), salinity
(SBE45, Sea-Bird Scientific), dissolved oxygen (DO) (Optode 4835, Aanderaa, Bergen, Norway), chlorophyll fluorescence to
estimate chlorophyll a concentrations (AlgaeOnlineAnalyser, bbe moldaenke), pH (electrode, Xylem),-; measured on total
scale) and turbidity (Solitax inline SC, Hach Lange}-and-). The pH electrode was calibrated using standard DuraCal buffer
solutions at pH 7 and pH 10 (Hamilton Company, USA). The partial pressure of CO, (pCO2) {was measured using a sensor

(HydroC CO,-FT, 4H-JENA engineering)-) attached to the flow-through system of the FerryBox. The data were corrected

using the data processing manual of 4H - Jena engineeringEngineering GmbH (4H Jena, 2021).)- Regions near the ports were

excluded in all datasets, to remove any influence effrom the ship-in-port, or from the cleaning cycles.
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2.3 Discrete samples

%ﬁ%ﬁ%%@%%w@@mem%—%mples for—LOQ Wlnkler tltratlon (dlssolved

oxygen), nutrients, salinity and turbidity were collected from each cruise from-October2021-and-unti-July-2022-to
crosscheck the measurements of the FerryBox. Therefore, dissolved2-3-Discrete-samples

Disselved oxygen (DO) samples were collected on the last day of each cruise frem-Octeber2021-until-Juby-2022-by filling
Biological Oxygen Demand (BOD) bottles from the FerryBox outflow-fer-at-least-one-minute-with-wateroverflow-to-remove
105-any-bubbles:, Three replicates at-each-station-were-collected and-2-mlL-of each-manganese-sulfate-and-alkali-iodide-azide
magen&%%mpeﬁed—meaeh—sampmﬁst—belewunderwav were treated according to the su#ae&ef—the—kqmd—\m%hﬁeapﬁhat

DBO-samples-were-standard Winkler method and measured within 24 hours ef-celection-in the lab withusing a Metrohm 870

KF Titrino Plus. The Winkler titrations were used to correct the FerryBox dissolved oxygen measurements from the seasonal
cruises. A single regression equation for the Winkler exygentitrations and the FerryBox data was used to apply a satinity-and
temperature-dissolved oxygen correction of the entire data set (y= 1.17x— - 31.89, R2= 0.98, n= 46). In addition, the apparent

oxygen utilization (AOU) was calculated frem-alusing the corrected oxygen measurements, which-is-defined-as:-as according
to:

AOU=0,-0; &R

AOU=0; - 0, (1)
Where ©2°0>’ is the expected oxygen atin umol L at equilibrium with the atmosphere, at giventhe measured temperature and
salinity according to Grasshoff et al., (1999), and-in—pmeol-*whereas O, is the oxygen concentration measured by the
FerryBox optode-4835-in-pmel-L=.

Duran bottles (~ 300 mL) were filled with sample water during all seasonal sampling-cruises using the FerryBox outflow to

measure turbidity and salinity in the laboratory.

00-—Salinity was measured withusing an
OPTIMARE High Precision Salinometer (Optimare Systems GmbH, Bremerhaven, Germany)—Fhe) and turbidity and-salinity

-was measured using a Hach 2100 turbidimeter.

Fhe-nutrient-waterNutrient samples were ta

collected at each

station (Fig—L)-using the onboard water sampler. A sample volume of 250 mkml was filtered usingthrough pre-combusted
GF/F filters, and the samples were collected in clean eentrifugecentrifuged tubes, which-was-frozen and stored at -20 °C.
NitriteThe concentrations of nitrite (NO2"), nitrate (NO3~) ammonium (NH4*) and silicate (SiO;) concentrations-were also
measured wiausing a MicroMaC anabyzeranalyser from SYSTEA (Anagni (FR), Italy). The system-is-located-en-board-of the
RV Burchana-(NLWIKN)-indueing, which induces a eelorcolour reaction, is coupled with a photometer (NO,~, NO3+-NO25—,

SiOy) and a fluorometer (NH.*), using a one-point calibration. Bistilled-ultrapure- water was-used-for-the-automaticaly-aspirated
dHutions-NO3 was determined with sulfanilamide and N- (1- Naphthyl)ethylenediamine, NH.* with orthophthalaldehyde and

6
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NO. with diethylenetriaminepentaacetic acid and automatic UV reduction (Luitjens, 2019). }--SHicium-reacts-with-melybdic

Water samples for TA and DIC were collected in 300 mL BOD hottles at all stations using the FerryBox outflow according to

the Standard Operating Procedure (SOP) fepeapbenate—systeiﬁn—sanﬁWeLeeHeet%(chkson et al. 2007).)- The samples were

poisoned with saturated mercury chloride
atroom-temperature-and measured in the laboratory with a VINDTA 3C (MARIANDA, Kiel, Germany), and-calibrated-using

certified reference material (CRM) (Dickson et al. 2003).)- The results within this study were plotted with R Project (ggplot
package) and maps were created with ArcGIS Pro. In addition, the saturation state of calcite (QealQcal) calculated using the
CO2SYS program developed by (Lewis et al. 1998) with CO; solubility constants of Lueker et al. (2000).}-

2.4 [TA-DIC] as a proxy for Biogeochemical Processes

[TA-DIC] is a good proxy for biogeochemical processes such as CaCQOs3 precipitation / formation, photosynthesis, respiration

and therefore CO, uptake and release, even in coastal oceans (Xue and Cai, 2020). The parameter is independent of ocean

mixing and not sensitive to temperature and pressure changes, and this makes it a good tracer for larger-scale oceanographic

studies, and suitable for seasonal observations of biogeochemical processes and carbonate dynamics of an ecosystem. In

addition, it is assumed that [TA-DIC], can better reflect variations of [COs?*] compared to the ratio of TA and DIC (Xue et al.,
2017).

The difference between TA and DIC is often expressed as:

[TA — DIC] = TA — DIC (2)
However, [TA-DIC] should not be used at low salinity (e.g. <20) and when [TA-DIC] is <~50 umol kg~!, where the

relationships of [TA-DIC] with pH and/or ocean acidification are nonlinear, these low values also occur in oxygen minimum
zones (Xue and Cai 2020).
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2.5 Calculations of estuarine DIC and TA contributions

TFable 1 DIC iverr PHFCocean—SoceanrAriver 1 0_eStimate the contributions of estuarine DIC and TA in the Western and Eastern

EFWS, we used DIC measurements from the lowest salinity station in the Estuary where the Ems enters the Wadden Sea as

endmembers for our mixing model. The stations chosen for these measurements were in areas of low salinity within the estuary,

with considerable influence of freshwater (Table 1). These values (DICestuary; TAestuary) Were used to calculate the DICmixing wir

and TAmixing wir_(€quation 3; 4) for the different regions.

