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Abstract. This study assesses the performance of the asynchronous approach used in hydrological modeling, which stands 10 

apart from the conventional approach by calibrating streamflow distributions without relying on meteorological 

observations. The focus is on comparing the two methods within the context of climate change impact studies, particularly in 

their ability to simulate key hydroclimatic processes across catchments. The analysis, conducted across multiple catchments, 

including a detailed case study of the Matane catchment in Southern Quebec, explores the potential of the asynchronous 

method as a viable alternative for future hydrological modeling. By eliminating the dependency on meteorological 15 

observations, the asynchronous approach offers potential advantages in regions with limited or unreliable observational data, 

providing a more flexible tool for climate change impact assessments. 

The results reveal that while the asynchronous method effectively captures the overall distribution of streamflow and 

preserves extreme values, it faces significant challenges in accurately representing the timing of hydrological events, 

particularly those related to snowmelt. This issue stems, in part, from the method’s decision to work directly with the biases 20 

present in raw climate model outputs, without adjusting for the timing discrepancies in meteorological inputs. Consequently, 

the asynchronous approach inherits these biases, leading to timing inconsistencies and increased variability across different 

climate models, which raises concerns about the method's ability to reliably simulate critical hydroclimatic variables under 

future climate scenarios. In contrast, the conventional method, which incorporates bias correction, demonstrates greater 

reliability in capturing the timing and magnitude of streamflow events, making it a more robust tool for most hydrological 25 

applications. 

The study also highlights the concept of equifinality, where different methods achieve similar outcomes through potentially 

flawed mechanisms, particularly in the case of the asynchronous method. Despite projecting changes in hydroclimatic 

variables similar to those of the conventional method, the asynchronous approach may do so for reasons that are not 

hydrologically sound, particularly in snow-dominated catchments. 30 

While the asynchronous method shows promise in preserving streamflow extremes, its current implementation requires 

further refinement to improve its accuracy and reliability, particularly in how it simulates the timing of seasonal dynamics. 

However, as climate model simulations continue to improve and their biases are progressively reduced, the asynchronous 
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approach is poised to benefit significantly, enhancing its potential for more accurate and reliable future hydrological 

projections. The conventional method remains the preferred choice for applications requiring hydrological simulations, but 35 

future research should focus on developing semi-asynchronous approaches that combine the asynchronous method’s strength 

in preserving extremes with the conventional method’s ability to handle event-specific timing. 

1 Introduction 

Climate change is one of the most significant challenges of our time, with profound implications for the Earth's hydrological 

systems. Alterations in temperature and precipitation regimes affect water availability and the timing of hydrological events. 40 

Understanding these impacts is crucial for effective water resource management and decision-making (Arsenault et al., 2013; 

Calvin et al., 2023). Accurate climate change studies are essential for developing strategies to mitigate and adapt to these 

changes, ensuring the sustainability of natural resources and the resilience of human and ecological systems (Milly et al., 

2005; Sivakumar, 2011). 

The complex dynamics of watersheds require hydrological models capable of precisely simulating both surface and 45 

subsurface processes (Farjad et al., 2016; T. W. Chu and A. Shirmohammadi, 2004). Accurate depiction of these processes 

within hydrological models is essential for assessing the impacts of climate change (Kour et al., 2016; Talbot et al., 2024b). 

Physically based and spatially distributed hydrological models, such as the Water Balance Simulation Model (WaSiM) 

(Schulla, 2021), are particularly valuable due to their detailed representation of key processes including surface runoff, 

groundwater recharge, interflow, and baseflow. These models enable accurately simulating hydroclimatic variables, which 50 

are essential for understanding the physical processes driving water flow and distribution in a catchment (Bormann and 

Elfert, 2010; Förster et al., 2017, 2018; Jasper et al., 2006; Natkhin et al., 2012). The use of physically based models like 

WaSiM, which capture local heterogeneity and finer-scale processes, provides a robust framework for evaluating climate 

change impacts on hydrology (Devia et al., 2015; Ludwig et al., 2009; Poulin et al., 2011) and supports stakeholders in 

making decisions that are both data-driven and aligned with strategic goals. 55 

The conventional method for evaluating climate change impacts on hydrology involves a multi-step modeling chain. This 

method typically starts with the calibration of a hydrological model using observed meteorological data. Subsequently, raw 

climate model outputs are corrected using techniques such as quantile mapping (Jakob Themeßl et al., 2011; Mpelasoka and 

Chiew, 2009) to reduce potential biases in the observed data. The calibrated hydrological model is then driven by these bias-

corrected climate data to simulate hydrological processes over both a reference and a future period.  By comparing the 60 

differences between these two periods, the method estimates the potential effects of climate change on hydroclimatic 

variables, enabling a clearer understanding of how projected climate changes will influence key hydrological processes. 

While widely used, conventional methods have several limitations. Bias correction can disrupt the physical consistency 

between simulated climate variables and affect long-term climate change signals (Chen et al., 2021; Lee et al., 2019). 

Advanced techniques, such as multivariate quantile mapping bias correction (MBCn) (Cannon, 2018), have been developed 65 
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to address some of these issues, offering a more nuanced approach preserving the inter-variable relationships essential for 

reliable hydrological modeling.  

Chen et al. (2021) further highlights the challenges of maintaining the integrity of climate signals due to the nonstationarity 

of biases in climate model outputs over time. Their study, which compares pre-processing bias correction of climate model 

outputs with post-processing corrections applied directly to hydrological model outputs, reveals that while both approaches 70 

can significantly reduce biases, they also introduce uncertainties, particularly when dealing with sharp seasonal gradients in 

correction factors. Despite these challenges, they recommend pre-processing as the preferred method for climate impact 

studies. Additionally, conventional methods rely on high-quality meteorological observations, which are often unavailable in 

many regions (Ricard et al., 2023). 

New approaches like asynchronous method have been proposed to address some of these challenges (Ricard et al., 2019, 75 

2020; Ricard et al., 2023; Valencia Giraldo et al., 2023). This framework avoids the need for bias correction by adapting the 

hydrological model calibration process to directly use raw climate model projections data. This allows to conduct climate 

change studies without relying on observed meteorological data. Because the sequence of climatic events within climate 

model simulations is different from the historical observations, one cannot use the correlation between observed and 

simulated streamflow during the calibration process. Instead, the asynchronous method focuses on calibrating proxies for the 80 

distribution of streamflow rather than reproducing historical time series. Given that most of climate change impact studies 

assess the projected change in statistical properties between a reference and a future period (Piani et al., 2010), the need for 

accurate temporal correlation may become less critical (Ricard et al., 2019).  

Given its potential advantages, a key question is whether the asynchronous method sacrifices the integrity of hydroclimatic 

variables in its pursuit of accurately reproducing streamflow distributions. To address this, this study compares 85 

hydroclimatic variables simulated by a physically based hydrological model (WaSiM) across 10 catchments, using both the 

conventional and asynchronous methods for climate change impact assessments. By examining the outcomes of both 

methods, this research aims to evaluate the asynchronous method's capacity to reliably simulate hydrological processes 

within catchments. The results highlight the strengths and limitations of the asynchronous framework, offering valuable 

insights for advancing hydrological modeling in climate change studies.  90 

2 Methods and data 

2.1 Study area 

The study focuses on a selection of forested catchments in Southern Quebec, Canada, chosen for their varied sizes and 

hydrological characteristics. These catchments range in area from 549 km² to 1910 km² (Table 1), providing a diverse 

representation of the region's physiographic and climatic conditions (Fig. 1). This subset was selected from catchments 95 

previously studied (Talbot et al., 2024a, b), where we have extensive knowledge of their behavior and a well-established 

baseline for comparison. These catchments are well-suited for hydrological modeling with WaSiM, as their natural 
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hydrological processes remain largely intact and are minimally influenced by human-made structures such as dams. The 

availability of comprehensive streamflow data further supports their suitability for this study. 

The region experiences a humid continental climate, with significant seasonal variation characterized by cold, snowy winters 100 

and warm, rainy summers. The Köppen-Geiger Climate Classification designates most of this region as Dfb (Humid 

Continental Mild Summer Wet All Year), with a smaller northern part classified as Dfc (Subarctic with Cool Summers and 

Year-round Precipitation) (Beck et al., 2018).  

