

1	New insights into the nonlinear effects of NO _x on SOA formation
2	from isoprene photo-oxidation
3	
4	
5	Xinbei Xu ¹ , Yining Gao ¹ , Si Zhang ^{1*} , Luyao Chen ¹ , Rongjie Li ¹ , Zheng Li ¹ , Rui Li ^{1,2} , Gehui
6	Wang ^{1,2} *
7	
8	
9	
10	¹ Key Laboratory of Geographic Information Science of the Ministry of Education, School
11	of Geographic Sciences, East China Normal University, Shanghai 200241, China
12 13	² Institute of Eco-Chongming, Cuiniao Road, Chenjia Zhen, Chongming, Shanghai 202150, China
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	*Correspondence to: Dr. Si Zhang, E-mail address: szhang@geo.ecnu.edu.cn
25	Prof. Gehui Wang, E-mail address: <u>ghwang@geo.ecnu.edu.cn</u>
26	
27	

28	Abstract: Atmospheric isoprene can be oxidizene SOA yield on NO_x concentrations was
29	investigated by performing a series of batch chamber experiments; both the gas and aerosol
30	phase chemical species were characterized using High-Resolution Time-of-Flight
31	Chemical Ionization Mass Spectrometer (HR-TOF-CIMS) and High-Resolution Time-of-
32	Flight Aerosol Mass Spectrometer (HR-TOF-AMS), along with an Observation-Based
33	Model (OBM) incorporated with the Master Chemical Mechanism (OBM-MCM model)
34	simulation. We found that NO _x could influence the formation of the ultralow volatility
35	organic compounds (ULVOCs, $\log_{10} C^* < -8.5$), low volatility organic compounds (LVOCs,
36	$-4.5 < log_{10}C^* < -0.5)$ and extremely low volatility organic compounds (ELVOCs, $-8.5 <$
37	$\log_{10} C^* < -4.5$) by changing the RO ₂ fate, which are the critical compounds in nucleation
38	and condensation in particle phase respectively. The SOA of isoprene photooxidation was
39	mainly from RO_2 +HO ₂ and RO_2 +NO pathways. When RO_2 +HO ₂ was the dominant RO_2
40	fate, the SOA yield increased with the fraction of $\mathrm{RO}_2+\mathrm{HO}_2$ and $\mathrm{RO}_2+\mathrm{NO}$ increasing.
41	While when NO is the major sink for RO ₂ , RO ₂ +NO would inhibit the formation low
42	volatile VOCs and affect the SOA yield. The branching ratio term (β) is used to denote the
43	competitive relationship between the two RO_2 fates (RO_2 +HO ₂ and RO_2 +NO). The loss
44	rate of RO_2 +HO ₂ pathway was maximized at a branching ratio β of 0.5
45	([NO _x]/[Isoprene]= 0.77), when more low volatiles were produced and the SOA yield
46	reached maximum. The branching rate term (β) can be used as a reference for field
47	campaign and modeling.
48	Key words: Isoprene; NO _x dependence; SOA yield; HOMs; RO ₂ fate.
49	
50	

52 1. Introduction

53	Secondary organic aerosol (SOA) is largely formed from photochemical oxidation of
54	anthropogenic and biogenic volatile organic compounds (VOCs), which is a major
55	component of tropospheric fine particles and significantly affect air quality, human health,
56	and climate change (Zhang et al., 2015; Wang et al., 2014; Fan et al., 2008; Pope Iii et al.,
57	2002). With an annual global emission of around 500 Tg yr ⁻¹ , isoprene is the most
58	prevalent non-methane hydrocarbon (NMHC) released into the atmosphere (Guenther et
59	al., 2006). As a five-carbon conjugated diene, isoprene reacts rapidly with OH and NO3
60	radicals and O ₃ in the atmosphere to form SOA (Wennberg et al., 2018; Kamens et al.,
61	1982; T. A. Biesenthal, 1998; Nguyen et al., 2010).
62	NO_x plays an important role in the photooxidation of isoprene in the atmosphere. NO_x
63	can alter the sinks of peroxy radicals (RO_2) produced from the oxidation of isoprene by
64	oxidants and addition of O2, thus affecting the composition of reaction products such as
65	oligomers and organic nitrates in nucleation and particles growth processes (Surratt et al.,
66	2006). By affecting the branching ratios of the main RO_2 reactions (RO_2 +HO ₂ and
67	RO ₂ +NO), NO _x determines the reaction products and final SOA generation of isoprene
68	photooxidation. The RO ₂ +HO ₂ pathway produces organic hydroperoxide species, which is
69	of lower volatility. In contrast, the RO2+NO pathway generates RO radicals that are
70	fragmented into more volatile products, with a small portion of RO2 reacting with NO2 to
71	form relatively lower volatile organic nitrates (Kroll et al., 2006; Wennberg et al., 2018).
72	Changes on NO _x levels can influence the formation of the main oxidants OH, O ₃ and NO ₃
73	and thus affect the oxidation process of isoprene (Mayhew et al., 2023). Up to now,
74	researches on isoprene photochemical reaction in the presence of NO_x have focused on the
75	gas- and particle-phase products and chemical mechanism, but few studies have
76	simultaneously and quantitatively investigated the nonlinear effects of NO_x on the
77	isoprene-SOA yield and the fate of RO2 radicals (Kroll et al., 2005, 2006; Xu et al., 2014;
78	D'ambro et al., 2017; Surratt et al., 2006).
79	Kroll et al. (2006) and Xu et al. (2014) explored the nonlinear effect of NO_x level on
80	isoprene-SOA mass yield, finding that the SOA yield increased first and then decreased
81	with an increasing NO_x levels. Kroll et al. (2006) reported that the high concentration NO

