Supporting information for

3 New insights into the nonlinear effects of NO_x-isoprene photo-

```
4 oxidation
```

Xinbei Xu¹, Yining Gao¹, Si Zhang^{1*}, Luyao Chen¹, Rongjie Li¹, Zheng Li¹, Rui Li^{1,2}, Gehui Wang^{1,2*} ¹Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China ²Institute of Eco-Chongming, Cuiniao Road, Chenjia Zhen, Chongming, Shanghai 202150, China *Correspondence to: Dr. Si Zhang, E-mail address: szhang@geo.ecnu.edu.cn Prof. Gehui Wang, E-mail address: ghwang@geo.ecnu.edu.cn This PDF file incudes: 1. Text S1-S3 2. References 3. Figures S1-S3 4. Table S1

33 Text-S1 Vapor wall loss corrections for SOA yield

Our study also corrected loss of vapors to the chamber wall by the first-order wall-loss coefficient kw (s⁻¹) by Zhang et al. (2014). The value of k_w use the gas-phase transport

36 parameters within a chamber. Mcmurry and Grosjean (1985) present a formula for k_w .

37
$$k_{w} = \left(\frac{A}{V}\right) \frac{\left(\frac{\alpha_{w}c}{4}\right)}{1.0 + \left(\frac{\pi}{2}\right) \left[\frac{\alpha_{W}\bar{c}}{4(k_{e}D_{gas})^{0.5}}\right]}$$
(1)

- where A/V is the surface to volume ratio of the chamber (the ratio was 4 m⁻¹ in this 38 39 study), α_w is the mass accommodation coefficient of vapors onto the chamber walls, and 10⁻⁵ was adopted according to the experimental results of Matsunaga and Ziemann (2010), 40 41 \bar{c} is the mean thermal speed of the molecules. k_e is the coefficient of eddy diffusion, and 42 0.12 s⁻¹was estimated according to the values reported by previous studies for a 4 m³ Caltech chamber (Mcmurry and Grosjean, 1985). D_{qas} is the molecular diffusivity. For the type of 43 molecules here, D_{qas} is ~1.38 10⁻⁵ m² s⁻¹ and \bar{c} ~ 299 m s⁻¹. For a given vapor molecule, the 44 45 mean thermal speed \bar{c} could be calculated according to the following equation:
- 46

47

$$\bar{c} = \sqrt{\frac{8RT}{\pi MW}}$$
(2)

in which R is the ideal gas constant (i.e., 8.314 J mol⁻¹ K⁻¹), T is the experimental
temperature (T=288.15 K in this study), and MW is the molecular weight.

50

51 Text-S2 The saturation vapor pressure (C*)

Based on the method developed by Li et al. (2016) to estimate saturated vapor pressure (C^{*}) through molecular formulas, this study estimates the C^{*} of the main gas phase HOMs products in the photooxidation process of isoprene under the influence of NO_x:

$$logC^* = (n_c^0 - n_c)b_c - n_0b_0 - 2\frac{n_c n_0}{n_c + n_0}b_{co} - n_Nb_N - n_sb_s$$

where n_c^0 is the number of reference carbon atoms, n_c , n_0 , n_N , n_s are the number of carbon, oxygen, nitrogen, and sulfur atoms, respectively; b_c , b_0 , b_N , b_s are the contribution of each atom to $logC^*$, respectively, and *bco* is the carbon-oxygen noninertness factor.

60 Text-S3 NO₃ calculation

61 The NO₃ concentration were calculated to analyze the role of NO₃ in SOA formation. The

62 calculation methods are as follows:

63
$$NO_2 + O_3 \xrightarrow{k_1} NO_3 + O_2$$
 (3)

 $64 \qquad NO_3 + Isoprene \xrightarrow{k_2} products \tag{4}$

$$65 \qquad NO_3 + NO \xrightarrow{\kappa_3} 2NO_2 \tag{5}$$

66
$$NO_2 + NO_3 + M \xrightarrow{k_4} N_2O_5 + M$$
 (6)

67
$$N_2 O_5 + M \xrightarrow{k_5} N O_2 + N O_3 + M$$
 (7)

$$68 N_2O_5 + H_2O(s) \xrightarrow{\kappa_{N_2O_5}} 2HNO_3 (8)$$

Once the NO₃ radical is produced via R3, it rapidly establishes thermal equilibrium with
N₂O₅ in the presence of NO₂ (reactions (6) and (7)), which can be summarized as:

71
$$[N_2O_5] = k_{eq}[NO_2][NO_3], \ k_{eq} = k_4/k_5$$
(9)

 k_{eq} is calculated by the method given by Yan et al., (2023). Assuming that NO₃ and N₂O₅ are in a steady-state condition, their total formation rate is roughly the same as the total loss rate, and much greater than the net change rate, then the steady-state NO₃ mixing ratios are expressed by Eq. (10)

76
$$[NO_3]ss = \frac{k_1[NO_2][O_3]}{k_2[Isop] + K_3[NO] + J_{NO_3} + k_{N_2O_5}k_{eq}[NO_2]}$$
(10)