Table 1: DICestuary, DICnorthsea, Snorthsea, TAestuary and TAocean T Anorthsea Used for the calculation of the seasonal DICmixing wir

concentrations of each season.

Season and Region ~ BlGriver BlCocean Secean FAciver FAocean
DI CNorthSea Dl Cestuary SNorthSea TANorthSea TAestuary
July 2021
Western WS 24919 21525 31.50-79 25411 23652
2144.07 2261.20 2273.70 2465.12
October 2021
Western-WS 24187 21764 30.97 23216 23787
2188.46 2224.90 2369.27 2411.68
March 2022 31.47
2205.66 2238.05 2338.37 2318.90
May 2022 32.13
2199.86 2205.52 2332.49 2447.76
July 2022 31.78
214441 2310.22 2356.59 2489.56
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a-In this study,
DIChorthsea_(and TAnorthsea) refers to the DIC (and TA) values at the station (CAR_S 076) located farthest from land behind

Spiekeroog and Wangeoog (Fig. 1b), which we used the-eguationas our marine endmember, as it is situated farthest offshore

of the Ems and experiences the highest salinity (Snorthsea) levels during almost each season. The DICnorthsea and TAnorthsea

endmembers applied for each season are shown in Table 1.

Starting with these endmembers, we used the equations of {Jiang et al. (2008) and ;-Joesoef et al. (2015) to calculate B4Cpixing

wrthe contribution of riverine DIC and TA:

DIC ixing w/R = —— DIy —— 3« DIC 4 Sy
mixing w/ S ocean | | S 7 FIVer C SNorthSea
S.
DICNorthSea + (1 - : ) * DICestuary (3)

SNorthSea

Si

S.
TAmixing w/R = - * TANorthsea + (1 — ) * TAestuary (4)

SNorthSea

SNorthSea

where S; represents the salinity at each related station i. The ratio — % normalizes the influence of the salinity at the
NorthSea

specific station by the salinity of the North Sea (Sworthsea).

In Additionaddition, the ADICexcess Was calculated to estimate the contribution due to riverineestuarine input in the different
regions. Therefore, the equation of (Jiang et al., 2008; {Van Dam et al., 2018;-Jiang-et-al;2008}) was used:

ADICexcess = BHDIC; — DICpixing w/r ®)

This equation includes the measured DIC concentrations of the related station i and the DICmixing wir.Of equation 43.
AT Amixing wir-and AT Aexcess Were calculated the same way with the measured TA of each station using the FAviver—FAvocean
GGHGGH{GHGHSTAeSmarM TANorthSea Values (Table 1)

_ — S TA 1 St N, TA
ATAexcess - TAL’ - TAmixingw/R s + TTrgecean -+ * S T ger
(6)
ATA = TA TA (7)
=TTtexeess T Timang Wk LS

ADICexcess and AT Aexcess cCONCentrations were calculated to remove the mixing effect of the-riverswater masses from the estuary
outflow with the sea—TFhe-North Sea, as the coastal region of the East-Frisian\WSEFWS is closely connected to the land-and

the—rivers—are-ustally—supersaturated-with-CO.compared-to-the-atmosphere{(Joesoef-et-al—2015). A ADICexcess value of

approximately zero means that the DIC is not different than what would be expected vpenfrom mixing between the eceanNorth

Sea and riverestuarine outflow waters. Negative values of ADICexcess €0nfirmindicate that the DIC consumption exceeded

production in this area, which reduces DIC or, equivalently increases AT Aexcess. Positive values of AT Aexcess SUggeSts higher
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values than expected based on mixing alone, indicating ether—additional-TA-sources—are—present—caused—for-instance-by

biogeochemical processes such-as CaCOs dissolution-and respirationTA sources.
Therefore, during high-productive seasons, the-primary production will inereaseFA-and-decrease DIC, while consuming CO;

and nutrients (Xue and Cai, 2020). The uptake of NO3 witican increase andTA, while the uptake of NH4* witican decrease TA
in an ecosystem (Brewer and Goldman, 1976; Wolf-Gladrow et al., 2007). The production of 1 mol organic matter
((CH20)106(NH3)16H3PO4) will generally increase TA by 17 mol TA (ATAp) and decrease DIC by 106 mol and will change
the TA and DIC concentrations (Chen, 1978). ThereforeConsequently, ATAp is used to calculate the expected amount of TA

produced-and-decrease-DIC-by-primary-produeers, according to the equation of AT Apio from (Xue and Cai 2020), which was
modified using the calculated ADICexcess:

ATA — 17 /106« ADIC
oIixp T/ TU0 (=g e~

However#HATAp = —17/106 % ADIC .5 coss
)]

It is important to note, that the calculation of ATAp is an overestimation assuming the measured TA is resulting-only-due-te
modulated by photosynthesis (NOs- - fueled) or respiration—Additienally;, such that the East-Frisian\WS-is-also-influenced
by-tidahvariability-andpresence of other riverine-inputsfrom-land-for-instance-Rhine-River-orElbe-Rivernon-photosynthetic

DIC sinks will cause ATAp to be overestimated.

-~
[©e]
=

eXEcess

3 Results
3.1 Intertidal-East-Frisian-Wadden-Sea
3-11-Regional and seasonal variation in the EFWS

In July 2021, salinities were lowest on the route from Norddeich harberharbour to Norderney (25.212), and in-the-intertidal
region-around Norderney (Table 2; Fig. 251) in the Western WS. In summer 2022, the salinity on July 12 (31.16 - 32.03)
increased by 2 - 3 salinity units compared to July 11 (28.28 - 29.43) in the Eastern WS (Table 2; Fig. 251). This indicates that
during July 2022 cruise, there was a change in salinity range between the first and second leg of the cruise (in roughly the

same region). A possible reason for these salinity differences could be the Neuharlingersiel sluice opening in the early morning
of July 11, 2022, which could have influenced the salinity on this day. The turbidity in October 2021 showed a completely
different pattern compared to all other seasons, with values from 96.08 — 306.46 NTU (Fig. 251), caused by rougher weather
conditions during the campaign. Heweverslightregional-differences-in-turbidity-were-measured,-for-instance-in-the-Jade Bay

A land to sea gradient was observed in pH in October 2021 (Fig. S2), which varied from 7.6 to 8.1 (Table 2). Higher values

were measured in the North Sea regions (behind Juist, Norderney, Langeoog), whereas the lower values were measured closer

10
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to the mainland. Regional differences with maximum pH values of > 8 in the higher salinity waters were measured during all

seasons (Fig. S2; Table 2), with pH > 8 in the Western WS, in front of Norderney in May 2022.