82	could suppress the formation of SOA by inhibiting hydroperoxide formation and the SOA
83	is mainly from the oxidation of methacrolein formed from the reaction of RO radicals
84	under high-NO _x conditions. Xu et al. (2014) found that the hydroxyhydroperoxides and
85	dihydroxyepoxides oxidation was the most important pathway of isoprene-SOA formation
86	at low NO_x concentrations, and an increasing NO level could promote the SOA formation
87	by enhancing methacrolein reaction pathway. Besides RO2 chemistry, the nonlinear
88	influence of NO_x on SOA yield can also be affected by the changes of oxidant
89	concentrations. In the above studies, the additional addition of OH precursors into the
90	reaction system made the OH become the dominant oxidant throughout the reaction due to
91	the continual formation of OH from its precursor photolysis, yet the roles of O_3 and NO_3
92	were ignored (Kroll et al., 2006; Xu et al., 2014). However, isoprene tends to be
93	synergistically oxidized by multiple oxidants in the real atmosphere (Geyer et al., 2003;
94	Mondal et al., 2021). The ignorance of the synergistic oxidation may bring deviations to
95	the understanding of the photooxidation process of isoprene in the atmosphere especially in
96	urban regions.
97	In this study, we systematically investigated the SOA formation by photo-oxidation of
98	isoprene in different $[NO_x]/[Isoprene]$ environments, and identified the key factors
99	affecting the SOA yield by analyzing the competition effects between various oxidation
100	pathways. We first explored the direct effect of NO_x on the physical properties of isoprene
101	SOA, then investigated the mechanisms of NO_x on the formation of SOA precursors,
102	finally recognized the changes in RO ₂ fate under different NO _x levels conditions.
103	2 Experiment Section
104	2.1 Chamber experiments and online monitoring
105	A home-made 5 m ³ Teflon PFA environmental chamber was used in this study, which is
106	equipped with 365 nm black light bulbs (40 W, F40BLB, GE, USA)(Liu et al., 2021). The
107	chamber was cleaned with dry zero air for at least 12 h prior to each experiment. During
108	the experiments, about 1 ppm of isoprene and different levels NO_x were added into the

- 109 chamber before the lights were turned on. The detailed experimental conditions were listed
- 110 in Table 1. All experiments were carried out under dry (<15% RH) conditions.
- 111 Concentration and size distribution of particles in the chamber throughout the experiments

(1)

- 112 were detected utilizing a scanning mobility particle sizer (SMPS, 3082, TSI, USA).
- 113 Chemical composition of aerosols in the chamber was monitored by an online High-
- 114 Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne Research
- 115 Inc., USA). The variations in the concentrations of isoprene and gas-phase organic
- 116 products were monitored using a proton transfer reaction Time-of-Flight Mass
- 117 Spectrometry (PTR-TOF-MS, Ionicon Analytik, Innsbruck, Austria). Nitrogen oxides and
- 118 ozone were monitored using a NO-NO₂-NO_x analyzer (model 42i, Thermo scientific, USA)
- and a O₃ analyzer (model 49i, Thermo scientific, USA), respectively. The gas-phase low
- 120 volatile organic compounds in the chamber were also measured by using nitrate ion time of
- 121 flight chemical ionization mass spectrometer (NO₃⁻-ToF-CIMS).

122 2.2 Wall loss correction and SOA yield calculation

- Wall loss has been confirmed to be one of the major factors affecting the accuracy of determining the SOA yield (Zhang et al., 2014). The aerosol mass concentrations were corrected according to Pathak et al. (2007) and Zhang et al. (2024). As the gas-phase VOC wall loss coefficients we calculated was very low, the gas-phase wall losses were neglected in this study. The calculation method for vapor wall loss corrections is detailed in Section S1. Calculating the SOA yield according to the following formula:
 - $Y = \frac{\Delta M_0}{\Delta HC}$

where *Y* is the SOA yield, ΔM_0 is the maximum concentration of organic aerosols in the chamber (µg m⁻³), and ΔHC is the concentration of reacted isoprene (µg m⁻³).

132 **2.3 OBM-MCM model**

129

We use an observation-based model (OBM) incorporated with the Master Chemical Mechanism (MCM) to further investigate the changes in the levels of OH, HO₂ and loss rates of main RO₂ radicals in isoprene photo-oxidation under different NO_x conditions. In this work, the RO₂ self- and cross- reaction chemistry (Wennberg et al., 2018) were added into the latest version 3.3.1 of MCM (MCM v3.3.1; available at <u>https://mcm.york.ac.uk/MCM</u>) to improve the simulation.

- 139 3. Results and Discussion
- 140 **3.1 NO_x dependence on isoprene SOA**

141 Figure 1 shows the time series of NO_x, isoprene, the oxidants O₃ and OH radicals, the main gas organic products methacrolein + methyl vinyl ketone (MACR+MVK, C4H6O), and 142 SOA mass concentration in the whole reaction process under 936 ppb isoprene and 712 ppb 143 144 NO_x condition (Table 1). During the experiment, concentrations of O_3 and OH radicals increased rapidly after the black lights were turned on, which were produced form the 145 reactions of O₂ and H₂O with the oxygen atom formed from the photolysis of NO₂, 146 respectively (Eq. (1-5)) (Seinfeld and Pandis, 2006). Rapid increases in MACR and MVK 147 levels were observed as isoprene was oxidized, which are the first generation of oxidation 148 products in the oxidation process of isoprene by OH radicals and O_3 (Kroll et al., 2006; 149 Nguyen et al., 2016; Galloway et al., 2011). Meantime, a series of complex RO₂ chemistry 150 occurred and produced abundant low volatile organic compounds, such as organic 151 hydroperoxides, organic nitrate and highly oxygenated organic molecules (HOMs) formed 152 from the RO₂+HO₂, RO₂+NO and RO₂ autoxidation, respectively, which undergo nucleation 153 154 and condensation on particles to generate SOA (Jiang et al., 2017). In the chamber, 80 µg m⁻ 155 ³ SOA was formed (Figure 1) and the corrected SOA yield was 3.0% (Table 1) under 712 156 ppb NO_{*x*} condition.

$$NO_2 + hv \rightarrow NO + O(^{3}P) \tag{1}$$

$$O(^{3}P)+O_{2} \rightarrow O_{3}$$
⁽²⁾

$$O_3 + hv \rightarrow O(^1D) + O_2 \tag{3}$$

$$O(^{1}D)+H_{2}O \rightarrow 2OH$$
(4)

$$O(^{1}D) \rightarrow O(^{3}P) \tag{5}$$

157 The effect of NO_x on SOA yield was explored and the results are shown in Table 1 and 158 Figure 2a. Obviously, SOA yield showed a trend of first increasing and then decreasing along with an increasing NO_x level, which is consistent with the results reported by Kroll et al. 159 (2006) and Xu et al. (2014). The turning point of SOA yield was at 712 ppb NO_x . Such a 160 dependence of SOA yield on the NOx levels likely resulted from the difference of gas-phase 161 peroxy radicals (RO₂) chemistry and succeeding particle-phase oligomerization reactions 162 under different NO_x conditions (Xu et al., 2014). Such a SOA yield turning point can also be 163 reflected by the changes of physical properties of the particles in the chamber, such as 164 particle surface area, diameter and number concentration. As shown in Figure 2b and c, both 165

