1 Microbial communities inhabiting 600-year-old sediments in the Inka-Coya Lake located in the

2 Atacama Desert

- 3 Coral Pardo-Esté^{1*}; Juan Castro-Severyn^{2,3}; Francisco Remonsellez^{2,3}; Antonio Maldonado^{4,5}; Inger Heine Fuster⁶; Hector
- 4 Pizarro⁷; Adriana Aránguiz-Acuña^{5,6}*.

5

- ¹ Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile.
- 7 Laboratorio de Microbiología Aplicada y Extremófilos, Departamento de Ingeniería Química, Universidad Católica del Norte,
- 8 Antofagasta, Chile.
- 9 ³ Centro de Investigación Tecnológica del Agua en el Desierto-CEITSAZA, Universidad Católica del Norte, Antofagasta,
- 10 Chile.
- ⁴ Centro de Estudios Avanzados en Zonas Áridas, CEAZA. La Serena, Chile.
- ⁵ Millennium Nucleus AndesPeat, Arica, Chile.
- 13 ⁶ Laboratorio de Ecología Acuática, Departamento de Recursos Ambientales, Universidad de Tarapacá, Arica, Chile.
- ⁷ Departamento de Ciencias Geológicas Universidad Católica del Norte, Antofagasta, Chile.

15

- * Correspondence to: Adriana Aránguiz-Acuña (aaranguiza@academicos.uta.cl) / Coral Pardo-Esté (coral.pardo@ce.ucn.cl)
- Abstract. Lacustrine sediments are natural archives for the surrounding area's biogeochemical dynamics; in particular, the isolation and extreme conditions in which desert lakes are located make them ideal study models for studying perturbations in
- the ecosystem. We aimed to study the microbial community dynamics in Inka-Coya Lake, located in the Atacama Desert,
- where active geological activity and the local mining industry influence biological dynamics in this ecosystem, as suggested
- for macroinvertebrates and plankton communities in the lake. In this study, we aimed to characterize the microbial communities
- 22 that inhabit deep lacustrine sediments and their interaction with the surrounding environment. The results show that the
- 23 microbial community from lacustrine sediments contains over 70% unclassified organisms, highlighting this ecosystem's
- 24 microbial taxonomic novelty. Our results indicate that the microbial communities cluster in three distinct zones: a superficial
- community, an intermediate and mixed community, and a more specialized anaerobic community in the deeper sediments. The microbial composition is dominated by chemoheterotrophic bacteria strongly associated with methane metabolism.
- Additionally, there is statistical evidence of strong correlations between particular taxa such as Sulfurimonadaceae,
- 28 Metanoregulaceae, and Ktedonobacteroceae with elements like Cu, As, Fe, Ni, and V, and magnetic properties of the
- 28 Metanoregulaceae, and Kiedonobacteroceae with elements like Cu, As, Fe, Ni, and V, and magnetic properties of the surrounding environment, evidencing the strong correlation between the surrounding geochemistry and microbial life that
- 30 could be disrupted with the continuous mining activity in the area. Further detailed studies of the metabolic repertoire of these
- communities are necessary to understand the complex dynamics between microbial life and geochemical composition in this
- 32 fragile and extreme environment.

3334

KEYWORDS: desert lake, deep lacustrine sediment, microbial communities, extremophiles

1. INTRODUCTION

- 36 The Atacama Desert is located on the driest part of the South American dry diagonal, which extends from 5°S on the west
- 37 coast to almost 50°S on the east coast, over 4,000 km with less than 200 mm mean annual rainfall (MAR). It is surrounded by
- 38 the western slopes of the Central Andes Cordillera between 15 and 30°S at elevations between sea level and 3,500 m a.s.l. The
- 39 Andes Cordillera represents a physical barrier that directly modulates climatic conditions and water availability in the Atacama
- 40 Desert (Garreaud et al., 2003). Particular environmental conditions of the Atacama, such as high solar radiation, low
- 41 atmospheric humidity, and other pressures associated with the natural composition of the desert, directly influence life
- 42 occurring in these ecosystems (Demergasso et al., 2008; Albarracín et al., 2020; Kurth et al., 2021; Kereszturi et al., 2020;
- 43 Borsodi et al., 2022). Thus, the Atacama Desert water bodies are truly natural laboratories for understanding evolutionary
- 44 processes, not only of the geomorphology of the landscape but also of different life forms promoted by environmental forces,
- 45 such as climate changes at different time scales (Adrian et al., 2009).
- 46 Aquatic sediments are sources and/or sinks of elements participating in biogeochemical cycles, including both allochthonous
- 47 and autochthonous lake processes, influencing biodiversity and trophic dynamics of water bodies (Trolle et al., 2010;
- 48 Fernández et al., 2000; Usenko et al., 2007; Bandowe et al., 2018). Aquatic sediments have an advantage over terrestrial
- 49 records, and that is that they accumulate at measurable rates because they are often buffered from physical, chemical, and
- 50 biotic disturbances, thus allowing the recording of past environmental conditions (Benito, 2020; Picard et al., 2022; Da Costa
- et al., 2023; Yan et al., 2024). A wide variety of abiotic (e.g., bulk density, dry mass, radioactive isotopes, mineralogy, chemical 51
- 52 elements) and biotic proxies (e.g., fossils, species abundance, and presence/absence, resting structures, pigments,
- 53 environmental DNA) preserved in the sediments are currently analyzed to reconstruct ecosystem change at timescales ranging
- 54 from fine scale (interannual or decadal) to millennial (Cohen, 2003; Korosi et al., 2017).
- 55 The central Andes water systems have mainly originated after successive glaciations and volcanic and tectonic activity. In the
- 56 Atacama Desert, lacustrine sediments are natural archives holding evidence of past precipitations, dust deposition, anthropic
- 57 disturbances, and pollution, mainly due to mining activity that occurs in the area (Grosjean and Veit, 2005; Placzek, 2009;
- 58 Cerda et al., 2019; Aránguiz-Acuña et al., 2020). Desert lakes are located in extremely arid and isolated areas, making them
- 59 susceptible to perturbations (Valero-Garcés et al., 2003; Pueyo et al., 2011; Grosjean and Veit, 2005) and hosting extreme
- 60 forms of life, especially microorganisms that have evolved physiological and life-history adaptations allowing them to thrive
- in challenging conditions (Dib et al., 2009; Ordoñez et al., 2009; Farías et al., 2013, 2014; Rasuk et al., 2014). Therefore, 61
- 62 lacustrine sediments are expected to contain a great taxonomic diversity, including low-abundance and highly specialized taxa,
- directly influenced by small-scale conditions determining local environments (Borsodi et al., 2022). 63
- 64 Inka-Coya Lake (22°20'S-68°35'W, 2534 m.a.s.l.) is located at the eastern margin of the Atacama Desert, close to the Salado
- 65 River, in the San Francisco de Chiu-Chiu village, northern Chile. It is a karstic sinkhole developed during the Quaternary
- 66 period by the dissolution of calcareous layers of the Chiu-Chiu Formation (El Loa Group). The Atacama Desert and its
- 67 surroundings have a particular geological history; metals and metalloids found in the Inka-Coya area include Ti, Al, Fe, Ni,
- 68 and Cr; also, As and Sb are associated with the local geological activity (Aszalós et al., 2020; Borsdorf and Stadel, 2015;
- 69 Pérez-Portilla et al., 2024), that directly influence the chemical composition of the underground water (Vignale et al., 2021).
- 70 The central Atacama Desert, specifically the Antofagasta Region, holds large porphyry copper deposits that support the great
- 71 metal-mining industry (Dittmar, 2004; Salvarredy-Aranguren et al., 2008). In 2021, Chile was the world's top copper producer,
- 72 producing 5,508,084 tons -26.6% of the world's production- (Rodríguez-Luna et al., 2022). The mining industry in the
- 73
- Antofagasta region has developed extensively since the 19th century (Dittmar, 2004; Salvarredy-Aranguren et al., 2008) with
- 74 increasing impacts on the national economy and development, but also on the health of ecosystems, which have triggered

social and environmental conflicts, affecting especially relevant groups such as ancient Indigenous communities from Quechua and Lickan Antay people (see Ramírez et al., 2005; Tapia et al., 2019).

Previous studies aimed to assess mining pollution records on environmental matrices have included the sediment records of different longitudes from the Inka-Coya Lake, showing variation through the geochemistry and magnetic properties (Cerda et al., 2019; Aránguiz-Acuña et al., 2020; Pérez-Portilla et al., 2024). Analyzed variables have allowed us to identify episodes associated with changes in water availability, flash flooding, and evidence of perturbations induced by mining activities. Overall, the lake is polluted at different degrees of severity with Cu, Sb, Mo, and As, and some elements like Cu and Ni have been enriched in the most recent periods (Cerda et al., 2019; Pérez-Portilla et al., 2024). Additionally, some biological proxies, such as macroinvertebrates and diatom communities, were found to be directly influenced by the accumulation of metal(loid) as observed by changes in assembly composition (Aránguiz-Acuña et al., 2020). Surrounding metal-mining exploitation, which has been maintained and even increased through the last 200 years, in addition to aridity stable conditions, makes Inka-Coya Lake an excellent site for understanding biological adaptations of aquatic populations to these anthropic pressures (Aránguiz-Acuña et al., 2018; 2020).

While microbial life in arid ecosystems plays a key role in maintaining biogeochemical cycles (Madsen, 2011), there is a high proportion of unclassified taxa that hold great interest in poly-extreme environments from an ecological, environmental, and biotechnological point of view (Farias et al., 2014; Castro-Severyn et al., 2021; Dong et al., 2022). Nevertheless, there are scarce records in which microbial assemblage has been used as a paleolimnological proxy of the possible responses to long-term sustained anthropogenic metal stress (Da Costa et al., 2023; Yan et al., 2024). The few studies considering this aim have focused on changes in primary producers' abundance, under-interpreting the impact on other metabolic functional groups (Benito et al., 2020; Picard et al., 2022).

This study aimed to characterize the microbial community along a lacustrine sediment core, capturing the depositional history of the Inka-Coya Lake over the last 600 years. We hypothesize that the microbial community assemblage of Inka-Coya Lake is strongly associated with sediment attributes shaped by autochthonous and allochthonous processes, particularly anthropogenic contributions from the metal-mining industry that has operated near the lake for the past century. To our knowledge, this is a pioneering study in the microbial characterization of a sedimentary core of this length (136 cm) and date (600 years) from a lake sediment in the Atacama Desert. Results show that the microbial communities have changed through time, identifying three clear periods in which alpha and beta diversity has been associated with organic matter content, magnetic susceptibility, and metals and metalloid concentrations. Additional studies of the metabolic functions of the microorganisms inhabiting these sediments are required to understand the interactions between microbial life and the geochemical components of the Inka-Coya Lake further.

1. METHODS

2.1 Study site and sampling

Inka-Coya Lake (San Francisco de Chiu Chiu village, Antofagasta; 22° 20.300′ S; 068°35.981′ W, Chile) has a surface area of 500 m² and a maximum depth of 18 m, is located in the Pre-Andean Depression of the Antofagasta Region at an elevation of

109 2,520 m a.s.l. (Fig. 1 A, B). Around the lake, the predominant vegetation is of vegas, a type of wetland typical of the Andean 110 pre-Puna zone, strongly associated with the hydric variability of the emerging groundwaters.

2.2 Sediment Core Sampling

- 112 A fieldwork campaign was driven in August 2021. The topography of the lake bottom was modeled using the Echo-Map Plus
- 113 42CV from Garmin. Afterward, three sediment cores from the depocenter of Inka-Coya Lake, where maximum sedimentation
- 114 rates are expected, were obtained. The cores were obtained using a 9.0 cm diameter Uwitec gravity corer. This study shows
- 115 the most extended core analysis results, measuring 136 cm (labeled LIC-SHC03). X-ray and photography images were
- 116 captured before obtaining sections of sediment subsamples from the core. For subsampling, the frozen core was sliced every
- 117 0.5 cm to a depth of 12 cm; then, every 1 cm until the end of the core, totaling 146 sediment samples. Sediment sub-samples
- 118 for molecular analysis were first taken from each segment center within a laminar flow hood and using ethanol-sterilized tools.
- 119 These sub-samples were collected in sterile 15 ml tubes, labeled and kept frozen. Other sub-samples were also taken for the
- 120 geochemical analyses. Additionally, sub-samples for every 1 cm interval were obtained to develop the magnetic susceptibility
- 121 analysis. The cores' detailed treatment, geochemical analysis, and magnetic properties can be reviewed by Pérez-Portilla et al.
- 122 (2024).