Climatic conditions show marked seasonal variations. Winters, extending from December to February, are cold with 

significant snowfall, contributing to the snowpack that influences spring runoff. Average temperatures during these months 105 

frequently drop below freezing, and snow depths can accumulate substantially, impacting streamflow upon melting. 

Summers, from June to August, are characterized by warm temperatures and increased rainfall (Fig. 6). The transitional 

seasons of spring (March to May) and autumn (September to November) exhibit moderate temperatures and variable 

precipitation, playing a significant role in the hydrological cycle by contributing to groundwater recharge and streamflow 

variability. 110 

Table 1. Physical and meteorological characteristics of the selected catchments in Southern Quebec.  

Catchments 
Area 

(km2) 

Mean 

Elevation 

(m) 

Most 

Common Soil 

Type 

Most 

Common 

Land Use 

Annual 

Rainfall a 

(mm) 

Annual 

Snowfall a 

(mm) 

Annual 

Runoff 

(mm) 

Bonaventure 1910 356 Sandy Loam 
Coniferous 

forest 
753 446 675 

Matane 1650 284 Sandy Loam Mixed forest 789 480 722 

Ouelle 795 315 Sandy Loam Mixed forest 826 424 604 

Bécancour 919 305 Sandy Loam 
Deciduous 

forest 
1011 389 743 

Nicolet S-O 549 259 Sandy Loam Cropland 1057 341 719 

Au Saumon 738 465 Loam 
Deciduous 

forest 
935 446 810 

Bras du 

Nord 
642 511 Sandy Loam Mixed forest 1034 444 952 

Du Loup 774 381 Sandy Loam Mixed forest 795 355 504 

Valin 746 441 Sandy Loam Mixed forest 922 436 988 

Godbout 1570 302 Sandy Loam 
Coniferous 

forest 
732 434 822 

a Derived from WaSiM simulations for the period 1981 to 2020, using ERA5 data as input. 
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Figure 1. Locations of the selected catchments within Southern Quebec, outlined in red. The inset map provides the location of the 

study area within North America. 115 

2.2 Data 

2.2.1 Hydrometeorological 

This study utilizes daily total precipitation and mean temperature data from the ECMWF Reanalysis v5 (ERA5) (Hersbach et 

al., 2020) for the period 1981 to 2020.  ERA5 was chosen due to its advanced features over previous reanalysis datasets, 

such as finer spatial resolution, hourly time step, and a more sophisticated data assimilation system that incorporates a wider 120 

range of observational inputs (Tarek et al., 2020). These features make ERA5 a suitable reference dataset for hydrological 

modeling, as demonstrated in Tarek et al. (2020), where ERA5-based hydrological simulations performed equivalently to 

observational data in most regions, including our study area. Additionally, ERA5 showed reduced biases in temperature and 

precipitation compared to the ERA-Interim dataset, further justifying its use as a reliable and accurate source of climate data.  

Streamflow data was sourced from the Hydroclimatic Atlas of Southern Québec (MDDELCC, 2022), covering the period 125 

from 1981 to 2010. This dataset provides daily measurements, though some catchments have minor gaps, primarily during 

winter months due to ice cover and ice jams. These periods were excluded from model calibration and analyses to maintain 

data accuracy. 
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2.2.2 Elevation 

A hydrologically conditioned digital surface model (DEM) was derived from the NASA Shuttle Radar Topography Mission 130 

version 3.0 Global 1 arc second (SRTMGL1). Hydrological corrections ensured accurate representation of hydrological 

networks, with adjustments made using SAGA GIS software (Conrad et al., 2015). Basin delineation and analysis were 

conducted using QGIS and Tanalys software (Schulla, 2021) to extract essential topographic information for hydrological 

modeling. 

2.2.3 Soil type 135 

Soil data was sourced from the SIIGSOL 100 meters database, which provides detailed descriptions of sand, clay, and silt 

proportions within the soil profile (Ministère des Ressources Naturelles et des Forêts, 2022; Sylvain et al., 2021). These 

proportions were converted to soil texture classes based on the USDA classification system (Soil Survey Division Staff, 

2017). Soil hydraulic properties were imputed from established relationships between soil texture classes and hydraulic 

parameters. Elevation data was used to account for soil depth variability, classifying raster cells into deep, normal, and 140 

shallow categories based on their relative elevation as described in (Talbot et al., 2024a). 

2.2.4 Land use 

Land use data was obtained from the 2015 North American Land Change Monitoring System (NALCMS) 30 meters dataset. 

This data was resampled using the nearest neighbor method to create land use maps, significantly impacting hydrological 

parameters such as root distribution, vegetation cover fraction (VCF), roughness length (Z0), and albedo. These parameters 145 

influence processes like evapotranspiration, runoff, and infiltration (2015 Land Cover of North America at 30 meters, 2023; 

Latifovic et al., 2012). 

2.2.5 Climate models 

Projected daily temperature and precipitation data were sourced from the Coupled Model Intercomparison Project Phase 6 

(CMIP6) (O’Neill et al., 2016) for both the reference period (1981-2010) and future period (2070-2099). These datasets were 150 

accessed and processed through the PAVICS-Hydro platform (Arsenault et al., 2023). The Shared Socioeconomic Pathway 

5-8.5 (SSP5-8.5) scenario, which projects very high greenhouse gas emissions, was used to simulate future conditions 

(Calvin et al., 2023). To address uncertainties related to climate model selection, an ensemble of 18 climate models was 

employed as it was previously shown that, to ensure robustness, using multiple climate models is required (Arsenault et al., 

2020; Lucas-Picher et al., 2021; Minville et al., 2008; Tarek et al., 2021). This ensemble approach ensures a more robust 155 

representation of potential climate outcomes by capturing a range of possible future scenarios. 
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2.3 Hydrological modelling 

2.3.1 Hydrological model 

WaSiM is a physically based, spatially distributed hydrological model designed to simulate water flow processes in 

catchments. It integrates a comprehensive suite of sub-models to capture key hydrological processes, including surface 160 

runoff, groundwater recharge, interflow, and baseflow, within a deterministic framework (Schulla, 2021). 

In this study, WaSiM was configured with a spatial resolution of 1000 meters and a temporal resolution of 24 hours. This 

setup allows for detailed spatial analysis while maintaining computational efficiency. The chosen spatial resolution ensures 

that the heterogeneity of the landscape is adequately captured, and the daily time step allows for accurate simulation of 

hydrological processes over time. 165 

WaSiM employs the Richards equation and the Van Genuchten parameters for simulating water flow in the unsaturated zone 

(van Genuchten, 1980; Richards, 1931). This equation provides a physically based representation of hydraulic head gradients 

and soil moisture dynamics, incorporating detailed soil physical properties. Groundwater flow is calculated conceptually 

within the unsaturated zone model. 

2.3.2 Conventional method 170 

The framework used to calibrate and validate the effectiveness of the conventional method rely on the split sample test (SST) 

approach, which is widely recognized for its effectiveness in evaluating model performance. This approach involves dividing 

the data into separate calibration and validation periods, allowing for an assessment of the model's ability to generalize 

beyond the calibration conditions.  

For this method, historical data from ERA5 were used for both calibration and validation. The calibration period spanned 175 

from 2000 to 2009, during which simulations were performed over a 15-year period (1995 to 2009), discarding the first 5 

years to stabilize the initial conditions of the model. The validation period was set from 1990 to 1999, following the same 

approach of conducting simulations over a 15-year period (1985 to 1999) and discarding the initial 5 years.  

A set of 17 parameters (Table 2) was selected for calibration based on model documentation and the configuration used in 

Talbot et al. (2024a). Table 2 was taken from Talbot et al. (2024a). 180 

 

 

 

 

 185 
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Table 2. Calibration parameters for the hydrological model WaSiM. 