166 the number concentrations and particle size increased along with an increasing NO_x level. However, when the NO_x further increased to a level lager than 712 ppb, both started to 167 quickly decrease. The particle diameter and number concentration at 712 ppb NO_x were 1.5 168 and 1.3 times larger than those at 1500 ppb NO_x , respectively (Figure 2b), indicating an 169 enhanced new particle formation and subsequent particle growth at 712 ppb NO_x level due 170 to much more low volatile products formed. Meanwhile, the bigger particle surface area at 171 712 ppb NO_x was more favorable for the growth of SOA by condensation than at 1500 ppb 172 NO_x condition. As shown in Figure 2c, the SOA formed under higher NO_x level conditions 173 showed higher OSc. The results were consistent with Li et al. (2022) and Xu et al. (2014), 174 whom found that the O:C ratio increased as $[NO_x]/[VOC]$ increased. OSc of SOA hinges on 175 the SOA composition, which can be attributed to more highly oxygenated products produced 176 177 from RO₂ chemistry in the gas phase. These results indicate that the SOA formation pathway 178 may be different under the various NO_x levels in the chamber.

179 **3.2** The effects of NO_x levels on SOA precursors

180 Low-volatile organic products formed from the gas-phase multiple autoxidation and/or 181 bimolecular reactions of RO₂ have been verified to be the pivotal SOA precursors both in 182 nucleation itself and particle growth (Li et al., 2024; Nie et al., 2023). To explore the effect of RO₂ fate on the isoprene-SOA, low volatile organic products in the chamber under 183 different NO_x levels were analyzed by ToF-CIMS equipped with a nitrate ion source. Figure 184 3 shows the mass spectra of the gas products in the chamber under 712 ppb and 2060 ppb 185 NO_x levels. The product signal intensity was normalized by the sum of ion source signals 186 $(I_{NO3}-H_{HNO3NO3}-H_{HNO3HNO3NO3})$. As shown in Figure 3, monomers $C_5H_{8-11}N_{2,3}O_{8-11}$, dimers 187 188 including C₆H₁₀N₂O₁₄, C₁₀H₁₇N₃O_{14,16}, and larger oligomers including C₁₂H₂₀NO₁₇, $C_{15}H_{20}N_2O_{14}$ and $C_{15}H_{17}N_2O_{17}$ are the most significant signals at different m/z range 189 observed by the CIMS. These low volatile organic products was mainly produced from 190 191 different RO₂ chemistry (Zhao et al., 2021; Chen et al., 2022).

Figure S1 illustrates the simplified formation mechanism of four monomers in this system. $C_5H_8N_2O_8$ is formed form the H shift and unimolecular autoxidation of the $C_5H_8NO_5$ -RO₂. The primary RO₂ radicals $C_5H_9O_3$ could react with NO to produce $C_5H_9NO_4$, which can react with OH radicals and NO sequentially to form $C_5H_{10}N_2O_8$. $C_5H_9O_3$ could also react

- with nitrate radicals, NO or HO₂ radicals sequentially to form $C_3H_9N_3O_{10}$ or $C_5H_{10}N_2O_9$. The polymers mainly produced from the RO₂ multiple bimolecular reactions, in which the HOMs accretion products (HOMs-ACCs) generated by RO₂ self- and cross-reactions have an important influence on the generation of new particles (Kulmala et al., 2013; Berndt et al., 2018).
- Figures 4a and b show the time series of these products during the reaction. Because the 201 rate coefficients of OH-oxidation were higher than NO₃-oxidation and unimolecular 202 autoxidation, the formation of $C_5H_{10}N_2O_8$ was faster than other products and displayed 203 higher concentration (Wennberg et al., 2018). When the reaction went on for 30 min, particle 204 205 formation and diameter growth were observed by SMPS (Figure 4c). At the same time, the signals of lower m/z gaseous products rapidly decreased (Figure 4a), but signals of the higher 206 207 m/z products increased first and then decreased, indicating that the roles of these compounds 208 on SOA formation were different. The latter may be related to the nucleation and generation 209 of new particles, while the former may contribute to the particle growth by condensing on the new particles. Such a conclusion can be confirmed by the volatility of VOCs that 210 determines their effectiveness on SOA formation. The saturation vapor pressure (C*) of these 211 212 VOCs were calculated (calculation method shown in Text S2) and the results were displayed in Table S1. Based on the log C* values, we found that the HOMs-ACCs are ultralow 213 volatility organic compounds(ULVOCs, $\log_{10} C^* < -8.5$), which are the critical compounds 214 in nucleation, and others are low volatility organic compounds (LVOCs, $-4.5 < \log_{10} C^* < 100$ 215 -0.5) and extremely low volatility organic compounds (ELVOCs, $-8.5 < \log_{10} C^* < -4.5$). 216 As the HOMs-ACCs increased, nucleation occurred and new particles were formed. After 217 218 isoprene were depleted, the increasing of HOMs-ACCs levels ceased and started to reduce, while LVOCs, ELVOCs started to condense on the surface of the new particles, resulting in 219 the increases in particle diameter. The continuous increase of particle diameters after 90 min 220 221 was mainly due to the condensation of LVOCs and ELVOCs on particles and collision between particles (Tu and Johnston, 2017). 222
- When 2060 ppb of NO_x was injected into the system, as shown in Figures 3 a and b, the signals of most of products are lower obviously than those at 712 ppb NO_x, especially for HOM-ACCs (Figure 3b). Such a similar inhibition of excess NO_x on HOMs formation was