123

130

111

2.3 Sediment Core Dating

- 124 The geochronology of the sediment core from Inka-Coya Lake was determined through radiocarbon dating (14C) on the
- 125 remaining macroscopic carbon along the record. The measurements were done using accelerator mass spectrometry (AMS),
- 126 and the results were corrected for isotopic fractionation with an unreported $\delta 13C$ value. Subsequently, the age-depth model
- 127 for this sedimentary core was established using the Bayesian radiocarbon chronology package Bchron in R, using the 'shcal20'
- 128 as the calibration curve (Hogg et al., 2020; Haslett and Parnell, 2008). A detailed description of the procedure is available in
- 129 Pérez-Portilla et al. (2024).

2.4 Magnetic and Geochemical Properties Analysis

- 131 Five grams of each sediment sub-sample were placed into paleomagnetic boxes of 8 cm³ to measure the mass magnetic
- 132 susceptibility (χ) using a Kappabridge MFK1 FA instrument (AGICO Co) under environmental conditions (22–24°C) and a
- 133 magnetic field of 200 A/m. The samples were measured at a low frequency of 976 Hz (γlf or simply γ) and a high frequency
- 134
- of 15,616 Hz (yhf). The magnetic susceptibility dependent on the frequency was calculated using both measurements, as
- 135 described by Pérez-Portilla et al. (2024). The γfd% parameter is used to indicate the presence of magnetic particles near the
- 136 limit of the superparamagnetic/single domain (SP/SD) magnetic size (Verosub and Roberts, 1995), which can be linked to the
- 137 presence of magnetic particles of authigenic origin (Dearing et al., 1996). Additionally, sub-samples of each 1 cm slice were
- 138 dried in an oven at 50°C. Afterwards, they were homogenized using an agate mortar in the Geochemistry Laboratory of
- 139
- Universidad Católica del Norte (UCN), Antofagasta, Chile. The sediments were then digested using reverse agua regia (4 mL
- 140 HCl + 12 mL of HNO₃ + 300 mg of sediment sample) and a microwave digester (Perkin Elmer MPS 320; EPA 3052 method),
- 141 following Tapia et al. (2022) in Centro de Investigación Tecnológica del Agua en el Desierto (CEITSAZA-UCN). The
- elements aluminum (Al), titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), nickel (Ni), Cu, zinc (Zn), arsenic (As). 142
- 143 molybdenum (Mo), and antimony (Sb) were measured by the inductively coupled plasma atomic emission spectroscopy (ICP-
- 144 OES) Perkin Elmer Optima 7000 in the digested residue at CEITSAZA. The organic, inorganic matter, and carbonate contents
- 145 were estimated using the loss on ignition (LOI) method, which was assessed at a contiguous 1 cm interval following Heiri et
- al. (2001). This procedure involved drying 1 cm³ of each sediment sample in crucibles at 105°C for two hours and weighing 146

- them. The dry samples were weighed before heating to 550°C in a flask over 1.5 h, left at 550°C for two h, then allowed to
- 148 cool. The samples were weighed, then the crucibles were transferred to the flask and burned at 925°C. Finally, the crucibles
- were weighed again once they cooled.

2.5 Sediment sample processing and DNA extraction

- 151 Sediment samples were obtained every 1 cm from the top to the bottom of the core. According to the manufacturer's
- instructions, total DNA was extracted from the 250 mg of sediment samples using the DNeasy PowerSoil kit (Qiagen Inc.,
- Hilden, Germany). DNA integrity, quality, and quantity were verified by 1% agarose gel electrophoresis, the 260/280nm ratio
- and fluorescence using a Qubit4 fluorometer and the Qubit dsDNA HS assay kit (Thermo Fisher Scientific, MA, USA).
- Following, DNA samples were sent to AustralOmics, Chile, for amplification of the bacterial 16S rRNA gene V4 region (~450
- bp) using tBakt 341F and Bakt 805R primers (Herlemann et al., 2011), construction of 250 bp paired-end libraries and
- sequencing on a MiSeq (Illumina) platform.

2.6 Taxonomic Composition Analysis

- This analysis was conducted in R v4.0.3 and RStudio v1.3.1093 following the DADA2 v1.16.0 R package pipeline (Callahan
- et al., 2016) to infer amplicon sequence variants (ASVs) for each sub-sample. Briefly, the reads were evaluated for quality
- 161 control and subsequently trimmed (Ns = 0, length \geq 150 bp, expected errors \leq 2), followed by dereplication, denoising, and
- merging of paired reads. Following, an ASV table was built to allow a maximum of two expected errors, removing chimeras
- and assigning taxonomy using the Silva v138 database (Quast et al., 2012). Also, all ASVs identified as Eukarya, Chloroplast,
- and Mitochondria were removed. A multi-sequence alignment was created to infer phylogeny using FastTree v2.1.10 (Price et
- al., 2009), and phyloseq-object (containing the ASVs, taxonomy assignment, phylogenetic tree, and the samples meta-data)
- was created using the R package Phyloseq v1.34.0 (McMurdie et al., 2013) and the variance stabilizing transformation was
- used for normalization. Finally, taxa relative abundance and taxonomic composition at different ranks were visualized using
- the ggplot2 v3.3.3 (Wickham, 2016), Fantaxtic v0.2.0 (Teunisse, 2022), and ampvis2 v2.7.4 (Andersen et al., 2018) R
- 169 packages.

170

150

158

2.7 Diversity Analysis

- 171 Alpha diversity metrics (Shannon, Chao, phylogenetic diversity, and Simpson indexes) were calculated for each segment along
- the core using the microbiome v1.24.0 (Lahti et al., 2017) and btools v0.0.1 R packages. Also, Wilcoxon statistical tests to
- compare means with Bonferroni correction were carried out between the identified zones and visualized using the DESeq2
- 174 v1.42.0 (Love et al., 2014) and ggpubr v0.6.0 (Kassambara, 2017) packages. Moreover, beta diversity was evaluated by
- principal coordinates analysis using Hellinger transformed Bray Curtis distances based on the ASV abundance matrix were
- calculated using Phyloseq v1.34.0 (McMurdie et al., 2013) and ampvis2 v2.4.5 (Andersen et al., 2018) R package. Also,

- redundancy analysis (RDAs) was calculated using depth gradient and zone parameters to constrain the multivariate space, and ANOVA tested the statistical significance of the selected geochemical variables.
 - 2.8 Functional Predictions

- 180 Functional potential signatures and metabolic pathways abundances were inferred based on the ASV abundance and taxonomy
- matrices using PICRUSt2 v2.4.1 software (Douglas et al., 2020) with the Kyoto Encyclopedia of Genes and Genomes (KEGG)
- 182 (Kanehisa et al., 2012) and MetaCyc (Caspi et al., 2018) pathway databases. We used the three identified zones along the core
- that present significant differences at the of taxonomic composition level and then Differential Abundance of inferred pathways
- was tested with the Kruskal-Wallis test (confidence interval = 0.95) and the Benjamini-Hochberg correction false-discovery
- rate using ggpicrust2 v1.7.2 R package (Yang et al., 2023). Also, we use the Functional Annotation of Prokaryotic Taxa
- 186 (FAPROTAX) database v1.2.7 (Louca et al., 2016) to map the identified ASVs and quantify changes in established
- 187 ecologically relevant functions.
 - 1. RESULTS
- The samples analyzed correspond to a sediment core from Lake Inka-Cova, located in the Atacama Desert, with a water depth
- of 18.5 meters (Fig. 1). The sediment core age-depth model was constructed based on six charcoal sample dates, where the
- more superficial at 41 cm corresponds to 75 ± 32 cal years BP, and the deepest found at 94 cm corresponds to an age value of

195

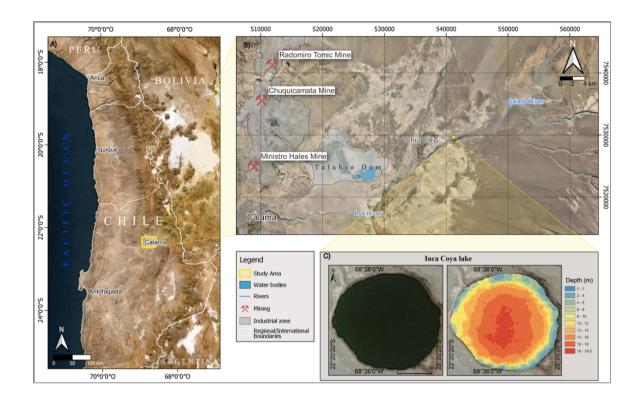


Figure 1. Sampling site location in Northern Chile (A), Inka-Coya Lake, and important surrounding mining and urban centers (B) and the bathymetry of the lake (C).

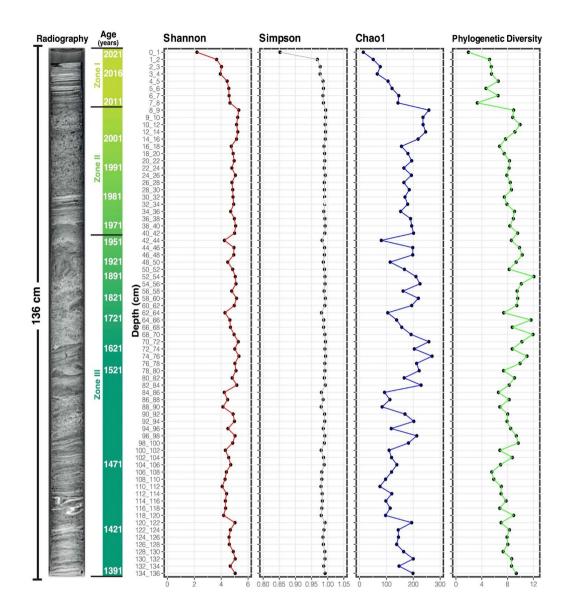


Figure 2. Diversity of the microbial community of the Inka-Coya sediment core. The core sedimentary radiography, dating, and alpha diversity indices variation along the core depth are displayed.

The variation in diversity within the sample was measured to determine the changes in the microbial community along the sediment core by calculating the Shannon, Simpson, Chao, and Phylogenetic indices as standard measures of the taxonomic diversity within a sample (Thukral, 2017). The microbial community observed along the core was diverse, based on the DNA samples analyzed. Quantification of diversity showed that it increased with depth, and the Simpson index remained stable after the 2 cm surface layer. At the same time, Chao1 considered low-abundance taxa, and the phylogenetic index based on the

- phylogenetic history of the species (Fig. 2). The diversity increases in all cases at two cm long, and maximum values were observed between 8 and 86 cm, with minor peaks at 96, 120, and 130 cm near the bottom samples.
- Three distinct zones in terms of microbial taxonomy could be identified and are statistically different for the four evaluated diversity indices, except between Zone II and III in the context of phylogenetic diversity (Fig. 3A). These three disjunct clustering zones of microbial community diversity along the sediment core were also identified in the beta diversity analysis, where zone I includes the less diverse upper layer (0-8 cm), zone II, the middle zone of the core (9-42 cm) with significant

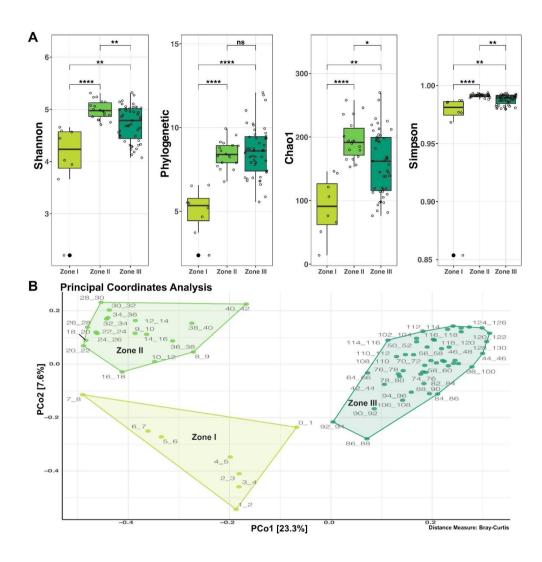
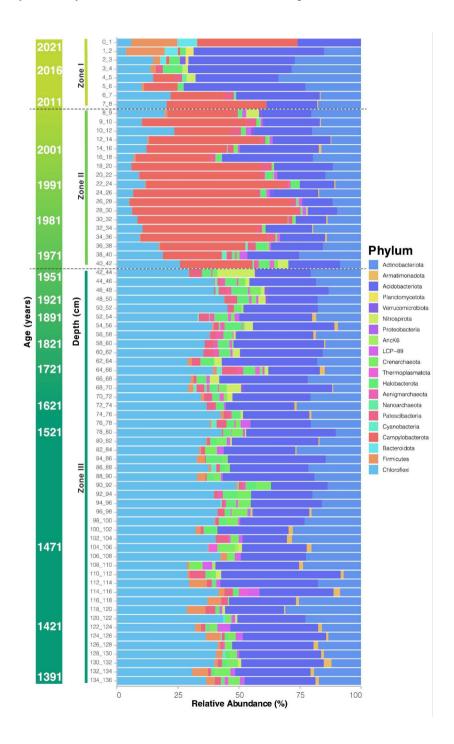



Figure 3. Clustering of the microbial communities inhabiting the deep sediment of Inka-Coya Lake A) Statistical differences in alpha diversity between depth zones. B) Principal Coordinates Analysis (PCoA) with the ASVs relative abundance using Bray-Curtis as distance metric; each point corresponds to a community, tagged by depth and colored by zone.