Table 2: Overview of the different measured parameters: Temperature (°C), Salinity, pH, oxygen (% saturation), AOU (umol L),
Chlorophyll a (Chl ain pg L), pCO2 obs (Matm) and ArageniteCalcite saturation Qcal of all seasonal samplings—Fhe-given-valuesof
theCalelncatmatlonsinte Loenare seonsnied in the levesaline Srme Sovan e ondthe Tact Brlclan Minddon Cea(Eactomp /S,

Western WS)-in-high-salinity watersEFWS.

Parameter July 2021 October 2021 March 2022 May 2022 July 2022
Temperature (°C) 18.59 — 23.15%* 12.66 — 16.57%* 3.89 - 6.47%* 9.65 — 18.19*? 17.36 — 21.88*204
Salinity 25.21-32.33** 2521 - 31.32**  0.2518.32-31. 0.3623.59-32.28  123.35-32.04**
9732 *2

pH 7.71 -8.16%* 7.64 —8.13%* 7.3366 —8.13*?  7.2505 - 8.56*?55  7.3071 —8.08*?
Oxygen (% sat) 109.7 £ 9.5 100.9 + 5.3%*
EastFrisian - -
MladdonSons 104-9105.5 + 3. 129.6+15.3*! 401.2102.4 £ 5.9
ErpsEoiuone 3*1 455+20.8132.9 *

e +13.0 CEL000
AOU (umol L) -22.7+22.2% -2.3+14.4%
EosbRricion - -
MladdonSons -159- -39.1+£97.2%1 -2.9-+ 14.2%1
ErpsEoiuone 17.5 +£10.9%* LE42 =600 OLc =700

852 =120 88.9+33.9 53+124
Chla (ug LY) 25.6 +£12.9%* 16.9 + 8.9 13.34+6.3%?5  42.0-£27.9%?52.1 23.2+19.3*2

+294
PCO2 obs (Hatm) 521.6 £+ 72.2%* 536.0 + 116.5%*
Eoctrcion - Lt O 00 L
Wadden-Sea: - BB 319:4-+202.9%*
ErpsEsnn s - 73468.2%* e
22060 Eo L
69.0 +63.7
+545
Qcal 3.8+0.9% 3.21+0.6%* 2.65 +0.3*! 52+ 1.1 3.87 £ 0.4
- - 0-9-+0.64 et L0008
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The-concentrations of chlorophyll a were observed in May 2022-was, displaying the highestmost substantial fluctuations

(Table 2;-Fig—3)-overallwith-the-greatest variance{Table-2),-and), especially; in the Western part of the-East-Frisian\WS-from
Norderney to Borkum (up to 151.7-1g- ug L-%) (Fig.-2.S2). In July 2021, the highest chlorophyll a-measurements (up to 74.7

#gug L) were detected in-the-intertidal-region-fremunderway between Norderney to Spiekeroog (Table 2; Fig.-3)-whereas

lowervalues{(down-to-2.8-ug-L ) were-observed-in-the-North-Searegions-of the transects: S2). A similar pattern can be seen
for July 2022 in-the-intertidal-zene-(Fig.-3 S2), however no measurements of-the-transect-from Norderney to Spiekeroog isare
available for chlorophyll a. This is also the case for October 2021 within-the-intertidal-zene-transects-from Norderney to
Wangeoog (Fig.-3 S2).

~In July 2021 the measured oxygen ranged from
72.4— —112.01 in % saturation (Fig.-3 S2), with the highest values in the intertidal-area\Wadden Sea of Langeoog. The-oxygen
saturationOxygen decreased from July 2021 to October 2021, on average by 8.8+ + 10.9-%- % saturation (Table 2; Fig.-3 S2).
The lowest oxygen saturation was measured en-the-transect-from Norddeich to Norderney in October (down to ~57 %
saturation). Until May-2022, oxygen saturation increased continuously over the year. The highest oxygen saturation-(up to
~ 180-%j) % saturation) was measured in May 2022-in the intertidal region of Norderney in the Western WS-and around
Wangeoog in the Eastern YWSEFWS (up to ~ 152 %

oxygen saturation-in-the-East-Frisian-\WS-decreased by a mean value of 28.4+ + 16.4-% 230 % saturation from May 2622-to
July 2022 (Fig.-3.S2), resulting in slightly lower oxygen saturation in July 2022 compared to the previous year before-(Table 2).

TFhe-oppositeFor the AOU (Table 2), the same inverse picture was also-ebserved-for AOU-{not-shown)-with-negative-values

as-it-became-more-saturated(>-100-% saturation){Table-2)-obtained. The observed pCO; (pCO; o1s) Was highest in July 2022
and lowest in May 2022 (down to 141.3-gatm patm) in the intertidal-zene-of-the-Western WS. The average decrease in pCO2 obs

was 166.2-+ + 276.1-patm patm from March 2022-to May 2022 (Table 2; Fig.-4)-{see-alse-section-3-1-2)— S3).
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disselution-and-formation-may-oceursseasenally-During all seasons, QealQcal was supersaturated-in-the-intertidal- East Frisian
WS, ranging from 1.5 — 7.5 —75-(Table 2), but with a pronounced seasonal pattern. Low-vatues{<2.0)-were-mainhy-caleulated
in-October 2021 and-March-20 able-2: Fig—5)—Higher-oversaturated Qcalvalue Higher, supersaturated Qcal values
(> 2.5) were observed during more productive seasons (July 2021, July 2022, May 2022). However, the highest variability of
QealQcal was found in May 2022 with values > 1 in 80 % of the stations and reaching up to 7.52 in the intertidal-region WS
of Juist and Borkum (Table 2; Fig.-5)—tn-contrast—in-the- Ems-River-estuaryQcal saturation-decreased-{down-1o Aith
i i - S3). In summer (July 2021, July
2022), a decrease of QealQcal in the East-FrisianWSEFWS from West to East ean-bewas observed, regionally (Fig. 53—Fhe

hMah-Oca 3 '-- alifa in-May, 0 inthe intartid oRe-hearJ i nad-Bo m-is-o anaing a nesQ Nan

Western WS Eastern WS

pCO; (patm)

Season

# pCO; yjo (Hatm) e pCO; ops (Hatm) o PCO; pem (Hatm)

therelated-error-barsin-the Western-and-EasternWS:
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3.1.33.2 TA and DIC Variability in the EFWS