226

227	intercepted the autoxidation of the acylperoxy radicals and inhibited gas-phase highly
228	oxidized dimer products in their cyclohexene ozonolysis experiments. Nie et al. (2023)
229	reported that when the reaction of RO_2 with NO became the main sink for RO_2 , HOMs
230	production was inhibited in their experiments. These results indicated that the addition of
231	excess NO_x into the chamber could interfere with the formation of E/ULVOC from isoprene-
232	RO_2 autoxidation/bimolecular reaction, thereby terminating the subsequent reaction pathway.
233	3.3 Relative changes in oxidation pathway
234	3.3.1 The influence of oxidants on SOA yield
235	Figure S2 shows the variations in the concentrations of OH and O_3 under different NO_x
236	levels. By calculating the reaction rate constants of isoprene with OH and $O_3(1.0\!\times\!10^{\text{-10}}$
237	and 1.3×10^{-17} cm ³ molecules ⁻¹ s ⁻¹ , respectively) (Ziemann and Atkinson, 2012) and their
238	concentrations, we found that the reaction rate of isoprene with O ₃ was one order of
239	magnitude lower than its reaction with OH. Thus, the OH radicals were much more
240	important than O_3 in the oxidation of isoprene in this study. The concentrations of OH
241	appeared a nonlinear variation trend with the increasing NO_x , similar to the SOA yield.
242	Increasing NO _x can promote the formation of OH radicals via Eq.(1-5) under 365 nm
243	irradiation conditions. However, as shown in Eq.(6), excessively high NO_x consumes OH
244	can also inhibit OH regeneration (Sarrafzadeh et al., 2016). Thus, the variation of OH may
245	be one important reason resulting in the nonlinear effects of NO_x levels on SOA yield .
	$NO_2+OH \rightarrow HNO_3$ (6)
246	Generally, the role of NO3 radicals on SOA formation is ignored, because NO3 can be
247	photolyzed under irradiation (Stark et al., 2007). However, as mentioned in section 3.2,
248	NO_3 radicals formed from the reaction of NO_x and O_3 could also contribute to the
249	production of HOMs and SOA due to high concentration NO_2 in this study. Hence the role
250	of NO ₃ in SOA formation under different NO _x levels was analyzed in this work. Figure S3
251	shows the NO ₃ concentrations during different NO _x levels, which reached up to 0.46 ppb
252	$(1.13 \times 10^{10} \text{ molecules cm}^{-3})$, rendering the reaction rates of isoprene with NO ₃ similar to
253	that with OH radicals and further suggesting the importance of NO3 in the oxidation of
254	isoprene. The NO ₃ formation was enhanced by the increasing NO _x . However, it was

also observed by Rissanen et al. (2018), who found that the addition of excess NO_2

- suppressed by the decreasing NO_3 under very high NO_x concentrations due to the decrease
- 256 of O₃ levels. Figure S3b shows that the NO₃ concentrations and SOA yield were strongly
- 257 linearly positively correlated, indicating that the effective contribution of NO₃ on SOA
- 258 formation.

259 3.3.2 The influence of RO₂ fate on SOA yield

Different RO₂ fate could be another reason lead to the nonlinear dependence of SOA 260 yield on NO_x levels. To further investigate the difference of RO₂ fate under various NO_x 261 levels, we compute the loss rate of all RO₂ in the complex multigenerational oxidation of 262 isoprene by OH, O₃ and NO₃ at different NO_x levels using OBM-MCM, and then group 263 their reactions into RO₂+NO, RO₂+HO₂ and RO₂+RO₂ (Figure 5a). The concentrations of 264 NO and HO₂ were shown in Figure 5(b). In the presence of NO_x, RO₂+NO and RO₂+HO₂ 265 are the main reactions of RO₂. When the concentration of NO_x < 577 ppb, RO₂+HO₂ was 266 267 the main RO₂ fate. The concentrations of HO₂ and NO increased along with the increase of 268 NO_x concentrations, leading to an increase in the proportion of RO_2 +HO₂ and RO_2 +NO. The low volatility hydroperoxides were the main products of $RO_2 + HO_2$, which can 269 270 contribute to new particle and SOA formation (Sarrafzadeh et al., 2016; Wennberg et al., 271 2018; Wang et al., 2023). In addition, when RO_2 +NO is not a major sink for RO_2 , the enhancement of RO₂+NO could promote the autoxidation of p-HOMs-RO₂ (n_o<7) that can 272 undergo autoxidation to produce HOMs by reacting with non-HOMs-RO2 that cannot 273 autoxidize (Li et al., 2022). HOMs are low volatility and can condense on particle phase to 274 form SOA. Therefore, the SOA yield increased with the increasing NO_x concentrations. 275 The more HOMs formed, the higher oxidation state of SOA. However, when $NO_x > 577$ 276 277 ppb, the concentrations of HO₂ decreased due to being consumed by abundant NO, which caused the decreases of the fraction of $RO_2 + HO_2$ and the hydroperoxides concentrations. 278 On the contrary, with the elevation of NO, the fraction of RO₂+NO increased. When NO 279 280 was a major sink for p-HOMs-RO₂, the reaction can generate RO radicals and volatile products but inhibit the autoxidation reaction of p-HOMs-RO2. Previous studies reported 281 282 that RO autoxidation also was also an important pathway in HOMs formation (Nie et al., 2023). Therefore, the effect of NO on HOMs formation was nonlinear and complicated. 283 While the influence of NO_2 on HOMs formation was specific, which can abort the chain 284

reaction of acyl RO₂ (Rissanen, 2018).

The yield turning point for SOA is considered to be the result of competition between the NO and HO₂ reaction pathways, which can be represented by the branching ratio term (β) to denote the competitive relationship between the two RO₂ fates. The β parameter can be calculated using Eq.(7)

290
$$\beta = \frac{k_{RO_2 + NO}[NO]}{k_{RO_2 + HO_2}[HO_2] + k_{RO_2 + NO}[NO]}$$
(7)

where k_{RO_2+NO} (8.8×10⁻¹² cm³ molec⁻¹ s⁻¹) and $k_{RO_2+HO_2}$ (17.4×10⁻¹² cm³ molec⁻¹ s⁻¹) are the reaction constants of RO₂ with NO and HO₂ (Peng et al., 2022); [HO₂] and [NO] are the gas-phase of concentrations of HO₂ and NO, respectively.