The taxonomic composition and abundance along the communities at phylum rank also reflect the clustering on three distinct zones, where zone I is dominated by Actinobacteriota and includes a great abundance of Firmicutes in the top layers, and Campylobacterota, there is also the presence of Bacteroidota, Halobacteriota, and Plantomycetota. Zone II is more diverse and

- composed mainly of Campylobacterota, Chloroflexi, Acidobacteriota, and Actinobacteriota. While zone III is the largest and more homogeneous, composed of several low-abundance taxa, dominated by Chloroflexi, Acidobacteriota, and
- Actinobacteriota, there is also a higher representation of Crenarchaeota, Nitrospira, Aenigmarchaeota, and Armatimonadota
- that in the rest of the zones (Fig. 4).
- Notably, 76.6% of the taxa could not be identified at the genus level (0% matched any known species). Thus, Figure 5 shows
- the abundance at the "best hit," where Campylobacterota (Sulfuricurvum, Sulfurimonas), Mycobacterium, and Methanolinea

Campylobacterota; Sulfuricurvum—Chloroflexi; SCGC_AB_S39_J10	Most Abundant Taxa				
Campylobacterota; Sulfurimonas-Actinobacteriota; Mycobacterium-Halobacterota; Methanolinea O,7 1,2 2,8 Chloroflexi; Pelolinea-Acidobacteriota; Aminicenantales ASV499 - O,4 0,5 0,7 Acidobacteriota; Aminicenantales ASV485 - Acidobacteriota; Aminicenantales ASV485 - Chloroflexi; GIF9 ASV5911 - O,8 0,6 0,4 Acidobacteriota; Aminicenantales ASV410 - Acidobacteriota; Aminicenantales ASV410 - Acidobacteriota; Aminicenantales ASV4611 - Acidobacteriota; Aminicenantales ASV461 - Acidobacteriota; Aminicenantales ASV464 - Acidobacteriota; Aminicenantales ASV464 - Acidobacteriota; Aminicenantales ASV479 - Acidobacteriota; Aminicenantales ASV465 - O,9 0,3 0,5 Actinobacteriota; Aminicenantales ASV479 - Acidobacteriota; Aminicenantales ASV506 - Chloroflexi; MSBL5 ASV5629 - Acidobacteriota; Aminicenantales ASV405 - O,9 0,3 0,4 Actinobacteriota; Aminicenantales ASV500 - Chloroflexi; MSBL5 ASV5629 - Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; Aminicenantales ASV500 - Chloroflexi; Aminicenantales ASV500 - Chloroflexi; Aminicenantales ASV500 - O.2 0,5 Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; Aminicenantales ASV500 - Chloroflexi; Aminicenantales ASV500 - O.2 0,5 Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; MSBL5 ASV5010 - O.3 0,2 Acidobacteriota; Aminicenantales ASV500 -	Campylobacterota; Sulfuricurvum-	11	25.6	0.1	
Actinobacteriota; Mycobacterium- Halobacterota; Methanolinea- Chloroflexi; Pelolinea- Acidobacteriota; Aminicenantales ASV499 - 0.4 0.5 0.7 Acidobacteriota; Aminicenantales ASV485 - 4.1 0.4 0.4 Halobacterota; Methanosaeta- Chloroflexi; GIF9 ASV5911 - 0.8 0.6 0.4 Acidobacteriota; Aminicenantales ASV4100 - 0.8 0.5 0.5 Actinobacteriota; Actinomarinales ASV4100 - 0.8 0.5 0.5 Actinobacteriota; Actinomarinales ASV480 - 0.5 0.3 0.6 Actinobacteriota; Aminicenantales ASV4614 - 0.7 Acidobacteriota; Aminicenantales ASV516 - 0.3 0.6 Acidobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV479 - 0.1 0.7 Acidobacteriota; Aminicenantales ASV479 - 0.1 0.7 Acidobacteriota; Aminicenantales ASV483 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Actinobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Actinobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter-0.3 1.2 Acidobacteriota; Aminicenantales ASV500 - 0.2 0.5 Acidobacteriota; Aminicenan	Chloroflexi; SCGC-AB-539-J10-	0.1	1.3	11.2	
Halobacterota; Methanolinea	Campylobacterota; Sulfurimonas -	2.6	14.4		
Chloroflexi; Pelolinea- Acidobacteriota; Aminicenantales ASV489 - 0.4 0.5 0.7 Acidobacteriota; Aminicenantales ASV485 - 2.1 0.4 0.4 Halobacterota; Methanosaeta - 1.4 0.3 0.5 Chloroflexi; GIF9 ASV5911 - 0.8 0.6 0.4 Acidobacteriota; Aminicenantales ASV410 - 0.8 0.5 0.5 Actinobacteriota; Aciinomarinales ASV4810 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.7 Acidobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV479 - 0.1 0.7 Acidobacteriota; Aminicenantales ASV479 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Actinobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.5 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.5 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.5 Acidobacteriota; Aminicenantales ASV464 - 0.0 0.3 0.5 Acidobacteriota; Aminicenantales ASV464 - 0.0 0.3 0.5 Acidobacteriota; Aminicenantales ASV464 - 0.0 0.3 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV464 - 0.0 0.3 0.3 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV464 - 0.0 0.3 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 0.4 Chloroflexi; GIF9 ASV5896	Actinobacteriota; Mycobacterium-	3.5	2.9	2.8	
Acidobacteriota; Aminicenantales ASV499 - 0.4 0.5 0.7 Acidobacteriota; Methanosaeta - 1.4 0.3 0.5 Chloroflexi; GIF9 ASV5911 - 0.8 0.6 0.4 Acidobacteriota; Actinomarinales ASV48 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.7 Acidobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV479 - 0.4 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Chloroflexi; MSBL5 ASV6529 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV460 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV460 - 0.5 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV400 - 0.5 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV284 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.5 0.6 0.2 Chloroflexi; KSBL5 ASV6042 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6943 - 0.3 0.3 0.2 Chloroflexi; GIF9 ASV590 - 0.4 0.3 0.3 Chloroflexi; GIF9 ASV590 - 0.4 0.3 0.3 Chloroflexi; GIF9 ASV590 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Halobacterota; Methanolinea-	0.7	1.2	2.3	
Acidobacteriota; Aminicenantales ASV485 - 2.1 0.4 0.4 Halobacterota; Methanosaeta - 1.4 0.3 0.5 Chloroflexi; GIF9 ASV5911 - 0.8 0.6 0.4 Acidobacteriota; Aminicenantales ASV410 - 0.8 0.5 0.5 Actinobacteriota; Actinomarinales ASV28 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.7 Acidobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV479 - 0.4 Acidobacteriota; Aminicenantales ASV479 - 0.1 0.7 Acidobacteriota; Aminicenantales ASV479 - 0.1 0.7 Acidobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV479 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV711 - 0.3 0.5 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.5 0.6 0.2 Chloroflexi; MSBL5 ASV604 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6903 - 0.3 0.2 0.4 Chloroflexi; KD4-96 ASV6903 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5001 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Chloroflexi; Pelolinea -		0.5	1.3	
Halobacterota; Methanosaeta	Acidobacteriota; Aminicenantales ASV499 -	0.4	0.5	0.7	
Chloroflexi; GIF9 ASV5911 - 0.8 0.6 0.4 Acidobacteriota; Aminicenantales ASV240 - 0.8 0.5 0.5 Actinobacteriota; Actinomarinales ASV28 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.7 Acidobacteriota; Aminicenantales ASV516 - 0.3 0.6 Actinobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; RIBG-16-55-12 ASV7757 - 1 0.2 0.4 Acidobacteriota; Aminicenantales ASV479 - 3.8 0.1 Actinobacteriota; RIBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV710 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6943 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6943 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6943 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6940 - 0.3 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5966 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Acidobacteriota; Aminicenantales ASV485 -	2.1	0.4	0.4	
Acidobacteriota; Aminicenantales ASV410 - 0.8 0.5 0.5 Actinobacteriota; Actinomarinales ASV28 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.7 Acidobacteriota; Aminicenantales ASV516 - 0.3 0.6 Acidobacteriota; Aminicenantales ASV516 - 0.5 0.3 Actinobacteriota; RBG-16-55-12 ASV7757 - 1 0.2 0.4 Acidobacteriota; Aminicenantales ASV449 - 0.4 Acidobacteriota; Aminicenantales ASV449 - 0.4 Acidobacteriota; Aminicenantales ASV423 - 0.4 0.3 0.5 Actinobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV455 - 0.9 0.3 0.4 Actinobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV790 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV2284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6943 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6943 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6940 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6	Halobacterota; Methanosaeta-	1.4	0.3	0.5	
Actinobacteriota; Actinomarinales ASV28 - 0.5 0.3 0.6 Chloroflexi; MSBL5 ASV6114 - 0.7 Acidobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; Aminicenantales ASV464 - 1.6 0.5 0.3 Actinobacteriota; RBG-16-55-12 ASV7757 - 1 0.2 0.4 Acidobacteriota; Aminicenantales ASV479 - 3.8 0.1 Actinobacteriota; Aminicenantales ASV423 - 0.4 0.3 0.5 Actinobacteriota; Aminicenantales ASV423 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV4616 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Actinobacteriota; Aminicenantales ASV669 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.5 0.4 Actinobacteriota; Aminicenantales ASV506 - 0.5 0.4 Acidobacteriota; Aminicenantales ASV506 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.3 0.2 Acidobacteriota; Aminicenantales ASV506 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales ASV506 - 0.7 0.1 0.4 Actinobacteriota; Aminicena	Chloroflexi; GIF9 ASV5911 -	0.8	0.6	0.4	
Chloroflexi; MSBL5 ASV6114 - Acidobacteriota; Aminicenantales ASV464 - Acidobacteriota; RIBG-16-55-12 ASV7757 - Acidobacteriota; Aminicenantales ASV479 - Acidobacteriota; Aminicenantales ASV479 - Acidobacteriota; Aminicenantales ASV479 - Acidobacteriota; Aminicenantales ASV479 - Acidobacteriota; RIBG-16-55-12 ASV7799 - Chloroflexi; MSBL5 ASV6116 - Actinobacteriota; Actinomarinales ASV465 - Chloroflexi; MSBL5 ASV6516 - Acidobacteriota; Aminicenantales ASV465 - Chloroflexi; MSBL5 ASV5629 - Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; MSBL5 ASV5629 - Acidobacteriota; Aminicenantales ASV506 - Acidobacteriota; Aminicenantales ASV506 - Acidobacteriota; Aminicenantales ASV506 - Acidobacteriota; Aminicenantales ASV500 - Cenarchaeota; Bathyarchaeia ASV2284 - Campylobacterota; Pseudarcobacter - Acidobacteriota; Aminicenantales ASV401 - Acidobacteriota; Amini	Acidobacteriota; Aminicenantales ASV410 -	0.8	0.5	0.5	