Large variability in DIC and TA was observed-in-the-East-Frisian-\WS, seasonally but also regionally along the land to sea

gradient in the EFWS (Table 3; Fig. 6)—Higher2) with high TA were-measured-in-the-intertidalregion-in summer (Juhy-2021;
July-2022)(Fig. 72). In July 2021, TA ranged from ~ 2273 umol kg! in the Jade Bay (Eastern WS) and increased regionally

westward (up to ~ 2465 pmol kg 1) to Norderney (Table3 Fig. A—Figure-8-also-shews-the-higher2; Fig. 3a). All measured

values-are-values were above or slightly below the mixing line with a negative slope (- 24.9 pmol kg-? per salinity unit) in-the
intertidal zone-of the-East FristanWS-(Fig. 8a3a), indicating TA production-in-this+egion. In July 2022, lower TA values were
measured during the first leg of the cruise when salinities were lower (28 - 29) (Table 3; Fig. #2; Fig. 8a3a), but a similar slope
(- 23.3 pmol kgt per salinity unit) of the short mixing line in-Figure-7a-was observed-During-the- (Fig. 3a). At higher salinity

stations in July 2022-cruise—when-highersatinitieswere-measured (up to 32), the-TA values were similar to those efJuly

2021measured the previous summer, with a negative slope of -25.1 umol kg™" per salinity unit, slightly above the mixing
line, indicating TA production in-the-intertidal-zene-(Fig.-8a 3a). The DIC concentrations also showed a similar pattern during
both summer cruises (Table 3; Fig. 8b3b), with a-negative slepeslopes of - 49.0 pmol kg* and - 44.3 umol kg ** per salinity

unit in July 2021 and in-duhy-2022, respectively, in the Eastern WS.

Table 3: Overview of different the parameters TA (umol kg™, DIC (umol kg ™) and [TA-DIC] (umol kg™ of all seasonal samplings
in average with the standard deviation.

Parameter July 2021 October 2021 March 2022 May 2022 July 2022
TA (umol kg™)

Western WS 2403.4 +27.4 2388.6 + 15.6 2358.6 + 27.8 2378.9 + 39.0 2380.2 +42.7
Eastern WS 2283.5+10.2 2236.6 +5.3 23472 +11.8 2349.7 £9.8 2337.2 £35.2
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DIC (umol kg ™)

Western WS 2185.8 +48.2 2257.1+91.0 2237.7 +37.8 2065.5 +107.0 2184.4 +43.3
Eastern WS 2124.1 +£10.3 2182.8 +18.2 2211.8 +20.9 2089.2 + 38.0 2142.3+27.6
[TA-DIC]
(umol kg™)
Western WS 217.55+51.9 150.5+47.1 120.9 +£30.2 313.3+76.1 196.8 + 26.7
Eastern WS 159.44 + 16.4 184.9 £19.9 137.9+11.0 260.5 +34.7 1949+21.1
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Figure 2: Measured results of TA and DIC of all seasonal cruises of July 2021, October 2021, March 2022, May 2022 and July 2022.
All TA and DIC values are in pumol kg ). The map in this Figure was generated using ArcGIS. Data sources: LGLN, Esri, TomTom,
Garmin, Foursquare, FAO, METI/NASA, USGS. © 2024 Julia Meyer.
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Figure 3: TA (umol kg!) and DIC (umol kg!) mixing plots, against salinity of July 2021 (a, b), October 2021 (c, d), March 2022 (e, f),

May 2022 and July 2022 (a, b) at > 25 salinity, separated by the different regions (Eastern WS-of-44.3 pmol-kg*-per-salinity-unit
{Fig—8b)., Western WS) of the EFWS.

In October 2021, the highest TA concentrations were measured at a station near Norddeich (up to 2571 umol kg) in the
Western WS (Fig. A-—BlC-shows-a-very-simiarpattern-as-for FA-during-this-season{Fig—#)-2). The DIC values reached a
maximum of 2516 pmol kg in the-intertidal-zene-in-front of Norderney and decreased with increasing longitude to a minimum
of 2158 umol kg* (Fig. 72). The mixing plot of TA in October 2021 shows a negative mixing line in the Western WS (- 25.4

umol kg per salinity unit), whereas the Eastern WS shows an almost linear mixing line with a positive slope of 13.1 umol kg*

per salinity unit (Fig. 72; Fig. 8¢)-The-DIC-mixing-plot{Fig—8d)-shews-a3c). A similar picture of TA was observed in the

Western WS to-FA-with-a-negative-slope-(- 46.9 mol kg per salinity unit) (Fig. 3d). In March 2022, lower DIC concentrations
(< 2200 pmol kg*) were measured further offshore behind the islands of Borkum, Juist and Norderney-and-these-increased

FA-and-DIC-within-thisregion(Fig—8eH-in-Mareh-2022. which increased slightly closer to land (Fig. 2).

The mean measured TA in the Western WS in May was 2378.9 umol kg (Table 3, Fig. 2), indicating a slight increase in TA

from March to May 2022. Most of the TA values were close to or above the mixing line, with similar negative slopes in the

Western (- 15.6 pmol kg per salinity unit) and in the Eastern WS (- 15.3 pmol kg per salinity unit) (Fig. 3g). The lowest

DIC values (down to 1872 umol kg™?) in this study were also measured in the Western WS in spring (Table 3; Fig. 2; Fig. 3h).

3.3 Seasonal Trends in [TA-DIC] and AQU in the EFWS

The relationship between [TA-DIC] and AOU provides valuable insights into the biogeochemical processes that drive

carbonate dynamics in coastal systems (Xue and Cai, 2020). A critical threshold for interpreting this relationship is

that [TA— DIC] cannot be used when values are < 50 pmol kg~', as proposed by Xue and Cai (2020). This threshold applied

only to one station near Norddeich harbor in October (Fig. 7), so these data were excluded from the seasonal calculations

(Table 3).

Figure 4a illustrates the AOU relationship to [TA-DIC] from all stations sampled during various seasons in the Wadden Sea.

The regression analysis highlights a negative correlation, with a slope of -1.416 umol kg™ per umol L' of AOU. which is

steeper than the Redfield ratio slope (- 123/138 = -0.89), previously proposed by Xue and Cai (2020). In spring, negative AQU

values (down to -169 umol L', Fig. 4a) were observed alongside higher [TA-DIC] values (> 200 umol kg*; Fig. 4b).