In this study, β presented the same nonlinear dependence with SOA yield (Figure 6). At 294 β of 0.5, the SOA yield was the maximum when the reaction rates of RO₂+HO₂ and RO₂+NO 295 were equal and the $[NO]/[HO_2]$ ratio was 2. It could be assumed that the turning point of 296 SOA yield from isoprene photooxidation may be controlled by [NO]/[HO2] ratio. The 297 298 inference was consistent with Kroll et al. (2006). When the $[NO]/[HO_2] < 2$, the RO₂+HO₂ was the dominant fate and the low volatility hydroperoxides were formed; while the 299 RO_2 +NO would compete with RO_2 +HO₂ and inhibit the formation of the low volatility 300 hydroperoxides when [NO]/[HO2]> 2. Compared with previous work, the [NOx]/[VOCs] 301 302 ratios corresponding to the yield turning point with or without OH radical precursors in the 303 reaction systems were about 3 and 0.77 (in this work) respectively (Table 2). Higher OH 304 concentration would lead to higher HO₂ and increased the corresponding $[NO_x]/[Isoprene]$ ratio of the turning point. 305

306 4. Conclusion

In this study, isoprene photo-oxidation experiments with different concentrations of NO_x were carried out and a nonlinear dependence of SOA mass yield on NO_x concentrations was found. In the presence of NO_x, abundant low volatile gaseous organic products can be formed from the gas-phase multiple autoxidation and/or bimolecular reactions of RO₂. ULVOC are the critical compounds in nucleation, and LVOC and ELVOC can condense on the surface of particles readily resulting in increasing in particle diameter. Excess NO_x can

313 interfere with the formation of E/ULVOC from isoprene-RO₂ autoxidation/bimolecular

reaction, thereby suppressed the SOA formation.

The nonlinear dependence of SOA yield is mainly the result of nonlinear variations of 315 oxidants concentrations and competition between RO₂ reaction pathways. Both OH and NO₃ 316 can contribute the SOA formation effectively in the reaction due to the high NO₂ levels. The 317 OBM-MCM model results showed that RO₂+HO₂ and RO₂+NO are the main RO₂ pathways. 318 When RO_2+HO_2 was the dominant RO_2 sink, the enhancement of RO_2+HO_2 and RO_2+NO 319 pathways along with an increasing NO_x level would promote the generation of low volatility 320 gaseous products, thus promoting the generation and growth of new particles. But, with the 321 further increase of NOx, the RO2+NO became the main RO2 pathway, which not only 322 inhibited RO₂ autoxidation reactions, but also inhibited the RO₂+HO₂ pathway, thus 323 affecting nucleation and condensation of low volatility gaseous products. We found that 324 when the proportion of these two pathways is equal, the SOA yield is the highest. These 325 326 results are important for further understanding of isoprene oxidation in the atmosphere.

Author contributions. GW designed the whole work. XX, SZ and GW performed the data interpretation and wrote the paper. All authors contributed to the paper with useful scientific discussions or comments.

330 Competing interests. The authors declared that they have no conflict of interest.

331 Acknowledgements. This work was funded by the National Natural Science Foundation of

- 332 China (No. U23A2030, 42130704 and 42407137), the National Key Research and
- 333 Development Program of China (2023YFC3707401).

334 Reference

Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion Product
Formation from Ozonolysis and OH Radical Reaction of alpha-Pinene: Mechanistic Insight and the Influence
of Isoprene and Ethylene, Environ. Sci. Technol., 52, 11069-11077, https://doi.org/10.1021/acs.est.8b02210,
2018.
Chan, A. W. H., Chan, M. N., Surratt, J. D., Chhabra, P. S., Loza, C. L., Crounse, J. D., Yee, L. D., Flagan, R.

340 C., Wennberg, P. O., and Seinfeld, J. H.: Role of aldehyde chemistry and NOx concentrations in secondary

organic aerosol formation, Atmos. Chem. and Phys., 10, 7169-7188, https://doi.org/10.5194/acp-10-7169-2010,
 2010.

- 343 Chen, Y., Tan, Y., Zheng, P., Wang, Z., Zou, Z., Ho, K. F., Lee, S., and Wang, T.: Effect of NO2 on nocturnal
- 344 chemistry of isoprene: Gaseous oxygenated products and secondary organic aerosol formation, Sci. Total.
- 345 Environ., 842, 156908, https://doi.org/10.1016/j.scitotenv.2022.156908, 2022.
- D'Ambro, E. L., Lee, B. H., Liu, J., Shilling, J. E., Gaston, C. J., Lopez-Hilfiker, F. D., Schobesberger, S., 346
- 347 Zaveri, R. A., Mohr, C., Lutz, A., Zhang, Z., Gold, A., Surratt, J. D., Rivera-Rios, J. C., Keutsch, F. N., and
- 348 Thornton, J. A.: Molecular composition and volatility of isoprene photochemical oxidation secondary organic
- aerosol under low- and high-NOx conditions, Atmos. Chem. Phys., 17, 159-174, https://doi.org/10.5194/acp-349 17-159-2017, 2017. 350
- 351 Fan, J., Zhang, R., Tao, W.-K., and Mohr, K. I.: Effects of aerosol optical properties on deep convective clouds
- 352 and radiative forcing, J. Geophys. Res.: Atmos., 113, D08209, https://doi.org/10.1029/2007JD009257, 2008.
- 353 Galloway, M. M., Huisman, A. J., Yee, L. D., Chan, A. W. H., Loza, C. L., Seinfeld, J. H., and Keutsch, F. N.:
- 354 Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl 355 vinyl ketone, and methacrolein under high-NO_x conditions, Atmos. Chem. Phys., 11, 10779-10790,
- 356 https://doi.org/10.5194/acp-11-10779-2011, 2011.
- Geyer, A., Alicke, B., Ackermann, R., Martinez, M., Harder, H., Brune, W., di Carlo, P., Williams, E., Jobson, 357
- 358 T., Hall, S., Shetter, R., and Stutz, J.: Direct observations of daytime NO₃: Implications for urban boundary
- 359 layer chemistry, J. Geophys. Res.: Atmos., 108(D12), 4368, https://doi.org/10.1029/2002JD002967, 2003.
- 360 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial
- 361 isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. 362
- Phys., 6, 3181-3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
- 363 Jiang, H., Jang, M., and Yu, Z.: Dithiothreitol activity by particulate oxidizers of SOA produced from 364 photooxidation of hydrocarbons under varied NOx levels, Atmos. Chem. Phys., 17, 9965-9977, 365 https://doi.org/10.5194/acp-17-9965-2017, 2017.
- 366 Kamens, R. M., Gery, M. W., Jeffries, H. E., Jackson, M., and Cole, E. I.: Ozone-isoprene reactions: Product formation and aerosol potential, Int. J. Chem. Kinet., 14, 955-975, https://doi.org/10.1002/kin.550140902, 367 368 1982.
- 369 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation
- 370 from isoprene photooxidation under high-NOx conditions, Geophys. Res. Lett., 32, L18808, 371 https://doi.org/10.1029/2005gl023637, 2005.
- 372 Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary Organic Aerosol Formation
- 373 from Isoprene Photooxidation, Environ. Sci. Technol., 40, 1869-1877, https://doi.org/10.1021/es0524301, 374 2006.
- 375 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T., Sipilä, M.,
- 376 Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M., Kangasluoma, J., Hakala, J.,
- 377 Aalto, P. P., Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T.,
- 378 Mauldin, R. L., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M. V.,
- 379 Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A., Kerminen, V.-M., and Worsnop, D. R.:
- 380 Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943-946, https:// 381 doi.org/10.1126/science.1227385, 2013.
- 382 Li, D., Huang, W., Wang, D., Wang, M., Thornton, J. A., Caudillo, L., Rörup, B., Marten, R., Scholz, W.,
- 383 Finkenzeller, H., Marie, G., Baltensperger, U., Bell, D. M., Brasseur, Z., Curtius, J., Dada, L., Duplissy, J.,
- 384 Gong, X., Hansel, A., He, X.-C., Hofbauer, V., Junninen, H., Krechmer, J. E., Kürten, A., Lamkaddam, H.,
- 385 Lehtipalo, K., Lopez, B., Ma, Y., Mahfouz, N. G. A., Manninen, H. E., Mentler, B., Perrier, S., Petäjä, T., Pfeifer,
- 386 J., Philippov, M., Schervish, M., Schobesberger, S., Shen, J., Surdu, M., Tomaz, S., Volkamer, R., Wang, X.,