No. Code Description Sub-Model Range 

1 kD Storage coefficient for surface runoff (h) Unsaturated zone [1, 25] 

2 kH Storage coefficient for interflow (h) Unsaturated zone [1, 25] 

3 dr Drainage density for interflow (m-1) Unsaturated zone [1, 50] 

4 QDSnow Fraction of surface runoff on snow melt Unsaturated zone [0.1, 1] 

5 c0 Degree-Day factor (mm °C-1 d-1) Snow [0, 3] 

6 T0 Temperature limit for snow melt (°C) Snow [-4, 4] 

7 TR/S Transition temperature snow/rain (°C) Snow [-4, 4] 

8 CWH Water storage capacity of snow Snow [0.1, 0.3] 

9 Crfr Coefficient for refreezing Snow [0.1, 1] 

10 fi,summer Summer correction factors for PET Evapotranspiration [0.1, 2] 

11 fi,fall Fall correction factors for PET Evapotranspiration [0.1, 2] 

12 fi,winter Winter correction factors for PET Evapotranspiration [0.1, 2] 

13 fi,spring Spring correction factors for PET Evapotranspiration [0.1, 2] 

14 Krec Recession constant for hydraulic conductivity Soil table [0.1, 0.99] 

15 dz
a Soil layer thickness Soil table [0.8, 1.4] 

16 KB Storage coefficient for base flow (m) Unsaturated zone [0.1, 8] 

17 Q0 Scaling factor for base flow (mm h-1) Unsaturated zone [0.1, 5] 

a Calibration coefficient, ranging from 0.8 to 1.4, is applied to adjust the total soil depth, which is predetermined to be 8 meters for 

shallow, 14 meters for normal, and 20 meters for deep soil conditions. 

These parameters were optimized based on a single objective function through the Dynamically Dimensioned Search (DDS) 

algorithm, developed by Tolson and Shoemaker (2007). This algorithm was chosen for its efficiency in handling complex 

optimization problems for compute-intensive hydrological models, as recommended by Arsenault et al. (2014).  190 

The objective function used for calibration was the Kling Gupta-Efficiency (KGE) (Kling et al., 2012). The KGE metric 

provides a balanced evaluation of model performance by considering simultaneously correlation, variability, and bias in the 

simulated streamflow relative to observed streamflow. 

The KGE is computed using Eq. (1): 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚/𝜇𝑠𝑖𝑚

𝜎𝑜𝑏𝑠/𝜇𝑜𝑏𝑠
− 1)

2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)

2

,       (1) 195 

where r is the correlation coefficient between simulated and observed streamflow, 𝜎𝑠𝑖𝑚 is the standard deviation of simulated 

streamflow, 𝜎𝑜𝑏𝑠 is the standard deviation of observed streamflow, 𝜇𝑠𝑖𝑚 is the mean of the simulated streamflow, and 𝜇𝑜𝑏𝑠 is 

the mean of the observed streamflow.  
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A KGE value of 1 indicates a perfect match between the simulated and observed streamflow, reflecting ideal performance 

across all three components: correlation, variability, and bias.  200 

To address biases in the climate model simulations, the Multivariate Bias Correction algorithm (MBCn) of Cannon (2018) 

was utilized. This method corrects biases in meteorological data while accounting for spatiotemporal interdependencies 

between variables and preserving changes in quantiles between the reference (1981-2010) and future (2070-2099) periods. 

The bias correction was applied to daily total precipitation and daily mean temperature using ERA5 data as the reference 

over the period 1981-2010 and was used to correct the climate models data for both the reference (1981-2010) and future 205 

periods (2070-2099). 

For the conventional method, climate change hydrological simulations were performed using the bias-corrected climate 

models data. Simulations were conducted for each climate model over the reference and future periods using the calibrated 

hydrological model for each catchment.  

2.3.3 Asynchronous method 210 

The primary objective of the asynchronous method is to conduct climate change studies without relying on observed 

meteorological data (Ricard et al., 2019, 2020; Ricard et al., 2023) and eliminate the need for bias-correction of climate 

variables. Instead, the calibration is performed using raw climate model data and observed streamflow, integrating the bias-

correction in the calibration step. A significant challenge in this approach is the lack of synchronization between the timings 

of observed streamflows and those of raw climate model outputs (Ricard et al., 2019), as climate models are not temporally 215 

aligned with actual past events. This requires a departure from the conventional calibration framework, which aims to 

optimize the synchronicity and amplitude of streamflow. 

To overcome this obstacle, the objective function optimizes the distribution of observed streamflow over an extended period 

rather than individual streamflow observations. This approach ensures the hydrological model effectively captures the 

streamflow distribution, rather than day-to-day natural variability.  220 

Given the calibration objectives of the asynchronous method, the observed streamflow data from 1984 to 2009 was sorted 

and used to establish a reference distribution of streamflow. This sorted distribution provided a consistent target for both the 

calibration and validation of the hydrological model. In the context of the asynchronous method, where direct temporal 

alignment between climate model outputs and observed streamflow is not maintained, relying on the same observed 

distribution for both calibration and validation ensures that the model is evaluated against a stable and representative 225 

reference. Therefore, a 25-year period (1984-2009) was used for both calibration and validation, as it captures a broad range 

of hydrological conditions, minimizes the influence of short-term climate variability, and mitigates biases that could arise 

from using shorter time frames. A key hypothesis underlying this approach is the assumption of stationarity—that the 

hydrological model, with fixed parameters optimized during calibration, will continue to produce reasonable streamflow 

simulations under future climate conditions. This assumes that despite changing climatic conditions, the model will 230 

adequately respond to future scenarios as it did to past conditions. However, if future climate changes introduce conditions 
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outside the model's calibrated range, such as new snow patterns or shifts in seasonal dynamics, the model's performance 

could be compromised. 

The calibration and validation periods are separated based on the total yearly precipitation from October to September. This 

separation ensures an equal distribution of wet and dry years between both periods. Simulations were performed for the 235 

years 1984 to 2011, with the first two years discarded to allow for initial model stabilization. Out of the 26 years of 

simulations, 13 years were used for calibration, selected based on total yearly precipitation, while all 26 years were utilized 

for model validation. 

To address biases in simulated streamflow resulting from biases in precipitation and temperature in the raw climate data, the 

simulated streamflow was adjusted by multiplying it by a factor equal to the ratio of the mean observed streamflow 𝑄𝑜𝑏𝑠 to 240 

the mean simulated streamflow 𝑄𝑠𝑖𝑚. This adjustment was applied only during the calibration process and not during the 

reference or future periods simulations. It ensures that the mean simulated streamflow matches the mean observed 

streamflow, effectively removing bias. This means the simulated absolute streamflow values cannot be directly compared 

with observations, but changes between the reference and future period can be analyzed. 

The Root Mean Square Error (RMSE) was employed as the objective function:  245 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑄𝑠𝑖𝑚𝑖

− 𝑄𝑜𝑏𝑠𝑖
)

2𝑛
𝑖=1  ,         (2) 

where 𝑄𝑠𝑖𝑚 represents the sorted simulated streamflow (mm), 𝑄𝑜𝑏𝑠 represents the sorted observed streamflow (mm), and 𝑛 is 

the number of simulated streamflow values. 

Each climate model was calibrated for each catchment, resulting in a total of 180 calibration parameter sets (18 climate 

models x 10 catchments). In contrast, the conventional method involves 10 calibration parameter sets (one per catchment) 250 

which is then applied to all climate models and their bias-corrected outputs. Consequently, the asynchronous method is 

considerably more computationally intensive than the conventional method in terms of parameter calibration.  

The calibration framework for the asynchronous method is similar to that of the conventional method. It involves 1000 trials, 

uses the same 17 calibration parameters (Table 2), and employs DDS optimization algorithm.  

For the asynchronous method, climate change simulations were conducted using the calibrated model for each catchment 255 

and each projected climate model, but without relying on historical event timing. Raw projected climate data were utilized to 

perform simulations over both the reference and future periods. 

2.4 Comparative analysis 

The comparative analysis in this study is designed to evaluate the performance of the conventional and asynchronous 

methods in simulating hydrological processes under both current and future climate conditions. To ensure a fair and unbiased 260 

comparison, both methods employed the same WaSiM configuration, including identical calibration parameters, the number 

of evaluations, and the optimization algorithm. This was performed to ensure minimal calibration bias and to isolate the 

differences attributable solely to the methodological framework of each approach. 

https://doi.org/10.5194/egusphere-2024-3037
Preprint. Discussion started: 25 October 2024
c© Author(s) 2024. CC BY 4.0 License.