In the summer (2021; 2022), [TA-DIC] values from the Eastern WS are located under the respiration/photosynthesis line

(<200 pmol kg™ Fig. 4b). In contrast, the measured [TA-DIC] concentrations in the Western WS in summer are

> 200 umol kg, above the respiration/photosynthesis fit (Fig. 4b). In July 2022, the salinity in the same region changed by

2 - 3 units from one day (July 11) to another (July 12), where the salinity was higher in the East, showing slightly higher TA

values (+53.7 + 36.7 umol kg™) in summer 2022, compared to the previous year (Table 3).
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Figure 4: (a) AOU vs. [TA-DIC] (nmol kg™) across all seasonal cruises, with regression analysis (black dashed line). Arrows indicate

420 potential processes affecting [TA-DIC] and apparent oxygen utilization (AOU). The grey dashed line represents the regression slope
(-123 /138 =-0.89) proposed by Xue and Cai (2020). (b) DIC versus TA plot from all seasons, with the coloured values of [TA-DIC]
for_the EFWS at salinity 25 —32.5. Isoclines represent [TA-DIC] values. Red lines indicate key biogeochemical processes
(photosynthesis / respiration, CO: exchange, and CaCQOs formation / dissolution). The Eastern EFWS is highlighted with a grey
circle.

425 3.4 Seasonal Variability of DIC and TA in the EFWS: Influence of Mixing Processes

Stations located near Norddeich harbour, closer to the mainland, exhibit extreme values (Fig. 2) and therefore were excluded

from the calculation of mean + standard deviation to provide a more representative assessment of ADIC excess, AT Aexcess, and
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ATAp. However, these values are still displayed in the scatter plots (Fig. 5) to illustrate the range of variability, including

highly positive and negative deviations.

The Western WS generally exhibits positive ADICexcess values, with a peak in October 2021 (47.7 £+ 84.9 umol kg') and July

2022 (54.6 £ 33.3 pmol kg™"), suggesting an excess of DIC beyond the expected mixing (Fig. 5a). In contrast, during May,
ADICexcess_In the Western WS was negative (-69.3 + 107.0 pmol kg™"). suggesting significant DIC consumption, potentially
due to enhanced primary production during spring bloom conditions. Similarly, negative values were observed in the Eastern
WS in May 2022 (-30.1 &+ 35.8 pmol kg™!) and July 2021 (-19.3 & 11.2 pmol kg™!) (Table 4; Fig. 5a).

Higher ATAexcess values are observed in the Western WS, particularly in July 2021 (123.0 + 27.8 umol kg™), indicating

additional alkalinity sources. In spring, AT Aexcess Showed a clear positive trend, with an increase from March to May in both

regions (Fig. 5b), suggesting that while TA is being consumed, production still exceeds consumption. The increases in TA
from March to May were 20.0 & 42.22 umol kg™ in the Western WS and 8.1 + 18.62 pmol kg™" in the Eastern WS (Table 4;
Fig. 5). The Eastern WS exhibits lower AT Aexcess Values, with some negative values in July 2022 (-34.7 + 32.3 umol kg™"),

when the sluice was open. ATAp, representing primary production effects, is positive in May (Table 4; Fig. 5c¢) in the Western

and Eastern WS, indicating a net uptake of CO. through biological processes and a corresponding decrease in DIC (Fig. 5a).

Table 4: OverviewMean + Standard Deviation of differentthe-parameters TA{pmol-kg ) DIC{mol- kg ADICexcess, AT Aexcess, and
FFA-DICIATAR (umol kg?) of all seasenal-samplingsseasons in averagewith-the standard-deviationthe Eastern and Western EFWS,

ParameterSeas July 2021 October 2021 March 2022 May 2022 July 2022
on
TA(pmok kg™
ADICexcess 240323.4 + 27.46 2406477 £53.8 2358.6+27205+2 2378.9+390 238054.6 + 33.3
Western WS: 22835+ 10- 4.9 3.8 23497 +08 -16.0 £ 26.2+427
Eastern WS: 19.3+11.2 -6 23442585+ 118 2741693 +77.4107.0 23372352
ErmsEstuany: - 2367853 2600.2-+68.0 -30.1+35.8 2697.7+1011
-37+194

DIC{pmolkg™)
AT Aexcess 2185123.0 +27.8+4 22571 +910 223716.6 + 21.9 2065.5+1070 2184.4+4350.9 + 2
Western WS: 82 21828+ 182 10.7+ 378 20892+ 380 19
Eastern WS: 21241-+10.3 _299+51.9 22118+118 2791 5+ 136.036.6 + 3 -34.7+32.3
ErmsEstuany: -9+115 -2.35+5.87 2681.3+ 1244125 6.1 21423+ 276

18.8+13.8 26826+ 169.1
FA-BIC]
(pmolkg™)
ATAp 217554519 150.5+47 - 120.9+30.2 3133476111 196.-
Western WS: 15944+ 16.4 7.65+13.6 1379 +11 - 260.5+34.7 8+£267.75+£5.35
Eastern WS: _3.75+ 4.43 1 3.28+3.82 50+ 17.2+776 1949+ 211
Ems-Estuany: 3.10+1.80 184.9-£19.9 -0 4.83+574 15:1+69.2.56 £4.2

-.02+3.11 - 0
845 +1.724+707
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3.5 Regional and seasonal variation of the-Ems-River-EstuaryNutrients
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A clear seasonal pattern can also be seen in the measured nutrients (Fig. 2254). For NO, and NH4* a decrease in concentrations
was observed from October 2021 to May 2022, except in the East part of the East-Frisian-\WS-for NO,EFWS (Fig. 1254),
where the concentration did not change_ much. NO3™ concentration ranged seasonally, with an increasing trend from summer
to March 2022 (up to 66.28 umol L™1) in the intertidal- East-Frisian WS-EFWS. In May 2022, the NO3” concentrations decreased

again below the detection limit of the instrument (> 0.01 umol L") at some stations, mainly in the Western part (Fig. 1254).

This analogous seasonal tendency possibly will point to common sources and sinks.