- 387 Weber, S. K., Welti, A., Worsnop, D. R., Wu, Y., Yan, C., Zauner-Wieczorek, M., Kulmala, M., Kirkby, J.,
- 388 Donahue, N. M., George, C., El-Haddad, I., Bianchi, F., and Riva, M.: Nitrate Radicals Suppress Biogenic New
- 389 Particle Formation from Monoterpene Oxidation, Environ. Sci. Technol.,
- 390 https://doi.org/10.1021/acs.est.3c07958, 2024.
- Li, Q., Jiang, J., Afreh, I. K., Barsanti, K. C., and Cocker Iii, D. R.: Secondary organic aerosol formation from
 camphene oxidation: measurements and modeling, Atmos. Chem. Phys., 22, 3131-3147,
- 393 https://doi.org/10.5194/acp-22-3131-2022, 2022.
- Liu, S., Huang, D., Wang, Y., Zhang, S., Liu, X., Wu, C., Du, W., and Wang, G.: Synergetic effects of NH₃ and
- 395 NOx on the production and optical absorption of secondary organic aerosol formation from toluene
- 396 photooxidation, Atmos. Chem. Phys., 21, 17759-17773, https://doi.org/10.5194/acp-21-17759-2021, 2021.
- 397 Mayhew, A. W., Edwards, P. M., and Hamilton, J. F.: Daytime isoprene nitrates under changing NO_x and O₃,
- 398 Atmos. Chem. Phys., 23, 8473-8485, https://doi.org/10.5194/acp-23-8473-2023, 2023.
- 399 Mondal, K., Biswas, S., Chattopadhyay, A., Chatterjee, P., and Chakraborty, T.: Gas-Phase Oxidation of NO2
- to HNO₃ by Phenol: Atmospheric Implications, ACS Earth and Space Chemistry, 5, 2131-2141,
 https://doi.org/10.1021/acsearthspacechem.1c00167, 2021.
- 402 Nguyen, T. B., Bateman, A. P., Bones, D. L., Nizkorodov, S. A., Laskin, J., and Laskin, A.: High-resolution
- mass spectrometry analysis of secondary organic aerosol generated by ozonolysis of isoprene, Atmos. Environ.,
 44, 1032-1042, <u>https://doi.org/10.1016/j.atmosenv.2009.12.019</u>, 2010.
- 405 Nguyen, T. B., Tyndall, G. S., Crounse, J. D., Teng, A. P., Bates, K. H., Schwantes, R. H., Coggon, M. M.,
- 406 Zhang, L., Feiner, P., Milller, D. O., Skog, K. M., Rivera-Rios, J. C., Dorris, M., Olson, K. F., Koss, A., Wild,
- 407 R. J., Brown, S. S., Goldstein, A. H., de Gouw, J. A., Brune, W. H., Keutsch, F. N., Seinfeld, J. H., and Wennberg,
- 408 P. O.: Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene, Phys. Chem. Chem. Phys., 18,
- 409 10241-10254, https://doi.org/10.1039/c6cp00053c, 2016.
- 410 Nie, W., Yan, C., Yang, L., Roldin, P., Liu, Y., Vogel, A. L., Molteni, U., Stolzenburg, D., Finkenzeller, H.,
- 411 Amorim, A., Bianchi, F., Curtius, J., Dada, L., Draper, D. C., Duplissy, J., Hansel, A., He, X. C., Hofbauer, V.,
- 412 Jokinen, T., Kim, C., Lehtipalo, K., Nichman, L., Mauldin, R. L., Makhmutov, V., Mentler, B., Mizelli-Ojdanic,
- 413 A., Petaja, T., Quelever, L. L. J., Schallhart, S., Simon, M., Tauber, C., Tome, A., Volkamer, R., Wagner, A. C.,
- 414 Wagner, R., Wang, M., Ye, P., Li, H., Huang, W., Qi, X., Lou, S., Liu, T., Chi, X., Dommen, J., Baltensperger,
- 415 U., El Haddad, I., Kirkby, J., Worsnop, D., Kulmala, M., Donahue, N. M., Ehn, M., and Ding, A.: NO at low
- 416 concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere, Nat.
- 417 Commun., 14, 3347, https://doi.org/10.1038/s41467-023-39066-4, 2023.
- 418 Pathak, R. K., Stanier, C. O., Donahue, N. M., and Pandis, S. N.: Ozonolysis of α-pinene at atmospherically
- 419 relevant concentrations: Temperature dependence of aerosol mass fractions (yields), J. Geophys. Res.: Atmos.,
- 420 112, D03201, https://doi.org/10.1029/2006jd007436, 2007.
- Peng, W., Le, C., Porter, W. C., and Cocker, D. R., 3rd: Variability in Aromatic Aerosol Yields under Very Low
 NO_x Conditions at Different HO₂/RO₂ Regimes, Environ. Sci. Technol., 56, 750-760,
- 423 https://doi.org/10.1021/acs.est.1c04392, 2022.
- 424 Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung Cancer,
- 425 Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, JAMA., 287, 1132-
- 426 1141, https://doi.org/10.1001/jama.287.9.1132, 2002.
- 427 Rissanen, M. P.: NO₂ Suppression of Autoxidation-Inhibition of Gas-Phase Highly Oxidized Dimer Product
- Formation, ACS Earth Space Chem., 2, 1211-1219, 10.1021/acsearthspacechem.8b00123, 2018.
- 429 Sarrafzadeh, M., Wildt, J., Pullinen, I., Springer, M., Kleist, E., Tillmann, R., Schmitt, S. H., Wu, C., Mentel,
- 430 T. F., Zhao, D., Hastie, D. R., and Kiendler-Scharr, A.: Impact of NOx and OH on secondary organic aerosol