Acidobacteriota; Aminicenantales ASV516 - Acidobacteriota; Aminicenantales ASV464 - Acidobacteriota; RBG-16-55-12 ASV7757 - Acidobacteriota; Aminicenantales ASV479 - Acidobacteriota; Aminicenantales ASV423 - Actinobacteriota; RBG-16-55-12 ASV7799 - Chloroflexi; MSBL5 ASV6116 - Actinobacteriota; Actinomarinales ASV465 - Chloroflexi; MSBL5 ASV6116 - Actinobacteriota; Actinomarinales ASV465 - Chloroflexi; MSBL5 ASV5629 - Acidobacteriota; Aminicenantales ASV5629 - Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; MSBL5 ASV5622 - Acidobacteriota; Aminicenantales ASV506 - Acidobacteriota; Aminicenantales ASV506 - Acidobacteriota; Aminicenantales ASV690 - Crenarchaeota; Bathyarchaeia ASV284 - Campylobacterota; Pseudarcobacter - Acidobacteriota; Aminicenantales ASV401 - Acidobac	Actinobacteriota; Actinomarinales ASV28 -	0.5	0.3	0.6	
Actinobacteriota; Aminicenantales ASV464 - 1,6 0.5 0.3 Actinobacteriota; RBG-16-55-12 ASV7757 - 1 0.2 0.4 Acidobacteriota; Aminicenantales ASV479 - 3.8 0.1 Actinobacteriota; Aminicenantales ASV423 - 0.4 0.3 0.5 Actinobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Actinobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401- 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401- 0.6 0.4 0.2 Acidobacteriota; Aminicenantales ASV401- 0.6 0.4 0.2 Acidobacteriota; Aminicenantales ASV401- 0.5 0.6 0.2 Chloroflexi; MSBL5 ASV6040 - 0.5 0.6 0.2 Chloroflexi; MD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5806 - 0.4 0.3 0.3 Chloroflexi; GIF9 ASV5806 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Chloroflexi; MSBL5 ASV6114 -			0.7	
Actinobacteriota; RBG-16-55-12 ASV7757 - 1 0.2 0.4 Acidobacteriota; Aminicenantales ASV479 - 3.8 0.1 Actinobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Actinobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV711 - 0.3 0.5 Crenarchaeota; Bathyarchaeia ASV2284 - 0.2 0.5 Campylobacterota; Pseudarcobacter 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.5 0.6 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.7 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Acidobacteriota; Aminicenantales ASV516 -		0.3	0.6	
Acidobacteriota; Aminicenantales ASV479 - 3.8 0.1 % Relative Abundance Acidobacteriota; Aminicenantales ASV423 - 0.4 0.3 0.5 Actinobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5622 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV484 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.3 Chloroflexi; GIF9 ASV5901 - 0.3 0.3 Chloroflexi; Thermoflexus - 0.5 Chloroflexi; Thermofl	Acidobacteriota; Aminicenantales ASV464 -	1.6	0.5	0.3	
Actinobacteriota; Aminicenantales ASV423 - 0.4 0.3 0.5 Actinobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Crenarchaeota; Aminicenantales ASV690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.2 Chloroflexi; KBSL5 ASV6042 - 0.7 0.4 0.2 Chloroflexi; KBSL5 ASV6042 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV501 - 0.3 0.4 Chloroflexi; GIF9 ASV5091 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Actinobacteriota; RBG-16-55-12 ASV7757 -	1	0.2	0.4	
Actinobacteriota; RBG-16-55-12 ASV7799 - 0.1 0.7 Chloroflexi; MSBL5 ASV6116 - 0.1 0.7 Actinobacteriota; Actinomarinales ASV37 - 1.1 0.3 0.4 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5622 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV440 - 0.6 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV4813 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Acidobacteriota; Aminicenantales ASV479 -	3.8	0.1		% Relative
Actinobacteriota; RBG-16-55-12 ASV7799 - Chloroflexi; MSBL5 ASV6116 - Actinobacteriota; Actinomarinales ASV37 - Acidobacteriota; Aminicenantales ASV465 - Chloroflexi; MSBL5 ASV5629 - Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; MSBL5 ASV5622 - Acidobacteriota; Aminicenantales ASV500 - Chloroflexi; MSBL5 ASV5622 - Acidobacteriota; Aminicenantales ASV711 - Chloroflexi; KD1-96 ASV6942 - Chloroflexi; KD4-96 ASV6933 - Chloroflexi; GIF9 ASV5901 - Chloroflexi; GIF9 ASV5901 - Chloroflexi; Thermoflexus - O.1 0.1 0.4 Acidobacteriota; GIF9 ASV5896 - O.4 0.3 0.3 Chloroflexi; Thermoflexus - O.5 0.6 O.7 0.1 0.4 Chloroflexi; GIF9 ASV5896 - O.7 0.1 0.4 Chloroflexi; GIF9 ASV5896 - O.7 0.1 0.4 Chloroflexi; Thermoflexus - O.5 0.6 O.7 0.1 0.4 Chloroflexi; Thermoflexus - O.8 0.5	Acidobacteriota; Aminicenantales ASV423 -	0.4	0.3	0.5	
Actinobacteriota; Actinomarinales ASV465 - 0.9 0.3 0.4 Acidobacteriota; Aminicenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5622 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV509 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV711 - 0.3 0.5 Campylobacterota; Pseudarcobacter - 0.2 0.5 Campylobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; KDBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KDBL96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV4513 - 0.7 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.3 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Actinobacteriota; RBG-16-55-12 ASV7799 -		0.1	0.7	20
Actinobacteriota; Actinomarinales ASV37 - 1,1 0,3 0.4 Acidobacteriota; Aminicenantales ASV465 - 0,9 0,3 0,4 Chloroflexi; MSBL5 ASV5629 - 0,2 0,5 Acidobacteriota; Aminicenantales ASV500 - 0,5 0,4 Chloroflexi; MSBL5 ASV5622 - 0,2 0,5 Acidobacteriota; Aminicenantales ASV711 - 0,3 0,5 Acidobacteriota; Aminicenantales ASV711 - 0,3 0,5 Crenarchaeota; Aminicenantales ASV690 - 0,2 0,5 Crenarchaeota; Bathyarchaeia ASV690 - 0,2 0,5 Campylobacterota; Pseudarcobacter 0,3 1,2 Acidobacteriota; Aminicenantales ASV401 - 0,6 0,4 0,3 Actinobacteriota; Aminicenantales ASV401 - 0,6 0,4 0,3 Actinobacteriota; Aminicenantales ASV401 - 0,5 0,6 0,2 Chloroflexi; KD4-96 ASV6942 - 0,7 0,1 0,4 Acidobacteriota; Aminicenantales ASV513 - 0,2 0,4 Chloroflexi; KD4-96 ASV6933 - 0,3 0,2 0,4 Chloroflexi; GIF9 ASV5901 - 0,3 0,4 Chloroflexi; GIF9 ASV5896 - 0,4 0,3 0,3 Chloroflexi; Thermoflexus - 0,5	Chloroflexi; MSBL5 ASV6116 -		0.1	0.7	
Acidobacteriota; Arinincenantales ASV465 - 0.9 0.3 0.4 Chloroflexi; MSBL5 ASV5629 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV500 - 0.5 0.4 Chloroflexi; MSBL5 ASV5662 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV2284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.5 0.6 0.2 Chloroflexi; KBBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.3 Chloroflexi; GIF9 ASV5906 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5 Chlorofl	Actinobacteriota; Actinomarinales ASV37 -	1.1		0.4	
Acidobacteriota; Aminicenantales ASV500 -	Acidobacteriota; Aminicenantales ASV465 -	0.9	0.3	0.4	5
Chloroflexi; MSBL5 ASV5622 - 0.2 0.5 Acidobacteriota; Aminicenantales ASV706 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Chloroflexi; MSBL5 ASV5629 -		0.2	0.5	
Acidobacteriota; Aminicenantales ASV506 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV2284 - 0.2 0.5 Campylobacteriota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales _ASV401- 0.6 0.4 0.3 Actinobacteriota; RBG-16-55-12 ASV7835 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales _ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5			0.5	0.4	
Acidobacteriota; Aminicenantales ASV711 - 0.3 0.5 Acidobacteriota; Aminicenantales ASV690 - 0.2 0.5 Crenarchaeota; Bathyarchaeia ASV2284 - 0.2 0.5 Campylobacterota; Pseudarcobacter 0.3 1.2 Acidobacteriota; Aminicenantales ASV401 - 0.6 0.4 0.3 Actinobacteriota; RBG-16-55-12 ASV7835 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV413 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Chloroflexi; MSBL5 ASV5622 -		0.2	0.5	
Acidobacteriota; Aminicenantales ASV690 - Crenarchaeota; Bathyarchaeia ASV2284 - Campylobacterota; Pseudarcobacter - Acidobacteriota; Aminicenantales ASV401 - Acidobacteriota; Aminicenantales ASV4401 - Acidobacteriota; Aminicenantales ASV484 - Chloroflexi; MSBL5 ASV6104 - Chloroflexi; KD4-96 ASV6942 - Acidobacteriota; Aminicenantales ASV513 - Chloroflexi; KD4-96 ASV6933 - Chloroflexi; GIF9 ASV5901 - Chloroflexi; GIF9 ASV5896 - Chloroflexi; Thermoflexus - O.2 O.5 O.3 O.2 O.4 O.5 O.6 O.2 O.4 O.3 O.3 O.2 O.4 Chloroflexi; GIF9 ASV5901 - Chloroflexi; GIF9 ASV5896 - O.4 O.3 O.3 Chloroflexi; Thermoflexus - O.5	Acidobacteriota; Aminicenantales ASV506 -		0.3	0.5	
Crenarchaeota; Bathyarchaeia ASV2284 - 0.2 0.5 Campylobacterota; Pseudarcobacter - 0.3 1.2 Acidobacteriota; Aminicenantales_ASV401 - 0.6 0.4 0.3 Actinobacteriota; RBG-16-55-12 ASV7835 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5 0.5			0.3	0.5	
Campylobacterota; Pseudarcobacter- 0.3 1.2 Acidobacteriota; Aminicenantales_ASV401- 0.6 0.4 0.3 Actinobacteriota; RBG-16-55-12 ASV7835 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5 0.5 0.5 0.5	Acidobacteriota; Aminicenantales ASV690 -		0.2	0.5	
Acidobacteriota; Aminicenantales_ASV401- Actinobacteriota; RBG-16-55-12 ASV7835 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Crenarchaeota; Bathyarchaeia ASV2284 -		0.2	0.5	
Actinobacteriota; RBG-16-55-12 ASV7835 - 0.7 0.4 0.2 Acidobacteriota; Aminicenantales ASV484 - 1.3 0.3 0.2 Chloroflexi; MSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Campylobacterota; Pseudarcobacter-	0.3	1.2		
Acidobacteriota; Aminicenantales ASV484 - 1,3 0.3 0.2 Chloroflexi; KSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Acidobacteriota; Aminicenantales_ASV401-	0.6	0.4	0.3	
Chloroflexi; KSBL5 ASV6104 - 0.5 0.6 0.2 Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	The state of the s	0.7	0.4	0.2	
Chloroflexi; KD4-96 ASV6942 - 0.7 0.1 0.4 Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5		1.3	0.3	0.2	
Acidobacteriota; Aminicenantales ASV513 - 0.2 0.4 Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5	Chloroflexi; MSBL5 ASV6104 -	0.5	0.6	0.2	
Chloroflexi; KD4-96 ASV6933 - 0.3 0.2 0.4 Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5		0.7	0.1	0.4	
Chloroflexi; GIF9 ASV5901 - 0.3 0.4 Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5				0.4	
Chloroflexi; GIF9 ASV5896 - 0.4 0.3 0.3 Chloroflexi; Thermoflexus - 0.5		0.3	0.2	0.4	
Chloroflexi; Thermoflexus-	Chloroflexi; GIF9 ASV5901 -		0.3	0.4	
1	Chloroflexi; GIF9 ASV5896 -	0.4	0.3	0.3	
Zone I Zone II Zone III	Chloroflexi; Thermoflexus-			0.5	
		Zone I	Zone II	Zone III	

Figure 5. Heatmap of the abundance of the microbial community at the family level. The color gradient indicates the abundance of the specific taxa.