Overall, from March 2022 to May 2022 there was an average decrease in NO3™ of 19.29 + 18.11 umol kg™ (Fig. 13;-Fig-—136).
TA slightly increased by 9.1 + 29.2 umol kg during this time (Fig. 7-Fig-8;-Fig—10:Fig-114 - 6), while DIC decreased on
average by 159.4 + 125.4 umol kg~ '-(Fig—7:-Fig-—8:Fig—10).. The differences of NOs  and SiO- for all stations between March
and May 2022 (ANOs’, ASiO») were plotted against the DIC difference between March and May (ADIC, Fig. 436). For ANO3
a regression line was fitted with equation of y = 6.90x + 29.089 (R? = 0.4637, p- value = < 0.05, Fig. 436), while the ASiO,
regression has an equation of y = 8.11x + 50.605 (R? = 0.2165, p- value = < 0.05;; Fig. 436). The slope of both regression lines
is close to the Redfield Ratio (Redfield et al., 1963) of 106/16 = 6.625 for NO5™ (6.90, Fig. £36) and 106/15 = 7.067 for SiO,
(8.11, Fig. 436), indicating that the identified enhanced primary production in this region in the-spring, along with nutrient
(nitrate) uptake ef-the-available-inerganic-nutrient-species-most likely lead to a concomitant decrease in DIC (Fig. 43)-6) and

increase TA.
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Figure 6: NOs and SiO: differences (ANOs", ASiO2) of March to May 2022 against the difference of DIC (ADIC), with the related
regression equations. The slopes show the Redfield Ratios of all measured stations in the Western and Eastern WS.

4-Discussion

4.1 Regional and seasonal Differences of the Carbonate Dynamics in the Carbonate System-of the-East Frisian-\Wadden
Sea-EFWS

heThis study highlights regional and seasonal

variability in the carbonate system-efthe-EastFrisian\WS-Netably,-thereisa-pronounced, with a notable West-to-East gradient

in DIC and TA, with-beth-showing considerable fluctuations across seasons-
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spatial and temporal scale (Table 4; Fig. 5). We successfully demonstrated that TA increased in the spring because of intense

primary production, most likely driven by nitrate uptake (Figs. 5; Fig. 6), highlighting the impact of biological activity on

carbonate system dynamics. During the other seasons, the system acted as a source of DIC, indicating seasonal shifts in carbon

cycling. Similar patterns of intense production periods and TA increases have also been reported in the North Sea adjacent to

the Wadden Sea (\Voynova et al., 2019). Additionally, we observed TA production during summer, which was more prominent

in the Western WS, further suggesting that these intertidal regions act as a stronger source of TA and DIC during all seasons

except in spring, compared to the Eastern EFWS.
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region-with-4.2 Seasonal TA Production and DIC Dynamics in the EFWS

a A nlo om aacon 1th tha ored

The data reveal important differences in the patterns between years and regions in summer (Table 4; Fig. 2 —5). The observed

summer dynamics in the Eastern and Western EFWS show distinct patterns in the biogeochemical processes related to TA and
DIC production. Positive AT Aexcess (€.2., 123.0 £ 27.8 pmol kg™ in July 2021) and ADICexcess (23.4 + 27.6; Table 4) values

suggest that there is excess of TA and DIC in the Western EFWS. One key biogeochemical process, which can contribute to

increasing TA, without a proportional increase in DIC, is the dissolution of CaCOs, which results in elevated [TA-DIC] values

(>200 umol kg") (Chen and Wang, 1999; Hoppema, 1990). However, CaCOs dissolution can be ruled out as a major TA

source in the water column, since calcite is supersaturated (Qcal > 1) during the study period (Brasse et al., 1999; Norbisrath

et al., 2024). Nevertheless, in the sediments large amount of DIC can be produced by carbonate shells and transported by

erosion processes into the water column (Brasse et al., 1999). Previous studies have estimated that TA production in the

Wadden Sea is driven by anaerobic processes such as denitrification and/or CaCOs dissolution in sediments (Norbisrath et al.,

2024; Thomas et al., 2009). Anaerobic degradation of organic matter—via denitrification and sulfate reduction—releases both
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TA and DIC (Brasse et al., 1999; Hu and Cai, 2011; Norbisrath et al., 2024; Thomas et al., 2009), with TA concentrations

reaching up to 2310 umol kg' in summer (Thomas et al., 2009). Other studies suggest that permeable Janssand sediments (a

tidal sand flat in the back-barrier area of Spiekeroog Island, Eastern EFWS) exhibit the highest potential denitrification rates
(Gao et al., 2010).

In the summer months, the production of TA in both the Eastern and Western EFWS can be attributed to the decomposition of

organic matter, especially following a productive spring season, such as the one observed in May 2022 (see section 4.3), which

likely led to an elevated input of organic matter into the system (Borges et al., 2017). This organic_matter subsequently

undergoes both aerobic and anaerobic decomposition in the sediments during the summer months, where anaerobic processes

like denitrification and sulphate reduction are drivers in generating both TA and DIC (Brasse et al., 1999; Norbisrath et al.,

2024). These processes can significantly contribute to the enhancement of TA production (Fig. 4a, b; Fig. 5b), especially in

the Western EFWS, where sedimentary anaerobic processes dominate in the summer (Al-Raei et al., 2009; Bottcher et al.,
1998; Hu and Cai, 2011; Kamyshny and Ferdelman, 2010; Norbisrath et al., 2024; Thomas et al., 2009; Wu et al., 2015).

Furthermore, with oxygen saturation remaining high (> 100 % saturation) and apparent oxygen utilization (AOU) being

negative (Fig. 4a), it is evident that the water column is net autotrophic. This suggests that TA is primarily produced in the

sediments and subsequently transported into the water column, rather than being generated in situ via remineralization (Beck
and Brumsack, 2012; Postma, 1981).

Organic matter remineralization varies regionally across the North Frisian Wadden Sea (NFWS), EFWS, and Jade Bay (Van

Beusekom et al., 2012; Kowalski et al., 2013). The NFWS favours aerobic degradation due to its wide tidal basins and high-

water exchange (~8.1 km?® d™'). resulting in lower organic matter accumulation, reduced eutrophication, and lower TA

production relative to DIC (Van Beusekom et al., 2012; Kowalski et al., 2013; Schwichtenberg et al., 2020). In contrast, the

EFWS experiences higher eutrophication and organic matter accumulation due to its narrower basins and limited exchange,

promoting anaerobic degradation processes (e.g., sulfate reduction), which enhance TA production (Van Beusekom et al.,
2012; Kowalski et al., 2013; Schwichtenberg et al., 2020; Thomas et al., 2009). Jade Bay, with the lowest water exchange

(~0.8 km? d "), exhibits sporadic high TA/DIC ratios, likely due to short-term iron reduction processes (Brasse et al., 1999).

A similar pattern was also seen in the Eastern EFWS compared to the Western in [TA-DIC] dynamics (Fig. 2; Fig. 4b). In

comparison to the Western, the Eastern EFWS consistently exhibits lower [TA-DIC] values (<200 umol kg™!) during the
summer months of 2021 and 2022, while the Western EFWS shows slightly higher [TA-DIC] values (>200 pmol kg *': Fig. 4b).

This difference can be attributed to enhanced CaCQs formation, as indicated by its Qcal (1.9 & 0.8) in the Eastern (Fig. 4b).