11 

 

The first step in the comparative analysis involves assessing the calibration and validation performance of each method. 

Streamflow simulations were evaluated using the KGE for the conventional method and the RMSE of the sorted simulated 265 

and observed streamflow for the asynchronous method. These metrics were selected to highlight each method's strengths in 

different aspects of streamflow simulation—KGE for overall model performance and RMSE for the accuracy of flow 

distribution. 

Beyond streamflow, we also examine the relationships between various hydroclimatic variables, such as groundwater 

recharge, surface runoff, soil moisture, and snow water equivalent (SWE). By comparing the simulated values from both 270 

methods, the analysis seeks to understand how well each method captures the interactions between these variables. This 

serves to evaluate the internal consistency of the models and assess their ability to realistically simulate the physical 

processes within the catchments. 

The analysis extends to a comparison of the projected changes in hydroclimatic variables between the reference period 

(1981–2010) and the future period (2070–2099). The magnitude and direction of these changes are assessed to determine 275 

how each method projects the impact of climate change on the catchments. This includes examining variables such as 

changes in snowmelt dynamics, and the consequent effects on streamflow, surface runoff and groundwater recharge. 

A detailed spatial analysis is conducted to evaluate the distribution of key variables, such as soil moisture and groundwater 

recharge, across the catchments. The comparative analysis employs several criteria to determine which method is more 

effective. These include the accuracy of streamflow simulation (both in terms of overall distribution and event timing), the 280 

internal consistency of hydroclimatic variable relationships and the realism of spatial distributions and projected changes 

under future climate scenarios. The method that consistently demonstrates superior performance across these criteria is 

considered more reliable for future hydrological modeling and climate impact assessments. 

3 Results 

3.1 Streamflow representation performance 285 

For the conventional method, streamflow representation performance was assessed using the KGE metric for each catchment 

during both the calibration and validation periods. 

During calibration, the conventional method achieves KGE values ranging from 0.817 to 0.906, with a mean of 0.863. 

Similarly, for the validation period, the KGE values ranged from 0.778 to 0.906, with a mean of 0.842. These results indicate 

that the conventional method maintains a consistent performance in simulating streamflow across different catchments. 290 

Detailed KGE results for each catchment are provided in the Appendix A (Table A1). 

For the asynchronous method, the RMSE was used to evaluate streamflow representation performance during both the 

calibration and validation periods. During calibration, the RMSE values exhibited a mean of 0.121 mm d-1 with a mean 

standard deviation between climate models of 0.031 mm d-1. In the validation period, the RMSE values demonstrated similar 
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patterns, with a mean of 0.179 mm d-1 and a standard deviation of 0.057 mm d-1. Detailed RMSE values are available in the 295 

Appendix A (Table A2). 

Figure 2 presents hydrographs of streamflow for both methods during the reference period across the ten catchments, along 

with observed streamflow for the same period. The asynchronous method shows greater variability between climate models, 

especially in the timing of peak flows, which often fails to align with the observed data, as expected. This variability 

suggests that the timing of streamflow events in the asynchronous method is highly sensitive to the specific climate model 300 

employed. For instance, in the Matane catchment, the observed and conventional method peak flow occurs at the beginning 

of May, while the asynchronous method shows a broader range of peak flow timings, extending from early May to late June. 

This discrepancy might be attributed to challenges in accurately simulating snowmelt processes with the asynchronous 

method, which are crucial for generating high flows in the study region. Furthermore, in the same catchment, the 

asynchronous method overestimates summer flows compared to the observed data, indicating potential difficulties in 305 

capturing the seasonal dynamics of low-flow periods. Conversely, the conventional method accurately reproduces the annual 

observed streamflow variability, demonstrating its strength in capturing the timing and magnitude of hydrological events. 

Despite these differences, the asynchronous method outperforms the conventional method in terms of annual volume 

accuracy in 8 out of 10 catchments (Fig. 2). This enhanced accuracy can be attributed to the scaling adjustments applied 

during the calibration period. In the asynchronous method, streamflow is adjusted by multiplying them by a scaling factor to 310 

correct biases between simulated and observed means, effectively minimizing the difference between overall volume in 

simulated and observed streamflow. However, the inability of the asynchronous simulations to replicate the precise timing of 

streamflow events raises concerns about its representation of underlying hydroclimatic variables, which may impact the 

model's broader predictive accuracy. 
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 315 

Figure 2. Seasonal streamflow comparison between the asynchronous and conventional methods and observed data across ten 

catchments during the reference period (1981–2010). The panels (a-j) represent the catchments of Bonaventure, Matane, Ouelle, 

Bécancour, Nicolet SO, Au Saumon, Bras du Nord, Du Loup, Valin, and Godbout, respectively. The colored bands indicate the 

range of daily streamflow simulated by the asynchronous method (yellow) and conventional method (blue) alongside the observed 

streamflow (red line).  320 

Figure 3 shows the relationship between the sorted streamflow distribution and percentage bias for simulated and observed 

values using conventional and asynchronous methods during the reference period (1981–2010) for the Matane catchment. 

Climate models using the conventional method exhibit broader dispersion compared to the asynchronous method. Moreover, 

the asynchronous method demonstrates a better ability to capture extreme streamflow events, as indicated by its lower 

percentage bias across a range of streamflow conditions. This suggests that the asynchronous method is more effective in 325 

predicting extreme flows and capturing the overall distribution of streamflow, likely due to its calibration focus on 

streamflow distribution rather than the precise timing of hydrological events. 
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While these results are specific to the Matane catchment, similar patterns are observed across all catchments studied (Fig. B1 

to Fig. B9). This consistency highlights the asynchronous method’s strength in capturing the full range of potential 

streamflow conditions across diverse hydrological settings, particularly in representing extremes. 330 

In contrast, the conventional method excels at capturing the annual fluctuations and timing of the observed streamflow but is 

more limited in its ability to represent extreme flows. The asynchronous method, optimized for distributions, offers a distinct 

advantage in this area by more accurately reflecting the range of possible streamflow values, particularly during high and 

low flow events. 

 335 

Figure 3. Performance comparison between the conventional and asynchronous methods for the Matane catchment during the 

reference period (1981–2010). Panel (a) displays the relationship between simulated daily streamflow (Qsim) and observed daily 

streamflow (Qobs) for the conventional (blue) and asynchronous (yellow) methods. The x-axis represents the observed daily 

streamflow, while the y-axis represents the simulated streamflow. Panel (b) shows the percentage bias between observed and 

simulated streamflows for both methods, with the x-axis representing the observed daily streamflow and the y-axis displaying the 340 
percentage bias relative to the observed values. The shaded regions in both panels illustrate the variability among climate models 

around the mean bias for each method, emphasizing the differences in how well each method simulates streamflow across the 

observed streamflow range. 

Figure 4 presents a comparative analysis of streamflow quantiles for both methods across the reference (1981–2010) and 

future (2070–2099) periods for all ten catchments. When comparing the observed streamflow to the reference period 345 

simulations, the asynchronous method shows a closer alignment with the observed distribution, particularly for high flows 

(Q95% and Q90%), confirming its strength in capturing extreme events. However, it is important to note that the 

asynchronous method also exhibits a higher dispersion among climate models during the reference period, indicating greater 

variability in its predictions. 

In terms of future projections, both methods demonstrate similar trends, with both projecting decreases in high flows 350 

(Q95%) across most catchments. However, the projections for other flow quantiles, such as median (Q50%) and low flows 

https://doi.org/10.5194/egusphere-2024-3037
Preprint. Discussion started: 25 October 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

(Q5% and Q10%), show mixed changes that vary depending on the catchment's geographical location. While there is a broad 

agreement between the methods on the direction of changes from the reference to the future period, the asynchronous 

method again shows a higher dispersion between climate models, especially for low flows (Q5% and Q10%). This increased 

variability suggests that while the asynchronous method is effective at representing the distribution of streamflow, it may 355 

introduce greater uncertainty in future projections, particularly for low-flow conditions.  