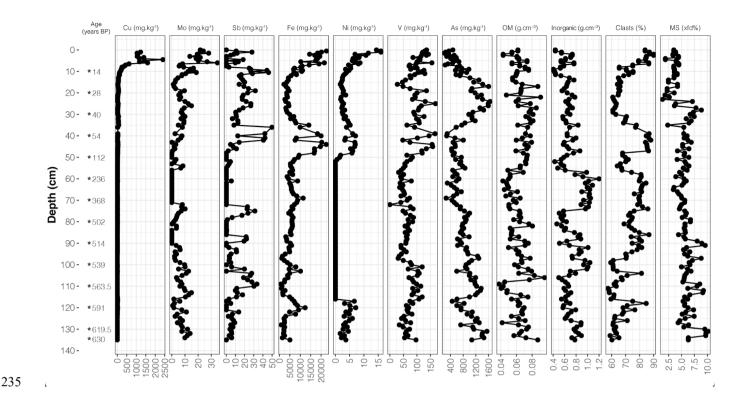


Figure 6. Depth variation of metals and metalloids concentrations (mg·kg⁻¹), organic matter (OM) and inorganic concentrations (g·cm⁻³), clasts percent, and magnetic susceptibility (MS) measured in Inka-Coya Lake sediment core (modified from Pérez-Portilla et al. 2024).

Variations in analyzed sediment properties along the core, such as magnetic susceptibility, organic matter, and carbonates/clasts composition, are shown in Figure 6. Copper (Cu) and nickel (Ni) were in lower concentration and variability at greater depths and showed concentration peaks in surface sediments. Elements such as iron (Fe), molybdenum (Mo), and vanadium (V) also showed top sediment peaks. Still, overall, they had more variable behavior than previously mentioned elements in the middle and bottom sediments (> 40 cm). Metalloids, arsenic (As), and antimony (Sb) exhibited the highest concentrations between 10-45 cm depth.

The mean organic matter and carbonate contents are around 8.7% and 19.5%, respectively, while the inorganic density (91%) showed the highest averaged values (0.71 g·cm⁻³). The sediment composition shifts to clay and silt from 28 cm to the top of the core. The content of clasts was predominant in the inorganic fraction, with 71.8% along the core. The carbonate peaks were observed at 10-36 cm, 46-56, and more significant and variable proportions below 96 cm, which did not exceed 40%.

Magnetic susceptibility (MS, χ) values range from -6.09x10⁻⁹ to 8.13x10⁻⁷ m³·kg⁻¹, with an average value of 2.77x10⁻⁷ m³·kg⁻¹. Frequency-dependent susceptibility (χ fd%) values range between 1.31 and 10.17%, with an average of 5.62%. Zone I has

the highest values of χ and the lowest values of χ fd%, while Zone II shows the lowest χ values and intermediate χ fd% values. Zone III presents intermediate χ values and the highest χ fd% values.

Geochemical and magnetic variables are associated with microbial diversity found in the sediment of Inka-Coya Lakes, differentiated into zones (I, II, and III). Deeper and older fractions of sediments (dark blue), especially Aminicenantaes, are positively influenced by the magnetic susceptibility and inorganic elements in the sediments. Microbial assemblage found in the middle sediments (Zone II) of the core is driven by organic matter content and water availability, where taxa like *Sulfurimonas*, *Sulfuricurvum*, and *Dehalococcoidia* were the most represented. The middle zone is associated with a significant As peak, which suggests that the presence of metal(loid)positively affects the microorganisms assemblage inhabiting middle-to-superficial layers. In Zone II, microbial diversity is mainly associated with low but stable concentrations of organic matter, a more significant proportion of clasts, and the higher peak of As and Sb in the sediments, where χ values decreased. Upper Zone I is mainly characterized by metal enrichment, with elevated concentrations of Cu, Zn, Ni, Fe, and Mo, among other elements. These peaks correlate with high χ values (Fig. 7).

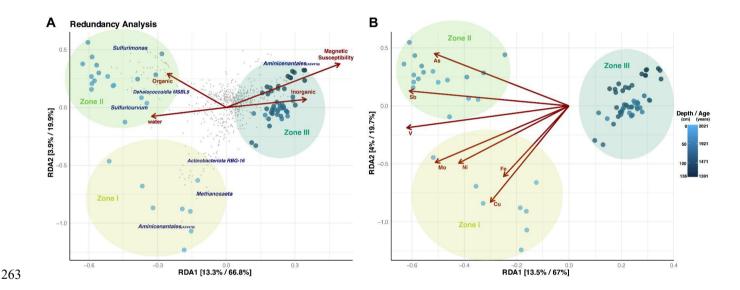


Figure 7. Redundancy analysis on Hellinger transformed Bray-Curtis distances (corrected by unobserved species) for the microbial communities along the core distance. A) Influence of physicochemical parameters and B) Elemental composition. Depth gradient and Zone parameters were chosen to constrain the multivariate space in a supervised approach. Each axis in the graph shows the percentage of variance explained in an unsupervised and supervised analysis.

There is statistical significance between some key taxa and the physicochemical and elemental composition along the sediment gradient in Inca-Coya Lake; for instance, *Methanoregulaceace*, *Ktedonobacteriaceae*, and *Sulfurimonadaceae* are some of the taxa with the strongest correlation to Cu, Fe, Ni and V presence while zones II and III are the most influenced by these dynamics (Supplementary Fig. 1).

Regarding metabolic approximation, chemoheterotrophy is the most abundant function in all three zones, while aerobic chemoheterotrophs are the most prevalent in zone II. Still, chemoheterotrophs (including several electron acceptors) thrive in

zones II and III (Supplementary Fig. 2). Other functions, such as Methanogenesis, were abundant only in deep sediments (zone III). Moreover, as expected, phototrophy and photoautotrophy were present only in low abundance in zone I, where little light could reach the community (Supplementary Fig. 2). Methane metabolism is very relevant in all three zones, especially in zone III, where acetate is the primary source for this pathway (Supplementary Fig. 2). Other relevant forms of energy transformation are Nitrate reduction VI (assimilation) and starch degradation in zone II. Nitrotoluene degradation and biosynthesis of unsaturated fatty acids are also crucial in the benthic microbial community as a whole (Supplementary Fig. 2). A somewhat homogeneous prediction for metabolic ability regarding energy production among microorganisms inhabiting in sediments over than one meter deep in the Inka-Cova Lake sediments, where geochemical and magnetic dynamics directly influence microbial activities.

4. DISCUSSION

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

Microbial dynamics along the length of the sediment core of Inka-Cova Lake are tightly associated with analyzed sediment attributes, such as metal(loid)s concentrations and \(\gamma \text{fd\%}, \) organic compounds- and water- availability. The geochemical characteristics of the area surrounding Inka-Cova Lake, where active volcanic activity results in the enrichment of elements such as arsenic, sulfur, copper, and others (Romero et al., 2003; Tapia et al., 2018), suggests that microbial assemblages inhabiting the Atacama area (1) have showed structure changes during the last 600 years and (2) have developed broad tolerance range to this potential toxic compounds. Microbial biomarkers serve as criteria to assess anthropogenic impact (Yan et al., 2024), and microorganisms can alter the speciation and bioavailability of meta(oids) in an ecosystem (Niu et al., 2020).

Five stratigraphic zones in the sedimentary core in Inka-Coya were defined from the sediment core here analyzed by Pérez-Portilla et al. (2024). In this sedimentary core, the concentration of rock-forming elements such as Cr, Zn, and V are found in concentrations as expected for the Atacama Desert; while Cu, Mo, Sb and As are higher than expected, suggesting influence from nearby mining activities (Pérez-Portilla et al., 2024). Copper production in the region generates by-products such as Mo, As, and, to a lesser extent, Zn (Ramírez et al., 2005; Tapia et al., 2019), Also, mining wastes contain high concentrations of chemical products such as Pb, Cr, Cd, Cu, Zn, Hg, and Ni, and metalloids, which are often stored in dams or reservoirs (Csavina et al., 2012) or passed through lotic systems, making them an important source of contamination of inorganic chemical elements for the aquatic biological communities (Keller et al., 1992; Pollard et al., 2003; Pigati et al., 2011; Hamilton et al., 2017; Ritter et al., 2019). Previous studies have shown impacts and metal enrichment from the mining industry in the Antofagasta region surrounding Calama City and the Loa River basin near the Inka-Coya Lake. Cerda et al. (2019), Vargas-Machuca et al. (2021), Aránguiz-Acuña et al. (2020), and Zanetta-Colombo et al. (2022, 2024), using both abiotic and biological proxies, have evidenced an increase in the concentration of metals in different environmental matrices during postindustrial time, attributing this difference to the mining activities in the area. Additionally, changes in the composition of the zooplankton community (inferred by diapausing egg banks) and benthic diatoms could be attributed to the increase in Cu concentration evidenced in the sedimentary cores obtained in this lake (Aránguiz-Acuña et al. 2020). It is therefore to be expected that other components of the aquatic community, which are as or more sensitive than planktonic invertebrates to changes in metal concentrations in the environment, may also be affected by the impacts of increases in metals associated with the development of the mining industry.

310 A strong correlation between mineral composition and microbial diversity in other arid region water bodies, such as salt flats 311 and brines, is expected (Farías et al., 2014; Castro-Severyn et al., 2021; Dong et al., 2022), as demonstrated in pre-Puna salt 312 lakes, such as Tebenchique and La Brava (Farías et al., 2014; Ramos-Tapia et al., 2023). The diversity of microbial life in 313 these shallow salty lakes is dominated by Bacteroidetes, Proteobacteria, and Euryarchaeota (Farías et al., 2014; Fernandez et 314 al., 2016; Kurth et al., 2021) and hypersaline lakes are mainly composed by Bacteroidetes, Chloroflexi, Cyanobacteria and 315 Proteobacteria (Dorador et al., 2018). Inka-Coya, one of the few brackish water lakes located in the Antofagasta Region below 316

Actinobacteriota (*Mycobacterium*), and Campylobacterota (*Sulfuricurvum* and *Sulfurimonas*), sharing some similarities and taking into account changes in taxonomy (Oren and Garrity, 2021).

319 At the lower taxonomic rank, the community is dominated by microorganisms with a broad repertoire for mineral interactions, 320 e.g., there is experimental evidence of organomineralization in extracellular S⁰ formation by a species of the sulfur-oxidizing 321 bacteria Sulfuricurvum (Cron et al., 2019). Another remarkable microorganism found along the lacustrine sediment is the 322 cosmopolitan and highly diverse Sulfurimonas, which can grow using sulfur, hydrogen, nitrogen, oxygen, and organic 323 compounds, suggesting it is critical in maintaining trophic dynamics (Han and Perner, 2015). Additionally, Mycobacterium is 324 a saprophytic bacterium commonly found in lakes, rivers, and other water sources (Falkinham et al., 2015), there are some 325 species representatives of this genus that have bioremediation potential for polycyclic aromatic hydrocarbons (Deng et al., 326 2023), suggesting adaptability and a broad range of metabolic capacities. There are extensive studies on Mycobacteriaceae 327 representatives that cause human disease, as reviewed by Falkinham (2009). However, environmental representatives with the 328 capacity to inhabit poly-extreme environments have yet to be determined.

329

330

331

332

333

334

335

336

337

338

339

340

341 342

343

344

345

346

347

348

349

350

351

352

353

354

355

356 357

358

Furthermore, several representatives of the candidate phylum Aminicenantales are common in current sediments from Zone I. i.e., recently deposited sediments during the last ten years. So far, these microorganisms are associated with a fermentative saccharolytic lifestyle that does not have an isolated representative yet (Kadnikov et al., 2019). Zone II, comprising the period between 10 and 50 years ago approximately, is mainly represented by microorganisms classified as the *Pseudarcobacter* genus. that was recently separated from the Arcobacter genus (Pérez-Cataluña et al., 2018) and are characterized as mesophilic bacteria that can grow in microaerophilic conditions (Collado et al., 2011). Finally, in the deeper and older sediments, where anaerobic (or facultative anaerobes) microorganisms can thrive, there is a particular abundance of an ASV from the *Pelolinea* genus that has only one described species that was isolated from the subseafloor sediment (Imachi et al., 2014), and an unknown Chloroflexi species that is associated with Dehalococcoidia class a common sub-seafloor bacterium (Wasmund et al., 2014). This finding suggests past conditions of higher salinities for the lake than the current conditions of around 5 g·L⁻¹ (Aránguiz-Acuña et al., 2020), close to marine salinitiy. Archaea representatives found inhabiting the lacustrine sediments include the hydrogenotrophic methanogen Methanolinea (Imachi et al., 2008; Rainey et al., 2015), which is distributed along the length of the core with an abundance ranging from 0.7-2.3% and is very abundant towards the older and more anoxic environment (since 1400 until 1950, zone III), where methanogenesis is the central predicted metabolism at play. These results suggest that the microbial community in Inka-Coya Lake is potentially heterotrophic with a special enrichment in methanogenic organisms in the oldest deposits, where oxygen levels are lower as evidenced by the metabolic approximation done in this study. Another kind of metabolism, depending on CO₂ concentrations, could have dominated during this period.