With a room temperature, rate constant of $k_1 = 3.2 \times 10^{-17} \text{ cm}^3$ molecule⁻¹ s⁻¹; $k_2 = 6.5 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹; $k_3 = 2.6 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹; J_{NO_3} is the sum of the photolysis coefficients of the two photolysis reactions of NO₃, 0.176 s⁻¹(Brown and Stutz, 2012). The $k_{N_2O_5}$ is the heterogeneous uptake rate of N₂O₅ on the aerosol surface, which can be calculated by Eq. (11):

82
$$k_{N_2O_5} = \frac{1}{4}cS\gamma$$
 (11)

- 83 Where C is the mean molecular speed of N₂O₅, which is 240 m s⁻¹, S is the concentration of
- 84 total particle surface area, which can be calculated based on the particle number size
- distribution, and γ is the uptake coefficient of N₂O₅ (Hu et al., 2023).
- 86

87 Reference

- Brown, S. S. and Stutz, J.: Nighttime radical observations and chemistry, Chem. Soc. Rev., 41, 6405-6447,
 https://doi.org/10.1039/c2cs35181a, 2012.
- 90 Hu, H., Wang, H., Lu, K., Wang, J., Zheng, Z., Xu, X., Zhai, T., Chen, X., Lu, X., Fu, W., Li, X., Zeng, L., Hu,
- 91 M., Zhang, Y., and Fan, S.: Variation and trend of nitrate radical reactivity towards volatile organic compounds
- 92 in Beijing, China, Atmos. Chem. Phys., 23, 8211-8223, https://doi.org/10.5194/acp-23-8211-2023, 2023.
- 93 Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical
- 94 evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327-3344, https://doi.org/10.5194/acp-16-3327-2016,
 95 2016.
- 96 Matsunaga, A. and Ziemann, P. J.: Gas-Wall Partitioning of Organic Compounds in a Teflon Film Chamber and
- 97 Potential Effects on Reaction Product and Aerosol Yield Measurements, Aerosol Sci. Technol., 44, 881-892,
- 98 https://doi.org/10.1080/02786826.2010.501044, 2010.
- 99 McMurry, P. H. and Grosjean, D.: Gas and aerosol wall losses in Teflon film smog chambers, Environ. Sci.
- 100 Technol., 19, 1176-1182, https://doi.org/10.1021/es00142a006, 1985.
- 101 Yan, C., Tham, Y. J., Nie, W., Xia, M., Wang, H., Guo, Y., Ma, W., Zhan, J., Hua, C., Li, Y., Deng, C., Li, Y.,
- 102 Zheng, F., Chen, X., Li, Q., Zhang, G., Mahajan, A. S., Cuevas, C. A., Huang, D. D., Wang, Z., Sun, Y., Saiz-
- 103 Lopez, A., Bianchi, F., Kerminen, V.-M., Worsnop, D. R., Donahue, N. M., Jiang, J., Liu, Y., Ding, A., and
- 104 Kulmala, M.: Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing
- 105 observed during COVID-19 lockdowns, Nat. Geosci., 16, 975-981, https://doi.org/10.1038/s41561-023-01285106 1, 2023.
- 107 Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and Seinfeld, J. H.: Influence
- 108 of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, Proc. Natl. Acad. Sci. U. S. A.,
- 109 111, 5802-5807, https://doi.org/10.1073/pnas.1404727111, 2014.
- 110

112 Figure S1. Simplified formation mechanism of $C_5H_8N_2O_8$, $C_5H_{10}N_2O_8$, $C_5H_9N_3O_{10}$ and $C_5H_{10}N_2O_9$.

Figure S3. (a) calculated concentrations of NO3 radicals in the varying NO/NO2 experiments; (b) correlation between NO3 and SOA yield.

Molecular formula	$\log_{10}C^*$	VOC type ^a
$C_5H_8N_2O_8$	-0.92	LVOC
$C_5H_{10}N_2O_8$	-0.92	LVOC
$C_5H_8N_2O_9$	-1.67	LVOC
$C_{5}H_{10}N_{2}O_{9}$	-1.67	LVOC
C5H9N3O10	-3.54	LVOC
C5H9N3O11	-4.30	LVOC
$C_5H_{11}N_3O_{11}$	-4.30	LVOC
$C_{5}H_{9}N_{3}O_{12}$	-5.06	LVOC
$C_{6}H_{10}N_{2}O_{14}$	-5.75	ELVOC
$C_{10}H_{17}N_3O_{14}$	-8.08	ELVOC
$C_{10}H_{17}N_3O_{16}$	-9.57	ULVOC
$C_{12}H_{20}NO_{17}$	-8.71	ULVOC
C15H20N2O14	-8.75	ULVOC
C ₁₅ H ₁₇ N ₂ O ₁₇	-10.78	ULVOC

¹²⁷ ^aVOC type is defined according to the following ranges: ultralow volatility organic compounds (ULVOCs,

 $128 \qquad \log_{10} C^* < -8.5, \text{), extremely low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low volatility organic compounds (ELVOCs, -8.5 < \log_{10} C^* < -4.5), low$

129 organic compounds (LVOCs, $-4.5 < \log_{10} C^* < -0.5$), semivolatile organic compounds (SVOC, $-0.5 < \log_{10} C^* < -0.5$)

130 2.5), intermediate volatility organic compounds (IVOC, $2.5 < \log_{10} C^* < 6.5$), and volatile organic compounds

131 (VOC, $\log_{10} C^* > 6.5$).(Li et al., 2016)