 

Figure 4. Streamflow distribution analysis for both the reference (1981–2010) and future (2070–2099) periods across 10 

catchments, comparing the conventional (blue) and asynchronous (orange) methods. The figure illustrates the percentage 

differences in streamflow quantiles between the simulated and observed streamflow for both methods with the central line 360 
indicating the median and whiskers extending to the 25th and 75th percentiles. The panels represent the following streamflow 

quantiles: (a) Q95% (high flow), (b) Q90%, (c) Q50% (median flow), (d) Q10%, and (e) Q5% (low flow). For each catchment, the 

reference period data is shown in darker shades, while the future period projections are displayed in lighter shades. Blue 

represents the conventional method, and orange represents the asynchronous method.  
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3.2 Hydroclimatic variables 365 

The primary objective of this study is to compare the conventional and asynchronous methods and evaluate the ability of the 

asynchronous approach to accurately reproduce the physical processes within catchments. This section expands the analysis 

beyond streamflow to include a broader range of hydroclimatic variables, providing a more comprehensive assessment of the 

methods’ performance. 

Table 3 presents the annual averages for several key hydroclimatic variables—such as precipitation, snowfall, streamflow, 370 

surface runoff, interflow, actual evapotranspiration (ETa), baseflow, groundwater recharge, SWE, and soil moisture—across 

both the reference (1981–2010) and future (2070–2099) periods. The table also highlights the relative changes in these 

variables between the reference and future periods for both the conventional and asynchronous methods. 

When comparing the results for the reference and future periods, both methods exhibit similar trends across most 

hydroclimatic variables. For instance, both methods predict an increase in precipitation and ETa, alongside a significant 375 

reduction in snowfall and SWE as a response to the anticipated warming climate. 

However, notable differences arise in the representation of certain variables. One of the most significant discrepancies is 

observed in surface runoff. The asynchronous method predicts more than twice the amount of surface runoff compared to the 

conventional method, both in the reference and future periods. This substantial difference suggests that the asynchronous 

method may be simulating surface processes differently than the conventional method. 380 

In terms of relative changes between the reference and future periods, both methods demonstrate similar trends across most 

variables, indicating agreement on the direction of change due to climate impacts. For example, both methods predict a 

similar reduction in snowfall (around 33% and 41%) and SWE (around 53% and 58%), reflecting the expected decrease in 

snow accumulation as temperatures rise. The increase in Eta (31%) is also consistent across both methods, suggesting that 

higher temperatures will lead to greater evapotranspiration. 385 
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Table 3. Comparison of hydroclimatic variables between the reference (1981–2010) and future (2070–2099) periods for both the 

conventional and asynchronous methods across 10 catchments and 18 climate models. The table presents annual averages for key 

hydroclimatic variables, including precipitation, snowfall, streamflow, surface runoff, interflow, actual evapotranspiration (ETa), 400 
baseflow, groundwater recharge, snow water equivalent (SWE), and soil moisture. Relative changes between the reference and 

future periods are also provided for each method. 

Hydroclimatic Variables Unit 

Conventional  Asynchronous 

Reference 

(1981-

2010) 

Future 

(2070-

2099) 

Relative 

Change 

 Reference 

(1981-

2010) 

Future 

(2070-

2099) 

Relative 

Change 

Precipitation mm yr-1 1276 1463 15%  1328 1507 13% 

Snowfall mm yr-1 409 273 -33%  362 214 -41% 

Streamflow mm yr-1 730 744 2%  771 778 1% 

Surface Runoff mm yr-1 109 77 -29%  256 199 -22% 

Interflow mm yr-1 482 530 10%  400 460 15% 

ETa  mm yr-1 554 727 31%  561 733 31% 

Baseflow mm yr-1 140 137 -2%  113 117 3% 

Groundwater Recharge mm yr-1 133 139 4%  118 141 19% 

SWE  mm 281 131 -53%  252 106 -58% 

Soil Moisture - 0.188 0.180 -5%  0.203 0.200 -2% 

 

Figure 5 illustrates the annual variations of key hydroclimatic variables across different catchments and 18 climate models 

for both the reference and future periods, comparing the conventional and asynchronous methods. Several noteworthy 405 

differences emerge between the two methods, particularly in streamflow, interflow, and groundwater recharge. 

The conventional method tends to produce higher peaks for streamflow, interflow and recharge during periods of high 

streamflow, suggesting a more pronounced response to snowmelt and precipitation events. This method also exhibits greater 

variability during these high-flow periods. In contrast, the asynchronous method displays higher summer flows. 

Both methods predict similar absolute changes in streamflow between the reference and future periods, reflecting a 410 

consistent trend across climate projections. However, the conventional method indicates a more substantial decrease in high 

flows in the future, which could have significant implications for water resource management, particularly in regions where 

peak flows are crucial for reservoir replenishment and flood control. It is thus important to assess if one of the two methods 

(conventional vs. asynchronous) can be considered as more reliable than the other as this could affect conclusions of many 

climate change impact studies. 415 

For surface runoff, the asynchronous method consistently generates higher values compared to the conventional method 

across both periods. This suggests that the asynchronous method may be simulating more rapid or intense surface processes. 

Despite these differences in magnitude, both methods exhibit similar trends in absolute change, indicating a projected 

decrease in surface runoff in the future. 

ETa results are closely aligned between the two methods. This consistency suggests that ETa projections are robust across 420 

different modeling frameworks, reinforcing confidence in these projections for water balance assessments. 
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Maximum SWE also shows differences between the two methods. The conventional method predicts higher SWE values, 

suggesting that it may simulate a more substantial accumulation of snowpack during the winter months. On the other hand, 

the asynchronous method demonstrates greater variability during the snowmelt period, with snowmelt extending from April 

to August, compared to a more concentrated snowmelt period from April to June in the conventional method. This extended 425 

snowmelt period in the asynchronous method could lead to prolonged high flows in late spring and early summer. However, 

it is quite unrealistic to observe snow persisting through the summer months, highlighting a significant limitation of the 

asynchronous method in accurately representing seasonal snow dynamics. 

 

Figure 5. Seasonal distribution of key hydroclimatic variables for the reference period (1981–2010), future period (2070–2099), 430 
and their absolute changes across the 10 catchments and 18 climate models using both the conventional and asynchronous 

methods. The figure presents the monthly averages of streamflow, interflow, surface runoff, actual evapotranspiration (ETa), 

groundwater recharge, and snow water equivalent (SWE). The left column shows the reference period, the middle column displays 

the future period, and the right column illustrates the absolute changes between the two periods. The shaded areas represent the 

variability across the catchments. 435 
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3.3 Case study 

To thoroughly assess the asynchronous method's ability to accurately reproduce physical processes within a catchment, the 

Matane catchment, covering an area of 1650 km², was selected as a case study. This catchment was chosen due to its strong 

calibration and validation performance under both methods, as well as its representative characteristics of the broader set of 

studied catchments. 440 

Average monthly temperature and precipitation for the reference period (1981-2010) and the future period (2070-2099) 

before and after bias-correction using MBCn for the Matane catchment and the climate model ACCESS-ESM1-5 is provided 

as an example (Fig. 6).  

In the reference period, a noticeable gap exists between the ERA5 data and the raw climate model data, with the raw climate 

data showing higher temperatures and increased precipitation for all months except October. The effectiveness of the bias 445 

correction is evident, as the bias-corrected climate data closely aligns with the ERA5 data, significantly reducing 

discrepancies in temperature and precipitation. The same bias trend is observed in the future period, where raw climate 

model data predicts higher temperatures and increased precipitation compared to the bias-corrected data.  

Furthermore, Fig. 6 highlights the anticipated changes in precipitation and temperature between the reference and future 

periods. Temperatures are expected to increase significantly, with projected increases around 6 degrees Celsius across the 450 

study area. These projections are in line with the IPCC's forecasts based on SSP5-8.5, and suggest that northern latitudes will 

experience faster warming compared to the global average (Estrada et al., 2021). Projections consistently show an annual 

increase in precipitation ranging from 15 to 20%, with the most significant increases occurring between December and April, 

as well as in July. The anticipated increases in temperature and changes in precipitation patterns have profound implications 

for hydrological processes and water resource management. 455 
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Figure 6. Comparison of average monthly precipitation and temperature for the Matane catchment. This figure displays the 

average monthly temperature and precipitation for the Matane catchment during the reference period (1981-2010) and the future 

period (2070-2099) under the Shared Socioeconomic Pathway 5-8.5 (SSP585) scenario. Solid lines represent average monthly 

temperature: green for the reference period with bias correction, light green for the future period with bias correction, red for the 460 
reference period without bias correction, and light red for the future period without bias correction. The black dashed line 

indicates ERA5 data for comparison. Bars represent average monthly precipitation: black for ERA5 data, green for precipitation 

with bias correction, and red for precipitation without bias correction. Lighter shades of the bars correspond to data for the future 

period, distinguishing between bias-corrected and uncorrected scenarios. 