Overall, our results suggest a great taxonomic and potential metabolic diversity is associated with the microbial community from this lacustrine sediment. There is a vast taxonomic novelty harbored in Inka-Coya Lake sediment; over 70% of taxa cannot be identified to the genus level, indicating there is a significant amount of "microbial dark matter" a term associated with unknown microbial representatives that can potentially harbor novel bioactive compounds with numerous applications (Zha et al., 2022; Jiao et al., 2021).

The main drivers for microbial community composition in the sinks-Coya sediments were As, Sb, V, Mo, Mi, Fe, and Cu, which suggest that there are numerous strategies that microorganisms use to resist high concentrations of metals and metalloids that thrive in this ecosystem (Rahman, 2020; Mathivanan et al., 2021), as observed in the Atacama and Altiplano area (Orellana et al., 2018; Donati et al., 2019; Aszalós et al., 2020; Castro-Severyn et al., 2019). Additionally, microorganisms can use oxido-reduction processes to obtain energy from metal ions (Raab and Feldman, 2003; Staicu and Stolz, 2021). Given the known geochemical characteristics of the area, it is expected to find strong relationships between the microbial life and inorganic compounds, as they can dissolve and precipitate ores and influence metal(loid)s transformations (Raab et al., 2003; Zhou et al., 2022). In this extreme environment where competition is strong and abiotic pressures are constant, organic matter and

359 water availability -both parameters critical for most life forms- govern community abundance and composition, suggesting a 360 delicate dynamic balance reached between abiotic and biotic entities at play. It is important to remark that with the number of 361 unclassified taxa, many novel resistant or usage mechanisms remain to be characterized.

362

363

364

365

366

367

368

386

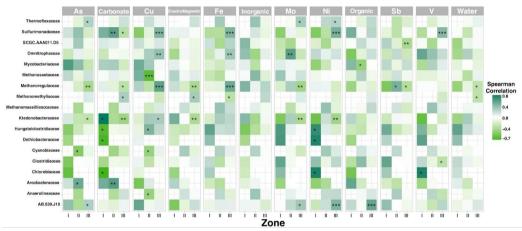
387

388

389

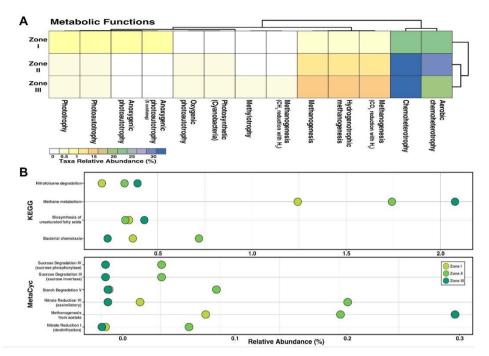
390

391


392

- Observed trends in magnetic susceptibility in Inka-Cova sediment could be mainly attributed to variations in the concentration of ferromagnetic minerals, such as titanomagnetite, and authigenic origin minerals, such as sulfide (greigite), as is broadly explained in Pérez-Portilla et al. (2024) for this sediment core. In this case, the high X values would result from a high concentration of ferromagnetic minerals of detrital origin, primarily Fe oxides, while elevated xfd% values would be linked to the presence of greigite of authigenic origin (Pérez-Portilla et al., 2014). Thus, greigite formation typically occurs through the dissolution of titanomagnetite or other detrital minerals containing Fe (e.g., Chan et al., 2001; Fialová et al., 2006; Versteeg et al., 1995).
- 369 Elevated magnetic susceptibility values in the upper layers of sediments may be attributed to a recent deposition of fine Fe 370 oxide grains, which could be originating and transported from industrial and urban sources (e.g., Chan et al., 2001); this concurs 371 with the Fe top sediment peak, and it could be related to a diverse superficial community, while in zone II the lowest values 372 of γ are observed, which could be associated with a mixed community. All these processes occur under a high production of 373 Fe minerals of authigenic origin (γ fd% > 3%; Dearing et al., 1996). Moreover, lower levels of γ fd% could be involved in the 374 production and assimilation of iron sulfides such as greigite (Bazylinski et al., 2001; Lins et al., 2007), promoting a microbial 375 specialization and increasing resistance of the anaerobic community found in the deeper sediments. Microbial metabolic 376 responses could satisfactorily support several processes associated with greigite formation. The presence of greigite in the lake 377 sediments could be associated with reducing or low-oxygen environments (e.g., Benning et al., 2000), where additionally 378 magnetotactic bacteria could contribute to sedimentary greigite formation through the biomineralization of magnetosomes in 379 anoxic aqueous environments (Moskowitz et al., 2008).
- 380 There are statistically significant correlations between some particular taxa and the geochemical composition along the 381 sediment gradient in Inca-Coya Lake suggesting that each element directly influences the metabolic capabilities of the 382 microorganisms and shapes the community selecting taxa that can resist metal(loid)s toxicity (Yao and Gao, 2007; Laplante 383 et al., 2013; Stankevica et al., 2020; Kostka and Leśniak, 2021; Yan et al., 2020). Further studies that elucidate the functional 384 properties using shotgun metagenomics will enhance our understanding in terms of the mechanisms used to resist and survive 385 in environments with high metal(loid)s concentrations and the use of different electron acceptors for energy production.
 - Finally, increasing metal(loid)s exploitation in the region during the last 100 years has directly influenced their mobility and the local geochemistry. In this context, microorganisms from these extreme environments are known to be highly adaptive and have developed several resistance mechanisms and the ability to use these compounds to their benefit. Hence, some bacteria (and their genes) can be used as biomarkers for the bioavailability of such metals and contamination of soils (Li and Wong, 2010; Roosa et al., 2014). In Inka-Coya Lake, a selective process could be evidenced along the sediment record, in which the recent period is characterized by a marked increase in chemical elements and microbial composition, which could be associated with the increasing mining activity and other anthropological activities, as water extraction or aridity increase by climatic changes, that also would increase the disturbance of this relevant area in the core of the most arid non-polar Desert.

5. CONCLUSIONS


This study is the first to describe a deep gradient of microbial life in a desert lake in the Atacama area, proposing a biological clustering of taxa and predicted function in three periods that stratified for over 600 years, including pre-mining period, the mining development and the most industrialized mega mining observed nowadays. A great taxonomic novelty exists among the microbial community inhabiting lacustrine sediments of Inka-Coya and mineralogical enrichment, water, organic matter availability, and magnetic susceptibility are variables that explain the changes in its abundance and composition. There are strong relationships between geochemical composition and microbial diversity, especially in Cu, Fe, Ni, and V. The first zone is less diverse and dominated by Actinobacteria; the second zone has a high abundance of Chloroflexi, Acidobacteriota, and Actinobacterota. The third zone shows more rare taxa with lower abundance and clusters the more recent sediments closer to the surface, including archaea. Overall, chemoheterotrophy is the prevalent energy production mechanism along the sediment core. This unique and fragile ecosystem depends on biogeochemical dynamics that are vulnerable to anthropogenic activities and climate change.

Appendix A.

Figure A1. Pearson correlation between the top microbial families and geochemical parameters. Asterisks show the level of significance (*p value < 0.05, **p value < 0.01, Pearson correlation). Purple, blue, and white indicate positive, negative, and no correlation, respectively.

Appendix B

Figure B1. Metabolic pathways prediction of the microbial community inhabiting sediments along a depth gradient in Inka-Coya Lake. The predictions are based on the identified taxonomic composition according to the comparison with different databases, such as: A) FAPROTAX; B) KEGG and MetaCyC. Categories with significant differences (p<0.05) according to Kruskal-Wallis test are displayed.

DATA AVAILABILITY STATEMENT

The raw sequencing data presented in this study have been deposited in the DDBJ/ENA/GenBank SRA database under the BioProject: PRJNA1067596.

AUTHOR CONTRIBUTIONS

Conceptualization: AAA; FR, JCS, CPE. Data curation: CPE, JCS, FR, IHF, AAA. Formal analysis: CPE, JCS, FR, AAA, AM, HP. Funding acquisition: FR, AAA Methodology: CPE, JCS, AM, HP, FR, AAA. Supervision: AAA, FR Writing original draft: CPE, JCS. Writing review and editing: AAA, AM, HP, JCS, CPE. All authors have read and agreed to the published version of the manuscript.

FUNDING

- 431 ANID 2020 FONDECYT Regular 1200423 (AA-A; FR), UTA-Mayor 9738-24 (AA-A)
- 432 ANID 2022 FONDECYT Regular 1220902 (FR)
- 433 ANID 2023 FONDECYT postdoctoral 3230189 (CPE)

- 434 ANID 2021 FONDECYT postdoctoral 3210156, ANID-Anillo ATE 220007 (JCS)
- 435 ANID 2022 MILENIO-NCS2022 009 (AA-A, AM)

437 **COMPETING INTERESTS**

The contact author has declared that none of the authors has any competing interests.

439 440

ACKNOWLEDGMENTS

- 441 Likan antay Community of San Francisco de Chiu-Chiu.
- 442 MAINI-UCN (Kappabridge)

443 References

- 1. Adrian R, O'Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, van Donk E, Weyhenmeyer GA, Winder M.: Lakes as sentinels of climate change. Limnol Oceanogr., 54:2283–2297, 2009
- 2. Albarracín, V. H., Galván, F. S., and Farías, M. E.: Extreme microbiology at Laguna Socompa: A high-altitude Andean lake (3570 m asl) in Salta, Argentina. Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites, 205-220, 2020
- 450 3. Andersen KS, Kirkegaard RH, Karst SM, Albertsen M.: ampvis2: an R package to analyse and visualise 16S rRNA 451 amplicon data. BioRxiv. 2018
- 4. Aránguiz-Acuña, A., Luque, J. A., Pizarro, H., Cerda, M., Heine-Fuster, I., Valdés, J., ... and Wennrich, V.: Aquatic community structure as sentinel of recent environmental changes unraveled from lake sedimentary records from the Atacama Desert, Chile. PLoS One, 15(2), e0229453, 2020
- 5. Aránguiz-Acuña, A., Pérez-Portilla, P., De la Fuente, A., and Fontaneto, D.: Life-history strategies in zooplankton promote coexistence of competitors in extreme environments with high metal content. Sci Rep, 8(1), 11060, 2018
- Aszalós, J. M., Szabó, A., Felföldi, T., Jurecska, L., Nagy, B., and Borsodi, A. K.: Effects of active volcanism on
 bacterial communities in the highest-altitude crater lake of Ojos del Salado (Dry Andes, Altiplano-Atacama Region).
 Astrobiology, 20(6), 741-753, 2020
- 7. Bandowe FL, Grosjean M, Tylmann W, Mosquera P, Hampel H, Schneider T.: A 150-year record of polycyclic aromatic compound (PAC) deposition from high Andean Cajas National Park, southern Ecuador. STOTEN, 621:1652–1663, 2018
- 463 8. Bazylinski, D. A.: Bacterial mineralization. Encyclopedia of materials: Science and technology, 441-447, 2001
- 9. Benito, X. Benthic Foraminifera and diatoms as ecological indicators. Modern Trends in Diatom Identification: Fundamentals and Applications, 257-280, 2020

