
Reviewer 1. 

 

1. I still have substantial concerns about the fundamentel approach. Treating a non-
canonical system in canonical coordinates is non-trivial and requires one to pass to 
Clebsch variables (cf. J. E. Marsden and A. Weinstein. Coadjoint orbits, vortices, and 
Clebsch variables for incompressible fluids. Physica D: Nonlinear Phenomena, 7(1-
3):305–323, may 1983.). In the non-canonical setting, the work by Gawlik and Gay-Balmaz 
(and earlier work by Gawlik et al, Pavlov et al.) required considerable technical 
complexity (e.g. in terms of the Hodge star operator) to make the non-canonical system 
well defined in the discrete setting. The manuscript (and potentially a longer reply to this 
reviewer) needs to explain why a canonical treatment is possible although one deals with 
a non-canonical system/description. 
 
Response 
 
Under a “non-canonical system” the Reviewer, probably, had in mind a Hamiltonian 
system represented in non-canonical coordinates. Judging from the title, the paper by 
Marsden and Weinstein mentioned by the Reviewer considers an incompressible fluid, 
where the Lagrangian description of fluid dynamics provide canonical coordinates only 
after imposing restrictions. This leads to introduction of Clebsch variables. However, in 
the case of a compressible fluid considered in the paper the Lagrangian displacements and 
the products of density and corresponding Lagrangian velocities provides a canonical 
description. Canonical coordinates are not, of course, unique, and Clebsch variables can be 
introduced in the compressible case as well, and the 2D numerical example considered in 
the paper in fact does use them.  
  
I would like to emphasize that the evolution due to canonical dynamics based on the 
Lagrangian coordinates is used in the paper within each time step; before next time step 
the Lagrangian reassignment (aka semi-Lagrangian advection, Lagrangian remapping, 
etc.) has to be applied.  
 
2. The manuscript would still substantially benefit from a deeper and more numerical 
results (see my previous review). 
 
Response 
 
Although the author in principle agrees with this comment, I would like to emphasize that 
the point of this paper is not a development of a competitive numerical algorithm but rather 
a demonstration of a feasibility of building an algorithm based on the least action principle. 
The author believes that the numerical example presented in the paper basically fulfils this 
task, demonstrating also a capability of a refinement of an unstructured grid in the course 



of calculation and account for an orography, which are claimed to be advantages of the 
suggested approach. 
 
Still, consideration of a well-established example and comparison of the results would, of 
course, make the paper much more convincing.  This is, unfortunately, unrealizable for the 
author for a practical reason: I am planning retirement in a few months, and corresponding 
effort would take much longer.  Thus, if consideration of a well-established example 
deemed to be necessary, the paper should be apparently rejected.  
 
 

Reviewer 2. 

 

The author is very glad to know that the approach considered in the paper is found of interest by 
an expert in the field, and he is very grateful to the Reviewer for his/her encouraging remarks.  

In the introductory part of the review among other comment three important questions were raised:  
(a) a necessity of considering a “standard” test case (a similar concern was expressed by the 
Reviewer 1 above;  (b) the issue of uniqueness/non-degeneracy of the Lagrangian remapping; (c) 
consideration of the potential performance benefits of corresponding computer realization of the 
approach. These issues will be addressed when replying to “Technical considerations” below. 

 

1. The dot symbol was added in Eqs. (17) and (21). 
 

2.  A contribution from the boundary term in the second Hamiltonian equation written out 
after eqs. (16) is absent because this equation corresponds only to the points lying inside 
the volume (in a more technical terms: since δξ



 is an arbitrary function of coordinates a

, one can set it equal to ( )0a aδξδ −


 

where a point 0a  lies within the volume. The 
boundary integral in this case turns to zero. The resulting volume integral of the variation 
of the Hamiltonian density Hδ over the whole volume is by definition the variational 

derivative /Hδ δξ


at the point 0a  times δξ


).  The contributions from the first 
(boundary) term in the RHS of (8) contributes only to the points belonging to the boundary 
of the volume begetting corresponding boundary conditions). 
 
As far as numerical example goes, the boundary conditions correspond to zero mass flux 
at the top and bottom points of the atmosphere, and the motion was assumed periodic in 
horizontal direction (i.e., along x -axis). Corresponding clarifying sentence was added 
after the old line 340. 