Figure 7 offers a detailed comparison of the annual variations in key hydroclimatic variables for both the reference (1981–465 

2010) and future (2070–2099) periods, using the conventional and asynchronous methods for the Matane catchment. The 

figure mirrors the approach taken in Fig. 5 but focuses specifically on Matane, with the shaded areas indicating the 

variability across different climate models.  

The trends observed in the Matane catchment largely reflect the broader findings across all catchments. For variables such as 

interflow, streamflow, ETa, surface runoff, and SWE, the asynchronous and conventional methods exhibit patterns that align 470 

with the general trends noted in the overall analysis. However, the asynchronous method predicts significantly more 

groundwater recharge in the Matane catchment compared to the conventional method. 

A key observation from Fig. 7 is the pronounced variability between climate models when using the asynchronous method. 

This variability suggests that some climate models may produce an unrealistic representation of physical processes, 

particularly in relation to snow dynamics. For example, when examining the maximum snow water equivalent, the 475 

asynchronous method shows that the snowmelt period can start as early as April and extend as late as July, depending on the 

climate model. This is problematic, as it is highly unusual to have snow persist into July in the Matane region, making it 

unrealistic for a 30-year average to show such late snowmelt. This discrepancy raises concerns about the asynchronous 

method's ability to accurately simulate snow processes, a critical component of the hydrological cycle in regions with 

significant winter snowfall. 480 
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Figure 7. Seasonal distribution of key hydroclimatic variables for the reference period (1981–2010), future period (2070–2099), 

and their average absolute changes across the Matane catchment using both the conventional and asynchronous methods. The 

figure presents the monthly averages of streamflow, interflow, surface runoff, actual evapotranspiration (ETa), groundwater 

recharge, and snow water equivalent (SWE). The left column shows the reference period, the middle column displays the future 485 
period, and the right column illustrates the absolute changes between the two periods. The shaded areas represent the variability 

across the climate models. 

Figure 8 presents a comparison of SWE for the reference period (1981–2010) across various climate models in the Matane 

Catchment. Each panel corresponds to a different climate model, with the shaded areas illustrating the range of annual 

variability. Similar figures for other catchments are provided in Appendix C (Fig. C1 to Fig. C9). 490 

The figure clearly demonstrates the significant variability in SWE results produced by the asynchronous method compared to 

the conventional method. This disparity underscores the asynchronous method's challenges in accurately simulating snow 

patterns. For instance, the asynchronous method exhibits a broad range of SWE values, with the NorESM2-MM model 

showing only 200 mm of snow cover, while the IPSL-CM6A-LR model projects up to 700 mm for the same period. 

Additionally, the duration of snow accumulation varies widely within the asynchronous method. NorESM2-MM, for 495 

example, depicts snow presence from November to May, whereas EC-Earth3 suggests snow from October extending into 

July. These inconsistencies indicate a potential weakness in the asynchronous method's ability to capture snow dynamics. 
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In contrast, the conventional method consistently produces more stable and realistic results across different climate models, 

accurately reflecting the expected behaviour of snow accumulation and melt processes. 

The poor representation of snow processes for asynchronous method is not limited to the Matane catchment. Other 500 

catchments, such as Valin and Godbout, exhibit similar anomalies, with snow present from November to September in some 

cases. Particularly striking is one climate model simulation in the Godbout catchment, where the asynchronous method 

predicts snow cover persisting throughout 11 months of the year. In the Bras du Nord catchment, the asynchronous method 

predicts roughly half the amount of snow compared to the conventional method, further highlighting again inadequate 

representation of snow accumulation and melt dynamics. 505 

 

 

Figure 8. Snow water equivalent (SWE) comparison for the reference period (1981–2010) across various climate models for the 

Matane Catchment. This figure presents the SWE simulation results from multiple climate models using both the conventional 

(blue) and asynchronous (yellow) methods. Each panel represents a different climate model, illustrating the seasonal SWE 510 
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accumulation and melt cycle. The shaded areas depict the range of annual variability, highlighting the spread of model outputs 

and the differences in snow dynamics as captured by each method.  

Figure 9 illustrates the spatial distribution of annual groundwater recharge rates in the Matane catchment for both the 

reference (1981–2010) and future (2070–2099) periods, comparing the results from the conventional and asynchronous 

methods. Both methods exhibit similar spatial patterns, with higher elevations showing reduced recharge rates and lower 515 

elevations demonstrating higher recharge rates. An elevation map of the Matane catchment is provided in the Appendix D 

(Fig. D1). The asynchronous method, however, predicts a generally higher magnitude of recharge across the catchment.  

When examining the absolute difference between the future and reference periods, both methods project a similar spatial 

pattern of changes in groundwater recharge, with a noticeable decrease in recharge at lower elevations. However, the 

asynchronous method projects smaller increases in recharge in certain higher elevation areas, while the conventional method 520 

predicts a much more pronounced reduction—3 to 4 times greater—at lower elevations. 

 

Figure 9. Spatial distribution of annual groundwater recharge in the Matane catchment for the reference period (1981–2010) and 

future period (2070–2099) using both the conventional and asynchronous methods. The left column shows groundwater recharge 

(mm) for the reference period, the middle column for the future period, and the right column illustrates the absolute difference 525 
between the two periods. The top row represents the conventional method, and the bottom row represents the asynchronous 

method. The color scale indicates groundwater recharge rates, with warmer colors representing lower recharge and cooler colors 

indicating higher recharge rates. The absolute difference maps highlight areas of significant change between the two periods, 

illustrating the spatial variability in projected groundwater recharge changes within the catchment. 

Figure 10 illustrates the spatial distribution of soil moisture across the Matane catchment for both the reference period 530 

(1981–2010) and the future period (2070–2099), comparing results from the conventional and asynchronous methods. Both 

methods demonstrate that soil moisture distribution is heavily influenced by soil type, as indicated by the consistent spatial 

patterns observed (detailed soil type information is provided in the Appendix D, Fig. D1). The soil moisture maps show that 

areas with finer soils, such as loam, tend to have higher moisture retention, while coarser soils, such as sandy loams, exhibit 

lower moisture levels. 535 
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The asynchronous method tends to generate slightly higher soil moisture values compared to the conventional method, 

particularly in areas with inherently higher moisture retention capacity. The asynchronous method also displays greater 

variability in soil moisture patterns. 

In terms of absolute changes between the reference and future periods, the conventional method projects a general decrease 

in soil moisture, predominantly in regions with initially higher moisture values. The asynchronous method, while also 540 

projecting a decrease in soil moisture around high moisture areas, shows a more complex pattern with small regions 

exhibiting increases in soil moisture.  Finally, it is noteworthy that the patterns of groundwater and soil moisture during the 

reference and future periods are spatially consistent and exhibit similar trends. 

 

Figure 10. Spatial distribution of soil moisture in the Matane catchment for the reference period (1981–2010) and future period 545 
(2070–2099) using both the conventional and asynchronous methods. The left column shows soil moisture for the reference period, 

the middle column for the future period, and the right column illustrates the absolute difference between the two periods. The top 

row represents the conventional method, and the bottom row represents the asynchronous method. The color scale indicates soil 

moisture levels, with warmer colors representing lower moisture content and cooler colors indicating higher moisture content. The 

absolute difference maps highlight areas of significant change between the two periods, illustrating the spatial variability in 550 
projected soil moisture changes within the catchment. 