- 466 10. 10. Benning, L. G., Wilkin, R. T., and Barnes, H. L.: Reaction pathways in the Fe–S system below 100 C. Chem Geol., 167(1-2), 25-51, 2000
- 468 11. Borsdorf, A., and Stadel, C.: The Andes: A geographical portrait. Springer, 2015
- 469 12. Borsodi, A. K., Aszalós, J. M., Megyes, M., and Nagy, B.: Benthic Bacterial Diversity of High-Altitude 470 Athalassohaline Lakes of the Puna de Atacama (Central Andes). Geomicrobiol J, 39(1), 28-38, 2022
- 13. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A., Holmes, S.P.: DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13:581–583. doi: 10.1038/nmeth.3869, 2016
- 473 14. Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., & Andersson, A. F.: Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea: The ISME journal. 5(10), 1571-1579.
- 15. Caspi, R., Billington, R., Fulcher, C. A., Keseler, I. M., Kothari, A., Krummenacker, M., ... and Karp, P. D.: The MetaCyc database of metabolic pathways and enzymes. Nuc acids Res, 46(D1), D633-D639, 2018
- 16. 16. Castro-Severyn, J., Pardo-Esté, C., Mendez, K. N., Fortt, J., Marquez, S., Molina, F., ... and Saavedra, C. P.: Living to the high extreme: unraveling the composition, structure, and functional insights of bacterial communities thriving in the arsenic-rich Salar de Huasco altiplanic ecosystem. mSpectrum, 9(1), 10-1128, 2021
- 480 17. Castro-Severyn, J., Pardo-Esté, C., Sulbaran, Y., Cabezas, C., Gariazzo, V., Briones, A., ... and Saavedra, C. P.:
 481 Arsenic response of three altiplanic Exiguobacterium strains with different tolerance levels against the metalloid
 482 species: a proteomics study. Front Microbiol, 10, 2161, 2019
- 18. Cerda, M., Evangelista, H., Valdés, J., Siffedine, A., Boucher, H., Nogueira, J., ... and Ortlieb, L.: A new 20th century
 lake sedimentary record from the Atacama Desert/Chile reveals persistent PDO (Pacific Decadal Oscillation) impact.
 J South Am Earth Sci. 95: 102302, 2019
- 19. Chang, L., Heslop, D., Roberts, A. P., Rey, D., and Mohamed, K. J.: Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature. J Geophys., 121(1), 3-14, 2016
- 488 20. Cohen, A. S., Manobianco, J., Dettman, D. L., Black, B. A., Beck, C., Feibel, C. S., ... and Vonhof, H. Seasonality 489 and lake water temperature inferred from the geochemistry and sclerochronology of quaternary freshwater bivalves 490 from the Turkana Basin, Ethiopia and Kenya. Quaternary Sci Rev, 317, 108284, 2023
- 491 21. Collado, L., Levican, A., Perez, J., and Figueras, M. J.: Arcobacter defluvii sp. nov., isolated from sewage samples.
 492 IJSE, 61(9), 2155-2161, 2011
- 493 22. Cron, B., Henri, P., Chan, C. S., Macalady, J. L., and Cosmidis, J.: Elemental sulfur formation by Sulfuricurvum kujiense is mediated by extracellular organic compounds. Front Microbiol, 10, 2710, 2019
- 23. 23. Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., and Sáez, A. E.: A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. STOTEN, 433, 58-73, 2012
- 498 24. 24. Da Costa, C., Colin, Y., Debret, M., Copard, Y., Gardes, T., Jacq, K., ... and Berthe, T. Shifts in sediment bacterial communities reflect changes in depositional environments in a fluviatile context. STOTEN, 885, 163890, 2023

- 500 25. 25. Dearing, J. A., Hay, K. S., Baban, A. S., Huddleston, E. M., Wellington H., and Loveland P. J.: Magnetic susceptibility of topsoils: a test of conflicting theories using a national database. Geophys. J. Int. 127: 728–734, 1996
- 502 26. Demergasso, C., Escudero, L., Casamayor, E. O., Chong, G., Balagué, V., and Pedrós-Alió, C.: Novelty and spatio— 503 temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles,

12, 491-504, 2008

- 505 27. Deng, Y., Mou, T., Wang, J., Su, J., Yan, Y., and Zhang, Y. Q.: Characterization of three rapidly growing novel 506 Mycobacterium species with significant polycyclic aromatic hydrocarbon bioremediation potential. Front Microbiol, 507 14, 2023
- 508 28. Dib, J., Motok, J., Zenoff, V. F., Ordoñez, O., and Farías, M. E.: Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr. Microbiol. 56, 510–517, 2008
- 511 29. Dittmar T.: Hydrochemical process controlling arsenic and heavy metal contamination in the Elqui river system 512 (Chile). STOTEN. 325: 193–207, 2004
- 30. Donati, E. R., Sani, R. K., Goh, K. M., and Chan, K. G.: Recent advances in bioremediation/biodegradation by extreme microorganisms. Front Microbiol, 10, 1851, 2019
- 31. Dong, H., Huang, L., Zhao, L., Zeng, Q., Liu, X., Sheng, Y., ... and Chen, H.: A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National Sci Rev, 9(10), nwac128, 2022
- 32. Dorador, C., Fink, P., Hengst, M., Icaza, G., Villalobos, A. S., Vejar, D., ... and Harrod, C.: Microbial community composition and trophic role along a marked salinity gradient in Laguna Puilar, Salar de Atacama, Chile. Antonie Van Leeuwenhoek, 111, 1361-1374, 2018
- 520 33. Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M., ... and Langille, M. G.: 521 PICRUSt2 for prediction of metagenome functions. Nat biotechnol, 38(6), 685-688, 2020
- 34. Falkinham, J. O.: Environmental sources of nontuberculous mycobacteria. Clin chest med, 36(1), 35-41, 2015
- 35. Farias, M. E., Contreras, M., Rasuk, M. C., Kurth, D., Flores, M. R., Poire, D. G., ... and Visscher, P. T.:
 Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites
 in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329, 2014.
- 36. Fernandez, A. B., Rasuk, M. C., Visscher, P. T., Contreras, M., Novoa, F., Poire, D. G., ... and Farias, M. E.: Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front Microbiol, 7, 1284, 2016
- 529 37. Fialová, H., Maier, G., Petrovský, E., Kapička, A., Boyko, T., Scholger, R., and MAGPROX Team.: Magnetic 530 properties of soils from sites with different geological and environmental settings. J Appl Geophys., 59(4), 273-283, 531 2006
- 532 38. Garreaud, R., Vuille, M., and Clement, A. C.: The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr., 194(1-3), 5-22, 2003

- 39. Falkinham III, J. O.: The biology of environmental mycobacteria. Env Microbiol Rep, 1(6), 477-487, 2009
- 535 40. Grosjean, M., and Veit, H. Water resources in the arid mountains of the Atacama Desert (northern Chile): past climate changes and modern conflicts. Global change and mountain regions; an overview of current knowledge, 93-104, 2005
- 41. Hamilton, P. B., Rolshausen, G., Uren Webster, T. M., and Tyler, C. R.: Adaptive capabilities and fitness consequences associated with pollution exposure in fish. Proc. R. Soc. B. 372(1712), 20160042, 2017
- 42. Han, Y., and Perner, M.: The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol, 6, 989, 2015
- 43. Haslett, J., and Parnell, A.: A simple monotone process with application to radiocarbon-dated depth chronologies. J
 R Stats, 57(4), 399-418, 2008
- 543 44. Heiri, O., Lotter, A. F., and Lemcke, G.: Loss on ignition as a method for estimating organic and carbonate content 544 in sediments: reproducibility and comparability of results. J. Paleolimnol, 25, 101-110, 2001
- 45. Hernández, A., Bao, R., Giralt, S., Barker, P. A., Leng, M. J., Sloane, H. J., and Sáez, A.; Biogeochemical processes
 546 controlling oxygen and carbon isotopes of diatom silica in Late Glacial to Holocene lacustrine rhythmites.
 547 Palaeogeogr. Palaeoclimatol. Palaeoecol. 299(3-4), 413-425, 2012.
- 46. Hogg, A. G., Heaton, T. J., Hua, Q., Palmer, J. G., Turney, C. S. M., Southon, J., Bayliss, A., Blackwell, P. G.,
 Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R. and Wacker, L.: "SHCal20
 SOUTHERN HEMISPHERE CALIBRATION, 0–55,000 YEARS CAL BP," Radiocarbon. Cambridge University
 Press, pp. 1–20, 2020
- 552 47. Imachi, H., Sakai, S., Lipp, J. S., Miyazaki, M., Saito, Y., Yamanaka, Y., ... and Takai, K. Pelolinea submarina gen.
 553 nov., sp. nov., an anaerobic, filamentous bacterium of the phylum Chloroflexi isolated from subseafloor sediment.
 554 International journal of systematic and evolutionary microbiology, 64(Pt 3), 812-818, 2014
- 555 48. Imachi, H., Sakai, S., Sekiguchi, Y., Hanada, S., Kamagata, Y., Ohashi, A., and Harada, H. Methanolinea tarda gen. 556 nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. IJSEM, 58(1), 294-301, 557 2008
- 49. Jiao, J. Y., Liu, L., Hua, Z. S., Fang, B. Z., Zhou, E. M., Salam, N., ... and Li, W. J.: Microbial dark matter coming to light: challenges and opportunities. Nat Sci Rev, 8(3), nwaa280, 2021
- 50. Kadnikov, V. V., Mardanov, A. V., Beletsky, A. V., Karnachuk, O. V., and Ravin, N. V. Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles, 23, 189-200, 2019
- 51. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M.: KEGG for integration and interpretation of largescale molecular data sets. Nucleic acids Res, 40(D1), D109-D114, 2012
- 52. Kassambara, A.: R Graphics Essentials for Great Data Visualization: 200 Practical Examples You Want to Know for
 Data Science. STHDA, 2017

- 53. Keller W, Yan ND, Holtze K, Pitblado JR. Chemical response of acid lakes in the Sudbury, Ontario area to reduced smelter emissions, 1981–1989. Can J Fish Aquat Sci. 49 (Suppl.1): 25–32, 1992
- 54. Kereszturi, Á., Aszalós, J. M., Heiling, Z., Ignéczi, Á., Kapui, Z., Király, C., ... and Szalai, Z. Cold, dry, windy, and
 UV irradiated: surveying Mars-relevant conditions in Ojos del Salado Volcano (Andes Mountains, Chile).
 Astrobiology, 20(6), 677-683, 2020
- 572 55. Korosi, J. B., Thienpont, J. R., Smol, J. P., and Blais, J. M. Paleo-ecotoxicology: what can lake sediments tell us about 573 ecosystem responses to environmental pollutants?. Environ. Sci. Technol., 51(17), 9446-9457, 2017
- 56. Kostka, A., and Leśniak, A. Natural and anthropogenic origin of metals in lacustrine sediments; assessment and consequences—A case study of Wigry lake (Poland). Minerals, 11(2), 158, 2021
- 57. Kurth, D., Elias, D., Rasuk, M. C., Contreras, M., and Farias, M. E. Carbon fixation and rhodopsin systems in microbial mats from hypersaline lakes Brava and Tebenquiche, Salar de Atacama, Chile. PLoS One, 16(2), e0246656, 2021
 - 58. Lahti, L., Shetty, S., Blake, T., and Salojarvi, J. Tools for microbiome analysis in R Version 2.1. 26, 2017

- 580 59. Laplante K, Sébastien B, Derome N. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation. Evol Appl., 6(4):643-59, 2013
- 582 60. Li, W. C., and Wong, M. H. Effects of bacteria on metal bioavailability, speciation, and mobility in different metal mine soils: a column study. J soils sediments, 10, 313-325, 2010
- 584 61. Lins, U., Keim, C. N., Evans, F. F., Farina, M., and Buseck, P. R.: Magnetite (Fe3O4) and greigite (Fe3S4) crystals 585 in multicellular magnetotactic prokaryotes. Geomicrobiology J, 24(1), 43-50, 2007
- 586 62. Louca, S., Parfrey, L. W., and Doebeli, M.: Decoupling function and taxonomy in the global ocean microbiome. 587 Science, 353(6305), 1272-1277, 2016
- 588 63. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. 589 Genome Biol. 2014;15(12):1–21
- 590 64. Madsen, E. L.: Microorganisms and their roles in fundamental biogeochemical cycles. Curr opinion Biotech., 22(3), 456-464, 2011
- 592 65. Mathivanan, K., Chandirika, J. U., Vinothkanna, A., Yin, H., Liu, X., and Meng, D. Bacterial adaptive strategies to 593 cope with metal toxicity in the contaminated environment–A review. Ecotox Env Safety, 226, 112863, 2021
- 594 66. McMurdie P, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome 595 census data. PLoS ONE. 8(4):e61217, 2013
- 596 67. Moskowitz, B. M., Bazylinski, D. A., Egli, R., Frankel, R. B., and Edwards, K. J.: Magnetic properties of marine 597 magnetotactic bacteria in a seasonally stratified coastal pond (Salt Pond, MA, USA). GJI 174(1), 75-92, 2008
- 598 68. Niu, Z. S., Yang, Y., Tou, F. Y., Guo, X. P., Huang, R., Xu, J., ... and Hochella, M. F. Sulfate-reducing bacteria (SRB) 599 can enhance the uptake of silver-containing nanoparticles by a wetland plant. Env Sci: Nano, 7(3), 912-925, 2020.