- $431 \qquad formation \ from \ \alpha-pinene \ photooxidation, \ Atmos. \ Chem. \ Phys., \ 16, \ 11237-11248, \ https://doi.org/10.5194/acp-10.5194$
- 432 16-11237-2016, 2016.
- 433 Seinfeld, J. H. and Pandis, S. N.: ATMOSPHERIC CHEMISTRY AND PHYSICS: from air pollution to climate
- 434 change, John Wliey & Sons 2006.
- 435 Stark, H., Lerner, B. M., Schmitt, R., Jakoubek, R., Williams, E. J., Ryerson, T. B., Sueper, D. T., Parrish, D.
- 436 D., and Fehsenfeld, F. C.: Atmospheric in situ measurement of nitrate radical (NO₃) and other photolysis rates
- 437 using spectroradiometry and filter radiometry, J. Geophys. Res.: Atmos., 112, D10SO4.
- 438 https://doi.org/10.1029/2006jd007578, 2007.
- 439 Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R.,
- Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Chemical Composition of
 Secondary Organic Aerosol Formed from the Photooxidation of Isoprene, J. Phys. Chem. A, 110, 9665-9690,
- 442 https://doi.org/10.1021/jp061734m, 2006.
- T. A. Biesenthal, J. W. B., P. B. Shepson, S.-M. Li, P. C. Brickell: The chemistry of biogenic hydrocarbons
 at a rural site in eastern Canada, J. Geophys. Res.: Atmos., 103, 25487-25498,
 <u>https://doi.org/10.1029/98JD01848</u>, 1998.
- 446 Tu, P. and Johnston, M. V.: Particle size dependence of biogenic secondary organic aerosol molecular
- 447 composition, Atmos. Chem. Phys., 17, 7593-7603, https://doi.org/10.5194/acp-17-7593-2017, 2017.
- Wang, S., Zhao, Y., Chan, A. W. H., Yao, M., Chen, Z., and Abbatt, J. P. D.: Organic Peroxides in Aerosol: Key
 Reactive Intermediates for Multiphase Processes in the Atmosphere, Chem. Rev., 123, 1635-1679,
- 450 https://doi.org/10.1021/acs.chemrev.2c00430, 2023.
- 451 Wang, Y., Wang, M., Zhang, R., Ghan, S. J., Lin, Y., Hu, J., Pan, B., Levy, M., Jiang, J. H., and Molina, M. J.:
- 452 Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model,
- 453 Proc. Natl. Acad. Sci. U.S.A., 111, 6894-6899, https://doi.org/10.1073/pnas.1403364111, 2014.
- 454 Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B.,
- 455 Praske, E., Schwantes, R. H., Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X., and Seinfeld, J. H.: Gas-
- Phase Reactions of Isoprene and Its Major Oxidation Products, Chem. Rev., 118, 3337-3390,
 https://doi.org/10.1021/acs.chemrev.7b00439, 2018.
- 458 Wu, R., Vereecken, L., Tsiligiannis, E., Kang, S., Albrecht, S. R., Hantschke, L., Zhao, D., Novelli, A., Fuchs,
- 459 H., Tillmann, R., Hohaus, T., Carlsson, P. T. M., Shenolikar, J., Bernard, F., Crowley, J. N., Fry, J. L.,
- 460 Brownwood, B., Thornton, J. A., Brown, S. S., Kiendler-Scharr, A., Wahner, A., Hallquist, M., and Mentel, T.
- 461 F.: Molecular composition and volatility of multi-generation products formed from isoprene oxidation by
- 462 nitrate radical, Atmos. Chem. Phys., 21, 10799-10824, https://doi.org/10.5194/acp-21-10799-2021, 2021.
- 463 Xu, L., Kollman, M. S., Song, C., Shilling, J. E., and Ng, N. L.: Effects of NOx on the volatility of secondary
- 464 organic aerosol from isoprene photooxidation, Environ. Sci. Technol., 48, 2253-2262,
 465 https://doi.org/10.1021/es404842g, 2014.
- Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., and Wang, Y.: Formation
 of urban fine particulate matter, Chem. Rev., 115, 3803-3855, https://doi.org/10.1021/acs.chemrev.5b00067,
 2015.
- 469 Zhang, S., Li, D., Ge, S., Wu, C., Xu, X., Liu, X., Li, R., Zhang, F., and Wang, G.: Elucidating the mechanism
- 470 on the transition-metal ion-synergetic-catalyzed oxidation of SO₂ with implications for sulfate formation in
- 471 Beijing haze, Environ. Sci. Technol., 58, 2912-2921, https://doi.org/10.1021/acs.est.3c08411, 2024.
- 472 Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and Seinfeld, J. H.:
- 473 Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, Proc. Natl. Acad.
- 474 Sci. U.S.A., 111, 5802-5807, https://doi.org/10.1073/pnas.1404727111, 2014.