4 Discussion 

The primary goal of this study was to evaluate the ability of the asynchronous method in reproducing key hydroclimatic 

processes within a catchment and to compare its performance according to the conventional method. Through detailed 

analyses across multiple catchments, including a focused case study on the Matane catchment, this study aimed to determine 555 

whether the asynchronous method could offer a robust alternative to the conventional method, particularly in the context of 

climate change impact studies. 
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4.1 Hydroclimatic variables representation 

One benefit of the asynchronous method is its ability to better represent extreme higher values (Q95 and Q90) compared to 

conventional approach. By aligning the flow distribution with observed data, the asynchronous method effectively 560 

reproduces the magnitude of these high flow events, which is critical for managing flood risks under future climate 

conditions.  

However, despite its strengths in representing streamflow distributions, this study's findings align with other research 

indicating that the asynchronous method struggles to accurately capture the timing of observed streamflow, particularly 

during spring high-flow events (Ricard et al., 2023). This issue contrasts with earlier findings by Ricard et al. (2020), who 565 

reported that the asynchronous modeling approach provided a superior representation of the hydrologic regime compared to 

the conventional method.  

The asynchronous method performs comparably to the conventional method when it comes to representing the spatial 

distribution of hydroclimatic variables such as soil moisture and groundwater recharge. This similarity is likely due to the 

strong correlation between these hydroclimatic variables and the physical properties of the catchment, such as elevation and 570 

soil type (Talbot et al., 2024b). The consistent representation of these variables across both methods suggests that the 

fundamental physical processes driving these patterns are well-captured, irrespective of the methodological differences in 

how streamflow is simulated. 

The asynchronous method shows consistency with the conventional method in predicting the overall trends for several 

variables, such as increases in precipitation and ETa, as well as decreases in SWE and snowfall. These findings align with 575 

broader climate change projections for the region, which anticipate warmer temperatures leading to reduced snow 

accumulation and altered precipitation patterns (Aygün et al., 2022; Nolin et al., 2023; Valencia Giraldo et al., 2023; Talbot 

et al., 2024b). However, while the overall trends may appear consistent, the underlying processes and the accuracy of the 

projections differ significantly between the two methods. 

Despite these consistencies, a significant issue with the asynchronous method is its high sensitivity to variability in climate 580 

models. This problem comes from the biases inherent in climate models, which often lead to the simulation of hydrological 

processes occurring either too early or too late (Chen et al., 2021; Ricard et al., 2023). The asynchronous method, as 

currently implemented, adjust the calibration parameters to correct for biases, assuming that these biases remain constant 

over time. Consequently, if a climate model has a significant or nonstationary biases, the asynchronous method will 

perpetuate these biases, leading to inaccuracies in the timing of peak flows and the representation of hydroclimatic variables. 585 

Ricard et al. (2023) also emphasizes this vulnerability, noting that the asynchronous method is particularly prone to 

producing outlying projections due to the uncorrected biases in raw climate model outputs.  

One of the most critical issues highlighted in this study is the concept of equifinality, where different models or methods 

achieve similar outcomes for different reasons (Mei et al., 2023; Yassin et al., 2017). In the case of the asynchronous 
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method, it appears to replicate certain aspects of the conventional method’s projections, but it does so through potentially 590 

flawed mechanisms.  

The asynchronous method struggles to synchronize streamflow with the actual timing of hydrological events, particularly 

snowmelt. This lack of synchronization leads to a cascade of flawed mechanisms throughout the model. For instance, when 

snowmelt occurs too early or too late, the timing and magnitude of surface runoff are inaccurately represented, which can 

lead to unrealistic increases in surface runoff during inappropriate seasons. This misalignment also affects evapotranspiration 595 

and groundwater recharge, causing large, unrealistic variations, further skewing the model's output. Because the streamflow 

is not properly synchronized with the seasonal dynamics, the asynchronous method ultimately produces streamflow 

simulations that may match the overall distribution of the observations but do so for the wrong reasons.  

Equifinality becomes particularly problematic in this context because the asynchronous method may achieve similar 

projected changes in hydroclimatic variables as the conventional method, but for reasons that are not hydrologically sound. 600 

This brings into question the reliability of its projections, especially when the method demonstrates high variability among 

different climate models. Such variability, coupled with the method's inability to accurately replicate key hydrological 

processes, suggests that the asynchronous method, as implemented in this study, may not provide a robust framework for 

analyzing climate change impacts on hydroclimatic variables. 

In contrast, the conventional method excels at addressing the timing of hydrological events due to its optimization process, 605 

which incorporates the synchronization between observed and simulated flows. This synchronization allows the model to 

more accurately capture the timing of hydrological processes, such as snowmelt and peak flows. Given the importance of 

this synchronicity, it would be beneficial for the asynchronous method to integrate a similar measure of event timing. This 

adjustment could pave the way for a semi-asynchronous approach that balances the strengths of both methods, offering better 

overall performance in hydrological simulations. 610 

4.2 Advantages and limitations 

Both the conventional and asynchronous methods present distinct advantages and limitations. One of the most notable 

distinctions between the two methods lies in how they handle extremes. The Multivariate Bias Correction (MBCn) approach, 

typically used in the conventional method, tends to dampen the extremes, smoothing out the peaks. In contrast, the 

asynchronous method, which calibrates directly on the distribution of streamflow without bias correction, preserves (or 615 

attempts to preserve) these extremes (Ricard et al., 2023). Maintaining extreme values may provide a more realistic 

representation of potential high-impact events. 

Another critical consideration is the computational demand of the asynchronous method. Due to its reliance calibration on 

every climate model, the asynchronous method requires significantly more computational time in the calibration process. 

This increased computational cost must be weighed against the benefits of using the asynchronous method, particularly when 620 

the conventional method might achieve similar results with less computational effort and more established reliability. 
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The performance of the asynchronous method in snow-dominated catchments has proven to be problematic in this study. The 

method's inability to accurately capture snowmelt processes, as evidenced by the unrealistic snow retention and melt timing, 

casts doubt on its utility in regions where snow dynamics play a critical role in the hydrological cycle. Additionally, the high 

variability observed between climate models when using the asynchronous method suggests that the approach may be overly 625 

sensitive to the inherent uncertainties present in raw climate data. This variability complicates the interpretation of results 

and diminishes confidence in the method’s projections, particularly in scenarios where precise predictions are required for 

decision-making. 

The key takeaway from this study is that while the asynchronous method allowed preserving the distribution of streamflow 

and maintaining extremes, it does so at the cost of increased variability and potential inaccuracies in simulating critical 630 

hydrological processes, particularly those related to snow. Therefore, the asynchronous method, as implemented in this 

study, should be used with caution, especially in snow-dominated catchments where accurate representation of snowmelt is 

crucial. However, the asynchronous method could be useful in scenarios where the distribution of extremes is of particular 

interest, such as in regions where the temporal distribution of streamflow is less critical than the overall volume 

The conventional method, which is optimize to account for event-specific dynamics, remains the more reliable option for 635 

most applications, particularly when the goal is to simulate the timing and magnitude of streamflow events with a higher 

degree of accuracy.  

Ultimately, these findings aim to inform decision-making in critical sectors such as agriculture, water resource management, 

urban planning, and environmental conservation. For example, soil moisture data is essential in agriculture for optimizing 

irrigation and improving crop yields, as well as in environmental management for maintaining wetlands and forest 640 

ecosystems. Groundwater recharge data supports sustainable management of aquifers, which is crucial for drinking water 

supplies, agriculture, and industrial use, while also guiding urban planning to avoid flooding or subsidence. Surface runoff 

modeling is vital for flood prevention and urban infrastructure design, ensuring stormwater systems can handle heavy 

rainfall. Lastly, streamflow data is key to water resource management, enabling efficient allocation for agriculture and 

industry, flood forecasting, and optimizing hydroelectric power generation. By providing detailed projections of these key 645 

hydroclimatic variables, this study supports adaptive management strategies across a wide range of sectors impacted by 

climate change. 

4.3 Future directions 

Looking forward, one of the most promising avenues for improving the asynchronous method is the integration of 

synchronicity, leading to the development of a semi-asynchronous approach. This hybrid method would combine the 650 

strengths of both the conventional and asynchronous methods, offering a more balanced solution that mitigates the 

weaknesses observed in each. By incorporating synchronicity into the calibration process, the semi-asynchronous method 

would better align the timing of hydrological events, such as snowmelt, with observed data, improving its ability to capture 

critical seasonal dynamics. 
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For instance, modifying the objective function to calibrate based on seasonal or monthly data could enhance the model's 655 

ability to simulate hydrological processes. This integration of event timing into the calibration process is crucial for 

addressing the timing discrepancies that currently limit the asynchronous method's performance. 