- 69. Ordoñez, O. F., Flores, M. R., Dib, J. R., Paz, A., and Farías, M. E. Extremophile culture collection from Andean
- lakes: extreme pristine environments that host a wide diversity of microorganisms with tolerance to UV radiation.
- 602 Microb. Ecol. 58, 461–473, 2009.

- 70. Orellana, R., Macaya, C., Bravo, G., Dorochesi, F., Cumsille, A., Valencia, R., ... and Seeger, M. Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol, 9, 2309, 2018
- 71. Oren, A. (2014). The Family Methanoregulaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg.
- 607 72. Oren, A., and Garrity, G. M. Valid publication of the names of forty-two phyla of prokaryotes. International journal of systematic and evolutionary microbiology, 71(10), 005056, 2021
- 73. Pérez-Cataluña, A., Salas-Massó, N., Diéguez, A. L., Balboa, S., Lema, A., Romalde, J. L., and Figueras, M. J. Revisiting the taxonomy of the genus Arcobacter: getting order from the chaos. Front Microbiol, 9, 2077, 2018
- 74. Pérez-Portilla, P., Aránguiz-Acuña, A., Pizarro, H., and Herrera, J.: Assessing the Effects of Long-Term Mining Exploitation on a Lacustrine System from the Arid Region of the Atacama Desert, Chile. STOTEN, 949: https://doi.org/10.1016/j.scitotenv.2024.174771, 2024
- 75. Picard, M., Wood, S. A., Pochon, X., Vandergoes, M. J., Reyes, L., Howarth, J. D., ... and Puddick, J. Molecular and pigment analyses provide comparative results when reconstructing historic cyanobacterial abundances from lake sediment cores. Microorganisms, 10(2), 279, 2022
- 76. Pigati JS, Miller DM, Bright J, Mahan SA, Nekola JC, Paces JB. Chronology, sedimentology, and micro-fauna of ground-water discharge deposits in the central Mojave Desert, Valley Wells, California. Geol Soc Am Bull., 123: 2224–2239, 2011
- 77. Placzek, C., Quade, J., Betancourt, J. L., Patchett, P. J., Rech, J. A., Latorre, C., ... and English, N. B.Climate in the dry central Andes over Geologic, millennial, and interannual timescales. Ann. Mo. Bot. Gard., 96(3), 386–397, 2009.
 - 78. Pollard HG, Colbourne JK, Keller W. Reconstruction of Centuries-old Daphnia Communities in a Lake Recovering from Acidification and Metal Contamination. Ambio., 32: 214–218, 2003
- 79. Price, M.N., Dehal, P.S., Arkin, A.P.: FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol., 26(7):1641–1650, 2009
- 80. Pueyo, J. J., Sáez, A., Giralt, S., Valero-Garcés, B. L., Moreno, A., Bao, R., Schwalb, A., Herrera, C., Klosowska, B., and Taberner, C.: Carbonate and organic matter sedimentation and isotopic signatures in Lake Chungará, Chilean Altiplano, during the last 12.3 kyr, Palaeogeogr. Palaeocl., 307, 339–355, 2011
- 81. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res., 41(D1):D590–D596, 2012.
- 82. Raab, A., and Feldmann, J. Microbial transformation of metals and metalloids. Science Progress, 86(3), 179-202, 2003

- 83. Rahman, Z. An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. J. Haz. Mat., 396, 122682, 2020
- 84. Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., and Dedysh, S. (2015). Bergey's manual of systematics of Archaea and Bacteria (Vol. 410). W. B. Whitman (Ed.). Hoboken, NJ: Wiley.
- 85. Ramírez M, Massolo S, Frache R, Correa JA. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar Pollut Bull., 50, 62–72, 2005
- 639 86. Ramos-Tapia I, Salinas P, Núñez R, Cortez D, Soto J, Paneque M. Compositional Changes in Sediment Microbiota 640 Are Associated with Seasonal Variation of the Water Column in High-Altitude Hyperarid Andean Lake Systems. 641 Microbiol Spectr. 15;11(3):e0520022, 2023
- 87. Rasuk, M. C., Kurth, D., Flores, M. R., Contreras, M., Novoa, F., Poire, D., and Farias, M. E.: Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 71, 44–56, 2014
- 88. Ritter, B., Wennrich, V., Medialdea, A., Brill, D., King, G., Schneiderwind, S., ... and Dunai, T. J.: Climatic fluctuations in the hyperarid core of the Atacama Desert during the past 215 ka. Sci Rep., 9: 5270, 2019
- 89. Rodríguez-Luna, D., Encina-Montoya, F., Alcalá, F. J., and Vela, N.: An Overview of the Environmental Impact Assessment of Mining Projects in Chile. Land, 11(12), 2278, 2022
- 90. Romero, H., Méndez, M., Smith, P.: Mining development and environmental in-justice in the Atacama desert of northern Chile. Environ. Justice 5, 70–76, 2012
- 91. Romero, L., Alonso, H., Campano, P., Fanfani, L., Cidu, R., Dadea, C., ... and Farago, M. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). App Geochem, 18(9), 1399-1416, 2003
- 653 92. Roosa, S., Wattiez, R., Prygiel, E., Lesven, L., Billon, G., and Gillan, D. C. Bacterial metal resistance genes and metal 654 bioavailability in contaminated sediments. Env pollution, 189, 143-151, 2014
- 93. Salvarredy-Aranguren MM, Probst A, Roulet M, Isaure M-P.: Contamination of surface waters by mining wastes in
 the Milluni Valley (Cordillera Real, Bolivia): Mineralogical and hydrological influences. Appl Geochem., 23: 1299–
 1324, 2008
- 94. Staicu, L. C., and Stolz, J. F.: Microbes vs. metals: Harvest and recycle. FEMS microbiol ecology, 97(5), fiab056, 2021
- 95. Stankevica, K., Vincevica-Gaile, Z., Klavins, M., Kalnina, L., Stivrins, N., Grudzinska, I., and Kaup, E.:
 Accumulation of metals and changes in composition of freshwater lake organic sediments during the Holocene. Chem
 Geol. 539, 119502, 2020
- 96. Tapia, J., Davenport, J., Townley, B., Dorador, C., Schneider, B., Tolorza, V., and von Tümpling, W.: Sources, enrichment, and redistribution of As, Cd, Cu, Li, Mo, and Sb in the Northern Atacama Region, Chile: implications for arid watersheds affected by mining. J Geochem Exploration, 185, 33-51, 2018

- 666 97. Tapia, J., Mukherjee, A., Rodríguez, M. P., Murray, J., and Bhattacharya, P.: Role of tectonics and climate on elevated 667 arsenic in fluvial systems: Insights from surface water and sediments along regional transects of Chile. Env Pollution, 668 314, 120151, 2022
- 98. Tapia, J., Murray, J., Ormachea, M., Tirado, N., and Nordstrom, D. K. Origin, distribution, and geochemistry of arsenic in the Altiplano-Puna plateau of Argentina, Bolivia, Chile, and Perú. STOTEN, 678, 309-325, 2019
- 99. Teunisse, G. M.: Fantaxtic Nested Bar Plots for Phyloseq Data (Version 2.0.1) [Computer software]. https://github.com/gmteunisse/Fantaxtic, 2022
- 673 100. Thukral, A. K. A review on measurement of Alpha diversity in biology. Agri Res J, 54(1), 2017
- 101.Tomazini Jr, A., Lal, S., Munir, R., Stott, M., Henrissat, B., Polikarpov, I., ... and Levin, D. B.: Analysis of carbohydrate-active enzymes in Thermogemmatispora sp. strain T81 reveals carbohydrate degradation ability. Canadian journal of microbiology, 64(12), 992-1003, 2018
- 102. Trolle, D., Hamilton, D.P., Pilditch, C.A.: Evaluating the influence of lake morphology, trophic status and diagenesis on geochemical profiles in lake sediments. Appl Geochem., 25:621–632, 2010
- 103.Usenko, S., Landers, D.H., Appleby, P.G., Simonich. S.L.: Current and historical deposition of PBDEs, pesticides, PCBs, and PAHs to Rocky Mountain National Park. Environ Sci Technol., 41:7235–7241, 2007
- 681 104. Valero-Garcés, B. L., Delgado-Huertas, A., Navas, A., Edwards, L., Schwalb, A., and Ratto, N.: Patterns of regional 682 hydrological variability in central-southern Altiplano (18–26°S) lakes during the last 500 years, Palaeogeogr. 683 Palaeocl., 194, 319–338, 2003.
- 105. Vargas-Machuca, B. D., Zanetta-Colombo, N., De Pol-Holz, R., and Latorre, C. Variations in local heavy metal concentrations over the last 16,000 years in the central Atacama Desert (22° S) measured in rodent middens. STOTEN 775, 145849, 2021
- 106. Verosub, K. L., and Roberts, A. P.: Environmental magnetism: Past, present, and future. J. Geophys., 100(B2), 2175-2192, 1995
- 107. Versteeg, J. K., Morris, W. A., and Rukavina, N. A.: The utility of magnetic properties as a proxy for mapping contamination in Hamilton Harbour sediment. J Great Lakes Res., 21(1), 71-83, 1995
- 108. Vignale, F. A., Lencina, A. I., Stepanenko, T. M., Soria, M. N., Saona, L. A., Kurth, D., ... and Farías, M. E.: Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the Central Andes. Microb Ecol., 1-17, 2021
- 693 109. Wasmund, K., Schreiber, L., Lloyd, K. G., Petersen, D. G., Schramm, A., Stepanauskas, R., ... and Adrian, L.:
 694 Genome sequencing of a single cell of the widely distributed marine subsurface Dehalococcoidia, phylum
 695 Chloroflexi. ISME J. 8, 383–397. doi: 10.1038/ismej.2013.143, 2014
- 110.Wickham, H.;. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4,
 https://ggplot2.tidyverse.org, 2016

- 111. Yan, C., Wang, F., Liu, H., Liu, H., Pu, S., Lin, F., ... and Yuan, R.: Deciphering the toxic effects of metals in gold mining area: microbial community tolerance mechanism and change of antibiotic resistance genes. Env Res., 189, 109869, 2020
- 112. Yan, Y., He, A., Dilek, Y., Zhu, Z., and Zhao, Q. Landscape inversion episodes in SE China during the Mesozoic– early Cenozoic: Constrained by trace-element contents, Nd isotope geochemistry, and detrital zircon U-Pb geochronology of sedimentary basins. GSA Bulletin., 136(7-8), 2978-2998, 2024
- 113. Yang, C., Mai, J., Cao, X., Burberry, A., Cominelli, F., and Zhang, L.: ggpicrust2: an R package for PICRUSt2 predicted functional profile analysis and visualization. Bioinformatics, 39(8), btad470, 2023
- 706 114. Yao, Z., Gao, P.: Heavy metal research in lacustrine sediment: a review. Chin. J. Ocean. Limnol. 25, 444–454, 2007.
- 115.Zanetta-Colombo, N. C., Fleming, Z. L., Gayo, E. M., Manzano, C. A., Panagi, M., Valdés, J., and Siegmund, A.: Impact of mining on the metal content of dust in indigenous villages of northern Chile. Env Intl, 169, 107490, 2022
- 116.Zanetta-Colombo, N. C., Scharnweber, T., Christie, D. A., Manzano, C. A., Blersch, M., Gayo, E. M., ... and Nüsser,
 M. When another one bites the dust: Environmental impact of global copper demand on local communities in the
 Atacama mining hotspot as registered by tree rings. STOTEN, 920, 170954, 2024
- 117.Zha, Y., Chong, H., Yang, P., and Ning, K. (2022). Microbial dark matter: from discovery to applications. GPB, 20(5), 867-881.
- 118.Zhao, Y.N., Li, X.F., Ren, Y.P., Wang, X.H.: Effect of static magnetic field on the performances of and anode biofilms in microbial fuel cells. RSC Adv 6(85):82301–82308, 2016
- 119.Zhou, H., and van Hullebusch, E. D.: Microbial interaction and transformation of metals and metalloids. Letters Applied Microbiol, 75(5), 1074-1075, 2022