CaCOs formation likely consumes TA (Chen, 1978). leading to the observed shift toward negative ATA excess Values (Fig. 5b).

The formation of CaCOs, particularly in sediments or shells, contributes to the lower observed source of TA in the Eastern

compared to the Western WS. Despite this, the region still acts as a net source of TA, which aligns with the assumption that

the Eastern EFWS can contribute TA to the coastal system during the summer months, especially from anaerobic degradation

processes (Schwichtenberg et al., 2020; Thomas et al., 2009).
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Inchange observed in July 2022-the-salinity-in-the-same-region-changed-by2-3-unitsfrom-one-day-{ was likely due to local
anthropogenic influences, such as the sluice opening in summer 2022. On July 11)}te-another-Qubyr-12)where-the-salinity-was
Haduly-2022-compared
te%hepreweus—yeﬁable@)—@%he—samphng@ay—\lmy—ﬂﬂ, the sluice in Neuharlingersiel was opened just before we
started our sampling.
potentiathyinfluenced-by-theThis anthropogenic intervention likely caused sudden changes in salinity and local hydrological
conditions_(Fig. S1; Fig. 3a, b), making it reasonable to treat the July 11 measurements as anomalous. It is important to note

that the lower [TA-DIC] values in the Eastern EFWS are observed both on the day of sluice opening in July 2022 and on the

day when the sluice was closed in July 2021. This suggests that the impact of the sluice opening did not have a major impact

on the overall [TA-DIC] dynamics in the region—Hewex
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In-eontrast; These seasonal shifts in spring-(May2022)TA can influence the coastal ocean's ability to absorb carbon from the
atmosphere (Burt et al., 2016; Gruber et al., 2019; Li et al., 2024; Schwichtenberg et al., 2020). In summer, the generation of
TA and DIC may alter the region's buffering capacity, with the Western WS possibly storing or taking up carbon (Fig. 7)
(Gruber et al., 2019; Li et al., 2024). These findings align with previous studies (Thomas et al., 2009; Voynova et al., 2019)

suggesting that the intertidal regions of the EFWS act as a source of both TA and DIC to the coastal system during the summer

months.

Particularly, the tidal WS plays an important role in the biogeochemical cycling of the North Sea (Santos et al., 2015; Thomas

et al., 2009), because many European rivers empty in the WS (Thomas et al., 2009). A few studies discussed the generation in

of TA in summer before (Schwichtenberg, 2013; VVoynova et al., 2019), however in summer the riverine inflow is lowest,

which could not explain an increase of TA in the WS. The highest riverine contribution of TA is expected from January to

April (Patsch and Lenhart, 2004; Schwichtenberg, 2013). The moderate rainfall and cooler-than-average weather in October

2021 may have influenced the hydrology of the region, potentially causing increased terrestrial runoff and enhanced delivery

of alkalinity-rich water to the coastal system. The slight source of DIC in October (Table 3; Fig. 4d) suggests that organic

matter remineralization and sediment-water exchange continue to play a role during this period (Borges et al., 2017). In

addition, pore waters enriched with remineralized nutrients are actively released into the overlying water column (Beck and

Brumsack, 2012) and organic matter-enriched water masses transported from the North Sea contribute to the availability of

degradable material in the Wadden Sea, sustaining biogeochemical activity into autumn(Van Beusekom et al. 1999). This

mechanism aligns with studies highlighting the importance of tidal-driven nutrient and carbon fluxes in permeable sediments

(Postma, 1981), where advective transport processes facilitate the continuous exchange of dissolved carbon species between

sediments and the water column (Santos et al., 2015).

4.3 Nitrate Assimilation and Carbonate Dynamics in Spring

The highesthigh rates of photosynthesis;—suggested-by- were measured in our study in the spring of 2022 (May 2022). This is
evidenced by high O, levels (up to 180 % saturation), low pGOzpCOz obsi_(Table 2) and high dksseh&d—e*ygen—pH—and
chlorophyll a levels, along with negative AOU values (Fi

decrease-in-AOU-{down to - 169 pumol L- 1)—ever—theda%€Fable—2—Hg—l4}andramnereased—FFA-D+G]7, Fig. 4a) (Artioli et al.,
2012; Thomas et al., 2005). These findings highlight the dominant role of photosynthetic activity in modulating the carbonate

system, particularly in the Western EFWS, where carbon fixation via photosynthesis is a key factor in this study. The resulting

changes in [TA-DIC] during this period are reflected in the AOU to [TA-DIC] relationship shown in Figure 4a, with a steeper
negative slope of -1.416 umol kg™" per umol L' AOU, deviating from the Redfield ratio of -0.89 (Xue and Cai, 2020). This
deviation suggests that the EFWS may differ from the typical conditions assumed in the Redfield model (Redfield et al., 1963),

which is primarily based on aerobic respiration and production (Xue and Cai, 2020).
Furthermore, [TA-DIC] increased due to the substantial-drawdown-of-significant decrease in DIC in May 2022 (Fig. 6:-4b).

Together with the positive ATAp and strongly negative ADICexcess Values after removal of mixing, this supports the findings of
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intense spring primary production generating TA, while drawing down DIC (Fig.-13;-Fig—14)-Fhis-indicates-that thisregion

is-a 5). This was particularly evident in the Western EFWS, but also in the Eastern, indicating the Western EFWS is a stronger

sink for CO. due to carbon fixation and nitrate aSS|m|Iat|on{Bepge&eLa4—2095)—AdeGM}&eﬁAQuean&gnmeanﬂyek%ge

regions, and slight deviation-frem-the-photosynthesis/respirationline-(Fig—14)-increasing-increase in TA (9.1 + 29.2 umol kg’

* from March 2022 to May ZOZZbyLappwnately—g—l—-i-—Z—g—Z—&meLkg -i-the-intertidal-regions—; Fig. 4b), above the mixing

line (Fig. -3b). The relationship in Fig—2Figure 6 also
indicates that primary production is influenced by nitrate and silicate availability. Overal—the-data—confirm-that-Nitrate

concentrations decreased substantially from 65 pmol kg™ in March to 22 umol kg™ in May 2022 (Fig. 6; Fig. S4). coinciding

with the period of intense primary production. This significant drawdown in nitrate concentrations suggests that nitrate

assimilation was the primary driver of the observed decrease in DIC and the slight increase in TA during this period. Nitrate

assimilation involves the consumption of hydrogen ions (H") and the release of hydroxide ions (OH"), which leads to an

increase in pH and, consequently, in TA (Brenner et al., 2016; Wolf-Gladrow et al., 2007). Therefore, nitrate assimilation

played a crucial role in shaping the carbonate system dynamics by decreasing CO. and DIC, while increasing TA.