In parallel, ongoing advancements in climate modeling provide an opportunity to further refine the semi-asynchronous 

approach. As climate models become more accurate, with fewer biases and enhanced temporal precision, the challenges of 

synchronization in the current asynchronous method could be significantly alleviated. These improvements would enable the 660 

semi-asynchronous method to offer more robust and reliable simulations of hydrological processes under future climate 

scenarios, positioning it as a more versatile tool for climate impact assessments. 

5 Conclusion 

This study aimed to evaluate the performance of the asynchronous method in comparison to the conventional method for 

simulating key hydroclimatic variables within catchments, with a focus on the implications for climate change impact 665 

studies. Through a detailed analysis of multiple catchments, including a focused case study on the Matane catchment, the 

study has revealed several important insights into the strengths and limitations of both methods. 

The findings indicate that while the asynchronous method shows promise in accurately preserving extreme values, it 

struggles significantly with the timing of hydrological events, particularly those related to snowmelt. This timing issue is 

critical in snow-dominated catchments, where accurate snowmelt representation is crucial for reliable hydrological 670 

modeling. The asynchronous method’s vulnerability to equifinality, nonstationarity and biases in climate models further 

complicates its application, often leading to increased variability and potential inaccuracies in key hydrological processes 

which may not be hydrologically sound. 

In contrast, the conventional method, with its bias correction step, provides more reliable simulations of event-specific 

dynamics, particularly in capturing the timing and magnitude of streamflow events, but at cost of underestimating extreme 675 

hydrological events. This reliability makes it a more suitable choice for most hydrological applications, especially in regions 

where precise timing of hydrological events is essential. 

From a practical standpoint, while the asynchronous method offers the advantage of preserving extremes, it comes at the cost 

of increased computational demand and variability in projections, which may limit its utility in certain contexts. The 

conventional method, on the other hand, remains a robust and reliable tool for simulating hydrological processes under 680 

future climate scenarios, particularly when accuracy in timing is a critical factor. 

Looking ahead, there are significant opportunities to refine the asynchronous method, particularly by integrating 

synchronicity into the calibration process to better capture seasonal dynamics. This enhancement could lead to the 

development of a semi-asynchronous approach that combines the strengths of both the asynchronous and conventional 

methods, addressing the current challenges related to event timing while preserving the ability to model extremes. Such a 685 
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hybrid method would offer a more balanced solution, improving accuracy in snowmelt representation and other critical 

hydrological processes. 

Until these refinements are realized, the asynchronous method should be applied with caution, especially in regions where 

precise seasonal dynamics, such as snowmelt, are critical. Future research should focus on advancing the semi-asynchronous 

method, ultimately aiming to create a more versatile and robust tool for hydrological modeling in the context of climate 690 

change. 

Appendix A 

Table A1. Kling-Gupta Efficiency (KGE) values for the conventional method during the calibration and validation periods across 

ten catchments. The mean KGE values for calibration and validation are also provided. 

Conventional Method KGE 

Name Area (km2) Calibration Validation 

 
Bonaventure 1910 0.847 0.889  

Matane 1650 0.906 0.906  

Ouelle 795 0.894 0.834  

Bécancour 919 0.850 0.807  

Nicolet Sud-Ouest 549 0.817 0.786  

Au Saumon 738 0.831 0.778  

Bras du Nord 642 0.873 0.872  

Du Loup 774 0.838 0.804  

Valin 746 0.902 0.885  

Godbout 1570 0.869 0.863  

Mean 0.863 0.842  

 695 

 

 

 

 

 700 
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Table A2. Root Mean Square Error (RMSE) values for the asynchronous method during the calibration and validation periods 

across ten catchments. The mean RMSE values for calibration and validation are also provided. 

Asynchronous Method RMSE 

Name Area (km2) 
Calibration Validation 

Mean Std Mean Std 

Bonaventure 1910 0.108 0.031 0.154 0.047 

Matane 1650 0.124 0.021 0.180 0.034 

Ouelle 795 0.125 0.027 0.167 0.043 

Bécancour 919 0.095 0.019 0.158 0.048 

Nicolet Sud-Ouest 549 0.125 0.034 0.200 0.097 

Au Saumon 738 0.156 0.054 0.209 0.053 

Bras du Nord 642 0.175 0.044 0.243 0.063 

Du Loup 774 0.085 0.019 0.165 0.091 

Valin 746 0.109 0.036 0.162 0.055 

Godbout 1570 0.110 0.032 0.157 0.037 

Mean 0.121 0.031 0.179 0.057 
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Appendix B 

 705 

Figure B1. Performance comparison between the conventional and asynchronous methods for the Bonaventure catchment during 

the reference period (1981–2010). Panel (a) displays the relationship between simulated daily streamflow (Qsim) and observed 

daily streamflow (Qobs) for the conventional (blue) and asynchronous (yellow) methods. The x-axis represents the observed daily 

streamflow, while the y-axis represents the simulated streamflow. Panel (b) shows the percentage bias between observed and 

simulated streamflows for both methods, with the x-axis representing the observed daily streamflow and the y-axis displaying the 710 
percentage bias relative to the observed values. The shaded regions in both panels illustrate the variability among climate models 

around the mean bias for each method, emphasizing the differences in how well each method simulates streamflow across the 

observed streamflow range. 
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Figure B2. Same as Fig. B1, but for Ouelle catchment.  715 

 

Figure B3. Same as Fig. B1, but for Bécancour catchment. 
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Figure B4. Same as Fig. B1, but for Nicolet Sud-Ouest catchment. 

 720 

Figure B5. Same as Fig. B1, but for Au Saumon catchment. 
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Figure B6. Same as Fig. B1, but for Bras du Nord catchment. 

 

Figure B7. Same as Fig. B1, but for Du Loup catchment. 725 
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Figure B8. Same as Fig. B1, but for Valin catchment. 

 

Figure B9. Same as Fig. B1, but for Godbout catchment. 

 730 
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Appendix C 

 

Figure C1. Snow water equivalent (SWE) comparison for the reference period (1981–2010) across various climate models for the 

Bonaventure Catchment. This figure presents the SWE simulation results from multiple climate models using both the 

conventional (blue) and asynchronous (yellow) methods. Each panel represents a different climate model, illustrating the seasonal 735 
SWE accumulation and melt cycle. The shaded areas depict the range of annual variability, highlighting the spread of model 

outputs and the differences in snow dynamics as captured by each method. 
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Figure C2. Same as Fig. C1, but for Ouelle catchment. 
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 740 

Figure C3. Same as Fig. C1, but for Bécancour catchment. 
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Figure C4. Same as Fig. C1, but for Nicolet Sud-Ouest catchment. 

https://doi.org/10.5194/egusphere-2024-3037
Preprint. Discussion started: 25 October 2024
c© Author(s) 2024. CC BY 4.0 License.



40 

 

 

Figure C5. Same as Fig. C1, but for Au Saumon catchment. 745 
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Figure C6. Same as Fig. C1, but for Bras du Nord catchment. 
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Figure C7. Same as Fig. C1, but for Du Loup catchment. 
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 750 

Figure C8. Same as Fig. C1, but for Valin catchment. 
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Figure C9. Same as Fig. C1, but for Godbout catchment. 
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Appendix D 

 755 

Figure D1. Topographic and soil type characteristics of the Matane catchment. Panel (a) shows the elevation map, with elevations 

ranging from 100 to 800 meters above sea level. Higher elevations are indicated in warmer colors (reds and oranges), while lower 

elevations are shown in cooler colors (blues and greens). Panel (b) displays the distribution of soil types within the catchment, with 

sandy loam covering 56% of the area (dark blue), loam covering 41% (light blue), and sandy clay occupying 3% (yellow). 

Code and data availability 760 

The calibrated WaSiM model and all simulations for all catchments discussed in this study is publicly accessible at 

https://osf.io/n87ey/ (Talbot et al., 2024c). 
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