 



3. The simplest way to make sure that conditions (27) select inner points of a tetrahedron is 
to make an affine transformation of the a -space mapping the vertex 4a onto the origin, 

vertex 1a  onto a unit along _x-axis (i.e. into the point ( )1,0,0xe =


, vertex 2a onto the 

point ( )0,1,0ye =


and vertex 3a onto the point ( )0,0,1ze =


of a new Cartesian 

coordinates. Then (26) becomes: ( ) ( )1 2 3x y x z yr e e e e eτ τ τ= + − + −
     

, whence

1 2x τ τ= − , 2 3y τ τ= − , 3z τ= . In the new coordinates the internal points of the 
tetrahedron are selected by the conditions 0, 0, 0, 1x y z x y z> > > + + <  which in 
fact coincide with (27). 
 

4. To consider the issue of uniqueness/non-degeneracy of the mapping (29), let us consider 
trajectories of fluid particles. The fluid particle that at 0t = was located at the vertex with 

coordinates ia at a later moment of time t will be located at a point ( )i i ir t a ξ= +


 

. Points 

ir


form vertices of a shifted tetrahedron onto which the initial tetrahedron is mapped. Note, 

that shifts ξ


of the fluid particles inside a tetrahedron are assumed to be linear functions of 
the shifts of the fluid particles located at the vertices of the tetrahedron: this is our basic 
(linear) approximation of the forward operator (see the first paragraph of Sec. 3). Thus, the 
initial tetrahedron with the vertices at the points ia is linearly (more precisely affinely) 
mapped onto a shifted tetrahedron with vertices at ir



; the transformation is linear 

regardless of the trajectories of the fluid particles at the vertices ia being linear or curved. 
In particular, faces and edges of the initial tetrahedron are mapped onto corresponding 
faces and edges of the shifted tetrahedron. Since shifts of the internal points of the 
tetrahedron are linear functions of ia , the Jacobian of the linear transformation of the initial 
tetrahedron within it is constant (the constants for different tetrahedrons are, of course, also 
different, and they depend on time t ).  Thus, piecewise linearity of the forward operator 
ensures that the mapping of the whole initial volume onto the shifted volume is also 
piecewise linear, and the mapping is one-to-one provided neither tetrahedron in the course 
of evolution degenerates (i.e. tetrahedra volumes never turn to zero).  The latter is 
warranted for sufficiently small t , since at 0t = the transformation is identical. A time 
step has to be sufficiently small anyway, since the shifted tetrahedron after a time step 
should not deviate too far from the initial one; otherwise numerical integration will be in 
error. Non-degeneracy of the initial tetrahedrons can be easily checked since trajectories 
of the fluid particles at the vertices are calculated in the course of numerical integration.  
Note also that the degeneration of the initial tetrahedron means that density inside it 
becomes infinite; if time steps of numerical integration are selected correctly, this could 
never happen.  
 



5. The interesting issues raised by the Reviewer at comment 5 go well beyond my area of 
expertise. On the other hand, they are of primary importance if the approach under 
consideration is going to be implemented.  Although I quite understand the reason the 
Reviewer declined my invitation to co-author this paper, this is disappointing to me, and 
the invitation is still open.  
 

6. The desirability of consideration of established test cases was also raised by the other 
reviewer. Below I copy my response.  
 
Although the author in principle agrees with this comment, I would like to emphasize that 
the point of this paper is not a development of a competitive numerical algorithm but rather 
a demonstration of a feasibility of building an algorithm based on the least action principle. 
The author believes that the numerical example presented in the paper basically fulfils this 
task, demonstrating also a capability of a refinement of an unstructured grid in the course 
of calculation and account for an orography, which are claimed to be advantages of the 
suggested approach. 
 
Still, consideration of a well-established example and comparison of the results would, of 
course, make the paper much more convincing.  This is, unfortunately, unrealizable for the 
author for the following practical reason: I am planning retirement in a few months, and 
corresponding effort would take much longer.  Thus, if consideration of a well-established 
example deemed to be necessary, the paper should be apparently rejected.  
 
All suggestions listed in “Editorial considerations” are taken into account in the revised manuscript. 

 

 
 

 