The regression analysis of ANOs~ and ADIC between March and May 2022 revealed a slope of 6.90 for the changes in nitrate
concentrations (Fig. 6), which is close to the Redfield ratio of 6.625 for the C:N ratio (Redfield et al., 1963). This close match

suggests nitrate assimilation during the spring bloom, which is closely linked to a reduction in DIC. Similarly, the ASiO»
regression produced a slope of 8.11 (Fig. 6), which is also close to the Redfield ratio for SiO. (7.067), further supporting the

conclusion that the enhanced primary production leads-to-a-significant-decrease-in-DIC-which-isreflected-inthe-changes-in-in

this region during the spring bloom contributed to nutrient concentrations,-as-weH-as-a-stight production-of TA(Fig—-Fig—8;
Fig—13).uptake, particularly nitrate and silicate.

We therefore propose that assimilation of NO3™ during the time of intense primary production in May 2022 could explain the
local increase of total alkalinity during the spring bloom. First, the maximum concentration of NO3™ was captured in March
before the high biologically productive season started in May 2022 (Fig. 11-154 - 7), with maximum concentrations measured
in the Western WS. A significant drawdown of NOg-in-the-intertidal-regions from the maximum value of 65 umol kg* in
March 2022 to 22 pmol kg in May 2022, resulted in an average decrease of 19.2 + 9.6 umol kg of NO3™ (Fig. 12--Fig—13)

6: Fig. S4). Brewer and Goldman (1976) also documented that nitrate assimilation increases TA (9.1 + 29.2 umol kg™?).

An uptake of NH4* was not obvious, because NH4* concentrations were much lower during this period (Fig. 2254), suggesting
only a small impact on TA patterns. ta-centrastTherefore, the limited influence of NH4" uptake further emphasizes the central
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role of nitrate assimilation in shaping the observed patterns in the carbonate system. Nitrification, the process by which NH4*

is converted into NO.", causes a decrease 6f-NOzin TA by 2 moles per mole of nitrogen (Wolf-Gladrow et al., 2007; Xue and

Cai, 2020), thus has the opposite effect compared to nitrate assimilation, which increases TA. The decrease in NOs~ from May
2022-to July 2022 was smaHerin-comparisonless pronounced (1.51= + 5.16 pmol kg™, Fig. 12)—However-generaly-the
NOg-concentration-is-tew-n-6), which is consistent with the general trend of lower NOs~ concentrations in summer, which
was-due-toli kely driven by higher turnover rates%eskamp%—kggia%me&demmﬁeat%sﬁependmp%nma{esupw

i (Kleskamp et al—1—99~1—Fabe+LePal—29$49—Due4e

Previous-work-demonstrated-that the-most5 Conclusion

The findings highlight 5|gn|f|cant rpem o s sctantutnsp 00 s seasona —nlad o oo ihonna ot nen-
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Fhis-study-highlights-the-regional and seasonal variations in the EFWS carbonate system-of-the-East-Frisian-\Wadden-Sea,

reflecting en-thebroader carbon dynamics efin coastal and shelf seas. Fhe-findingsreveal-that-both-tetal-altkalinity {TA)-and
dissolved-inorganic—carbon{(BIC)-vary-substantialy-across-differentBoth TA and DIC exhibit substantial variations across

regions and seasons, with a notable decrease in DIC from East to West and an increase in TA during biologically productive

periods, such as spring and summer. In spring 2022, a significant drawdown of NGsNOs~ was observed, correlating with a

slight increase in TA, likely due to nitrate assimilation during primary production. Fhe-generation-of FA-in-the-Western-East

NOs—during-this-period—Primary production could explain up to 88 % of the ADICexcess in the Western WS and up to 92 % in

the Eastern WS, contributing to the significant drop in DIC, slight TA production, and NOs~ drawdown during this period.

Fheresultsof-In the presentstudy-sucecessfully—applied-summer, it is likely that the parameterfremineralization of organic

matter, combined with the dissolution of CaCQs in sediments, contributes to higher TA production, especially in the coastal

and nearshore areas of the Western EFWS. On the other hand, the Eastern EFWS may experience greater CaCQOs formation,

which may reduce TA levels ([TA-DIC] te-explain-seasonal-and-regional-changesinTA-< 200 umol kg™'). However, the

region still acts as a net source of TA, in part due to the known high rates of benthic anaerobic respiration, such as organic
matter decomposition and BIG-in-the-East Frisian\Waddenassociated TA production, particularly after the high productivity

of the spring season. This TA generation may enhance the region’s capacity to absorb CO, despite the broader southern North
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Sea caused-bygenerally being considered a carbon source to the atmosphere. These findings emphasize the complexity of the
biogeochemical processes -2 ies i i

the—mpaepe#elm%ange@n—eeastaLand—sheﬁ—seaHmdr|V|nq regional and seasonal varlablllty in Fhopd-Dlccon

The-observed-regional-and-seasonal-variabihity-in-the-the EFWS carbonate system-of-the East-Frisian-\Wadden-Seareveals
complex-biogeochemical-processes-thatare, particularly those influenced by tidal cycles, riverineriver inputs, and sediment

CaCOs-disselution-Riverine inputs, particularlyespecially from the Ems River estuary, also shape-theinfluence local carbonate

chemistry;—though. However, the relatively low summerriver inflows during the summer suggest that sediment

interactionsprocesses, such as organic matter decomposition, may play a fargermore dominant role.

To fulhy-understandgain a comprehensive understanding of these intricate interactions and their implications-forimpact on
carbon storage and marine biogeochemistry in this ecologically significantimportant region, further research, including

sediment studies and continuous tidal monitoring, is essential. This study is the first to combine the analysis of [TA-DIC] with

other parameters such as AT Aexcess, ADICexcess, and ATAp to infer underlying biogeochemical processes - such as biological

productivity and nutrient availability. This innovative approach offers a new way to examine how various environmental

factors interact and influence the carbonate system. The results have the potential to refine existing models of the

biogeochemical cycle, providing valuable insights for more accurate climate predictions and improved strategies for managing

coastal systems in response to environmental change.

Code and data availability

The data supporting our findings withinin this study have been submitted by Lara Luitjens (NLWKN) to_the PANGAEA data
repository and are currently undergoing final editorial processing. A DOI for the dataset will be available upon completion of
the review process._(Luitjens et al., in review). The datasets can be accessed through the following links:
https://doi.pangaea.de/10.1594/PANGAEA.974424
https://doi.pangaea.de/10.1594/PANGAEA.974426
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