- 475 Zhao, D., Pullinen, I., Fuchs, H., Schrade, S., Wu, R., Acir, I.-H., Tillmann, R., Rohrer, F., Wildt, J., Guo, Y.,
- 476 Kiendler-Scharr, A., Wahner, A., Kang, S., Vereecken, L., and Mentel, T. F.: Highly oxygenated organic
- 477 molecule (HOM) formation in the isoprene oxidation by NO₃ radical, Atmos. Chem. Phys., 21, 9681-9704,
- 478 https://doi.org/10.5194/acp-21-9681-2021, 2021.
- 479 Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol formation,
- 480 Chem. Soc. Rev., 41, 6582-6605, https://doi.org/10.1039/c2cs35122f, 2012.
- 481
- 482

484	Figure Captions
485	
486	Figure 1. Time profiles for a typical experiment (exp. 5).
487	
488	Figure 2. NO _x dependence of SOA : (a) SOA yield. (b) Particle surface, diameter and particle
489	number concentration at the highest SOA mass. (c) OS _C from AMS
490	
491	Figure 3. An example of NO ₃ ⁻ chemical ionization mass spectra illustrating the
492	suppression of highly oxygenated organic molecules formation by NO _x . The upper panel
493	shows spectrum measured at 712 ppb NO_x (the highest yield level) and the lower panel
494	shows the spectrum measured at 2060 ppb NO_x (excess NO_x , no SOA was produced). Both
495	experiments were measured throughout using ToF-CIMS only. Gas phase species
496	identification is based on the literature references as follows: (a) Chen et al. (2022), (b)
497	Zhao et al. (2021), (c) Rissanen (2018), (d) Wu et al. (2021).
498	
499	Figure 4. Isoprene SOA nucleation process: (a) evolution of key HOMs detected by IoF-
500	CIMS under 712 ppb NO _x condition; (b) evolution of key HOMS-ACCS detected by 10F- CIMS under 712 ppb NO _x condition; (c) particle diameter detected by SMDS under 712 ppb
501	CIMS under $/12$ ppb NO _x condition; (c) particle diameter detected by SMFS under $/12$ ppb
502	NO _x condition.
504	Figure 5 (a) Loss rates of main RO ₂ from different oxidation pathways as a function of NO ₂ .
505	concentration calculated by MCMv3 3.1 (b) Variations of NO and HO ₂ concentrations
506	$concentration calculated by (100)(100)(100) with those of 100 and 110_2 concentrations.$
507	Figure 6. The relationship between β and SOA yield: color mapping from NO _x .
508	
509	
510	

516 Figure 2. NO_x dependence of SOA : (a) SOA yield. (b) Particle surface, diameter and particle number

518

⁵¹⁷ concentration at the highest SOA mass. (c) OS_C from AMS

519

520 Figure 3. An example of NO_3 chemical ionization mass spectra illustrating the suppression of highly

521 oxygenated organic molecules formation by NO_x. The upper panel shows spectrum measured at 712 ppb

522 NO_x (the highest yield level) and the lower panel shows the spectrum measured at 2060 ppb NO_x

523 (excess NO_x, no SOA was produced). Both experiments were measured throughout using ToF-CIMS

524 only. Gas phase species identification is based on the literature references as follows: (a) Chen et al.

525 (2022), (b) Zhao et al. (2021), (c)Rissanen (2018), (d) Wu et al. (2021).

527

528 Figure 4. Isoprene SOA nucleation process: (a) evolution of key HOMs detected by ToF-CIMS under

529 712 ppb NO_x condition; (b) evolution of key HOMs-ACCs detected by ToF-CIMS under 712 ppb NO_x

530 condition; (c) particle diameter detected by SMPS under 712 ppb NO_x condition.

533 Figure 5. (a)Loss rates of main RO_2 from different oxidation pathways as a function of NO_x

534 concentration calculated by MCMv3.3.1. (b) Variations of NO and HO₂ concentrations.

535

532

- **Figure 6.** The relationship between β and SOA yield; color mapping from NO_x.
- 537 538

536

540

Table Captions

541

542 **Table 1.** Detailed experimental conditions in this Study.

543

- 544 **Table 2**. The ratio of productivity turning point and corresponding production field in
- 545 different VOC-OH oxidations experiments.

Exp.	ISOP	NO_0	NO _{2,0}	NO _{x,0}	$[NO_x]_0/[ISOP]_0$	∆ISOP	O3	Δ M	SOA yield	Corrected SOA yield
no	(ppb)	(ppb)	(ppb)	(ppb)	(ppb ppb ⁻¹)	(ppb)	(ppb)	(µg m ⁻³)	(%)	(%)
1	996	4	6	10	0.01	153	32	1.1	0.1%	0.2%
2	1030	18	255	273	0.27	975	466	20.0	0.6%	0.7%
3	890	7	481	488	0.55	877	734	49.2	1.5%	2.0%
4	989	20	557	577	0.58	976	703	60.3	1.7%	2.2%
5	936	29	683	712	0.76	925	783	80.6	2.3%	3.0%
6	939	40	770	811	0.86	927	818	76.7	2.2%	2.9%
7	957	43	927	970	1.01	948	879	60.7	1.4%	2.2%
8	976	49	1451	1500	1.54	962	708	17.8	0.6%	0.7%
9	1014	60	2000	2060	2.03	985	301	-	-	-

Table 2. The ratio of productivity turning point and corresponding production field in different VOC-OH oxidations experiments.

VOC	Seed	OH precursor	RH (%)	$[NO_x]/[VOC]$	SOA yield (%)	Reference
Isoprene	/	/	<15	0.77	3.0	This study
Isoprene	$(NH4)_2SO_4$	H_2O_2	<10	3.0	5.5	Kroll et al. (2006)
Isoprene	/	H_2O_2	<5	3.0	8.5	Xu et al. (2014)
Isoprene	/	CH ₃ ONO	9-11	5.0	7.4	Chan et al. (2010)

Table 1. Detailed experimental conditions in this Study.